
ALGORITMIEK: some solutions to exercise class 9

Problem 2.

We use the algorithm from the lecture slides to fill the knapsack table row-by-row. This
yields the following table:

capacity j

i 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

w1 = 3, v1 = 25 1 0 0 0 25 25 25 25
w2 = 2, v2 = 20 2 0 0 20 25 25 45 45
w3 = 1, v3 = 15 3 0 15 20 35 40 45 60
w4 = 4, v4 = 40 4 0 15 20 35 40 55 60
w5 = 5, v5 = 50 5 0 15 20 35 40 55 65

The maximal value of a feasible subset is F [5][6] = 65. The optimal subset is {item 3, item 5}.

Problem 3.

a. As said, P (i, j) is the probability of A winning the series if A needs i more games
to win the series and B needs j more games to win the series. If team A wins the next
game, which happens with probability p, A will need i − 1 more wins to win the series
while B will still need j wins. If team A looses the game, which happens with probability
q = 1 − p, A will still need i wins while B will need j − 1 wins to win the series. This
leads to the recurrence relation:

P (i, j) = p · P (i− 1, j) + q · P (i, j − 1) for i, j > 0

The initial conditions follow immediately from the definition of P (i, j):

P (0, j) = 1 for j > 0, P (i, 0) = 0 for i > 0

b. Here is the dynamic programming table in question, with its entries rounded-off to two
decimal places. (It can be filled either row-by-row, or column-by-column, or diagonal-by-
diagonal.)

i\j 0 1 2 3 4
0 1 1 1 1
1 0 0.40 0.64 0.78 0.87
2 0 0.16 0.35 0.52 0.66
3 0 0.06 0.18 0.32 0.46
4 0 0.03 0.09 0.18 0.29

c.

Algorithm WorldSeries (int n, double p)

// Computes the odds of winning a series of n games

// Input: A number of wins n needed to win the series

// and probability p of one particular team winning a game

// Output: The probability of this team winning the series

{ q = 1-p;

for (j=1; j<=n; j++)
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P[0][j] = 1.0;

for (i=1; i<=n; i++) {

P[i][0] = 0.0;

for (j=1; j<=n; j++)

P[i][j] = p * P[i-1][j] + q * P[i][j-1];

}

return P[n][n];

}

Problem 4.

a. For the recurrent formulation, we make the following observation: As hinted in the
problem statement, the weight gn may or may not be in the subset we search for. If gn
is in the subset, then we must form the remaining weight W − gn from the remaining
weights g1, . . . , gn−1. If gn is not in the subset, then we must form the full weight W from
the remaining weights. Hence, W can be formed from g1, . . . , gn, if and only if W − gn
can be formed from g1, . . . , gn−1, or W can be formed from g1, . . . , gn−1.
The case that n = 1, i.e., that we have only one weight g1, is the base case of the recursion.
In that case, the answer to the problem is yes, i.e., W can be formed from weight g1, if
and only if W = 0 or W = g1.
Let the array weight be global, and let g1, . . . , gn be stored as weight[1],...,weight[n].
We then have the following recursive function:

bool balance (int n, int W)

{ if (n==1)

{ if (W==0 || W==weight[1])

return true;

else

return false;

}

else // n >= 2

{ bool withThisWeight = balance (n-1, W-weight[n]);

bool withoutThisWeight = balance (n-1, W);

if (withThisWeight || withoutThisWeight)

return true;

else

return false;

}

}

It depends on the actual weights gi, whether there will be little or much overlap between
the subproblems.
Note that the second argument of the recursive call balance (n-1, W-weight[n]) may
be negative. This does not hurt. In that case, the value returned will always be false.
b. The array element weighing[i][j] should be true, if and only if the subproblem with
weights g1, . . . , gi and total weight j has a solution. The answer to the original problem
is then represented by weighing[n][W]. Note that for i = 1, only weighing[1][0] and
weighing[1][g_1] are true. We then have the following recurrence relation (where w is
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short for weighing):

w[i][j] =



















w[i-1][j-weight[i]] or w[i-1][j] if i > 1 and j ≥ weight[i]

w[i-1][j] if i > 1 and j < weight[i]

true if i = 1 and (j = 0 or j = weight[1])
false if i = 1 and (j 6= 0 and j 6= weight[1])

Note that, as a result, weighing[i][0] is true for i > 1. Note also that, unlike with part
a., we must prevent a negative index j−weight[i]. Therefore, we consider the case that
j ≥ weight[i] and the case that j < weight[i], separately.
c. The value of weighing[i][j] can be obtained from (one or) two elements of the
previous row, namely w[i-1][j-weight[i]] and w[i-1][j]. Hence, we can fill the array
row by row, from top to bottom. It does not matter whether we fill a row from left to
right or from right to left.
It is also possible, though less natural, to fill the array column by column. In that case,
we must fill the columns from left to right, and each column must be filled from top to
bottom.
In the algorithm below, we choose to fill the array row by row, and each row from left to
right.

void balance2 (int n, int W)

{ int i, j;

// fill row 1:

for (j=1;j<=W;j++)

weighing[1][j] = false;

weighing[1][0] = true;

weighing[1][weight[1]] = true;

// fill rows 2,...,n:

for (i=2; i<=n; i++)

{ for (j=0;j<=W; j++)

{ if (j>=weight[i])

weighing[i][j] = weighing[i-1][j-weight[i]] || weighing[i-1][j];

else

weighing[i][j] = weighing[i-1][j];

