EXAM AUTOMATA THEORY

Friday 24 January 2025, 09:00 - 12:00

This exam consists of eight exercises, where [x pt] indicates how many points can be earned per exercise. A total of 100 points can be earned.

It is important to provide an explanation or motivation when a question asks for it.

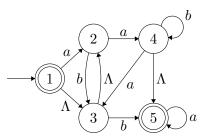
A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ -transitions (which is elsewhere called *DFA*).

1. [8 pt] Consider the language

 $L = \{x \in \{a, b\}^* \mid x \text{ contains } bba, \text{ but not } aa\}$

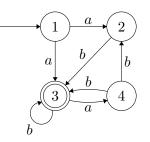
For example, $abba \in L$ and $bbababa \in L$, but $bbb \notin L$ because there is no bba, and $bbaa \notin L$ because it contains aa. Construct a deterministic finite automaton that accepts L.

- 2. [14 pt]
 - (a) Consider the following non-deterministic finite automaton M_1 :



Remove all Λ -transitions from M_1 . You only need to provide the resulting automaton.

(b) Consider the following non-deterministic finite automaton M_2 :



Remove the non-determinism from M_2 using the subset construction. You only need to provide the resulting automaton. You should omit non-reachable states, but you do not need to minimize the resulting automaton in any other way. 3. [15 pt] Consider the languages L_1 described by the regular expression

$$r_1: (\lambda + b)(a^*b)^*a$$

and L_2 described by the regular expression

$$r_2: (\lambda + a)(ba + a)^*$$

- (a) Does it hold that $L_1 \subseteq L_2$? If yes, no explanation is needed. If no, provide a string which is an element of L_1 , but not of L_2 .
- (b) Does it hold that $L_2 \subseteq L_1$? If yes, no explanation is needed. If no, provide a string which is an element of L_2 , but not of L_1 .
- (c) Construct a non-deterministic finite automaton accepting L_1 . The regular expression r_1 should be recognizable in the automaton.

4. [10 pt]

Consider the language

$$L = \{x \in \{a, b, c\}^* \mid x = wcw \text{ for some } w \in \{a, b\}^*\}$$

- (a) Give the first five strings of L in canonical (shortlex) order.
- (b) For each $n \ge 0$, determine the future set L/a^n , i.e., the set of strings z such that $a^n z \in L$. Note that, for all $m \ne n$, it should hold that $L/a^m \ne L/a^n$.
- (c) Is L regular? Explain your answer.

5. [14 pt] Let

$$L = \{ a^{i} b^{j} a^{k} \mid i, j, k \ge 0 \text{ and } j < i + k \}$$

The first five elements in the canonical (shortlex) order of L are a, aa, aaa, aab and aba.

(a) Consider the context-free grammar G_1 with start variable S and the following productions:

$$S \rightarrow aS \mid XY \qquad X \rightarrow aXb \mid a \qquad Y \rightarrow bYa \mid A \qquad A \rightarrow Aa \mid \Lambda$$

Intuitively, $S \to aS$ is responsible for additional *a*'s to the left of the string, *A* is responsible for additional *a*'s to the right of the string, and *X* and *Y* yield *a*'s to the left and to the right of the string matching the *b*'s.

It is given that $L(G_1) \subseteq L$, i.e., G_1 only generates strings that are in L.

- (i) Does it also hold that $L \subseteq L(G_1)$? If yes, then you do not have to explain this. If no, then give a string x in L that is not in $L(G_1)$ and explain why x cannot be generated by G_1 .
- (ii) Is G_1 ambiguous? If no, then you do not have to explain this. If yes, then give two different derivation trees for a string $x \in L(G_1)$.
- (b) Consider the context-free grammar G_2 with start variable S and the following productions:

$$S \to A \mid T \qquad A \to aA \mid a \qquad T \to aTa \mid X \mid Y \qquad X \to aXb \mid aab \qquad Y \to bYa \mid baa$$

Intuitively, A is responsible for strings consisting of only a's, T is responsible for strings containing at least one b, $T \rightarrow aTa$ adds a's on both sides of the string, and X and Y yield a's to the left and to the right of the string matching the b's.

It is given that $L(G_2) \subseteq L$, i.e., G_2 only generates strings that are in L.

- (i) Does it also hold that $L \subseteq L(G_2)$? If yes, then you do not have to explain this. If no, then give a string x in L that is not in $L(G_2)$ and explain why x cannot be generated by G_2 .
- (ii) Is G_2 ambiguous? If no, then you do not have to explain this. If yes, then give two different derivation trees for a string $x \in L(G_2)$.
- 6. [10 pt] Let $L = \{a^i b^j \mid 0 \le i \le j \le 2i\}$, so the number of b's is between the number of a's and twice the number of a's (inclusive). Let G be the context-free grammar with start variable (and only variable) S, and the following productions:

$$S \to aSb \mid aSbb \mid \Lambda$$

In homework 3, you were asked to prove that any string $x \in L$ can be generated by G. Now, you are asked to prove the converse, i.e., that any string generated by G is indeed in L.

To be concrete, let $x \in L(G)$, i.e., $x \in \{a, b\}^*$ and $S \Rightarrow^* x$. Use induction on the length (the number of steps) of the derivation of x to prove that x is in L. 7. [15 pt] Let

$$L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } j < i + k\}$$

Note that strings in L end with c^k , whereas in question 5, the strings end with a^k .

Draw a pushdown automaton M, such that L(M) = L. This pushdown automaton must be based directly on the properties of the language. It should, therefore, not be the result of a standard construction for, for example, converting a context-free grammar into a pushdown automaton.

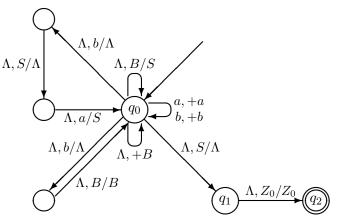
Try to ensure that M is deterministic and does not contain any Λ -transitions. If you do not succeed in this, you can still earn most of the points.

Also explain how M uses its states and stack (symbols) to accept precisely the right language.

8. [14 pt] Let G be the context-free grammar with start variable S and the following productions:

$$S \to aSb \mid B \qquad B \to Bb \mid \Lambda$$

- (a) Draw the non-deterministic top-down pushdown automaton NT(G).
- (b) Draw a derivation tree in G for the string *abb*.
- (c) The non-deterministic *bottom-up* pushdown automaton NB(G) looks like this:



Here, as usual, Z_0 is the initial stack symbol of NB(G).

Carry out a successful computation in NB(G) for input x = abb, i.e., a computation resulting in acceptance of x. Present this computation in a table of the following form:

state	stack	remaining	action
	(reversed)	input	
q_0	Z_0	abb	•••

In the table, you may perform a reduction in one step, even if it actually requires a sequence of transitions of NB(G).