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Chapter

5 Pushdown Automata
Deterministic PDA
From CFG to PDA
From PDA to CFG
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Overview

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar
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just like FA, PDA accepts strings / language
just like FA, PDA has states
just like FA, PDA reads input one letter at a time
unlike FA, PDA has auxiliary memory: a stack
unlike FA, by default PDA is nondeterministic
unlike FA, by default Λ-transitions are allowed in PDA
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Why a stack?

AnBn = {aibi | i ≥ 0}

with x = aaabbb

SimplePal = {xcx r | x ∈ {a, b}∗}

with x = aabcbaa
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Stack in PDA contains symbols from certain alphabet.
Usual stack operations: pop, top, push
Extra possiblity: replace top element X by string α
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AnBn

AnBn = { anbn | n ≥ 0 }

initial q0, Z0

PDA. . .
[M] E 5.3

Automata Theory Pushdown Automata 342 / 397



AnBn

AnBn = { anbn | n ≥ 0 }

initial q0, Z0, accept A = {q0, q3}

q0 q1 q2 q3
a,Z0/aZ0 b, a/Λ

a, a/aa b, a/Λ

Λ,Z0/Z0

[M] E 5.3
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Stack in PDA contains symbols from certain alphabet.
Usual stack operations: pop, top, push
Extra possiblity: replace top element X by string α

Notation:
If stack contents is X1X2X3X4, then top element
is X1.
If we replace X by string α, then first symbol of α
ends up at top of stack.

X1

X2

X3

X4

α = Λ pop
α = X top
α = YX push
α = βX push∗

α = . . .
Top element X is required to do a move!
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AnBn

AnBn = { anbn | n ≥ 0 }

initial q0, Z0, accept A = {q0, q3}

q0 q1 q2 q3
a,Z0/aZ0 b, a/Λ

a, a/aa b, a/Λ

Λ,Z0/Z0

[M] E 5.3

q0 q1 q2
Λ,Z0/Z0

Λ, a/a

a,Z0/aZ0

a, a/aa b, a/Λ

Λ,Z0/Z0
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Using a stack/pushdown

SimplePal =
{ xcx r | x ∈ {a, b}∗ }

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Z0

a

a
b b

a

a

Z0 Z0

0
a
0
a
0
b
0
c
1
b
1
a
1
a
1 2

[M] Fig 5.5
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Regular languages and CF grammars

From lecture 8:
systematic approach

Example

S A B

a

b
a

b

b

a

axiom S initial state
S → bA | aS transitions
A → bA | aB
B → bA | aS
B → Λ accepting state
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Intuition

a

input tape

· · · · · ·

δ

p

state

finite
control

stack

top

X

...
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Formalism

From lecture 2:

Definition (FA)

[deterministic] finite automaton 5-tuple M = (Q,Σ, q0,A, δ),
– Q finite set states;
– Σ finite input alphabet;
– q0 ∈ Q initial state;
– A ⊆ Q accepting states;
– δ : Q × Σ → Q transition function.

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has ‘final’ states
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Pushdown automaton

Definition

PDA 7-tuple M = (Q,Σ, Γ, q0,Z0,A, δ)
Q states p, q
Σ input alphabet a, b w , x
Γ stack alphabet a, b,A,B α
q0 ∈ Q initial state
Z0 ∈ Γ initial stack symbol
A ⊆ Q accepting states

δ : . . . → . . .
transition function

from to

( p a X q α )
read pop push

︸ ︷︷ ︸

before
︸ ︷︷ ︸

after
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Pushdown automaton

Definition

PDA 7-tuple M = (Q,Σ, Γ, q0,Z0,A, δ)
Q states p, q
Σ input alphabet a, b w , x
Γ stack alphabet a, b,A,B α
q0 ∈ Q initial state
Z0 ∈ Γ initial stack symbol
A ⊆ Q accepting states

δ : Q × (Σ ∪ {Λ})× Γ → 2Q×Γ∗

transition function (finite)

In principle, Z0 may be removed from the stack,
but often it isn’t.
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SimplePal =
{ xcx r | x ∈ {a, b}∗ }

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Q = {0, 1, 2}
Σ = {a, b, c}
Γ = {a, b,Z0}
q0 = 0
Z0 = Z0

A = {2}

Transition table:

