- 1. [0.5 point] If $\Sigma = \{a, b, c\}$ and $L \Sigma^* = \emptyset$, which of the following languages can be L?
 - (a) ∅
 - (b) $\{\Lambda, b^{100}\}$
 - (c) Σ^*
 - (d) $\{a^n b^n c^n \mid n > 0\}$
- 2. [1 point] Give a *regular expression* for each of the following languages:
 - (a) $L = \{a^m b^n \mid n+m \text{ is even}\}$
 - (b) $L = \{w \in \{0,1\}^* \mid w \text{ contains exactly one pair of consecutive 0's}\}$
- 3. [1 point] Suppose language L represented by the regular expression (00)*01. Give a maximal set S of pairwise L-distinguishable strings. From the set S, what can we say about the number of states of a DFA M that accepts L?
- 4. [1 point] Languages L_1 and L_2 are represented by a^*baa^* and ab^* , respectively. Construct a DFA that accepts $L_1 L_2$.
- 5. **[1 points]** Give a context-free grammar *G* generating the following language *L*:

$$L = \{a^{n}b^{m}c^{k} \mid k = |n - m|\}$$

6. [1 point] Prove the following grammars are ambigious:

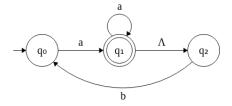
(a)

$$S \to T \mid Sa \mid a$$
$$T \to ab \mid \lambda$$

(b)

```
S \rightarrow bSc \mid bbSc \mid a
```

7. [2 points] Suppose the following context-free grammar G:


$$\begin{split} S &\to aSU \mid X \\ X &\to bXU \mid \Lambda \\ U &\to aY \\ Y &\to aY \mid \Lambda \end{split}$$

(a) Give L(G).

The final score is given by the sum of the points obtained.

- (b) Give a grammar in Chomsky Normal Form that generates $L(G) \{\Lambda\}$.
- 8. [1 point] Construct a DFA that accepts the same language as the following NFA. Explain the steps.

Note: eliminate the Λ -transition and the resulting non-determinisim.

9. [1.5 points] Suppose the following PDA M, where q_0 is the initial state and q_2 is the accepting state:

$$\sigma(q_0, a, Z_0) = \{(q_1, AZ_0), (q_2, Z_0)\}$$

$$\sigma(q_1, b, A) = \{(q_1, B)\}$$

$$\sigma(q_1, b, B) = \{(q_1, B)\}$$

$$\sigma(q_1, a, B) = \{(q_2, \Lambda)\}$$

- (a) give L(M).
- (b) is M deterministic or not? Why?

The final score is given by the sum of the points obtained.