
Algoritmiek 2026/Toestand-actie-ruimte

Derde college algoritmiek

16 februari 2026

Toestand-actie-ruimte

1

Algoritmiek 2026/Toestand-actie-ruimte Even praktisch. . .

• woensdag 18 februari: geen practicumbijeenkomst

• dinsdag 17 februari: wel werkcollege (+ verder met bomenpracticum?)

2

Algoritmiek 2026/Toestand-actie-ruimte Opgave 2 bomenpracticum

Niet de bedoeling: gebruik (member-)variabele knoop::niveau:

int binaireboom::hoogte_p(knoop *ingang) {

if (ingang != nullptr){

if ((ingang->links == nullptr) && (ingang->rechts == nullptr))

// een blad

return ingang->niveau;

else if (ingang->links == nullptr) // alleen een rechter kind

return hoogte_p(ingang->rechts);

else if (ingang->rechts == nullptr) // alleen een linker kind

return hoogte_p(ingang->links);

else // twee kinderen

return max(hoogte_p(ingang->links), hoogte_p(ingang->rechts));

}

else

return 0;

}//binaireboom::hoogte_p
3

https://liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/werkcollege/opgaven2algoritmiek.pdf

Algoritmiek 2026/Toestand-actie-ruimte Opgave 2 bomenpracticum

Wel de bedoeling: bereken hoogte van subboom zelf:

int binaireboom::hoogte_p(knoop *ingang) {

if (ingang==nullptr) // een boom bestaande uit 1 knoop heeft hoogte 0,

return -1; // dus een lege boom heeft hoogte -1

return max(hoogte_p(ingang->links), hoogte_p(ingang->rechts)) + 1;

}//binaireboom::hoogte_p

4

Algoritmiek 2026/Toestand-actie-ruimte Toestand-actie-ruimte

Probleem −→ Toestand-actie-ruimte

Een toestand-actie-ruimte (toestand-actie-diagram, state transition dia-

gram, toestandsruimte, state space)

• Bestaat uit alle mogelijke toestanden en acties

• Begintoestand, eindtoestand(en)

• Een actie veroorzaakt een overgang van de ene (toegelaten) toestand

naar een andere

• Oplossing van het probleem: een opeenvolging van acties die van de

begintoestand naar een eindtoestand leiden

5

Algoritmiek 2026/Toestand-actie-ruimte Boer, wolf, geit, kool

Voorbeeld 1: Old world puzzle (Ex. 1.2.1.)

We hebben een kool, een geit, een wolf en een boer. Deze moeten met

een bootje van de ene kant van de rivier naar de andere. In het bootje

kan alleen de boer met één ander iets. Als de boer er niet bij is zal de

wolf de geit opeten en de geit de kool. De boer is de enige die de boot

kan “besturen”.

Vraag: Hoe kan alles naar de andere oever verplaatst worden?

6

Algoritmiek 2026/Toestand-actie-ruimte Toestand-actie-ruimte

K‖BGW KBG‖W

W‖BKG WBG‖K

KWB‖G G‖KWB

�
�

�

❅
❅
❅

❅
❅

❅

�
�
�

KW‖BGKGWB‖ GB‖KW ‖BGKW

Merk op: de boot ligt altijd aan de oever waar de boer zich bevindt.

De oplossing is een kortste pad van de begintoestand naar de eindtoes-

tand: hier zijn er twee, bij beide moet de boer 7 keer de rivier oversteken.

7

Algoritmiek 2026/Toestand-actie-ruimte Toestand-actie-ruimte

K‖BGW

BG

KBG‖W

W‖BKG

BG

WBG‖K

KWB‖G G‖KWB

�
�

�

BW ❅
❅
❅

BK

❅
❅

❅

BK �
�
�

BW

KW‖BG

B

KGWB‖

BG

GB‖KW

B

‖BGKW

BG

Merk op: de boot ligt altijd aan de oever waar de boer zich bevindt.

