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Chapter 1

Prior Knowledge

From Foundations of Computer Science

1.4 Languages

An alphabet Σ is a finite set of symbols, e.g., Σ = {a, b}, Σ = {a, b, c} or
Σ = {0, 1}. The set of all finite strings over an alphabet Σ is denoted by
Σ∗. For example,

{a, b}∗ = {Λ, a, b, aa, ab, ba, ba, aaa, . . .}

Here, the symbol Λ denotes the empty string, i.e., the string consisting of
zero symbols. Note that, although the elements of Σ∗ have finite length,
there are infinitely many of them. A language L over an alphabet Σ is
a subset of Σ∗. Nothing more, nothing less. For example, Σ∗ itself is a
language over Σ, and so is the empty set ∅. Also, the set {Λ} is a language
(over any alphabet Σ).

Note the difference between the empty string Λ, the empty set ∅, and
the set {Λ} consisting of the empty string only. The empty string Λ is a
string, whereas ∅ and {Λ} are sets of strings, and thus languages. The set ∅
contains zero strings, whereas {Λ} contains one string, the empty string.

The canonical order is an ordering of strings, where shorter strings come
before longer strings, and where strings of the same length are ‘alphabeti-
cally’ ordered. For example,

Λ, a, b, aa, ab, ba, ba, aaa, . . .

is a list of the (‘first’) elements of Σ∗ in canonical order. The canonical order
is defined for any language. For example, the (first) elements of Pal = {x ∈
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{a, b}∗ | x = xr} (the set of palindromes over {a, b}) in canonical order are:

Λ, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, . . .

2.1 Finite Automata

The simplest model of computation we studied is the finite automaton (FA).
It has a finite number of states. These states are the only type of memory
the automaton has. That is, the only way for the automaton to remember
anything relevant about the input read so far, is by the state it is in.
Example.
An FA accepting {a, b}∗{ba}

✒✑✓✏ ✒✑✓✏ ✒✑✓✏✍✌✎☞
✲ ✲ ✲

✛S A B
b a

b

✞☎a
❄

✞☎b
❄

❦

a

This finite automaton accepts all strings in {a, b}∗ that end with ba. The
tree states keep track of how much of the desired suffix ba we have read so
far. In state S, we have not read anything of this suffix. In state A, we have
just read b. In state B, we have just read ba. That is, the string we have
read so far, ends with ba, and thus we can accept this string. That is why
B is the (only) accepting state.
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2.2.3 Combining languages

Finite automata accepting particular languages may be combined to accept
more complex languages:

Theorem 2.7 (Product construction for finite automata)
Let M1 = (Q1,Σ, q1, A1, δ1) and M2 = (Q2,Σ, q2, A2, δ2) be finite automata
over the (same) alphabet Σ, accepting languages L1 and L2, respectively. Let
M be the finite automaton (Q,Σ, q0, A, δ), where
– Q = Q1 ×Q2

– q0 = (q1, q2)
– δ( (p, q),σ) = ( δ1(p,σ), δ2(q,σ) ) for all (p, q) ∈ Q1 ×Q2.

1. If A = {(p, q) | p ∈ A1 or q ∈ A2}, then L(M) = L(M1) ∪ L(M2)

2. If A = {(p, q) | p ∈ A1 and q ∈ A2}, then L(M) = L(M1) ∩ L(M2)

3. If A = {(p, q) | p ∈ A1 and q /∈ A2}, then L(M) = L(M1)− L(M2)

[M] Th. 2.15

Hence, the class of regular languages is closed under union, intersecton and
difference. The construction of M from M1 and M2, taking the product of
the state sets Q1 and Q2, initial state (q1, q2) and the combination of the two
transition functions δ1 and δ2, is called the product construction. Before we
(partially) proof Theorem 2.7, we consider an example.

Example 2.8 Consider the two finite automata M1 and M2 in Figure 2.1.
It is easy to see that M1 accepts in state e all strings over {a, b} with an
even number of a’s, and that M2 accepts in state b all strings ending with
b. When we apply the product construction with A = {eb}, we obtain finite
automaton M , accepting all strings with an even number of a’s and ending
with b, the intersection of the two languages.

Proof of Theorem 2.7. We give a detailed proof for claim 1. The proofs
for claims 2 and 3 are analogous.

One can prove by induction (see Exercise 2.11) that for every x ∈ Σ∗

and every (p, q) ∈ Q,

δ∗((p, q), x) = (δ∗1(p, x), δ
∗
2(q, x)) (2.1)
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aM :

Figure 2.1: Product construction for two simple finite automata M1 and
M2, yielding a finite automaton M with L(M) = L(M1) ∩ L(M2). See
Example 2.8.

Assume that A = {(p, q) | p ∈ A1 or q ∈ A2}, which is the case in claim 1.