State Input Stack Symbol Move(s)
p σ X δ(p, σ,X )
0 a Z0 (0, aZ0)
0 a a (0, aa)
0 a b (0, ab)
0 b Z0 (0, bZ0)
0 b a (0, ba)
0 b b (0, bb)
0 c Z0 (1,Z0)
0 c a (1, a)
0 c b (1, b)
1 a a (1,Λ)
1 b b (1,Λ)
1 Λ Z0 (2,Z0)
(all other combinations) none

Automata Theory Pushdown Automata 352 / 397



Pushing and popping

transition (q, α) ∈ δ(p, a,A)
p q

a,A/α

(p, a,A) 7→ (q, α)

p, q ∈ Q, a ∈ Σ ∪ {Λ}, A ∈ Γ, α ∈ Γ∗

intuitive formalized as convention

pop A (q,Λ) ∈ δ(p, a,A) α = Λ
p q

a,A/Λ

push A (q,AX ) ∈ δ(p, a,X ) for all X ∈ Γ
p q

a,+A

read a (q,X ) ∈ δ(p, a,X ) for all X ∈ Γ
p qa
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Differences in dialect

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

q0 q1 q2

c , a/a

c , b/b

c ,Z0/Z0

a, a/aa

b,Z0/bZ0

a,Z0/aZ0

b, b/bb

b, a/ba

a, b/ab

a, a/Λ

b, b/Λ

Λ,Z0/Z0

[M] Fig 5.5
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above

The same PDA twice.
First our version, where we allow some shortcuts in notation.

Second as depicted in the book.



Notation

Incorrect notations:

✍✌
✎☞

✍✌
✎☞

✲p qσ,Λ/α
top stack symbol required

✍✌
✎☞

✍✌
✎☞

✲p qσ,XY /α
remove/consider one stack symbol at a time
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Computation and language

M = (Q,Σ, Γ, q0,Z0,A, δ)

configuration (q, x , α) q ∈ Q, x ∈ Σ∗, α ∈ Γ∗

state, remaining input, stack with top left

step (p, ax ,Bα) ⊢M (q, x , βα) when (q, β) ∈ δ(p, a,B)
⊢n
M ⊢∗

M ⊢ ⊢n ⊢∗

Definition

String x accepted by M (by final state), if
(q0, x ,Z0) ⊢

∗ (q,Λ, α) for some q ∈ A, and some α ∈ Γ∗

Language accepted by M (by final state)
L(M) = { x ∈ Σ∗ | x accepted by M }

read complete input, end in accepting state, some path

[M] D 5.2
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Using a stack/pushdown

SimplePal =
{ xcxR | x ∈ {a, b}∗ }

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Z0

a

a
b b

a

a

Z0 Z0

0
a
0
a
0
b
0
c
1
b
1
a
1
a
1 2

(0,aabcbaa, Z0) ⊢
(0, abcbaa, aZ0) ⊢
(0, bcbaa, aaZ0) ⊢
(0, cbaa,baaZ0) ⊢
(1, baa,baaZ0) ⊢
(1, aa, aaZ0) ⊢
(1, a, aZ0) ⊢
(1, Λ, Z0) ⊢
(2, Λ, Z0)

[M] Fig 5.5
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Λ computations

0 1
Λ

a,+A
b,+B

Λ,A/Λ

Λ,Z0/Λ

Λ,B/Λ Λ,B/Λ

Λ,A/Λ
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above

Λ-computations can be very long in PDA, they can even loop.

In the example the input is read and stored on the tape, and at the

end of the input it is verified that the string contains an even number

of a’s.



Pal { y ∈ {a, b}∗ | y = y r }
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Pal { y ∈ {a, b}∗ | y = y r }

0 1 2
a, b,Λ

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Q = {0, 1, 2}
Σ = {a, b}
Γ = {a, b,Z0}
q0 = 0
Z0 = Z0

A = {2}
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Computation tree

(0, baab,Z0)

(0, aab, bZ0) (1, aab,Z0) (1, baab,Z0)

(0, ab, abZ0) (1, ab, bZ0) (1, aab, bZ0) (2, aab,Z0) (2, baab,Z0)

(0, b, aabZ0) (1, b, abZ0) (1, ab, abZ0)

(0,Λ, baabZ0) (1,Λ, aabZ0) (1, b, aabZ0)

(1,Λ, baabZ0)

(1, b, bZ0)

(1,Λ,Z0)

(2,Λ,Z0)

final state, input read

[M] Fig 5.9
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above

Non-determinism at work. The PDA for palindromes cannot see what

is the middle of the input string, and has to guess. Only one of the

guesses leads to an accepting configuration.