De oplossing is een kortste pad van de begintoestand naar de eindtoes-

tand: hier zijn er twee, bij beide moet de boer 7 keer de rivier oversteken.

8

Algoritmiek 2026/Toestand-actie-ruimte Studenten en professoren

Een leuke variant op dit probleem is het volgende:

We hebben drie professoren en drie studenten. Deze moeten allemaal met

een bootje van de ene kant van de rivier naar de andere. In het bootje

kunnen hooguit twee personen. Op beide oevers mogen de professoren

niet in de meerderheid zijn, anders worden de studenten nerveus.

Vraag: Hoe kan iedereen naar de andere oever verplaatst worden?

Merk op dat in tegenstelling tot het boer-wolf-geit-kool-probleem hier

iedereen de boot kan “besturen”. Er moet nu dus in een toestand worden

aangegeven waar de boot ligt.

Er zijn 4 verschillende oplossingen, elk met 11 keer overvaren.

9

Algoritmiek 2026/Toestand-actie-ruimte Nim

Voorbeeld 2: NIM

• We beginnen met één stapel van n lucifers (begintoestand)

• Er zijn twee spelers: A en B

• De spelers pakken om de beurt 1 of 2 lucifers (acties)

• Het spel is afgelopen als er geen lucifers meer op de stapel liggen

(eindtoestand)

• De speler die de laatste lucifer(s) pakt heeft gewonnen

Gevraagd: is het spel winnend voor degene die begint?

10

Algoritmiek 2026/Toestand-actie-ruimte Nim n = 5

toestand-actie-ruimte (spelboom) n = 5

(niet helemaal compleet)

5
✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍

A

4 3B
�

�
�

��

❅
❅
❅
❅❅

�
�

�
��

❅
❅
❅

❅❅

3 2A 2 1
✁
✁

✁
✁✁

❆
❆
❆
❆❆

2 1B

A wint A wint A wint

B wint B wint

11

Algoritmiek 2026/Toestand-actie-ruimte Nim n = 5

Winnend voor A.

Winnende zet: 2 lucifers wegnemen

5
✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍

A

4 3B
�

�
�

��

❅
❅
❅
❅❅

�
�

�
��

❅
❅
❅

❅❅

3 2A 2 1
✁
✁

✁
✁✁

❆
❆
❆
❆❆

2 1B

12

Algoritmiek 2026/Toestand-actie-ruimte Nim n = 6

n = 6

13

Algoritmiek 2026/Toestand-actie-ruimte Nim n = 6

toestand-actie-ruimte (spelboom) n = 6

6
✟✟✟✟✟✟✟✟✟✟✟

PPPPPPPPPPPPPPPP

A

5 4B

A

B

A

�
�

�
�

�
�

❅
❅
❅
❅

❅
❅

�
�

�
�

�
�

❅
❅

❅
❅
❅
❅

4 3 3 2

A wint
✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆❆

3 2

B wint

✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆❆

2 1

B wint B wint

✁
✁
✁

✁
✁✁

❆
❆
❆
❆
❆❆

2 1

B wint B wint
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇❇

2 1

A wint A wint

14

Algoritmiek 2026/Toestand-actie-ruimte Nim n = 6

A kan niet winnen (bij perfect spel van B)

6
✟✟✟✟✟✟✟✟✟✟✟

PPPPPPPPPPPPPPPP

A

5 4B

A

B

A

�
�

�
�

�
�

❅
❅
❅
❅

❅
❅

�
�

�
�

�
�

❅
❅

❅
❅
❅
❅

4 3 3 2
✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆❆

3 2

✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆❆

2 1

✁
✁
✁

✁
✁✁

❆
❆
❆
❆
❆❆

2 1
✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇❇

2 1

15

Algoritmiek 2026/Toestand-actie-ruimte 2persoonsspelen en recursie

Een stand is winnend voor degene die aan de beurt is

als een van de directe (= in 1 zet te bereiken) vervolgstanden

NIET winnend is voor de tegenstander.

