EXAM AUTOMATA THEORY

Thursday 19 December 2024, 09:00 - 12:00

This exam consists of nine exercises, where [x pt] indicates how many points can be earned per exercise. A total of 100 points can be earned.

It is important to provide an explanation or motivation when a question asks for it.

A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ -transitions (which is elsewhere called *DFA*).

1. [8 pt] Consider the language

 $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } j \text{ is even}\}$

Construct a deterministic finite automaton that accepts L.

2. [14 pt] Consider the language

 $L = \{x \in \{a, b\}^* \mid x \text{ ends in } b \text{ and } |x| \text{ is even}\}\$

The following deterministic finite automaton M accepts L:

- (a) For each of the following strings x_i , determine the state q_i such that $\delta^*(1, x_i) = q_i$. You do not need to explain your answers. Note that all five states occur as answer once.
 - (i) $x_1 = \Lambda$
 - (ii) $x_2 = a$
 - (iii) $x_3 = b$
 - (iv) $x_4 = aa$
 - (v) $x_5 = ab$
- (b) For each of the strings in (a), determine the equivalence class $[x_i]$, i.e., the set of strings indistinguishable from x_i with respect to L. Note that your answer should be the same for (at least) two of the strings.
- (c) Does M contain a minimal amount of states? Explain your answer.

3. [14 pt] Consider the language L described by the regular expression

$$(ab+a)^*(\Lambda+bb)$$

- (a) For each of the following strings, determine whether or not they are an element of L. You do not need to explain your answers.
 - (i) Λ
 - (ii) bbb
 - (iii) aaba
 - (iv) ababb
- (b) Construct a non-deterministic finite automaton accepting L. The regular expression should be recognizable in the automaton.
- 4. [10 pt]

Consider the language

$$L = \{x \in \{a, b\}^* \mid n_a(x) \ge n_b(x) \ge n_a(x) - 2\}$$

Hence, L contains the strings in which there are 0, 1 or 2 fewer b's than a's. For example, $aaba \in L$ and $bbabaa \in L$, but $aabaa \notin L$ because there are too few b's, and $bba \notin L$ because there are too many b's.

Prove that the language L cannot be accepted by a finite automaton by using the pumping lemma for regular languages.

- 5. [7 pt] Each regular language is also context-free, i.e., it can be generated by a context-free grammar. However, not all context-free languages are also regular. For each of the following context-free grammars G, with start variable S, indicate whether or not L(G) is regular. You do not need to explain your answers.
 - (a) G has productions

$$S \to abA \mid bB \mid aba \qquad A \to b \mid aB \mid bA \qquad B \to aB \mid bA$$

(b) G has productions

$$S \to aS \mid Sb \mid a \mid b$$

(c) G has productions

$$S \to aA \mid b$$
 $A \to Sb \mid a$

- (d) G has productions
 - $S \to aA \mid bB$ $A \to aB \mid bA \mid bS$ $B \to bS \mid \Lambda$

6. [12 pt] Let

 $L = \{a^{i}b^{j}a^{k} \mid i, j, k \ge 0 \text{ and } j < i + k\}$

- (a) Give the first six elements in the canonical (shortlex) order of L.
- (b) Give a context-free grammar G, such that L(G) = L. Try to ensure that G is unambiguous. If you do not succeed in this, then you can still earn most of the points.

If your context-free grammar is ambiguous, then give two different derivation trees for a string $x \in L$.

7. [13 pt] A context-free grammar $G = (V, \Sigma, S, P)$ is said to be in *Chomsky* normal form, if each production in G is of one the following two forms:

 $\begin{array}{ll} A & \to & BC \\ A & \to & \sigma \end{array} \qquad \mbox{with } A, B, C \in V \\ \mbox{with } A \in V \mbox{ and } \sigma \in \Sigma \end{array}$

Now let G_1 be the context-free grammar with start variable S and the following productions:

$$S \to XBBb \mid XB$$
 $X \to aX \mid ab$ $B \to bB \mid \Lambda$

In this question, we will convert this grammar into Chomsky normal form, using the constructions discussed in our lectures and exercise classes. You do not need to explain your answers.

- (a) Give the set of nullable variables in G_1 .
- (b) Give the context-free grammar G_2 resulting from G_1 by eliminating Λ -productions.
- (c) Give the context-free grammar G_3 resulting from G_2 by eliminating unit productions.
- (d) Give the context-free grammar G_4 resulting from G_3 by introducing for every terminal symbol σ a variable X_{σ} (with a corresponding production), and substituting this variable for occurrences of σ where necessary in the righthand side of productions.
- (e) Give the context-free grammar G_5 resulting from G_4 by splitting the righthand side of productions which are too long.
- 8. [7 pt] Let $M_1 = (Q_1, \Sigma, \Gamma_1, q_1, Z_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, \Gamma_2, q_2, Z_2, A_2, \delta_2)$ be two pushdown automata, such that $L(M_1) = L_1$ and $L(M_2) = L_2$ for two languages L_1 and L_2 over the same alphabet Σ .

Describe a general procedure for constructing a pushdown automaton M, such that $L(M) = L_1 \cdot L_2$ (the concatenation of the two languages).

Your description may consist of words, formulas and/or pictures. Just make sure that it is clear and complete. You may assume that the sets of states Q_1 and Q_2 do not overlap, and that also the stack alphabets Γ_1 and Γ_2 do not overlap. You do not need to prove that the construction is correct. 9. [15 pt] Consider the following pushdown automaton M_1 (without indication of accepting states):

- (a) List all occurrences of non-determinism (if any) in M_1 . In particular, for each occurrence, mention the state, the input(s) and the stack symbol involved.
- (b) A string x is accepted by a pushdown automaton M by empty stack, if there exists a computation in M for input x leading to a (completely) empty stack after reading x entirely. In formal terms: if M = (Q, Σ, Γ, q₀, Z₀, A, δ), then (q₀, x, Z₀) ⊢* (q, Λ, Λ) for some q ∈ Q. The empty-stack language L_e(M) of a pushdown automaton M is the set of all strings that are accepted by M by empty stack.

What is the empty-stack language $L_e(M_1)$ of the concrete pushdown automaton M_1 above?

Explain how M_1 uses its states and stack (symbols) to accept precisely all strings in this language.

end of exam