Exercise 3.21.

Consider the following transition table for an NFA with states 1–5 and input alphabet $\{a, b\}$. There are no Λ -transitions:

q	$\delta(q,a)$	$\delta(q,b)$
1	$\{1,2\}$	{1}
2	{3}	{3}
3	{4}	{4}
4	{5}	Ø
5	Ø	{5}

- a. Draw a transition diagram.
- **b.** Calculate $\delta^*(1, ab)$.
- **c.** Calculate $\delta^*(1, abaab)$.

Exercise 3.22.

A transition table is given for an NFA with seven states.

	q	$\delta(q,a)$	$\delta(q,b)$	$\delta(q, \Lambda)$
_	1	Ø	Ø	{2}
	2	{3}	Ø	{5}
	3	Ø	{4}	Ø
	4	{4}	Ø	$\{1\}$
	5	Ø	$\{6,7\}$	Ø
	6	{5}	Ø	Ø
	7	Ø	Ø	$\{1\}$

Find:

- **d.** $\delta^*(1, ba)$
- **e.** $\delta^*(1, ab)$

f. $\delta^*(1, ababa)$

Exercise 3.37.

In each part of Figure 3.36 (on the blackboard) is pictured an NFA.

Use the algorithm from the lecture to draw an NFA with no Λ -transitions accepting the same language.

b.

Exercise 3.40.

Each part of Figure 3.38 (on the blackboard) shows an NFA. Draw an FA accepting the same language.

a.