Een algoritme dat bepaalt of een stand winnend is, ziet er dus ruwweg

zo uit:

Loop alle mogelijke directe vervolgstanden af:

• kijk of je er een tegenkomt die not winnend is voor de tegenstander:

recursie

• zo ja, dan is de oorspronkelijke stand winnend (en heb je meteen een

winnende zet) en hoef je niet verder te kijken

• zo nee, dan de volgende vervolgstand proberen

Als alle vervolgstanden zijn geweest is de oorspronkelijke stand niet win-

nend.
16

Algoritmiek 2026/Toestand-actie-ruimte Nim n = 6

A kan niet winnen (bij perfect spel van B)

6
✟✟✟✟✟✟✟✟✟✟✟

PPPPPPPPPPPPPPPP

A

5✫✪
✬✩

4✫✪
✬✩

B

A

B

A

�
�

�
�

�
�

❅
❅
❅
❅

❅
❅

�
�

�
�

�
�

❅
❅

❅
❅
❅
❅

4✫✪
✬✩

3 3 2✫✪
✬✩

✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆❆

3 2✫✪
✬✩

✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆❆

2✫✪
✬✩

1✫✪
✬✩

✁
✁
✁

✁
✁✁

❆
❆
❆
❆
❆❆

2✫✪
✬✩

1✫✪
✬✩

✂
✂
✂
✂
✂✂

❇
❇
❇
❇
❇❇

2✫✪
✬✩

1✫✪
✬✩

17

Algoritmiek 2026/Toestand-actie-ruimte Structuur algoritme

winnend(stand)::

if eindstand(stand) then

// makkelijk; bijv return false;

else

for alle mogelijke zetten i do

kopie := stand;

doezet(kopie,i);

if not winnend(kopie) then

return true;

fi

od

return false;

fi

Zie ook Programmeermethoden (college over recursie)

18

Algoritmiek 2026/Toestand-actie-ruimte Voorbeeld: nim

Gebruik een kopie en doe daarin de zetten:

bool nimwinst (int stand) {

int lucifer, kopie;

if (stand == 0) // de tegenstander heeft zojuist

return false; // de laatste lucifers gepakt

else { // directe vervolgstanden aflopen

for (lucifer = 1; lucifer <= 2; lucifer++) {

kopie = stand; // maak een kopie

kopie -= lucifer; // doe een zet in de kopie

if (!nimwinst (kopie))

return true;

}

return false;

} // else

}

19

Algoritmiek 2026/Toestand-actie-ruimte Nogmaals: nim

Met terugzetten:

bool nimwinst (int stand) {

int lucifer;

if (stand == 0) // de tegenstander heeft zojuist

return false; // de laatste lucifers gepakt

else { // directe vervolgstanden aflopen

for (lucifer = 1; lucifer <= 2; lucifer++) {

stand -= lucifer; // doe een zet

if (!nimwinst (stand)) {

stand += lucifer; // terugzetten

return true;

}

stand += lucifer; // terugzetten

}

return false;

} // else

}
20

Algoritmiek 2026/Toestand-actie-ruimte Structuur algoritme

Met terugzetten:

winnend(stand)::

if eindstand(stand) then

// makkelijk; bijv return false;

else

for alle mogelijke zetten i do

doezet(stand,i);

if not winnend(stand) then

undoezet(stand,i);

return true;

fi

undoezet(stand,i);

od

return false;

fi

Zie ook Programmeermethoden (college over recursie)
21

Algoritmiek 2026/Toestand-actie-ruimte Torens van Hanoi

Voorbeeld 3: Torens van Hanoi

Gegeven n (n ≥ 1) schijven, alle verschillend in grootte, en 3 palen. In de

beginsituatie liggen alle schijven boven op elkaar om één paal, waarbij er

geen grotere schijf op een kleinere ligt. De andere 2 palen zijn leeg.

