minimal
by definition
FA » o by definition
. NFA e
subset construction \/ NFA-A
remove A
Thompson
REG

Automata Theory

Overview Ch.2 & 3

Brzozowski et McC.

172 / 214

Definition (REG)
— @ is in REG.
—{a}in REG, foreveryae XL

—if L; and L> in REG,
then so are L; U Ly, Ly - Lo, and LJ.

Smallest set[family] of languages that
— contains @ and {a} for a € X, and

— is closed under union, concatenation and star.

Automata Theory Regular languages

Regular languages

basis
induction

173 / 214

From elementary components

{ab, bab)*{A, bb}
(({a}- (b)) U ({b} - {a}- (b)))* - (@ U ({b}- (b)))
e \U
| /N
U x :
\ | /\
N (b} {b}
/\ N
{a) {0 (b
/ \
{a) {b}

Automata Theory Regular languages 174 / 214

Regular expressions
- &, A, and a are RegEx (for all a € X)
—if E; and E; are RegEx, then so are Ef, (E; + E»), and (E1 Ep)
expression [syntax] vs its language [semantics]

E string L(E) language

%) (%)

A {A}

a {a}

(E1 + E) L(E)UL(E)
(E1B) L(E1) - L(E2)
Ef L(Ey)*
we say

E = E iff L(E1) = L(Ey)

Automata Theory Regular languages 175 / 214

— Odd number of a

bbao bal bbbaz bbal an bb
[M] E 3.2

«E

Automata Theory Regular languages 176 / 214

— Odd number of a

bbagbai bbbas bbayas bb

b*ab*(ab*a)*b* not correct
b*ab*(ab*ab*)* b*ab*(ab*ab*)(ab*ab*)
b*a(b*ab*ab*)* not correct
b*a(b*ab*a)*b* b*a(b*ab*a)(b*ab*a)b*
b*a(b+ ab*a)* b*ab*(ab*a)b*(ab*a)b*

Automata Theory

Regular languages

Examples

177 / 214

Examples

— Ending with b, no aa

bb(ab)bbb(ab)(ab)b
(b+ ab)*(b+ ab) at least once

—No aa may also end in a

(b+ab)*(A+a)

Automata Theory Regular languages 178 / 214

Examples

— Even number of a and even number of b

two letters together

aa and bb keep both numbers even [odd]

ab and ba switch between even and odd, for both numbers

Automata Theory Regular languages 179 / 214

Examples

— Even number of a and even number of b
two letters together

aa and bb keep both numbers even [odd]
ab and ba switch between even and odd, for both numbers

(aa+ bb+ (ab+ ba)(aa+ bb)*(ab+ ba))*

Automata Theory Regular languages 180 / 214

— Numeric constants in programming language
14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, .3E+42

M] E 3.5

«E

Automata Theory Regular languages 181 / 214

Examples

— Numeric constants in programming language

14, +1, -12, 14.3, -99, 16., 3E14, -1.00E2, 4.1E-1, .3E+2
Usedfor (0+1+2+3+44+5+6+7+8+09)

Use s for (A +’+7 +-7)

Use p for *.°

s(dd* (A + pd*) + pdd™)(A + Esdd™)

Automata Theory

Regular languages 182 / 214

Exercise

> ={t, ., @}, where { represents a letter

In pairs, come up with a regular expression for email addresses, e.g.,
automata@liacs.leidenuniv.nl or firstname.lastname@example.n/

Automata Theory Regular languages 183 / 214

Exercise

> ={t, ., @}, where { represents a letter

In pairs, come up with a regular expression for email addresses, e.g.,
automata@liacs.leidenuniv.nl or firstname.lastname@example.n/

00% (L00%)*@LL* (.00¥)(.00*)*

Q

Automata Theory Regular languages 183 / 214

Kleene's theorem

Theorem (Kleene)

Finite automata and regular expressions specify the same family of
languages.

o from RegEx to FA
—Thompson's construction
o from FA to RegEx
—McNaughton and Yamada indicated by *, discussed in class only if
we have time, otherwise please go through if you are interested
State elimination —Brzozowski et McCluskey

Automata Theory Regular languages 184 / 214

Thompson's construction

Theorem
If L is a regular language, then there exists an NFA that accepts L.

