Section 6

Context-Free and Non-Context-Free Languages

Automata Theory Context-Free and Non-Context-Free Languages

▲ ≣ ▶373 / 416

Chapter

- 6 Context-Free and Non-Context-Free Languages
 - Pumping Lemma
 - Decision problems

Huiswerk...

Volgende week: geen werkcollege 's middags Vragenuur: dinsdag 21 december, 14.15-16.00? Ja!

From lecture 2:

Regular language is language accepted by an FA.

Theorem

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

 $\forall \quad \text{for every } x \in L \\ \text{satisfying } |x| \ge n \\ \end{cases}$

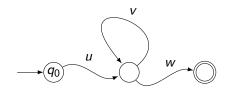
 $\exists \quad \text{there are three string } u, v, \text{ and } w, \\ \text{such that } x = uvw \text{ and the following three conditions are true:} \\ (1) |uv| \leq n, \\ (2) |v| \geq 1 \\ \vdots \\ \vdots$

 \forall and (3) for all $i \ge 0$, $uv^i w$ belongs to L

[M] Thm. 2.29

Pumping lemma

From lecture 2:



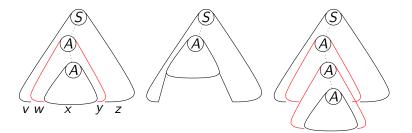
[M] Fig. 2.28

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

< ≣ >377 / 416

Pumping CF derivations

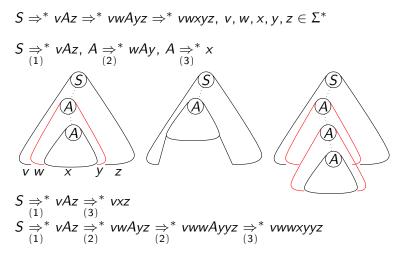


Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

< ≣ > 378 / 416

Pumping CF derivations



Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

379 / 416

< ∃ →

Theorem (Pumping Lemma for context-free languages)

```
\forall for every context-free language L
```

```
\exists there exists a constant <math>n \ge 1
such that
```

 $\forall \quad \text{for every } u \in L$ with $|u| \ge n$

```
∃ there exists a decomposition u = vwxyz
such that
(1) |wy| \ge 1
(2) |wxy| \le n,
∀ (3) for all m \ge 0, vw^mxy^mz \in L
```

```
[M] Thm. 6.1
```

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3

Theorem (Pumping Lemma for context-free languages) for every context-free language L A there exists a constant $n \ge 1$ such that for every $u \in L$ A with $|u| \ge n$ F there exists a decomposition u = vwxyzsuch that (1) $|wy| \ge 1$ (2) $|wxy| \leq n$, (3) for all $m \ge 0$, $vw^m xy^m z \in L$ \forall

If L = L(G) with G in ChNF, then $n = 2^{|V|}$. Proof... [M] Thm. 6.1

From lecture 9:

Definition

CFG in *Chomsky normal form* productions are of the form $-A \rightarrow BC$ variables *A*, *B*, *C* $-A \rightarrow \sigma$ variable *A*, terminal σ

Theorem

For every CFG G there is CFG G_1 in CNF such that $L(G_1) = L(G) - \{\Lambda\}$.

[M] Def 4.29, Thm 4.30

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1

Proof

Let G be CFG in Chomsky normal form with $L(G) = L - \{\Lambda\}$.

Derivation tree in G is binary tree

(where each parent of a leaf node has only one child).

Height of a tree is number of edges in longest path from root to leaf node.

At most 2^h leaf nodes in binary tree of height $h: |u| \leq 2^h$.

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1 **Proof** (continued)

At most 2^h leaf nodes in binary tree of height $h: |u| \leq 2^h$.

```
Let p be number of variables in G,
let n = 2^p
and let u \in L(G) with |u| \ge n.
```

(Internal part of) derivation tree of u in G has height at least p. Hence, longest path in (internal part of) tree contains at least p + 1 (internal) nodes.