We first prove that L(M1) ∪ L(M2) ⊆ L(M). Consider an arbitrary
string x ∈ L(M1)∪L(M2). Then either x ∈ L(M1), or x ∈ L(M2) (or both).
Without loss of generality, assume that x ∈ L(M1). Hence, δ

∗
1(q1, x) ∈ A1.

By (2.1),

δ∗(q0, x) = δ∗((q1, q2), x) = (δ∗1(q1, x), δ
∗
2(q2, x)) (2.2)

This state is in A, because the first component is in A1. Hence, x ∈ L(M).

We now prove that L(M) ⊆ L(M1) ∪ L(M2). Consider an arbitrary
string x ∈ L(M). Again, equation (2.2) is valid. Because x ∈ L(M), the
resulting, combined state must be in A. By definition of A, we must have
either δ∗1(q1, x) ∈ A1, or δ

∗
2(q2, x) ∈ A2 (or both). Without loss of generality,

assume that δ∗1(q1, x) ∈ A1. Then apparently, x ∈ L(M1), and thus also
x ∈ L(M1) ∪ L(M2).

We have found that both L(M1)∪L(M2) ⊆ L(M) and L(M) ⊆ L(M1)∪
L(M2). We can thus conclude that L(M) = L(M1) ∪ L(M2).

The product construction always works, but it does not necessarily yield
a minimal finite automaton for the language involved.

Example 2.9 Let us reconsider Example 2.8. The finite automaton M
resulting from the construction is shown again in 2.2. States ob and oa both
correspond to strings containing an odd number of a’s. For ob, the strings
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odd a
any last letter

eb

a
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Figure 2.2: The finite automaton M from Figure 2.1 and an equivalent
finite automaton with fewer states. States ob and oa have been merged. See
Example 2.9.

end with b; for oa, they end with a. If we wish to accept strings with an
even number of a’s ending with b, then the difference between ob and oa is
irrelevant, because we need to read another a anyway. The states can be
combined into a single state o, corresponding to strings with an odd number
of a’s, ending with any letter.

Note that if the set of accepting states of M had been {eb, ea, ob},
corresponding to L(M1) ∪ L(M1), then we could not merge states oa and
ob, because the latter would be an accepting state, where the former would
not. Instead, we could merge states ea and eb in that case.

Example 2.10 Consider the 3-state finite automata M1 and M2 in Fig-
ure 2.3. It is easy to see that M1 accepts all strings over {a, b} not contain-
ing a substring aa, and that M2 all strings over {a, b} ending with ab. The
construction yields a finite automaton M with 3 · 3 = 9 states. However,
three states are unreachable, and three other states can be merged into a
single garbage state. [M] E 2.16

Example 2.11 Consider the finite automata M1 and M2 in Figure 2.4.
M1 accepts all strings over {a, b} containing (at least) a substring ab, M2

accepts all strings over {a, b} containing (at least) a substring bba. When
we apply the product construction to the 3-state FA M1 and the 4-state FA
M2, we obtain a 12-state FA, where three of the twelve states turn out to be
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ba

b
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a

M :

Figure 2.3: Product construction for two simple finite automata M1 and
M2, yielding a finite automaton M with L(M) = L(M1) ∩ L(M2). States
BP , AQ and BR are unreachable, and states CP , CQ and CR might be
merged. See Example 2.10.

unreachable. When we omit these three states, we obtain the automaton M
that is also shown in Figure 2.4. The five accepting states can be merged,
because if a string contains either of the two substrings ab and bba, then
it does not matter anymore whether or not it also contains the other. [M]

E. 2.18

Example 2.12 Consider the two finite automata M1 and M2 in Figure 2.5.
M1 accepts all strings over {a, b} that start and end with an a. M2 accepts all
strings over {a, b} of even length. Application of the production construction
to the 4-state FA M1 and the 2-state FA M2 yields an 8-state FA, where
state Λo is unreachable (obviously!). When we leave out this state, we
obtain the automaton M that is also shown in Figure 2.5. Here, the two
states corresponding to strings starting with a b can me merged into a single
garbage state. Also the states corresponding to strings of odd length which
start with a can be merged, because we need another letter to make the
length even anyway.

2.4 The Pumping Lemma

Regular languages are the languages that can be accepted by a finite au-
tomaton. The pumping lemma for regular languages intuitively states that
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Figure 2.4: Product construction for two simple finite automata M1 and
M2, yielding a finite automaton M with L(M) = L(M1) ∪ L(M2) (with
unreachable states left out). States 3p, 3q, 3r, 3s and 2s might be merged.
See Example 2.11.
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Figure 2.5: Product construction for two simple finite automata M1 and
M2, yielding a finite automaton M with L(M) = L(M1) ∩ L(M2) (with an
unreachable state left out). States -e and -o might be merged, and states ao
and bo might also be merged. See Example 2.12.

any string in a regular language which is long enough, can be ‘pumped up
and down’. In more formal terms:

Theorem 2.13 (Pumping lemma for regular languages)
Suppose L is a language over the alphabet Σ. If L is accepted by a finite
automaton M and if n ≥ 1 is the number of states of M , then for every string
x ∈ L satisfying |x| ≥ n there exist strings u, v, w ∈ Σ∗, such that x = uvw
(i.e., x can be split into u, v and w) and the following three conditions are
true:

1. |uv| ≤ n (in particular, substring v occurs within the first n letters
of x)

2. |v| ≥ 1 (i.e., substring v is not empty)

3. for m = 0, 1, 2, . . ., the string uvmw belongs to L (i.e., we can pump
up (or down) v)

Hence we can pump string x within its first n letters.