Deterministic PDA

for each state and stack symbol
– on each symbol/Λ at most one transition
– not both symbol and Λ-transition

Definition

DPDA
δ(q, σ,X ) ∪ δ(q,Λ,X ) at most one element for each q ∈ Q, σ ∈ Σ,X ∈ Γ

[M] Def 5.10

DPDA ≈ DCFL = class of deterministic context-free languages
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DPDA for Balanced

Balanced = {balanced strings of brackets [ and ]}

[M] E 5.11
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DPDA for AeqB

[M] E 5.13
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DPDA for AeqB

0 1

a,Z0/aZ0

b,Z0/bZ0

a, a/aa

b, a/Λ

a, b/Λ

b, b/bb

Λ,Z0/Z0

Without Λ-transitions. . .

[M] E 5.13
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DPDA for AeqB

0 1

a,Z0/aZ0

b,Z0/bZ0

a, a/aa

b, a/Λ

a, b/Λ

b, b/bb

Λ,Z0/Z0

0 1

a,Z0/A

b,Z0/B

a, a/aa

b, a/Λ

a, b/Λ

b, b/bb

a,A/aA

b,B/bB

a,B/Z0

b,A/Z0

[M] E 5.13
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Pal { y ∈ {a, b}∗ | y = y r }

0 1 2
a, b,Λ

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Q = {0, 1, 2}
Σ = {a, b, c}
Γ = {a, b,Z0}
q0 = 0
Z0 = Z0

A = {2}
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Theorem

The language Pal cannot be accepted by a deterministic pushdown
automaton.

Proof. . .
[M] Thm 5.16
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Distinguishing strings

From lecture 3:

Definition

Let L be language over Σ, and let x , y ∈ Σ∗.
Then x , y are distinguishable wrt L (L-distinguishable),
if there exists z ∈ Σ∗ with

xz ∈ L and yz /∈ L or xz /∈ L and yz ∈ L
Such z distinguishes x and y wrt L.

[M] D 2.20
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Pal

From lecture 3:
Pal = {x ∈ {a, b}∗ | x = x r}

For Every Pair x , y of Distinct Strings in {a, b}∗, x and y Are
Distinghuishable with Respect to Pal .

[M] E. 2.27
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Theorem

The language Pal cannot be accepted by a deterministic pushdown
automaton.

Proof.
Assume M is DPDA for Pal .
No assumption on form transitions M.
M reads every string x ∈ {a, b}∗ completely, with one path.
There exist different strings r , s ∈ {a, b}∗, such that for every z ∈ {a, b}∗,
M treats rz and sz the same way.
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For a string x ∈ {a, b}∗, let yx be a string such that height of stack after
xyx is minimal.
Let αx be stack after xyx .
(state, top stack symbol) determines how suffix z is treated.
Infinitely many strings xyx . Why?
Finitely many pairs (q,X )
Different r = uyu and s = vyv arrive at same pair (q,A).
For any suffix z , rz and sz are treated the same:
rz ∈ Pal ⇐⇒ sz ∈ Pal .
Contradiction.
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aibjck j = i + k

S → AB
A → aAb | Λ
B → bBc | Λ

1 2 3 4 5

a,+A

Λ

b,A/Λ

Λ,Z0/Z0

b,+A

Λ

c ,A/Λ

Λ,Z0/Z0

0

Λ

1 2 2+

aibi

3 4 5
a,Z0/AZ0

b,Z0/AZ0

a,A/AA

b,A/Λ

b,A/Λ

Λ,Z0/Z0 b,Z0/AZ0

b,A/AA

c ,A/Λ

c ,A/Λ

Λ,Z0/Z0

bjc j
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AnB-not-n

{ aibj | i 6= j }

0 1 2

i>j

i<j

a,Z0/AZ0

b,Z0/Z0

a,A/AA

b,A/Λ

b,A/Λ

Λ,A/A

b,Z0/Z0 b,Z0/Z0

last b?

0 1 2

i>j

i=j i<j

a,Z0/AZ0

b,Z0/Z0

a,A/AA

b,A/Λ

b,A/Λ

Λ,Z0/Z0

Λ,A/A

b,Z0/Z0
b,Z0/Z0
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ambnam m, n ≥ 0

0 1 2
Λ,Z0/XZ0

a,X/XA

Λ,X/Y

b,Y /Y

Λ,Y /Λ

a,A/Λ

Λ,Z0/Z0

5

bn

1e

a2m

1o 2 3 4

a,+A
b,A/A

b,Z0/Z0

a,+A

b,A/A

b,A/A

a,A/Λ

a,A/Λ

Λ,Z0/Z0

b,Z0/Z0
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above

The first PDA is not deterministic. Actually it is working like a gram-
mar: in state 1 the following productions are simulated:
X → aXA | Y
Y → bY | Λ
A → a

The second automaton is deterministic. We have to distinguish the
cases where m = 0 (state 5) and n = 0 (states 1e and 1o).



