- 1. [0.5 point] If $\Sigma = \{a, b, c\}$ and $L \Sigma^* = \emptyset$, which of the following languages can be L?
 - (a) ∅
 - (b) $\{\Lambda, b^{100}\}$
 - (c) Σ^*
 - (d) $\{a^n b^n c^n \mid n > 0\}$

all of the above

- 2. [1 point] Give a *regular expression* for each of the following languages:
 - (a) $L = \{a^m b^n \mid n+m \text{ is even}\}$ $(aa)^* (\Lambda + ab)(bb)^*$
 - (b) $L = \{w \in \{0,1\}^* \mid w \text{ contains } exactly \text{ one pair of consecutive 0's} \}$ $(1+01)^*00(1+10)^*$
- 3. [1 point] Suppose language L represented by the regular expression $(00)^*01$. Give a maximal set S of pairwise L-distinguishable strings. From the set S, what can we say about the number of states of a DFA M that accepts L?

There are infinite number of sets of pairwise *L*-distinguishable

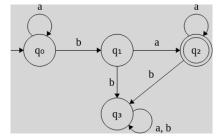
strings, e.g., $\{\Lambda, 0, 1, 01\}$ or $\{10, 00, 000, 0001\}$.

From the above examples, the DFA M must have at least 4 states.

4. [1 point] Languages L_1 and L_2 are represented by a^*baa^* and ab^* , respectively. Construct a DFA that accepts $L_1 - L_2$.

Since $L_1 \cap L_2 = \emptyset$, obviously $L_1 - L_2 = L_1$.

Therefore, we only need to construct a DFA that accepts L_1 .



5. **[1 points]** Give a context-free grammar G generating the following language L:

$$L = \{a^{n}b^{m}c^{k} \mid k = |n - m|\}$$

The final score is given by the sum of the points obtained.

- $\begin{array}{c} S \rightarrow A \mid B \\ \hline A \rightarrow aAc \mid C \\ \hline C \rightarrow aCb \mid \Lambda \\ \hline B \rightarrow DE \\ \hline D \rightarrow aDb \mid \Lambda \\ \hline E \rightarrow bEc \mid \Lambda \end{array}$
- 6. [1 point] Prove the following grammars are ambigious:
 - (a)

(b)

$$S \to T \mid Sa \mid a$$
$$T \to ab \mid \lambda$$

we show that for the string **a** there are more than one left-most derivation $S \Rightarrow Sa \Rightarrow Ta \Rightarrow a$ $S \Rightarrow a$

 $S \rightarrow bSc \mid bbSc \mid a$

we show that for the string **bbbacc** there are more than one left-most derivation $S \Rightarrow bSc \Rightarrow bbbScc \Rightarrow bbbacc$ $S \Rightarrow bbSc \Rightarrow bbbScc \Rightarrow bbbacc$

7. [2 points] Suppose the following context-free grammar G:

$$\begin{split} S &\to aSU \mid X \\ X &\to bXU \mid \Lambda \\ U &\to aY \\ Y &\to aY \mid \Lambda \end{split}$$

(a) Give L(G). L = {aⁿb^ma^k | n + m ≤ k}
(b) Give a grammar in Chomsky Normal Form that generates L(G) - {Λ}. First, we eliminate Λ-productions, using nullable variables: S → aSU | aU | X

The final score is given by the sum of the points obtained.

 $\begin{array}{l} X \rightarrow b X U \mid b U \\ U \rightarrow a Y \mid a \\ Y \rightarrow A Y \mid a \end{array}$

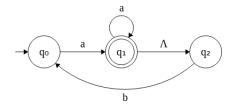
Then, we eliminate the unit production $S \to X$:

 $\begin{array}{c|c} S \rightarrow aSU \mid aU \mid bXU \mid bU \\ \hline X \rightarrow bXU \mid bU \\ \hline U \rightarrow aY \mid a \\ \hline Y \rightarrow aY \mid a \end{array}$

Finally, we use new variables Z, W and A to write the grammar in CNF:

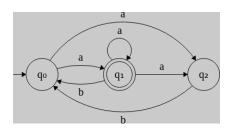
Note that the above grammar can be further simplified.

8. [1 point] Construct a DFA that accepts the same language as the following NFA. Explain the steps.

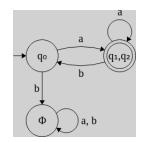


First, the Λ -transition is eliminated:

The final score is given by the sum of the points obtained.



Then, the non-determinism is eliminated:



9. [1.5 points] Suppose the following PDA M, where q_0 is the initial state and q_2 is the accepting state:

$$\sigma(q_0, a, Z_0) = \{(q_1, AZ_0), (q_2, Z_0)\}$$

$$\sigma(q_1, b, A) = \{(q_1, B)\}$$

$$\sigma(q_1, b, B) = \{(q_1, B)\}$$

$$\sigma(q_1, a, B) = \{(q_2, \Lambda)\}$$

- (a) give L(M). $L(M) = \{ab^na \mid n \ge 1\} \cup \{a\}$
- (b) is M deterministic or not? Why?
 M is non-deterministic, because there are more than one transition for the combination of the state q₀, the input symbol a and the stack symbol Z₀

The final score is given by the sum of the points obtained.