Proof. The proof of this pumping lemma is very intuitive:
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q0 p
u

v

w

[M] Fig. 2.28

Figure 2.6: Intuitive proof of the pumping lemma.

Assume that indeed, language L ⊆ Σ∗ is accepted by a finite automaton
M with n ≥ 1 states. Let x be an arbitrary element of L such that |x| ≥ n.
Since x is accepted byM , x follows a path throughM ending in an accepting
state. M has only n different states, whereas x consists of at least n letters.
Hence, the first n steps of the path (actually, any n steps of the path)
through M for x must visit at least one state multiple times. Let p be such
a state, and let v be the substring of x traversed between the first and the
second visit of state p. Let u and w be the substrings of x, before and after
v, respectively. Indeed x = uvw, and |uv| ≤ n, see Figure 2.6.

Then instead of the path through M for x = u · v · w, we could as well
traverse the path for u ·w (skipping the subpath from state p back to itself),
for u ·v ·v ·w (traversing this subpath two times), for u ·v ·v ·v ·w (traversing
this subpath three times), etcetera. Each of these alternative paths ends in
the same state as the path for x, which is an accepting state since x ∈ L.
We conclude that all strings uvmw are accepted by M and thus are elements
of L.

Most often, the pumping lemma for regular languages is used to prove
that some language L is not regular, simply because it does not satisfy the
pumping lemma. To this end, one shows that pumping (up and/or down) a
particular string x ∈ L yields a string that is not an element of L, while it
should be according to the pumping lemma. We first give an example.

Example 2.14 We prove that the language L = {aibi | i ≥ 0} is not
regular, by contradiction.

Assume that L = {aibi | i ≥ 0} is regular. Let M be a finite automaton
such that L = L(M), and let n be the number of states of M .

Take x = anbn. Then obviously, x ∈ L, and |x| = 2n ≥ n. According to
the pumping lemma, there should exist a decomposition x = uvw such that
|uv| ≤ n with |v| ≥ 1, and uvmw ∈ L for every m.
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Consider such a decomposition uvw = x = anbn. Because |uv| ≤ n, the
prefix uv consists of a’s only. Hence, also v consists of a’s only, at least one,
since |v| ≥ 1. In particular v = ak for some k with 1 ≤ k ≤ n.

Now, take m = 0, i.e., we pump down the string x by deleting the
substring v. This will delete k ≥ 1 a’s from x. So uv0w is of the form an

�
bn

with n� < n. This string is not in L, which contradicts the pumping lemma.
Hence, our assumption that L is regular must be false. In other words, L is
not regular. (Note that m ≥ 2 would also yield a contradiction.)
[M] Exmp. 2.30

In general, a proof that a language L ⊆ Σ∗ is not regular, using a con-
tradiction with the pumping lemma for regular languages, looks as follows:

1. Assume that L is regular, and thus that L is accepted bij a finite
automaton M . Let n be the number of states of n.

2. Choose a proper string x ∈ L, such that |x| ≥ n.

Note that we do not know what exactly the number of states n is. It
might be 17 or 1,000, or any positive integer number. To make sure
that |x| ≥ n, the string x must be defined in terms of n.

According to the pumping lemma, all strings x ∈ L satisfying |x| ≥ n
can be pumped. In particular, the string x that we have chosen. If we
can prove that this particular string cannot be pumped, then we have
a contradiction.

There may be strings x ∈ L with |x| ≥ n that can indeed be pumped.
Finding at least one x that cannot be pumped, is enough to have a
contradiction. Therefore, we have to choose a proper string x ∈ L
with |x| ≥ n.

3. Consider an arbitrary decomposition x = uvw of x into substrings u,
v and w, such that (1) |uv| ≤ n and (2) |v| ≥ 1.

According to the pumping lemma, there exists such a decomposition
that also has a third property: (3) for all m ≥ 0, the string uvmw
belongs to L. The pumping lemma does not say what exactly the
strings u, v and w are. We cannot assume anything about them,
except that |uv| ≤ n and |v| ≥ 1.