Consider final portion of longest path in derivation tree. (leaf node + p + 1 internal nodes), with ≥ 2 occurrences of a variable A.

Pump up derivation tree, and hence u.

Application of pumping lemma:

mainly to prove that a language L cannot be generated by a context-free grammar.

How? Find a string $u \in L$ with $|u| \ge n$ that cannot be pumped up! What is *n*? What should *u* be? What can *v*, *w*, *x*, *y* and *z* be? What should *m* be?

Suppose that there exists context-free grammar *G* with L(G) = L. Let *n* be the integer from the pumping lemma.

```
We prove:

There exists u \in L with |u| \ge n, such that

for every five strings v, w, x, y and z such that u = vwxyz

if

1. |wy| \ge 1

2. |wxy| \le n

then
```

3. there exists $m \ge 0$, such that $vw^m xy^m z$ does not belong to L

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

 $\begin{bmatrix} M \end{bmatrix} \in 6.3 \\ u = a^n b^n c^n \\ \{ x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x) \} \end{bmatrix}$

Example

XX is not context-free.

[M] E 6.4

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

₹ ≥ >
 388 / 416

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3 $u = a^{n}b^{n}c^{n}$ $\{x \in \{a, b, c\}^{*} \mid n_{a}(x) = n_{b}(x) = n_{c}(x) \}$

Example

XX is not context-free.

 $\begin{bmatrix} M \end{bmatrix} \in 6.4$ $u = a^n b^n a^n b^n$ $\{ a^i b^j a^i b^j \mid i, j \ge 0 \}$

Example

{ $x \in \{a, b, c\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x) \}$ is not context-free.

[M] E 6.5

ABOVE

 $L = \{ x \in \{a, b, c\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x) \}$ is not context-free.

Proof by contradiction.

Suppose L is context-free, then there exists a pumping constant n for L.

Choose $u = a^n b^{n+1} c^{n+1}$. Then $u \in L$, and $|u| \ge n$.

This means that we can pump u within the language L.

Consider a decomposition u = vwxyz that satisfies the pumping lemma, in particular $|wxy| \leq n$.

Case 1: wy contains a letter *a*. Then wy cannot contain letter *c* (otherwise |wxy| > n). Now $u_2 = vw^2xy^2z$ contains more *a*'s than *u*, so at least n + 1, while u_2 still contains n + 1 *c*'s. Hence $u_2 \notin L$.

Case 2: wy contains no a. Then wy contains at least one b or one c (or both). Then $u_0 = vw^0 xy^0 z = vxz$ has still n a's, but less than n+1 b's or less than n+1 c's (depending on which letter is in wy). Hence $u_0 \notin L$.

These are two possibilities for the decomposition vwxyz, in both cases we see that pumping leads out of the language L.

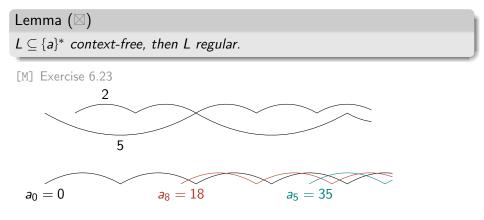
Hence u cannot be pumped.

Contradiction; so L is not context-free.

The Set of Legal C Programs is Not a CFL

```
[M] E 6.6
Choose u =
main(){int aaa...a;aaa...a=aaa...a;}
where aaa...a contains n+1 a's
```

Applying the Pumping Lemma (2)



This exercise does not have to be known for the exam.

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

▲ ≣ ▶391 / 416

From lecture 3:

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

```
If L can be accepted by an FA,
then there is an integer n
such that for any x \in L with |x| \ge n
and for any way of writing x as x_1x_2x_3 with |x_2| = n,
there are strings u, v and w such that
```

- a. $x_2 = uvw$
- b. $|v| \ge 1$
- c. For every $m \ge 0$, $x_1 u v^m w x_3 \in L$

Ogden's Lemma

Generalization of pumping lemma for CFL: pump at distinguished positions in uOgden's lemma does not have to be known for the exam.

