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From lecture 1:

L1 ={x €{a, b}* | x ends with aa }

[M] E. 21
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Ingredients

From lecture 1:

Example
L1 ={x €{a, b}* | x ends with aa }
b a
&
a
(@) _b @)
b
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Example

L, ={ x €{a, b}* | x ends with b and does not contain aa }

M] E. 2.3
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Example

L, ={ x €{a, b}* | x ends with b and does not contain aa }

M] E. 2.3
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Avoiding pattern

Example (Strings not containing 001)
1
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Finding pattern

Example (Similar to Knuth-Morris-Pratt string search)
L3 ={ x €{a, b}* | x contains the substring abbaab }
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we{0,1}* — val(w) eN
val(w0) = ..

val(wl) =. ..
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Binary integers divisible by 3
Self-study

Example
0 1 6| 0 1
x| 2x 2x+1
1 0
\/8 i
1] 2 0
1 0 2|1 2

we{0,1} — val(w) e N
val(w0) = 2-val(w)
val(wl) = 2-val(w) + 1

states represent val(w) modulo 3

Automata Theory (Deterministic) Finite Automata Examples 41 /71



... divisible by 3  book-version
Self-study

Disallows leading 0's in binary representations, e.g., 0001, and the null
string.
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{xe{a b}*| ny(x)+2n,(x) =0 mod5}

b
b ab/a%::
ab ba
a b
b

Ovaed

b

cs.SE Planar regular languages
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https://cs.stackexchange.com/a/114678/4287

A student once asked if all finite automata can be drawn without cross-
ing transitions. The automaton to the right has the form of Ky (the
complete graph on five nodes), which is known to be non-planar.

The same language can also be accepted a planar automaton (to the
left). There are, however, languages that do not have a planar automa-
ton.



Even/odd number of a's/b's

2.1(g) All strings over {a, b} in which both the number of a's and the

number of b’s is even. ;
I 7777‘\
( _

b||b b||b

a
O

2.1(g2) All strings over {a, b} in which either the number of a's or the

number of b's is odd (or both).
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Formalism

Definition (FA)

[deterministic] finite automaton  5-tuple M = (Q, L, qo, A, d),
— @ finite set  states;

— X~ finite input alphabet;

—qgo € Q initial state;

— AC Q accepting states;

- 0:Q x X —= Q transition function.
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Ingredients

From lecture 1:

Example
L1 ={x €{a, b}* | x ends with aa }
b a
&
a
(@) _b @)
b
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Formalism

Definition (FA)

[deterministic] finite automaton  5-tuple M = (Q, L, qo, A, d),
— @ finite set  states;

— X~ finite input alphabet;

—qgo € Q initial state;

— AC Q accepting states;

- 0:Q x X —= Q transition function.

Automata Theory (Deterministic) Finite Automata FA definition 47 /71



FAM=(Q,Z, g, ADJ)

Definition

extended transition function &* : Q@ x X* — @, such that
-0*(g,AN)=q forge @

-06*(q,y0) =08(6%(q,y),0) forge Q yeil* ock

Theorem
q = 8" (p, w) iff there is a path in [the transition graph of] M from p to q
with label w.
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Extended transition function

a b b
q1 g2 q0 q0

5*(qo,a) 8*(qo,aa) &%(qo,aab) 8*(qo, aabb)

5*(qo, aabb) = qqp :

6" (qo, A) = qo

6" (qo, a) = 6" (qo, A a) = 8(8%(q0, A),a) = 8(qo, a) = ¢
6" (qo, aa) = 5(8%(qo, a), a) = 8(q1,a) = q2

6*(qo, aab) = 8(8"(qo, aa), b) = (g2, b) = qo

6" (qo, aabb) = 6(8(qo, aab), b) = 8(qo, b) = qo
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Definition

Let M = (Q, X, qo, A d) be an FA, and let x € £*. The string x is
accepted by M if 6*(qo, x) € A.

The language accepted by M = (Q, X, qo, A, 8) is the set
L(IM)={x € X*| xis accepted by M }

(M] D214 [L] D22
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Intro: complement

Seen previously:
Ly ={x €{a, b}* | x ends with b and does not contain aa }

last a a,b

(@)@ g @

seen aa b

last b b b
~(PAQ)=-PV—-Q

S ={x €{a, b}* | x does not end with b or contains aa }
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FAM=(Q,Z qo0 ADd),
let M€ = (Q,Z, g0, @—A, 5)

L(ME) = £* — L(M)

Proof. ..