⊠Special closure

pre(L) = { x#y | x ∈ L and xy ∈ L }

L = Pal = {Λ, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, . . .}
pre(L) = . . .

L = {aibj | i < j} = {b, bb, abb, bbb, abbb, bbbb, aabbb, abbbb, . . .}
pre(L) = . . .
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Special closure

pre(L) = { x#y | x ∈ L and xy ∈ L }

CFL not closed under pre ⊠

DCFL is closed under pre ⊠

[M] Exercise 5.20 & 6.22

CFL not closed under complement
DCFL is closed under complement ⊠

(the obvious proof does not work)

CFL is closed under regular operations ∪, ·, ∗
DCFL is not closed under either of these ⊠
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⊠Non/determinism

language L x ∈ L, xy ∈ L

x

xy

K = { anbn | n ≥ 1 } ∪ { anbmcn | m, n ≥ 1 }
an bn an bm cn different behaviour on b’s

pre(K ) = . . .

x

y
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⊠Construction pre

DCFL is closed under pre

pre(L) = { x#y | x , xy ∈ L }

0

1

accepting

2
3

4

0’

1’

2’
3’

4’

σ,X/α

#

σ,X/α

σ′,X ′/α′ σ′,X ′/α′

M = (Q,Σ, Γ, q0,Z0,A, δ) with L = L(M)
construct M1 = (Q1,Σ ∪ {#}, Γ, q1,Z1,A1, δ1) with L(M1) = pre(L)

– Q1 = Q ∪ Q ′ where Q ′ = { q′ | q ∈ Q } primed copy

– q1 = q0, Z1 = Z0

– A1 = A′ = { q′ | q ∈ A } accepting states in copy

– δ1(p
′, σ,X ) = {(q′, α) | (q, α) ∈ δ(p, σ,X )} two copies

for all p ∈ A,X ∈ Γ: δ1(p,#,X ) = {(p′,X )} move to primed copy
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⊠Better construction pre

DCFL is closed under pre

pre(L) = { x#y | x , xy ∈ L }

q1 0

1

accepting

2
3

4

0’

1’

2’
3’

4’

Λ,Z1/Z0Z1

σ,X/α

#

σ,X/α

σ′,X ′/α′ σ′,X ′/α′

M = (Q,Σ, Γ, q0,Z0,A, δ) with L = L(M)
construct M1 = (Q1,Σ∪{#}, Γ∪{Z1}, q1,Z1,A1, δ1) with L(M1) = pre(L)
– Q1 = Q ∪ Q ′∪{q1} where Q ′ = { q′ | q ∈ Q } primed copy

– A1 = A′ = { q′ | q ∈ A } accepting states in copy

– δ1(p
′, σ,X ) = {(q′, α) | (q, α) ∈ δ(p, σ,X )} two copies

δ1(q1,Λ,Z1) = {(q0,Z0Z1)} Z1 under Z0

for all p ∈ A,X ∈ Γ1: δ1(p,#,X ) = {(p′,X )} move to primed copy
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⊠above

For K = { anbn | n ≥ 1 } ∪ { anbmcn | m, n ≥ 1 }
we have pre(K ) = K# ∪ {anbn#bkcn | n ≥ 1, k ≥ 0}.
This language is not context-free, but K is, and thus the context-free
languages are not closed under pre.

Again, this construction works because (for deterministic automata)
the computation on uv must extend the computation on u.

Note the resulting PDA might not be deterministic at accepting states
in original Q (like node 1 in the diagram), if that node has an outgoing
Λ-transition.
There is however a method that avoids Λ-transitions at accepting states.

Whenever (q, α) ∈ δ(p,Λ,A) for an accepting state p, just ‘predict’ the

next letter σ read, add a new state (q, σ), add ((q, σ), α) to δ(p, σ,A)

(which was empty beforehand, why?). Do this for every σ, and remove

the Λ-transition. Then keep simulating Λ-transitions, until σ is read.



Quiz

Homework 3!
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