}

}

} // balance2

Note that the entries in row 0 of array weighing remain unused.
Both the time complexity and the space complexity of the algorithm are in Θ(n ∗ W ),
because we compute n∗W array elements and each element is computed in constant time.
Note that this dynamic programming approach would not work, if the weights were non-
integer. The recursive solution from part a. would still work for non-integer weights.
d. Start in weighing[n][W]. If that value is true (and only then), there is a solution. In
that case, we build up the subset of weights, as follows:
If weighing[n-1][W] is also true, then gn does not have to be included in the solution.
Otherwise, we must have W ≥ weight[n], weighing[n-1][W-weight[n]] must be true,
and gn must be included in the solution. In the former case, continue in the same way from
weighing[n-1][W]. In the latter case, continue from weighing[n-1][W-weight[n]].
Hence, if you ‘come from above’, then do not include gi. If you ‘come from the left’,
then do include gi.
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Continue in this manner until row i = 1. If, by then, j = 0, then g1 must not be included.
If j > 0, then j must be equal to g1 and g1 must be included.
Note that, if at some point during this procedure, both weighing[i-1][j] and
weighing[i-1][j-weight[i]] happen to be true, then there exists a solution without gi
and a solution with gi. We can freely choose to exclude gi or to include gi.
e. If we do not wish to reconstruct the subset, we do not have to store all intermediate
results in a 2D array. A 1D array weighing of size W+1, corresponding to a row in the 2D
array, suffices then. In order to compute the value of weighing[j] corresponding to row
i, we need the ‘old value’ of weighing[j-weight[i]] (provided that j ≥ weight[i]).
We can ensure that this old value with a smaller index is still available, by computing the
new values of weighing[j] from right to left.

Problem 5.

a. We assume that the rows of the board are numbered 1 to m from bottom to top, and
that the columns are numbered 1 to n.

double yield (int i, int j)

{ if (i==0) // fallen out of the board, hence zero yield

return 0.0;

else

{ if (board[i][j]==’.’) // ball continues in same column

return yield (i-1, j);

else

{ if (board[i][j]==’*’) // ball continues either left or right

return (0.5 * yield (i-1, j-1) + 0.5 * yield (i-1, j+1));

else // a gate

return board[i][j];

}

}

} // yield

double max = -1.0;

int maxcol = 0;

for (int j=1; j<=n; j++)

{ double thisYield = yield (m, j);

if (thisYield > max)

{ max = thisYield;

maxcol = j;

}

}

Note that in this algorithm, the types of the entries of the board are not really consistent:
sometimes, we assume they are characters, sometimes we assume they are numbers. In a
consistent representation, we may, e.g., encode the characters ’.’ and ’*’ as numbers.
c. Let D[i][j] denote the expected yield, if we drop a ball in row i and column j. Then
D[i][j] satisfies the following recurrence relation:

D[i][j] =



















0 if i = 0
D[i− 1][j] if i > 0 and bord[i][j]=’.’

0.5 ∗D[i− 1][j − 1] + 0.5 ∗D[i− 1][j + 1] if i > 0 and bord[i][j]=’*’

bord[i][j] if i > 0 and bord[i][j] is een getal
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To compute the value of D[i][j] we may need D[i−1][j] or D[i−1][j−1] and D[i−1][j+1].
Hence, we must compute the values in row i− 1 before the values in row i. We therefore
compute the entries of array D row by row, from row 0 to row n. It does not matter in
which order we compute the entries in a row. The following algorithm computes them
from left to right:

double yield2 (int m, int n)

{ int i, j;

// fill row 0:

for (j=1; j<=n; j++)

D[0][j] = 0.0;

// fill rows 1 to m:

for (i=1; i<=m; i++)

{ for (j=1; j<=n; j++)

{ if (board[i][j]==’.’) // ball continues in same column

D[i][j] = D[i-1][j];

else

{ if (board[i][j]==’*’) // ball continues either left or right

D[i][j] = 0.5 * D[i-1][j-1] + 0.5 * D[i-1][j+1];

else // a gate

D[i][j] = board[i][j];

}

}

}

// determine maximum value in row m

double max = -1.0;

int maxcol = 0;

for (int j=1; j<=n; j++)

{ if (D[m][j] > max)

{ max = D[m][j];

maxcol = j;

}

}

return max;

} // yield2

Problem 6. The quantity C(n, k) satisfies the following recurrence relation:

C(n, k) =

(

n

k

)

=















(

n−1

k−1

)

+
(

n−1

k

)

0 < k < n

1 k = 0, n

a.We can fill a two-dimensional array C, where C[i][j] =
(

i

j

)

, row-by-row with the following
bottom-up DP algorithm:

int bin(int n,int k) {

for ( i = 0; i <= n; i++ )

for ( j = 0; j <= min(i,k); j++ )

5



if ( ( j == 0 ) || ( j == i ) )

C[i][j] = 1;

else

C[i][j] = C[i-1][j-1] + C[i-1][j];

return C[n][k];

}

We use algorithm bin to fill the table. We only fill columns 0–3, because we do not need
higher columns to compute C(6, 3). This yields the following numbers:

i\j 0 1 2 3
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4
5 1 5 10 10
6 1 6 15 20

b. Yes, the table can also be filled column-by-column, with each column filled top-to-
bottom starting with 1 on the main diagonal of the table. This is achieved with the
following code:

int bin4 (int n, int k) {

for (j=0; j<=k; j++)

for (i=j; i<=n; i++)

if (j==0 || j==i)

C[i][j] = 1;

else

C[i][j] = C[i-1][j-1] + C[i-1][j];

return C[n][k];

}
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