«E
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Intro: combining languages

Example (Even number of a, and ending with b)

®

o

a

b
() .
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Might not be optimal

Even number of a and ending with b

odd a
any last letter
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Combining languages

FA M = (Qi,Z, qgi, A, b)) =172

Product construction

construct FA M = (Q, Z, go, A, ) such that
- Q=01 x @

- qo = (91, 92)

= 8( (p,q),0) = (81(p, 0),82(q,0) )
— A as needed

Theorem (2.15 Parallel simulation)

-A={(p.q) | p€ AL orqgc A}, then L(M) = L(My) U L(M>)
—A={(p,q) | p€ A1 and q € Ay}, then L(M) = L(My) N L(M)
—A={(p,q) | p€ A1 and q ¢ Az}, then L(M) = L(My) — L(M)

Proof. ..
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Proof

Exercise 2.11.
Use induction to show that for every x € £* and every (p,q) € Q,

5*((p. q), x) = (81(p, x), 85(q, x))
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Example: intersection ‘and’ (product construction)

not substring aa
b a,b

Srree-d
b a
B e
\_by.
ends with ab
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Example: intersection ‘and’ (product construction)

not substring aa

b a, b
a

@0

b a

ARG

N

b

ends with ab
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Example: union, contain either ab or bba

4&8%8 RN
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FI 1, mrt 2016

L={w €{a, b}* | w starts and ends with an a, and |w]| is even }

@@4@
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[M] Fig. 2.28
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Pumping lemma for regular languages

Regular language is language accepted by an FA.

Theorem |
Suppose L is a language over the alphabet X. If L is accepted by a finite
automaton M, and if n is the number of states of M, then
YV for every x € L

satisfying |x| > n
4 there are three strings u, v, and w,

such that x = uvw and the following three conditions are true:

(1) luv < n,

(2)|vl>1
vV and (3) for all m > 0, uv™w belongs to L
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Pumping lemma for regular languages

In other words:

Theorem

YV For every regular language L
J  there exists a constant n > 1
such that
YV forevery x € L
with x| > n
4 there exists a decomposition x = uvw
with (1) |uv| < n,
and (2) |v| > 1
such that
vV (3)forallm=>0, uwv™we L

if L=L(M) then n=1Q)|.
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Pumping lemma for regular languages

In other words:

Theorem
If L is a regular language, then
4 there exists a constant n > 1
such that
YV for every x € L
with x| > n
4 there exists a decomposition x = uvw
with (1) |uv| < n,
and (2) [v| > 1
such that
vV (3)forallm=>=0, uv™w e L

if L=L(M) then n=1Q)|.
Introduction to Logic: p - q <= —qg——p
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Pumping lemma for regular languages

Theorem |

If

YV  foreveryn>1

4 there exists x € L
with |x| > n
such that

Y for every decomposition x = uvw
with (1) |uv| < n,
and (2) lv| > 1

3 (3) there exists m > 0,
such that
uvmw & L

then L is not a regular language.
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L={a'b’|i>0}is not accepted by FA.
M] E 2.30

Proof: by contradiction
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We prove that the language L ={a’b’ | i > 0} is not regular, by contra-
diction.

Assume that L ={a'b’ | i > 0} is accepted by FA with n states.

Take x = a"b". Then x € L, and |x| =2n > n.

Thus there exists a decomposition x = uvw such that |uv| < n with v
nonempty, and uv™w € L for every m.

Whatever this decomposition is, v consists of a’s only. Consider m = 0.
Deleting v from the string x will delete a number of a’s. So uv®w is of
the form a” b" with n’ < n.

This string is not in L; a contradiction. (m > 2 would also yield con-
tradiction)

So, L is not regular.



Applying the pumping lemma

Example

L={a'b’|i>0}is not accepted by FA.

AeqB ={x €{a, b}* | n,(x) = np(x) }
Same argument, or closure properties
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Combining languages

FA M = (Qi,Z, qgi, A, b)) =172

Product construction

construct FA M = (Q, Z, go, A, ) such that
- Q=01 x @

- qo = (91, 92)

= 8( (p,q),0) = (81(p, 0),82(q,0) )
— A as needed

Theorem (2.15 Parallel simulation)

-A={(p.q) | p€ AL orqgc A}, then L(M) = L(My) U L(M>)
—A={(p,q) | p€ A1 and q € Ay}, then L(M) = L(My) N L(M)
—A={(p,q) | p€ A1 and q ¢ Az}, then L(M) = L(My) — L(M)

Proof. ..
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Exactly the same argument can be used (verbatim) to prove that L =
AeqgB is not regular.

We can also apply closure properties of REG to see that AeqB is not
regular, as follows.

Assume AeqB is regular. Then also AnBn = AeqB N a*b* is regular,
as regular languages are closed under intersection.

This is a contradiction, as we just have argued that AnBn is not regular.
Thus, also AegB is not regular.



Issues:
o Which n? Can | just take x = aababaabbab?
o Which x? Some x may not yield a contradiction.
o Which decomposition uvw? Can | just take u = a'0, v = a" 10,
w=>b"7?

o Which m? Some m may not yield a contradiction.
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‘Homework' answer
L1 ={w|wis a C-identifier }

Legal C identifiers:
o sequence of letters, digits, underscores
o starts with a letter or an underscore

letter, digit, _

letter, _

letter, digit, _
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Next challenge?

Ly ={w|wis a C-style comment }
L3

C-identifiers (adjust to use the same alphabet: ¥ ={/,d, %,/ }) or
C-style comments
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