We cannot simply choose particular strings u, v and w for this. For a
contradiction with the pumping lemma, we have to prove that there
does not exist any decomposition that also has property (3). Finding a
contradiction with property (3) for one particular decomposition does
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not necessarily mean that every decomposition leads to a contradic-
tion.

4. Now given this arbitary decomposition x = uvw, choose a proper value
m, and show that the string uvmw does not belong to L. That would
contradict the pumping lemma, because according to the pumping
lemma, all strings uvmw should belong to L.

There may be values m for which uvmw does belong to L. As long as
we find one value for which this is not the case, we have a contradiction.
That is why we have to choose a proper value m.

For some languages, we may have to consider different cases, for dif-
ferent possibilities for the decomposition. For example, if the decom-
position looks like this, then this value m yields a contradiction, and if
the decomposition looks like that, then that (possibly different) value
m yields a contradiction. If for each possible decomposition we can
find a proper value m, then we have a contradiction with the pumping
lemma.

5. Conclude that L does not satisfy the pumping lemma for regular lan-
guages, and thus cannot be regular.

This five-step process can also be derived from an alternative formulation
of the pumping lemma, using quantifiers ∃ and ∀:

Theorem 2.15 (Pumping lemma for regular languages, alternative)
If L is a regular language, then
∃ there exists a constant n ≥ 1 (namely, the number of states of a finite
automaton accepting L)

such that
∀ for every x ∈ L

with |x| ≥ n
∃ there exists a decomposition x = uvw

with (1) |uv| ≤ n,
and (2) |v| ≥ 1
such that

∀ (3) for all m ≥ 0, uvmw ∈ L

This formulation can be read like: If p, then q, for predicates p and q.
We know from the introductory course on logics, that such a statement is
equivalent to: If not q, then not p. When we apply this to Theorem 2.15,
we obtain
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Theorem 2.16 If
∀ for every n ≥ 1
∃ there exists x ∈ L

with |x| ≥ n
such that

∀ for every decomposition x = uvw
with (1) |uv| ≤ n,
and (2) |v| ≥ 1

∃ (3) there exists m ≥ 0,
such that
uvmw /∈ L

then L is not a regular language.

In fact, our five-step process follows exactly this formulation.

The choice of a string x

The first step in our five-step process that requires creativity, is choosing a
string x (step 2). In general, you may use two rules of thumb for this, which
we will illustrate for the language L = {x ∈ {a, b}∗ | na(x) > nb(x)}:

1. Choose a string x with a simple structure. If x has a simple structure,
then there are probably not too many possibilities for the decompo-
sition that need to be considered, perhaps only one. For example,
an+1bn has a simpler structure than (ab)na = abab . . . aba.

In fact, the string x = (ab)na does satisfy the pumping lemma. That
is, there does exist a decomposition uvw of x, for which v can safely be
pumped. Take, e.g., u = Λ, v = ab and w = (ab)n−1a. Then, indeed
x = uvw, |uv| ≤ n (assuming n ≥ 2), and |v| ≥ 1. Moreover, for any
m ≥ 0, uvmw = Λ(ab)m(ab)n−1a ∈ L.

Of course, if we would choose u = Λ, v = a and w = b(ab)n−1a, then
again x = uvw, |uv| ≤ n and |v| ≥ 1. This time, if we pump v up
or down, we obtain a string uvmw that is not in L. For example, if
we take m = 0 (we pump down the string), we obtain ΛΛb(ab)n−1a,
which is not in L, because the number of a’s in the string equals the
number of b’s.

The fact that we have a particular decomposition for which we cannot
pump x does not mean that x contradicts the pumping lemma. Only
if each decomposition uvw of x (with |uv| ≤ n and |v| ≥ 1) has
this property, then we have such contradiction. Therefore, we have
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to consider every possible decomposition to conclude that we have a
contradiction.

Because the earlier decomposition with u = Λ, v = ab and w =
(ab)n−1a can safely be pumped, x = (ab)na is not a proper choice
to find a contradiction.

2. Choose a string x ∈ L that precisely satisfies the requirements of
the language, i.e., which is ‘close to falling out of the language’. For
example, an+1bn is precisely in our example language L. Decreasing
the number of a’s by 1, or increasing the number of b’s bij 1, is enough
to obtain a string outside L. In contrast, a2nbn is also in L, but is
much further away from falling out of the language.

In fact, the string x = a2nbn is not suitable to find a contradiction
with the pumping lemma, because there does exist a decomposition
uvw of x for which we can pump v in all possible ways and stay in
the language. We can, e.g., take u = Λ, v = a and w = a2n−1bn, for
which indeed x = uvw, |uv| ≤ n and |v| ≥ 1. For each m ≥ 0, the
string uvmw = ama2n−1bn is in L (assuming n ≥ 2, which is necessary
if m = 0).

We could even take u = Λ, v = an−1 (assuming n ≥ 2) and w =
an+1bn. Also in that case, uvmw ∈ L for all m ≥ 0.