Combining languages

From lecture 2: FA $M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$ i = 1, 2

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that $-Q = Q_1 \times Q_2$ $-q_0 = (q_1, q_2)$ $-\delta((p, q), \sigma) = (\delta_1(p, \sigma), \delta_2(q, \sigma))$

-A as needed

Theorem (2.15 Parallel simulation) $-A = \{(p, q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$ $-A = \{(p, q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$ $-A = \{(p, q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2)$

Proof. . .

[M] Sect 2.2 Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

₹ ≣ ▶394 / 416

Closure

From lecture 6:

Regular languages are closed under

- Boolean operations (complement, union, intersection)
- Regular operations (union, concatenation, star)
- Reverse (mirror)
- [inverse] Homomorphism

Regular operations and CFL

From lecture 7:

Using building blocks

Theorem

If L_1 , L_2 are CFL, then so are $L_1 \cup L_2$, L_1L_2 and L_1^* .

 $G_i = (V_i, \Sigma, S_i, P_i)$, having no variables in common.

Construction

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma, S, P), \text{ new axiom } S$$

- P = P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\} L(G) = L(G_1) \cup L(G_2)
- P = P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\} L(G) = L(G_1)L(G_2)
G = (V_1 \cup \{S\}, \Sigma, S, P), \text{ new axiom } S
- P = P_1 \cup \{S \rightarrow S_1, S \rightarrow A\} L(G) = L(G_1)^*

[M] Thm 4.9

How about

• $L_1 \cap L_2$ • $L_1 - L_2$ • L'_1 for CFLs L_1 and L_2 ?

From lecture 8:

Example

AnBnCn is intersection of two context-free languages.

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

AnBnCn is intersection of two context-free languages.

 $\ensuremath{\left[\ensuremath{\mathbb{M}} \ensuremath{\right]}\xspace}$ E 6.10 Hence, CFL is not closed under intersection

$$\label{eq:L1} \begin{split} L_1 \cap L_2 &= (L_1' \cup L_2')' \\ \text{Hence, CFL is not closed under complement} \end{split}$$

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

Complement of XX = { $x \in \{a, b\}^* \mid |x| \text{ is odd } \} \cup \{ x y \mid x, y \in \{a, b\}^*, |x| = |y|, x \neq y \}$ is context-free

 $\ensuremath{\left[\ensuremath{\mathbb{M}} \right]}\xspace E 6.11$ Indeed, CFL is not closed under complement

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

4 ≣ ▶400 / 416

Complement of AnBnCn is context-free. Complement of $\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}$ is context-free.

[M] E 6.12

Complement of AnBnCn is context-free. Complement of $\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}$ is context-free.

AnBnCn = $L_1 \cap L_2 \cap L_3$, with $L_1 = \{a^i b^j c^k \mid i \leq j\}$ $L_2 = \{a^i b^j c^k \mid j \leq k\}$ $L_3 = \{a^i b^j c^k \mid k \leq i\}$ [M] E 6.12

Complement of AnBnCn is context-free. Complement of $\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}$ is context-free.

$$\{x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\} = A_1 \cap A_2 \cap A_3, \text{ with } A_1 = \{x \in \{a, b, c\}^* \mid n_a(x) \leqslant n_b(x)\} \\ A_2 = \{x \in \{a, b, c\}^* \mid n_b(x) \leqslant n_c(x)\} \\ A_3 = \{x \in \{a, b, c\}^* \mid n_c(x) \leqslant n_a(x)\} \\ [M] \in 6.12$$

Intersection CFL

Example $L_1 = \{ a^{2n}b^n \mid n \ge 1 \}^*$ $a^{16}b^8a^8b^4a^4b^2a^2b^1$ $L_2 = a^*\{ b^na^n \mid n \ge 1 \}^*\{ b \}$

< ∃ >

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

404 / 416