
Pumping CF derivations

From lecture 12:
S ⇒∗ vAz ⇒∗ vwAyz ⇒∗ vwxyz , v ,w , x , y , z ∈ Σ∗

S ⇒
(1)

∗ vAz , A ⇒
(2)

∗ wAy , A ⇒
(3)

∗ x

S

A

A

v w x y z

S

A

S

A

A

A

S ⇒
(1)

∗ vAz ⇒
(3)

∗ vxz

S ⇒
(1)

∗ vAz ⇒
(2)

∗ vwAyz ⇒
(2)

∗ vwwAyyz ⇒
(3)

∗ vwwxyyz
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Theorem (Pumping Lemma for context-free languages)

∀ for every context-free language L
∃ there exists a constant n > 1

such that
∀ for every u ∈ L

with |u| > n
∃ there exists a decomposition u = vwxyz

such that
(1) |wy | > 1
(2) |wxy | 6 n,

∀ (3) for all m > 0, vwmxymz ∈ L

If L = L(G ) with G in ChNF, then n = 2|V |.
Proof. . .
[M] Thm. 6.1
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From lecture 9:

Definition

CFG in Chomsky normal form
productions are of the form
– A → BC variables A,B ,C
– A → σ variable A, terminal σ

Theorem

For every CFG G there is CFG G1 in CNF such that L(G1) = L(G ) − {Λ}.

[M] Def 4.29, Thm 4.30
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Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1

Proof

Let G be CFG in Chomsky normal form with L(G ) = L− {Λ}.

Derivation tree in G is binary tree
(where each parent of a leaf node has only one child).

Height of a tree is number of edges in longest path from root to leaf node.

At most 2h leaf nodes in binary tree of height h: |u| 6 2h.
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Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1

Proof (continued)

At most 2h leaf nodes in binary tree of height h: |u| 6 2h.

Let p be number of variables in G ,
let n = 2p

and let u ∈ L(G ) with |u| > n.

(Internal part of) derivation tree of u in G has height at least p.
Hence, longest path in (internal part of) tree contains at least p + 1
(internal) nodes.

Consider final portion of longest path in derivation tree.
(leaf node + p + 1 internal nodes),
with > 2 occurrences of a variable A.

Pump up derivation tree, and hence u.
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Application of pumping lemma:

mainly to prove that a language L cannot be generated by a context-free
grammar.

How?
Find a string u ∈ L with |u| > n that cannot be pumped up!

What is n?
What should u be?
What can v , w , x , y and z be?
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Suppose that there exists context-free grammar G with L(G ) = L.
Let n be the integer from the pumping lemma.

We prove:
There exists u ∈ L with |u| > n, such that
for every five strings v , w , x , y and z such that u = vwxyz
if
1. |wy | > 1
2. |wxy | 6 n
then
3. there exists m > 0, such that vwmxymz does not belong to L
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Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3

u = anbncn

{ x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x) }

Example

XX is not context-free.

[M] E 6.4
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Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3

u = anbncn

{ x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x) }

Example

XX is not context-free.

[M] E 6.4

u = anbnanbn

{ aibjaibj | i , j > 0 }

Example

{ x ∈ {a, b, c}∗ | na(x) < nb(x) and na(x) < nc(x) } is not context-free.

[M] E 6.5
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above

L = { x ∈ {a, b, c}∗ | na(x) < nb(x) and na(x) < nc(x) } is not
context-free.
Proof by contradiction.
Suppose L is context-free, then there exists a pumping constant n for
L.
Choose u = anbn+1cn+1. Then u ∈ L, and |u| > n.
This means that we can pump u within the language L.
Consider a decomposition u = vwxyz that satisfies the pumping
lemma, in particular |wxy | 6 n.
Case 1: wy contains a letter a. Then wy cannot contain letter c
(otherwise |wxy | > n). Now u2 = vw2xy2z contains more a’s than u, so
at least n + 1, while u2 still contains n + 1 c ’s. Hence u2 /∈ L.
Case 2: wy contains no a. Then wy contains at least one b or one c
(or both). Then u0 = vw0xy0z = vxz has still n a’s, but less than n+ 1
b’s or less than n + 1 c ’s (depending on which letter is in wy). Hence
u0 /∈ L.
These are two possibilities for the decomposition vwxyz , in both cases
we see that pumping leads out of the language L.
Hence u cannot be pumped.
Contradiction; so L is not context-free.