Only the decomposition with u = Λ, v = an and w = anbn yields a
string that is not in L. If, in this case, we pump the string down, i.e.,
we consider m = 0, then the string uvmw = anbn, which is not in L.

Again, the existence of a decomposition uvw for which we cannot
pump v in all possible ways, does not mean that we have a contradic-
tion with the pumping lemma. We must have this property for every
possible decomposition. Therefore, a2nbn is not suitable for finding a
contradiction.

Example 2.17 The language AeqB = {x ∈ {a, b}∗ | na(x) = nb(x) } is
not regular.
This can also be proved by contradiction with the pumping lemma, just like
we did for L = {aibi | i ≥ 0} in Example 2.14. In fact, we can choose
the exact same string x and use the exact same arguments why this string
cannot be pumped.

Alternatively, we may use a closure property of the regular languages
from Section 2.2 for this proof. Assume that AEqB is regular. Then consider
the language L2 = {a}∗{b}∗. This language can easily be accepted by a finite
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automaton, and thus is regular. Then by Theorem 2.7, also the intersection
of AEqB and L2 must be regular. However, this intersection is L = {aibi |
i ≥ 0}, which we have seen is not regular. We thus have a contradiction,
and our assumption that AEqB is regular must be false.

Example.
The language SimplePal = {xcxr | x ∈ {a, b}∗} is not regular, because
pumping the string x = ancan (again, with n the size of the finite automaton
from the pumping lemma) would yield a string with fewer (if pumped down)
or more (if pumped up) than n a’s to the left of the c, but still n a’s to the
right of the c.
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3.1 Regular Languages and Regular Expressions

A regular language over an alphabet Σ is a language derived from the empty
language ∅ and the languages {a} (with a ∈ Σ), by means of the operators
union, concatenation and Kleene star.

A regular expression over an alphabet Σ is an expression over the empty
expression and expressions a (with a ∈ Σ), by means of the operators +,
concatenation and Kleene star. In principle, the order of application of the
operators in a regular expression is determined by brackets. Brackets may,
however, be left out when they are redundant with respect to the following
rules of precedence: Kleene star comes before concatenation, which in turn
comes before +.

Each regular language can be described by a regular expression. Usually,
there are more than one regular expressions describing the same regular
language. Conversely, each regular expression describes a unique regular
language.

Example.
An example of a regular language is {a, b}∗{ba}. A regular expression de-
scribing this language is (a + b)∗ba. Another regular expression describing
the same language is (b+ a)∗ba.

3.2 Nondeterministic Finite Automata

By default, a finite automaton is deterministic, which means that for each
state p and each symbol a from the input alphabet Σ, there is one transition
from p with label a (to some state q). There do not exist Λ-transitions. In
other, more formal terms, we have a transition function δ : Q × Σ → Q,
where Q is the set of states of the finite automaton.

A nondeterministic finite automaton (NFA) is an extension of a finite
automaton. For each state p and each symbol a from the input alphabet Σ, it
has zero or more transitions from p with label a (to different states q). Each
state p may also have zero or more Λ-transitions (to different states q). In
other, more formal terms, we have a transition function δ : Q× (Σ∪{Λ}) →
2Q, where 2Q is the set of all subsets (including ∅) of Q.
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3.3 The Nondeterminism in an NFA Can Be Elim-
inated

As said, a nondeterministic finite automaton (NFA) is an extension of a finite
automaton. Each FA is (in fact) also an NFA. Hence, each regular language,
i.e., each language that is accepted by an FA, can also be accepted by an
NFA. It is less obvious that each language that is accepted by an NFA can
also be accepted by an FA. One might imagine that NFAs are ‘stronger’
than FAs, i.e. that NFAs can accept more languages than just the regular
languages. This is, however, not the case.

Using the so-called subset construction, each NFAM can be transformed
into an FA M � accepting the same language. The term ‘subset construction’
refers to the states in the FA M � that is constructed: the states of M �

correspond to subsets of states of M , namely all states that M may be in
after reading a certain string.

3.4 Kleene’s Theorem, Part 1

In the foregoing, we already mixed up the terms ‘language accepted by a
finite automaton’ and ‘regular language’. It is not obvious that each regular
language as defined in Section 3.1 can be accepted by a finite automaton
and vice versa. Kleene’s theorem states that this is the case, indeed.

Part 1 of the theorem states that each regular language L over an al-
phabet Σ can be accepted by a finite automaton. The proof is by induction
on the structure of the regular expression describing L. First, we give NFAs
(in fact, FAs) accepting the basic regular languages ∅ and {a} (with a ∈ Σ).
Next, given two NFAs M1 and M2 accepting regular languages L1 and L2,
respectively, we describe how to construct an NFA accepting L1 ∪ L2, an
NFA accepting L1 · L2 and an NFA accepting L∗

1 (or L∗
2). As each regular

language is the result of a finite number of applications of (some of) these
operations on the basic regular language, each regular language can be ac-
cepted by an NFA. But then each regular language can also be accepted by
an FA (see Section 3.3).

