Distinguishing strings

From lecture 3:
Definition
Let L be language over X, and let x,y € X*.
Then x, y are distinguishable wrt L (L-distinguishable),
if there exists z € X* with

xz€landyz¢ L or xz¢lLandyzel
Such z distinguishes x and y wrt L.

Equivalent definition:
let L/x={zeX"|xzel}

x and y are L-distinguishable if L/x # L/y.
Otherwise, they are L-indistinguishable.

The strings in a set S C X* are pairwise L-distinguishable, if for every pair
x, y of distinct strings in S, x and y are L-distinguishable.

Definition independent of FAs

Automata Theory Equivalence classes 99 /127

Strings with a in the nth symbol from the end

L, the language of strings in {a, b}* with at least n symbols and an a in
the nth position from the end

Automata Theory Equivalence classes 100 / 127

Strings with a in the nth symbol from the end

:
’7\\3 : "/J\”/

PN
2@ b (b)) (bab) o (bbB) Db

AN NIVE
() g (bt)

Automata Theory Equivalence classes 101 / 127

From lecture 3:

Theorem

Suppose M = (Q, Z, qo, A, 8) is an FA accepting L C X*.

If x,y € X* are L-distinguishable, then &*(qo, x) # 6*(qo, y).

For every n > 2, if there is a set of n pairwise L-distinguishable strings in
I*, then Q must contain at least n states.

Hence, indeed: if 6*(qgo, x) = 8*(qo, y), then x and y are not
L-distinguishable.

Proof. ..

Automata Theory Equivalence classes 102 / 127

Theorem
For every language L C ¥*,

if there is an infinite set S of pairwise L-distinguishable strings,
then L cannot be accepted by a finite automaton.

Proof. ..

Automata Theory Equivalence classes 103 / 127

Pal ={x € {a,b}* | x=x"}
[M] E. 2.27

Automata Theory

Equivalence classes

« =

>

104 / 127

R equivalence relation on A

— reflexive xRx for all ...
— symmetric xRy then yRx
— transitive xRy and yRz then xRz
o A

e
equivalence class [x]lg ={y € A|yRx }
short: [x]
partition A

Automata Theory Equivalence classes

Equivalence relation

105 / 127

Definition
For a language L C I*, we define the relation =; (an equivalence relation)
on X* as follows: for x,y € L*

X=Ly if and only if x and y are L-indistinguishable

Equivalence relation. ..

right invariant x =; y implies xz; =; yz

Book uses /; for =;

Automata Theory Equivalence classes 106 / 127

Example
L1 ={x €{a, b}* | x ends with aa }

L/x for x=A,a,b,aa ...

LIA =L
L/a={alUlL
L/b=L

L/aa={A,alUL

Equivalence classes / partitioning of
{a, b}* ={A, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...} ...

Automata Theory Equivalence classes 107 / 127

Equivalence classes of =;, where L = AnBn = {a'b’ | i >0}
(M] E 2.37

Automata Theory

Equivalence classes

<

108 / 127

>

Example

Equivalence classes of =;, where L = AnBn = {a'b" | i>0}

(A} {ah (a2, {a%), ...
{a'b’" | i>1}
{(a1p | ix1),{at2b | i1}, {at3 | i1} ...
{x €{a, b}* | xis not a prefix of any element of L}
= {b, ba, bb, aba, abb, baa, ...}
Infinitely many equivalence classes

quotients
—L/a ={akbtk | k>0}
—L/a kb ={b*} i>0,k=>0
—L/a'b =L/xbay =@ j>i

Automata Theory Equivalence classes 109 / 127

Example
L1 ={x €{a, b}* | x ends with aa }

L/x for x=A,a,b,aa ...

Equivalence classes / partitioning of
{a, b}* ={A, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .}:

{A, b, ab, bb, aab, abb, . ..}
{a, ba, aba, ...}
{aa, aaa, baa, ...}

Finitely many equivalence classes

Automata Theory Equivalence classes 110 / 127

x ends with aa

From lecture 1:

Example
L1 ={ x €{a, b}* | x ends with aa }

b a

i
a
(@], b (@)
b

M] E. 2.1

Automata Theory Equivalence classes 111 / 127

State ginFA =~ Lg={xeX* | 8" (qo x)=q}

From lecture 3:

Theorem

Suppose M = (Q, X, qo, A, d) is an FA accepting L C X*.

