From lecture 7:

Theorem 4.9.

If L_1 and L_2 are context-free languages over an alphabet Σ , then $L_1 \cup L_2$, L_1L_2 and L_1^* are also CFLs.

Exercise 5.19.

Suppose M_1 and M_2 are PDAs accepting L_1 and L_2 , respectively. For both the languages L_1L_2 and L_1^* , describe a procedure for constructing a PDA accepting the language.

In each case, nondeterminism will be necessary. Be sure to say precisely how the stack of the new machine works; no relationship is assumed between the stack alphabets of M_1 and M_2 .

Answer begins with: Let $M_1 = (Q_1, \Sigma, \Gamma_1, q_{01}, Z_{01}, A_1, \delta_1)$ and let $M_2 = (Q_2, \Sigma, \Gamma_2, q_{02}, Z_{02}, A_2, \delta_2)$.

Exercise 5.21.

Prove the converse of Theorem 5.28:

If there is a PDA $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ accepting L by empty stack (that is, $x \in L$ if and only if $(q_0, x, Z_0) \vdash^*_M (q, \Lambda, \Lambda)$ for some state q),

then there is a PDA M_1 accepting L by final state (i.e., the ordinary way).

Exercise 5.25.

A counter automaton is a PDA with just two stack symbols, A and Z_0 , for which the string on the stack is always of the form $A^n Z_0$ for some $n \ge 0$.

(In other words, the only possible change in the stack contents is a change in the number of A's on the stack.)

For some context-free languages, such as AnBn, the obvious PDA to accept the language is in fact a counter automaton.

Construct a counter automaton to accept the given language in each case below.

a.
$$\{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$$

b.
$$\{x \in \{a, b\}^* \mid n_a(x) = 2n_b(x)\}$$

Exercise 5.28.

In each case below, you are given a CFG G and a string x that it generates.

For the top-down PDA NT(G), trace a sequence of movs by which x is accepted, showing at each step the state, the unread input, and the stack contents.

Show at the same time the corresponding leftmost derivation of x in the grammar. See Example 5.19 for a guide.

b. The grammar has productions $S \to S + S \mid S * S \mid [S] \mid a$, and x = [a * a + a].

Exercise 5.34.

In each case below, you are given a CFG G and a string x that it generates.

For the top-down PDA NB(G), trace a sequence of movs by which x is accepted, showing at each step the stack contents and the unread input.

Show at the same time the corresponding rightmost derivation of x (in reverse order) in the grammar. See Example 5.24 for a guide.

a. The grammar has productions $S \to S[S] \mid \Lambda$ and x = [][[]].