—@) M () —@ M (&)

NFA for L*. ..

Automata Theory Regular languages 185 / 214

Thompson's construction

Theorem
If L is a regular language, then there exists an NFA that accepts L.

H
®

|
&
@
& B
H
S

a

S deg e

Automata Theory Regular languages 186 / 214

Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*
Step 1

Automata Theory Regular languages 187 / 214

Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*
Step 2

O——+O"+0—"0

Automata Theory Regular languages 188 / 214

Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*
Step 3

Automata Theory Regular languages 189 / 214

Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*
Step 4

Automata Theory Regular languages 190 / 214

Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*
Step b

Automata Theory Regular languages 191 / 214

Example 3.28. An NFA Corresponding to ((aa + b)*(aba)*bab)*
Step 6 A

Automata Theory Regular languages 192 / 214

Intro: finding a regular expression

Automata Theory Regular languages 193 / 214

Intro: finding a regular expression

b a b a
QA e Qf\ ;
@ @ 5
b b
(b+ab)*a b[(b+ab)*ala+ a

H—/
loop on qo single loop on g2

[(b+ ab)*aal [b(b+ ab)*aa+ a]*

from qo to qo loop on q»

short answer (a4 b)*aa see <>FA example

Automata Theory Regular languages 194 / 214

ABOVE

It is possible to construct an expression for a small automaton “by
hand” by starting with a restricted version of the automaton, and slowly
adding nodes and edges.

BELOW
Next a formal proof how this can be done generally, referred to as the
McNaughton—Yamada algorithm.

The expression is built iteratively. First we consider only paths in the
automaton that can not pass any node: we only consider single edges.
Then we add the nodes one by one. Regular expression r*(i, j) includes
all strings from paths from / to j that only pass by nodes from 1 to k.
(We always may exit or enter any other node, but only as first or last
node of the path.)

LATER

The method of Brzozowski and McCluskey below “implements” this
proof, using a generalized automaton. It features graphs with edges
that carry regular expressions.

Theorem
If M is an FA, then L(M) is regular. J

PROOF
M=(Q,%, q0,Ad) assume @={1,2,..., nf qo=1

L*(i,j) only paths i, py,..., pe,j with 1 < pe < k

M] Th 3.30

cf. Floyd's algorithm for all-pairs shortest path problem

Automata Theory Kleene 195 / 214

Theorem
If M is an FA, then L(M) is regular.

PROOF

M=(Q,Z, q9,A b)) assume Q@ ={1,2,...

L¥(i,j) only paths i, py, ..., pe,j with 1 <

L°0i,j) ={ald(i,a) =/} i#]
Lo, j) ={al8(i,a) = jJU{A} i=j

Automata Theory Kleene

Nt qo=1

pe < k

basis

196 / 214

Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,X%, q0,Ad) assume @={1,2,..., nf qo=1

L¥(i,j) only paths i, py,..., pe,j with 1 < pe < k
Lo, j)={albdli,a)=j} i#]j basis
Lo0,j) ={ald(i,a) =y U{A} i=j

one by one add nodes, k from 1 to n:

Lk(i,j) = ...

*

Automata Theory Kleene 197 / 214

Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,%, q0,Ad) assume @={1,2,..., nf qo=1

L*(i,j) only paths i, py,..., pe,j with 1 < pe < k
Lo, j)={ald(i,a)=j} i#]j basis
Lo0,j) =f{ald(i,a) =y U{A} i=]

one by one add nodes, k from 1 to n:

LR(iyj) = L720,5) U L2 k) - (L (k k))T LAk,)
~— ~—

from i to k loop from k to k from k to j

*

Automata Theory Kleene 198 / 214

Theorem
If M is an FA, then L(M) is regular.