Example

The Set of Legal C Programs is Not a CFL

[M] E 6.6

Choose u =

main(){int aaa...a;aaa...a=aaa...a;}
where aaa...a contains n + 1 a’s
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Applying the Pumping Lemma (2)

Lemma (⊠)

L ⊆ {a}∗ context-free, then L regular.

[M] Exercise 6.23

2

5

a0 = 0 a8 = 18 a5 = 35

This exercise does not have to be known for the exam.
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Combining languages

From lecture 2:
FA Mi = (Qi ,Σ, qi ,Ai , δi ) i = 1, 2

Product construction

construct FA M = (Q,Σ, q0,A, δ) such that
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ( (p, q),σ) = ( δ1(p,σ), δ2(q,σ) )
– A as needed

Theorem (2.15 Parallel simulation)

– A = {(p, q) | p ∈ A1 or q ∈ A2}, then L(M) = L(M1) ∪ L(M2)

– A = {(p, q) | p ∈ A1 and q ∈ A2}, then L(M) = L(M1) ∩ L(M2)

– A = {(p, q) | p ∈ A1 and q /∈ A2}, then L(M) = L(M1) − L(M2)

Proof. . .

[M] Sect 2.2
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Closure

From lecture 6:
Regular languages are closed under
– Boolean operations (complement, union, intersection)
– Regular operations (union, concatenation, star)
– Reverse (mirror)
– [inverse] Homomorphism
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Regular operations and CFL

From lecture 7:
Using building blocks

Theorem

If L1, L2 are CFL, then so are L1 ∪ L2, L1L2 and L∗1 .

Gi = (Vi ,Σ, Si ,Pi ), having no variables in common.

Construction

G = (V1 ∪ V2 ∪ {S},Σ, S ,P), new axiom S
– P = P1 ∪ P2 ∪ {S → S1, S → S2} L(G ) = L(G1) ∪ L(G2)

– P = P1 ∪ P2 ∪ {S → S1S2} L(G ) = L(G1)L(G2)

G = (V1 ∪ {S},Σ, S ,P), new axiom S
– P = P1 ∪ {S → SS1, S → Λ} L(G ) = L(G1)

∗

[M] Thm 4.9
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How about

L1 ∩ L2

L1 − L2

L ′

1

for CFLs L1 and L2 ?
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Example

AnBnCn is intersection of two context-free languages.

[M] E 6.10

Hence, CFL is not closed under intersection
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Example

AnBnCn is intersection of two context-free languages.

[M] E 6.10

Hence, CFL is not closed under intersection

L1 ∩ L2 = (L ′

1 ∪ L ′

2)
′

Hence, CFL is not closed under complement

L ′

1 = Σ∗ − L1
Hence, CFL is not closed under setminus
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Example

Complement of XX
= { x ∈ {a, b}∗ | |x | is odd } ∪ { x y | x , y ∈ {a, b}∗, |x | = |y |, x 6= y }

is context-free

[M] E 6.11

Indeed, CFL is not closed under complement
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Example

Complement of AnBnCn is context-free.
Complement of {x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x)} is context-free.

[M] E 6.12
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Example

Complement of AnBnCn is context-free.
Complement of {x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x)} is context-free.

AnBnCn = L1 ∩ L2 ∩ L3, with
L1 = {aibjck | i 6 j}
L2 = {aibjck | j 6 k}
L3 = {aibjck | k 6 i }
[M] E 6.12
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Example

Complement of AnBnCn is context-free.
Complement of {x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x)} is context-free.