3.5 Kleene’s Theorem, Part 2

Part 2 of Kleene’s theorem states that each language that is accepted by a
finite automaton, can be described by a regular expression, and thus is a reg-
ular language. Indeed, the terms ‘language accepted by a finite automaton’
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and ‘regular language’ are synonyms.

4.2 Context-Free Grammars

A context-free grammar G is a tuple (V,Σ, S, P ) where V and Σ are two
disjoint sets of symbols, V is the set of variables (or non-terminals), Σ is the
set of terminals, S ∈ V is the start variable and P is the set of productions.
Each production is of the form A → β, where A ∈ V and β ∈ (V ∪ Σ)∗.

A production A → β can be applied to a string α, which means that
an occurrence of the variable A in α is replaced by β. For example, if
α = α1Aα2, then we may write: α1Aα2 ⇒ α1βα2. The language generated
by G is the set of strings x ∈ Σ∗ that can be derived from the start variable
S by successively applying productions from P . This language is denoted by
L(G). A language generated by a context-free grammar is called a context-
free language.
Example.
The context-free grammar (V,Σ, S, P ), with V = {S}, Σ = {a, b, c} and the
following productions:

S → aSa | bSb | c

generates the language SimplePal = {xcxr | x ∈ {a, b}∗}. For example, the
string abbcbba is derived as follows:

S ⇒ aSa ⇒ abSba ⇒ abbSbba ⇒ abbcbba

This example illustrates that context-free grammars can generate lan-
guages that are non-regular (see Section 2.4).

4.3 Regular Languages and Regular Grammars

A regular grammar (V,Σ, S, P ) is a context-free grammar whose productions
are restricted to two general forms: either A → σB or A → Λ, where
A,B ∈ V and σ ∈ Σ. For example, a production S → aSA is not allowed
in a regular grammar.

A finite automaton (Q,Σ, q0, A, δ) accepting a language L can easily
be transformed into a regular grammar (V,Σ, S, P ) generating the same
language. Just take V = Q, S = q0,
for each X,Y ∈ V and σ ∈ Σ, if δ(X,σ) = Y , then add production X → σY
to P ,
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and for each X ∈ A (i.e., each accepting state X), add production X → Λ
to P .

Example.
Consider again the following FA accepting {a, b}∗{ba}:

✒✑✓✏ ✒✑✓✏ ✒✑✓✏✍✌✎☞
✲ ✲ ✲

✛S A B
b a

b

✞☎a
❄

✞☎b
❄

❦

a

The construction described yields the regular grammar ({S,A,B}, {a, b}, S, P ),
with productions

S → aS | bA A → bA | aB B → bA | aS | Λ

With exactly the converse construction, each regular grammar gener-
ating a language L, can be transformed into a (nondeterministic!) finite
automaton accepting the same language.

This implies that regular grammars can generate precisely the regular
languages. Because the class of regular grammars is a subset of the class of
context-free grammars, all regular languages can be generated by context-
free grammars. However, as we have seen in Section 4.2, context-free gram-
mars can also generate non-regular languages.

4.4 Derivation Trees

A derivation tree represents the structure of a string derived in a context-
free grammar. For each production A → X1 . . . Xn applied in the derivation,
the corresponding node labelled by A has n ordered children labelled by
X1, . . . , Xn respectively, read from left to right. If n = 0 (i.e., the production
is A → Λ), the node labelled by A has a child labelled by Λ.

4.5 Simplified Forms and Normal Forms

As said, the class of regular grammars is a subset of the class of context-free
grammars. A subset that can generate only regular languages.
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There exist other classes of context-free grammars which can generate
(nearly) all context-free languages. One such class consists of the context-
free grammars in Chomsky normal form. In such a grammar (V,Σ, S, P ),
the productions are (again) restricted to two general forms: either A → BC
or A → σ, where A,B,C ∈ V and σ ∈ Σ. It can be proved that for each
context-free grammar G, there exists a context-free grammar G� in Chomsky
normal form, such that L(G�) = L(G) \ {Λ}. That is, apart from the empty
string, L(G) can be generated by a context-free grammar in Chomsky normal
form.

5.1 Definitions and Examples (of Pushdown Au-
tomata)

A pushdown automaton (PDA) is a finite automaton, extended with a stack.
Initially, the stack contains only the initial stack symbol Z0. Transitions in
the automaton not only depend on the current state and the next input
letter to be read, but also on the current top symbol on the stack. As a
result of a transition, this top symbol is replaced by a string of symbols.
If this string is empty, the top symbol is effectively just popped from the
stack.

By default, pushdown automata may have Λ-transitions, and may be
nondeterministic: there may be more than one transitions from the same
state on the same input letter (or Λ) and the same top stack symbol.