PROOF
M=(Q,X, qp,A 8) assume @={1,2,..., nt qg=1

L*(i,j) only paths i, py,..., pe,j with 1 < pp < k
Lo, j)={aldli,a)=j} i#]j basis
Lo0,j) ={ald(i,a) =y U{A} i=j

one by one add nodes, k from 1 to n:

LR(i,j) = LA=2(0,j) U L2 k) - (LY ke, k))T LY (k)
—— ——

from i to k loop from k to k from k to j

L(M) = U L"(1,]) full language, all nodes
JEA

Automata Theory Kleene 199 / R14

Example

rk (i, j) expression for L¥(i,)

*

Automata Theory Kleene 200 / 214

Example

rk(i, j) expression for L¥(i, j)

i) | = 213
i=1|a a*b o)
2 A+aa*b| b
3 a*b A

Simplified

Automata Theory

Kleene 201 / 214

Example

rk(i, j) expression for L¥(i,)

= a* a*b o)
2 aa* | A+aa*b| b
3 aa* a*b A

r?(i,j) | j=1 | 2 | 3
i=1 a*(baa™)* a*(baa*)*b a*(baa*)*bb
2 aa*(baa*)* (aa*b)* (aa*b)*b
3 aa* + a*baa*(baa*)* | a*b(aa*b)* | A+ a*b(aa*bh)*b

Adimplified / rewritten Kleene 202 / 214

Example

rk(i, j) expression for L¥(i,)

r2(i.j) | J | 3
i=1 a*(baa™)* a*(baa*)*b a*(baa*)*bb
2 aa*(baa*)* (aa*b)* (aa*b)*b
3 aa* + a*baa*(baa*)* | a*b(aa*b)* | A+ a*b(aa*bh)*b

r2(1,1) = r?(1,1) + r3(1,3)r%(3,3)"r?(3,1)
r3(1,2) = r?(1,2) + r?(1,3)r%(3,3)"r?(3,2)

<

=~

*
Automata Theory Kleene 203 / 214

BELOW The state elimination method by Brzozowski et McCluskey con-
structs a regular expression for a given automaton, by iteratively re-
moving the states. The edges of the automaton do not just contain
symbols (or A) but regular expressions themselves. Thus the graphs
are a hybrid form of finite automata and regular expressions. It is
rather clear however what they express.

Start by adding a new initial and accepting state; connect the initial
state to the old initial state, and connect the old accepting states to
the new accepting state, using as label the expression A (representing
the empty word).

Whenever during this construction two parallel edges (p, r,q) and
(p, r2, q) appear, we replace them with a single edge (p, 1 + 2, q)

Choose any node g to be removed. Let r, be the expression on the loop
for g. (If there is no loop we consider this expression to be &.)

For any incoming edge (p, r1, q) and outgoing edge (q, 3, s) we add the
edge (p, nryr3, s) which replace the path from p to s via g.

Remove g. Repeat.

When all original nodes are removed, we obtain a graph with single
edge; its label represents the language of the original automaton.

RO
@ ©

Automata Theory

Brzozowski et McCluskey

rn+r
@¥>@ join parallel edges

rnryr

P——G

(a)
@

reduce node g

"~

(9)

NI

special case: n =9

Brzozowski et McCluskey 204 / 214

https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Brzozowski_et_McCluskey

REFERENCES

R. McNaughton and H. Yamada, Regular expressions and state graphs
for automata, IRE Trans. Electronic Computers, vol. 9 (1960), 39-47.
S.C. Kleene. Representation of Events in Nerve Nets and Finite Au-
tomata. Automata Studies, Annals of Math. Studies. Princeton Univ.
Press. 34 (1956)

State elimination method:

J.A. Brzozowski et E.J. McCluskey, Signal Flow Graph Techniques for
Sequential Circuit State Diagrams, IEEE Transactions on Electronic
Computers, Institute of Electrical & Electronics Engineers (IEEE), vol.
EC-12, no 2, avril 1963, p. 67-76. doi:10.1109/pgec.1963.263416

http://dx.doi.org/10.1109/pgec.1963.263416

Example

Eliminate 4,3,2,1

Automata Theory Brzozowski et McCluskey 205 / 214

Example

b+ aa+ ba*(b + aa)

\. %4—3—1—&9‘

(b\@+ ba*b + ba*aa)* (/\+f®a a)

Brzozowski et McCluskey 206 / 214

ABOVE

Start by adding new initial and accepting states i and f. Connect these
to the original initial and accepting states by edges with the expression
A.