{x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x)} = A1 ∩ A2 ∩ A3, with
A1 = {x ∈ {a, b, c}∗ | na(x) 6 nb(x)}
A2 = {x ∈ {a, b, c}∗ | nb(x) 6 nc(x)}
A3 = {x ∈ {a, b, c}∗ | nc(x) 6 na(x)}
[M] E 6.12
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Intersection CFL

Example

L1 = { a2nbn | n > 1 }∗

a16b8a8b4a4b2a2b1

L2 = a∗{ bnan | n > 1 }∗{ b }
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Combining languages

From lecture 2:
FA Mi = (Qi ,Σ, qi ,Ai , δi ) i = 1, 2

Product construction

construct FA M = (Q,Σ, q0,A, δ) such that
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ( (p, q),σ) = ( δ1(p,σ), δ2(q,σ) )
– A as needed

Theorem (2.15 Parallel simulation)

– A = {(p, q) | p ∈ A1 or q ∈ A2}, then L(M) = L(M1) ∪ L(M2)

– A = {(p, q) | p ∈ A1 and q ∈ A2}, then L(M) = L(M1) ∩ L(M2)

– A = {(p, q) | p ∈ A1 and q /∈ A2}, then L(M) = L(M1) − L(M2)

Proof. . .

[M] Sect 2.2
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Theorem

If L1 is a CFL, and L2 in REG, then L1 ∩ L2 is CFL.

[M] Thm 6.13

product construction
PDA M1 = (Q1,Σ, Γ , q1,Z1,A1, δ1)
FA M2 = (Q2,Σ, q2,A2, δ2)

Q = Q1 × Q2 q0 = 〈q1, q2〉 A = A1 × A2

δ(〈p, q〉,σ,X ) ∋ (〈p ′, q ′〉,α)
whenever δ1(p,σ,X ) ∋ (p ′,α) and δ2(q,σ) = q ′

δ(〈p, q〉,Λ,X ) ∋ (〈p ′, q〉,α)
whenever δ1(p,Λ,X ) ∋ (p ′,α) and q ∈ Q2

The inductive proof that this construction works does not have to be
known for the exam.

Also CFG proof
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Example: product construction

{ anbn | n > 1 }∗ ∩ { w ∈ {a, b}∗ | na(x) even }

r1 p1 q1

r0 p0 q0

r p q
Λ

Λ;Z/Z

a;+A

b;A/Λ
Λ;Z/Z

Λ

Λ;Z/Z

b;A/Λ
Λ;Z/Z

Λ

Λ;Z/Z

b;A/Λ
Λ;Z/Z

a;+Aa;+A

0

1

aa

b

b
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Non-determinism of PDA

enables L(M1) ∪ L(M2)

‘prevents’ L(M1)
′ (also Λ-transitions)

If L is accepted by DPDA without Λ-transitions, then so is L ′

Even: if L is accepted by DPDA, then so is L ′

Hence, if L is CFL and L ′ is not, then there is no DPDA for L

Automata Theory Context-Free and Non-Context-Free Languages Pumping Lemma 385 / 393



Decision problems for CFL

“given a CFL L, does it have property ... ?” yes/no
input CFG G

Given CFG G [G1 and G2]
– and given a string x , is x ∈ L(G )? membership problem

convert G to ChNF, and try all derivations of length 2|x |− 1
(special case if x = Λ)

Cocke, Younger, and Kasami (1967)
Earley (1970)
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Decision problems for CFL

– is L(G ) 6= ∅? non-emptiness
is S useful?
pumping lemma

– is L(G ) infinite?
pumping lemma
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Decision problems for CFL

– is L(G1) ∩ L(G2) nonempty?
– is L(G ) = Σ∗?
– is L(G1) ⊆ L(G2)?

L(G ) = Σ∗, if and only if Σ∗ ⊆ L(G )

All undecidable
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Questions

Given context-free L and regular R

– is R ⊆ L ?

– is L ⊆ R ?
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above

R ⊆ L ?
Special case R = Σ∗

Σ∗ ⊆ L iff L = Σ∗ undecidable

L ⊆ R ?
iff L ∩ R ′ = ∅

regular languages are closed under complement
CFL closed under intersection with regular languages
emptiness context-free decidable



Section 7

Course Computability
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Chapter

6 Course Computability
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Contents

Turing machines

Recursively enumerable languages / recursive languages

Unrestricted grammars

Undecidability
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END.

Thanks to HJH for the slides
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