A second source of nondeterminism is the combination of Λ-transitions
and ‘letter-transitions’: for a given state and a given top stack symbol, there
may be both Λ-transitions and transitions with an input letter. When, in
this case, the next letter to be read is indeed this input letter, we may (or
may not) postpone reading this letter by following a Λ-transition.

Example 5.3 A Pushdown Automaton Accepting SimplePal = {xcxr | x ∈
{a, b}∗}.

✒✑✓✏ ✒✑✓✏ ✒✑✓✏✍✌✎☞
✲ ✲ ✲q0 q1 q2

c Λ, Z0/Z0

✞☎b,+b

❄

✞☎b, b/Λ

❄

a,+a a, a/Λ
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At the initial state q0, symbols a and b read from the input are pushed onto
the stack. When the special middle symbol c is read, the PDA moves to
state q1 without altering the stack. At state q1 symbols are popped from
the stack, only if they equal the next input symbol. Otherwise, the PDA
just crashes. When all symbols a and b have been popped from the stack
(the top symbol is Z0, again), the PDA moves to accepting state q2 with a
Λ-transition.

Example 5.7 A Pushdown Automaton Accepting Pal

Pal = {x ∈ {a, b}∗ | x = xr}

✒✑✓✏ ✒✑✓✏ ✒✑✓✏✍✌✎☞
✲ ✲ ✲q0 q1 q2

a
b
Λ Λ, Z0/Z0

✞☎b,+b

❄

✞☎b, b/Λ

❄

a,+a a, a/Λ

The elements of language Pal do not have a special middle symbol c. Hence,
there is no way for the PDA to recognize what the middle of the word is.
Therefore, while pushing symbols onto the stack in state q0, it nondetermin-
istically decides what to do with the next input symbol, say a:

• The PDA may assume that a is still part of the first half of the input
string, and therefore also push it onto the stack in state q0.

• The PDA may assume that a is the middle symbol of the input string
(which means that the length of the input string is odd), and move to
state q1, while reading a.

• The PDA may assume that a is the first symbol of the second half of
the input string (which means that the length of the input string is
even), and move to state q1 without reading a yet (corresponding to
the Λ-transition.

The options for input symbol b in state q0 are the same. Once the PDA has
reached state q1, it continues its operation in exactly the same way as the
PDA in Example 5.3.
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5.2 Deterministic Pushdown Automata

As said before, by default, a pushdown automaton may be nondeterministic.
A deterministic pushdown automaton is a pushdown automaton in which

• for each combination of state q, stack symbol X and input symbol a,
there is at most one transition, and

• for each combination of state q and stack symbol X, if there exists an
Λ-transition, then there does not exist any transition for this state q,
stack symbol X and any input symbol a.

The PDA from Example 5.3 is deterministic. On the other hand, the PDA
from Example 5.7 is not deterministic. There are, e.g., two transitions in
state q0, any stack symbol and input symbol a. Moreover, there is an Λ-
transition from q0 to q1 for any stack symbol.

There exist languages that can be accepted by a PDA but cannot be
accepted by a deterministic PDA. An example of such a language is Pal ,
that was accepted by the PDA in Example 5.7.

Hence, unlike for finite automata, a deterministic pushdown automaton
is not equally powerful as a (general) pushdown automaton.

5.3 A PDA from a Given CFG

Every context-free language can be accepted by a pushdown automaton. We
have two constructions from a given CFG G to a PDA accepting L(G):

• a construction yielding the so-called nondeterministic top-down PDA
corresponding to G, NT (G).

• a construction yielding the so-called nondeterministic bottom-up PDA
corresponding to G, NB(G).

Students following the course Compilerconstructie may recognize NT (G) in
the top-down parser and NB(G) in the bottom-up parser occurring in that
course.

5.4 A CFG from a Given PDA

Every language that can be accepted by a pushdown automaton can be
generated by a context-free grammar. This implies that the context-free
languages are exactly the languages that can be accepted by PDAs. Recall,
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however, that there exist languages, like Pal , that can be accepted by a PDA,
but not by a deterministic PDA. Hence, not all context-free languages can
be accepted by deterministic PDAs.

The construction of a CFG from a given PDA M is pretty complicated.
First we convert M into a PDA M �, such that L(M) = Le(M

�). That is,
the language that M accepts ‘in the normal way’, with accepting states, is
equal to the language that M � accepts by empty stack.

Now suppose that M � = (Q,Σ,Γ, q0, Z0, A, δ) (where the set A of ac-
cepting states is irrelevant, because M � accepts strings by empty stack).
Every string x ∈ Le(M

�) has a computation in M � from initial configuration
(q0, x, Z0) to a configuration (q,Λ,Λ) for some state q ∈ Q. M � starts with
a stack of height 1, consisting only of the initial stack symble Z0. In the
course of the computation, the stack may increase and/or decrease. Pro-
cessing string x eventually causes M � to lower its stack by a single symbol,
resulting in an empty stack.

