From lecture 3:

Definition

Let L be language over Σ , and let $x, y \in \Sigma^*$.

Then x, y are distinguishable wrt L (L-distinguishable),

if there exists $z \in \Sigma^*$ with

 $xz \in L$ and $yz \notin L$ or $xz \notin L$ and $yz \in L$

Such z distinguishes x and y wrt L.

Equivalent definition:

let
$$L/x = \{ z \in \Sigma^* \mid xz \in L \}$$

x and y are L-distinguishable if $L/x \neq L/y$.

Otherwise, they are *L-indistinguishable*.

The strings in a set $S \subseteq \Sigma^*$ are *pairwise L-distinguishable*, if for every pair x, y of distinct strings in S, x and y are L-distinguishable.

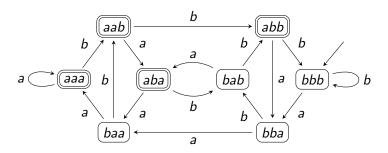
Definition independent of FAs

Strings with a in the nth symbol from the end

 L_n the language of strings in $\{a, b\}^*$ with at least n symbols and an a in the nth position from the end

[M] E. 2.24

Strings with a in the nth symbol from the end



[M] E. 2.24

< ∃ →

From lecture 3:

Theorem

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$.

If $x, y \in \Sigma^*$ are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

For every $n \ge 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Hence, indeed: if $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x and y are not L-distinguishable.

Proof...

[M] Thm 2.21

4 ∄ →

Theorem

For every language $L \subseteq \Sigma^*$, if there is an infinite set S of pairwise L-distinguishable strings, then L cannot be accepted by a finite automaton.

Proof...

$$Pal = \{x \in \{a, b\}^* \mid x = x^r\}$$
[M] E. 2.27

R equivalence relation on A

- reflexive xRx for all . . .
- symmetric xRy then yRx
- transitive xRy and yRz then xRz

equivalence class
$$[x]_R = \{ y \in A \mid yRx \}$$
 short: $[x]$ partition A

[M] Sect. 1.3

Definition

For a language $L \subseteq \Sigma^*$, we define the relation \equiv_L (an equivalence relation) on Σ^* as follows: for $x, y \in \Sigma^*$

$$x \equiv_L y$$
 if and only if x and y are L-indistinguishable

Equivalence relation...

right invariant
$$x \equiv_L y$$
 implies $xz_1 \equiv_L yz_1$

Book uses I_L for \equiv_L

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

$$L/x$$
 for $x = \Lambda$, a , b , $aa \dots$
 $L/\Lambda = L$
 $L/a = \{a\} \cup L$
 $L/b = L$
 $L/aa = \{\Lambda, a\} \cup L$

Equivalence classes / partitioning of $\{a, b\}^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...\} ...$

Equivalence classes of \equiv_L , where $L = AnBn = \{a^i b^i \mid i \geqslant 0\}$

[M] E 2.37

Equivalence classes of \equiv_L , where $L = AnBn = \{a^i b^i \mid i \geqslant 0\}$

Infinitely many equivalence classes

quotients

$$-L/a^{i} = \{ a^{k}b^{i+k} \mid k \geqslant 0 \}$$

$$-L/a^{i+k}b^{i} = \{ b^{k} \} \quad i > 0, k \geqslant 0$$

$$-L/a^{i}b^{j} = L/xbay = \emptyset \quad j > i$$
[M] E 2.37

Automata Theory Equivalence classes 109 / 127

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

$$L/x$$
 for $x = \Lambda$, a , b , $aa \dots$

Equivalence classes / partitioning of $\{a, b\}^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...\}$: $\{\Lambda, b, ab, bb, aab, abb, ...\}$

{a, ba, aba, . . .} {aa. aaa. baa. . . .}

Finitely many equivalence classes

Automata Theory Equivalence classes 110 / 127

< ∃ →

From lecture 1:

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

$$b \qquad a \qquad a$$

$$q_0 \qquad b \qquad q_1 \qquad a$$

[M] E. 2.1

State
$$q$$
 in FA \approx $L_q = \{x \in \Sigma^* \mid \delta^*(q_0, x) = q\}$

From lecture 3:

Theorem

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$.

If $x, y \in \Sigma^*$ are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

For every $n \ge 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Proof...

[M] Thm 2.21

In other words: if $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x, y are L-indistinguishable. Each L_a is subset of equivalence class

Automata Theory Equivalence classes 112 / 127

4 ∄ →

4 ∄ →

Theorem

If $L \subseteq \Sigma^*$ can be accepted by a finite automaton, then the set Q_L of equivalence classes of the relation \equiv_L is finite.

Conversely, if the set Q_L is finite, the finite automaton $M_L = (Q_L, \Sigma, q_0, A, \delta)$ accepts L, where $q_0 = \ldots$ $A = \ldots$ $\delta([x], \sigma) = \ldots$

4 ∄ →

Theorem

If $L \subseteq \Sigma^*$ can be accepted by a finite automaton, then the set Q_L of equivalence classes of the relation \equiv_L is finite.