If x,y € £* are L-distinguishable, then 6*(qo, x) # 6*(qo, y)-

For every n > 2, if there is a set of n pairwise L-distinguishable strings in
I*, then Q must contain at least n states.

Proof. ..

In other words: if $*(qo, x) = 0*(qo, ¥), then x, y are L-indistinguishable.
Each Lg is subset of equivalence class

Automata Theory Equivalence classes 112 / 127

Myhill-Nerode

Theorem
If L C X* can be accepted by a finite automaton, then the set Q; of
equivalence classes of the relation =, is finite.

Conversely, if the set Qy is finite,

the finite automaton M; = (Q, X, qo, A,) accepts L, where
do — ...

A= ..

O5([x], o) = ...

Automata Theory Equivalence classes 113 / 127

Myhill-Nerode

Theorem

If L C X* can be accepted by a finite automaton, then the set Q; of
equivalence classes of the relation =, is finite.

Conversely, if the set Qy is finite,

the finite automaton M; = (Qr, X, qo, A, 8) accepts L, where
qo = [A]

A={qe Q. | gC L}

8([x], o) = [xa]

Finally, M, has the fewest states of any FA accepting L.

Note:
If x € L, then [x] C L (L is union of equivalence classes)
Right invariant x =, y implies xo =, yo

Automata Theory Equivalence classes 114 / 127

Theorem
For every language L C ¥*,

if there is an infinite set S of pairwise L-distinguishable strings,
then L cannot be accepted by a finite automaton.

Proof. ..

Automata Theory Equivalence classes 115 / 127

@ Remove unreachable states

@ Merge ‘equivalent’ states

Automata Theory

Minimization

<

116 / 127

>

Equivalent states

Equivalence relation =; induces equivalence relation on states

Each L, is subset of equivalence class

L, and Ly may be subset of same equivalent class

p=q <= Ly and L, are subset of same equivalent class

p Z q < for some z € L* exactly one of 6*(p, z) and 6*(q,z) isin A

Definition
Sy: set of pairs (p, g) such that p # g
@ If exactly one of p and g is in A, then (p, q) € Sy
@ If for some 0 € L, (8(p, 0),8(q,0)) € Sy, then (p, q) € Sy

Automata Theory Minimization 117 / 127

Minimizing states

ALGORITHM mark pairs of non-equivalent states |
start by marking pairs (p, g) where exactly one p, g in A

repeat
for each unmarked pair (p, q)

check whether there is a o such that (6(p, 0),8(q, 0)) is marked
then mark (p, q)
until this pass does not mark new pairs

Q%% OO

Xk—1 Xk

@TQﬂ OO

Automata Theory Minimization 118 / 127

O© 0O ~NOOT A~ WN -

01 2 3 45 6 7 8

Automata Theory Minimization 119 / 127

— o= -

R e B e B o |

01 2 3 45 6 7 8

120 / 127

Minimization

Automata Theory

[R {ee]

— (N~

— — (O

AN AN = O

— <

— (9l 3]

— AN AN — — N

— NN

NN~ NN —A -
— AN < O N~ 00 O

121 / 127

Minimization

Automata Theory

AN N

01 23 45 6 7 8

— N

3/]1 11

612 2 2 1 1 2
712 2 211 2

9/]1 11 2 3 1 1 1 2

Resulting (minimal) FA. ..

122 / 127

Minimization

Automata Theory

123 / 127

Minimization

Automata Theory

L=L(M)
=pm state 8*(qo, x)

=; “future” L/x

s
{ \ 1A

\Z*

Automata Theory Minimization 124 / 127

Example: Brzozowski minimization

Sonpe K%Aé)
@é: © : bé&i

last a (odd b)

Automata Theory Minimization 125 / 127

ABOVE

Brzozowski observes that one can minimize an FA by performing the
following operations twice: invert (mirror), then determinize, i.e., make
deterministic.

It is rather magical that this indeed works.

The method is in theory rather unfavourable, because of the exponen-
tiation when determinizing, but in practice seems not too slow.

Previous challenge

Can you find a language that satisfies the generalized version of the
pumping lemma but is not accepted by a finite automaton?

According to this wiki page, the general version of the pumping lemma
still does not characterize regular languages.

Automata Theory Minimization 126 / 127

https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages

Homework 1 is available!

Automata Theory

Minimization

<

127 / 127

>

	Equivalence classes
	Minimization

