Question 1:

- a) Give a regular expression for the $L = \{ w \in \{ a, b \}^* | w \text{ does } not \text{ begin with } bb \}.$
- b) Give a *deterministic* finite automaton recognizing the above language L.
- c) Give *a minimal deterministic* finite automaton recognizing the language L*.

Question 2:

Consider the nondeterministic finite automaton

- a) Give the *A*-closure of each state.
- b) Construct a *deterministic* finite automaton accepting the same language.

Question 3:

Give examples proving the following statements on languages over the alphabet { a,b }:

- a) A subset of a regular language can be non-regular.
- b) The infinite union of regular languages can be non-regular.
- c) If L_1 and L_2 are different regular languages and L_3 is not regular then $L_1L_2L_3$ can be non-regular.

Question 4:

Give a context-free grammar that generates the language of *all* palindromes over alphabet $\{a,b\}$ that do *not* contains the substring bb.

Question 5:

Consider a context-free grammar G with productions:

 $S \rightarrow$

$$A \rightarrow aBa \mid B$$

 $B \rightarrow bBb \mid a$

- a) Give an example of a string w *not* in L(G) with |w| = 5.
- b) Show that G is ambiguous
- c) Give another grammar in Chomsky normal form generating the same language of G.

Question 6:

a) Give a context free grammar generating the language

 $L = \{ w \in \{ a, b \}^* \mid \text{ the first, the last and the middle symbols of w are the same } \}.$

- b) Draw a pushdown automaton recognizing the language L.
- c) Use the pumping lemma to show that L is *not* regular.

The final score is given by the sum of the points obtained.

[2 points]

[1,5 points]

[1 point]

[2 points]

[1,5 points]

[2 points]