Conversely, if the set Q_L is finite, the finite automaton $M_L = (Q_L, \Sigma, q_0, A, \delta)$ accepts L, where $q_0 = [\Lambda]$ $A = \{q \in Q_L \mid q \subseteq L\}$ $\delta([x], \sigma) = [x\sigma]$

Finally, M_L has the fewest states of any FA accepting L.

Note:

If $x \in L$, then $[x] \subseteq L$ (L is union of equivalence classes) Right invariant $x \equiv_L y$ implies $x\sigma \equiv_L y\sigma$

Theorem

For every language $L \subseteq \Sigma^*$, if there is an infinite set S of pairwise L-distinguishable strings, then L cannot be accepted by a finite automaton.

Proof...

Minimizing states

- Remove unreachable states
- 2 Merge 'equivalent' states

Equivalence relation \equiv_L induces equivalence relation on states Each L_q is subset of equivalence class L_p and L_q may be subset of same equivalent class $p \equiv q \iff L_p$ and L_q are subset of same equivalent class $p \not\equiv q \iff$ for some $z \in \Sigma^*$ exactly one of $\delta^*(p,z)$ and $\delta^*(q,z)$ is in A

Definition

 S_M : set of pairs (p, q) such that $p \not\equiv q$

- $exttt{1}$ If exactly one of p and q is in A, then $(p,q) \in S_M$
- ② If for some $\sigma \in \Sigma$, $(\delta(p, \sigma), \delta(q, \sigma)) \in S_M$, then $(p, q) \in S_M$

ALGORITHM mark pairs of non-equivalent states

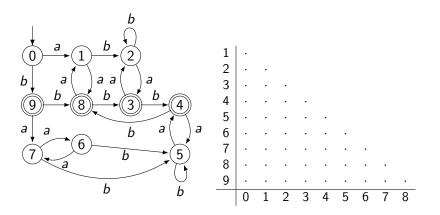
start by marking pairs (p, q) where exactly one p, q in A repeat

for each unmarked pair (p, q)

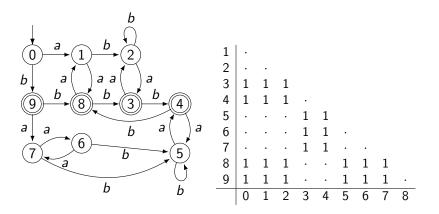
check whether there is a σ such that $(\delta(p, \sigma), \delta(q, \sigma))$ is marked then mark (p, q)

until this pass does not mark new pairs

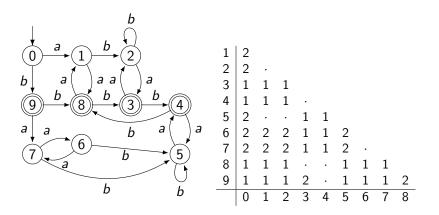
[M] Algo 2.40



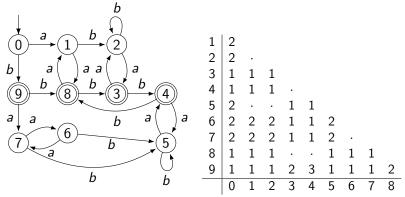
[M] Fig 2.42



[M] Fig 2.42

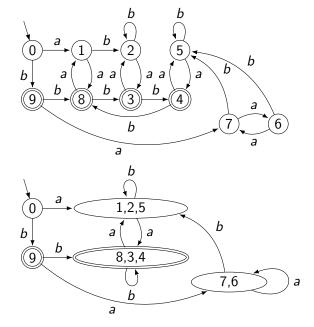


[M] Fig 2.42



Resulting (minimal) FA...

[M] Fig 2.42

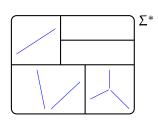


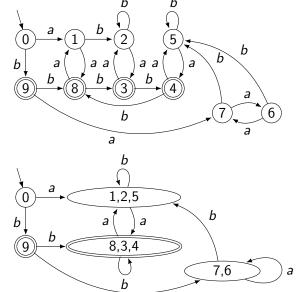
[M] Fig 2.42

$$L = L(M)$$

$$\equiv_M$$
 state $\delta^*(q_0, x)$
 \equiv_L "future" L/x

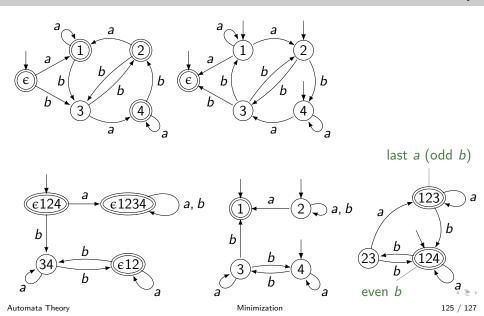
 $x \equiv_M y$, then $x \equiv_L y$.





[M] Fig 2.42

Example: Brzozowski minimization Self-study



ABOVE

Brzozowski observes that one can minimize an FA by performing the following operations twice: invert (mirror), then determinize, i.e., make deterministic.

It is rather magical that this indeed works.

The method is in theory rather unfavourable, because of the exponentiation when determinizing, but in practice seems not too slow.

Previous challenge

Can you find a language that satisfies the generalized version of the pumping lemma but is not accepted by a finite automaton?

According to this wiki page, the general version of the pumping lemma still does not characterize regular languages.

Next challenge?

Homework 1 is available!