We wish to simulate the computations of M � by derivations in a context-
free grammar G = (V,Σ, S, P ). Such a derivation starts with a string con-
sisting only of the start variable S. In the course of the derivation new
variables may appear in the string, even multiple variables at the same
time. A string x ∈ L(G) consists only of terminal symbols. That is, all
variables have eventually disappeared.

Hence, if x ∈ Le(M
�), then there exists a computation in M � for x by

which we get rid of all stack symbols. On the other hand, if x ∈ L(G), then
there exists a derivation in G by which we get rid of all variables (and are
left with terminal string x).

This similarity suggests to use the stack symbols of M � as variables in
G. However, this would be too simple, because the replacement of stack
symbols by other (strings of) stack symbols in M � is restricted by the states
that you visit. After a number of steps in the computation, you may only
continue the computation from the state that you have just arrived in.

To model this in our context-free grammar, we extend the variables to
triples [pXq], where X is the stack symbol we wish to eliminate, p is the
state where we start the process of eliminating X, and q is the state where
we arrive at right after eliminating X.
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6.5 The Pumping Lemma for Context-Free Lan-
guages

Although the class of context-free languages is larger than the class of regular
languages, there are still many languages that are not context-free. For
example, it is plausible that there cannot be a PDA accepting the language
AnBnCn = {aibici | i ≥ 0}, and hence no CFG generating the language.
A PDA is able to count the a’s on its stack, by pushing a symbol onto the
stack for every a it reads. However, in order to check that the number of b’s
following the a’s is equal, it has to pop all these symbols. By then, it has
no way to check that also the number of c’s following the b’s is equal.

It is also plausible that there cannot be a PDA accepting the language
XX = {xx | x ∈ {a, b}∗}. A PDA might push all symbols of the first half of
its input string onto the stack. It may even guess the middle of the string.
By then, the only way to compare the first letter of the second half of the
string to the first letter of the first half of the string (which resides at the
bottom of the stack), is by removing all other symbols from the stack. After
that the PDA cannot compare the other symbols of the second half to the
other symbols of the first half of the string, anymore.

In Section 2.4, we used the pumping lemma for regular languages to
prove that certain languages are not regular. We use the pumping lemma
for context-free languages to prove that certain languages are not context-
free.

The pumping lemma for regular languages was based on the path through
a finite automaton for a long sting x. In contrast, the pumping lemma for
context-free languages is not based on the operation of a PDA accepting a
language, but on the derivation of a string in a CFG.

If a string derived with the grammar is long enough, there should be a
nonterminal A in this derivation that generates itself, together with some
non-empty substrings. That is, there should be a derivation of our string,
containing the following sentential forms:

S ⇒∗ vAz ⇒∗ v wAy z ⇒∗ vw x yz

Apparently the substring wAy can be derived from A. But then this part
of the derivation can be repeated, over and over again:

S ⇒∗ vAz ⇒∗ v wAy z ⇒∗ vw wAy yz ⇒∗ vwmxymz

The underlying cause of this is exactly the context-freeness of the grammar:
no matter what the context is in which the variable A occurs, we can derive
the same strings from it. It does not matter if it occurs in vAz or in vwAyz.
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We can also visualize this argument with derivation tree. If the sting
derived is long enough, then there must be a node in the tree labelled by a
variable A, which has as a descendent another node labelled by A, as in

♠
✁✁
❅
❅

S
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

♠
❆❆
�

�

A
✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁

✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆

w y

♠A✁✁
✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆

x

But then we could obtain another valid derivation tree by replacing one
subtree rooted by A by the other. This may result in the following new
derivation trees:
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♠
✁✁
❅
❅

S
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

♠A✁✁
✁
✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆

x

♠
✁✁
❅
❅

S
✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

♠
❆❆
�

�

A
✁

✁
✁
✁

✁
✁
✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆

w y

♠
❆❆
�

�

A
✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆

w y

♠A✁✁
✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆

x

In the left picture, we have replaced the larger subtree by the smaller
subtree, yielding a shorter string vxz In the right picture, we have replaced
the smaller subtree by the larger subtree, yielding a longer string vwwxyyz.
This way, we can pump up (or down, as in the first case) a string.

A formal description of this result is:

Theorem 6.1 The Pumping Lemma for Context-Free Languages
Suppose L is a context-free language. Then there is an integer n so that

for every u ∈ L with |u| ≥ n, u can be written as u = vwxyz, for some
strings v, w, x, y and z satisfying

1. |wy| > 0

2. |wxy| ≤ n

3. for every m ≥ 0, vwmxymz ∈ L

This pumping lemma is used to prove that, a.o., both the language
AnBnCn and the language XX are not context-free. There are many more
non-context-free languages.