Note we also replaced the parallel edges a, b (loops on node 4) with the
expression a + b.

The first node that is eliminated is 4. The proces is not visible here, as
there are no pairs (/, j) such that there are edges (i, Ry, 4) and (4, R», j),
because there are no outgoing edges from 4. Thus no edges are con-
structed.

The second node eliminated is 3, as shown.

Example divisible by 3, 1

Al 1 0 Al 1 A

OCC(P/‘/‘@/‘L/@QI OC(?/L:@:)OPO (?:;o+1(01*0)*1
ALl 0 AL A

O O O

Automata Theory Brzozowski et McCluskey 207 / 214

Example divisible by 3, 2

10*1
Ayl 0 > 0
omoscclil R BN
A 1 0 0
10*
O O

0%1(10*1)*0
0* 4 0*1(10*1)*10*

O

Automata Theory Brzozowski et McCluskey 208 / 214

1+0(10%1)*0

0(10*1)*10*

Automata Theory

Example divisible by 3,

0*1(10%1)*0
0* 4 0*1(10*1)*10* 1+ 0(10*1)*0

0(10*1)*10*

0* + 0*1(10*1)*10* +
0*1(10%1)*0(1 + 0(10*1)*0)*0(10*1)*10*

O

Brzozowski et McCluskey

2

209 / 214

ABOVE
We compute a regular expression from the given automaton in two
different reduction orders.

The first example reduces nodes in the order 2,1,0. The result is (0+
1(01*0)*1)*

(The removal of the last loop is not depicted.)

The second example in the order 0,1,2. The result is 0* +
0*1(10*1)*10* 4 0*1(10*1)*0(1 + 0(10*1)*0)*0(10*1)*10*

The result differs in structure and size.

Homomorphism

h:X; — %5 letter-to-string map

1 — aa
h: 2 —» A
3 — abb

h:X] — X5 string-to-string map
h(o102...0k) = h(o1)h(o2) ... h(ox) h(12113) = aa-A-aa-aa- abb

1 j@\l aa " aa a /ﬁﬁa
2
ey

Automata Theory Other 210 / 214

K C X language-to-language map
h(K) ={h(x)|x € K}

Q)

h:Zy— %3 LC 5}

1
h: 2
3

111

Automata Theory

aa
A
abb

2

Inverse homomorphism

hY(L)={xeXi|h(x)eL}

oAy > 1 2 1 3 1
Lh

;L > aa A aa abb aa
2

1 1

SO&NG
1 2

Other 211 / 214

Closure

Regular languages are closed under
— Boolean operations (complement, union, intersection, minus)

— Regular operations (union, concatenation, star)

— Reverse (mirror)
— [inverse] Homomorphism

Automata Theory Other 212 / 214

In the wild

software engineering, e.g., automata-based modeling language
modelling of hardware circuits, a book on this

lexical analysis (compiling high-level language program), e.g., lex

© 06 o o

networks protocols, e.g., TCP/IP, or in packet filtering BGP

©

efficient string matching algorithm, e.g., Thompson's algorithm is
used in grep in Unix
o buttons?

o other thoughts

Automata Theory Other 213 / 214

https://www.cs.vu.nl/~wanf/pubs/cif3.pdf
https://electrovolt.ir/wp-content/uploads/2017/07/Finite-State-Machines-in-Hardware-Volnei-A.-Pedroni-ElectroVolt.ir_.pdf
https://redirect.cs.umbc.edu/~chang/cs431/Lex_Manual.pdf
https://users.cs.northwestern.edu/~agupta/cs340/project2/TCPIP_State_Transition_Diagram.pdf
https://packetadvisor.com/bgp-regular-expressions-made-easy/
https://swtch.com/~rsc/regexp/regexp1.html
http://cs103.stanford.edu/tools/button-fsm/
https://cstheory.stackexchange.com/questions/14811/what-is-the-enlightenment-im-supposed-to-attain-after-studying-finite-automata

Homework 2 is available!

Automata Theory

Other

<

214 / 214

>

	Regular languages
	Kleene
	Brzozowski et McCluskey
	Other