Opdracht: Breng de hele toren (zo snel mogelijk) naar een van de lege

palen door het een voor een verplaatsen van schijven van de ene paal naar

de andere.

Regels:

• Alleen de bovenste schijf van een stapel kan verzet worden

• deze mag alleen bovenop een andere stapel gelegd worden.

• Restrictie: er mag nooit een grotere schijf op een kleinere gelegd

worden.

Een toestand is in dit geval een verdeling van de schijven over de palen,

waarbij (als gevolg van de restrictie) geen grotere schijf op een kleinere

ligt. Een actie is het verplaatsen van een schijf volgens de spelregels.
22

Algoritmiek 2026/Toestand-actie-ruimteToestand-actie-ruimte n = 3

23

Algoritmiek 2026/Toestand-actie-ruimte Oplossing Hanoi n = 3

Optimale oplossing voor n = 3.

1. 2.

3. 4. 5.

6. 7. 8.

24

Algoritmiek 2026/Toestand-actie-ruimte Oplossing Hanoi algemeen

Recursieve oplossing van de Torens van Hanoi

25

Algoritmiek 2026/Toestand-actie-ruimte Kannen

Voorbeeld 4: Kannenprobleem

We hebben twee kannen: een grote met een inhoud van 8 liter, en een

kleine met een inhoud van 5 liter. Op de kannen staat geen maatverdeling.

Verder hebben we de beschikking over een waterkraan en een afvoer. Bij

aanvang zijn beide kannen leeg.

Vraag: Hoe krijgen we precies 4 liter water in een van de twee kannen?

En liefst zo snel mogelijk.

26

Algoritmiek 2026/Toestand-actie-ruimte Intermezzo

Een Intermezzo

Die Hard

27

https://www.youtube.com/watch?v=2vdF6NASMiE

Algoritmiek 2026/Toestand-actie-ruimte Toestanden en acties

We onderscheiden toestanden en zinvolle (!) acties:

Toestand: . . .

Begintoestand: . . .

Eindtoestanden: . . .

Acties: . . .

28

Algoritmiek 2026/Toestand-actie-ruimte Toestanden en acties

We onderscheiden toestanden en zinvolle (!) acties:

Toestand: Een paar (x, y) met 0 ≤ x ≤ 8 en 0 ≤ y ≤ 5. Hierin is x de

inhoud van de grote kan en y de inhoud van de kleine kan.

Begintoestand: beide kannen leeg, dus (0,0)

Eindtoestanden: alle toestanden met 4 liter in een van beide kannen,

dus (4, y) en (x, 4)

Acties: vullen, legen en overgieten

- een kan geheel (aan)vullen

- een kan geheel leeggooien

- de ene kan leeggooien in de andere

- van de ene kan in de andere gieten totdat deze vol is

29

Algoritmiek 2026/Toestand-actie-ruimte Toestandsruimte

5

4

3

2

1

0

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
❆❆✁✁

inhoud kleine kan

❍❍✟✟

inhoud grote kan

30

Algoritmiek 2026/Toestand-actie-ruimte ... met mogelijke acties

❅
❅

❅
❅
❅

❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅❅

❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅❅

❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅❅

❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅❅

❅
❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅❅

❅
❅
❅
❅
❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅
❅
❅
❅

❅
❅
❅
❅

❅❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅❅

❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅

❅
❅
❅

5

4

3

2

1

0

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
❆❆✁✁

inhoud kleine kan

❍❍✟✟

inhoud grote kan

31

Algoritmiek 2026/Toestand-actie-ruimte Oplossing

②

②

��❅❅

��❅❅

��❅❅

��❅❅

��
❅❅

��
❅❅

��
❅❅

��
❅❅

��❅❅

��❅❅

��❅❅

��❅❅

❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅❅

❅
❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅

❅❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅

❅
❅
❅
❅❅

❅
❅

❅
❅
❅

5

4

3

2

1

0

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
❆❆✁✁

inhoud kleine kan

❍❍✟✟

inhoud grote kan

32

Algoritmiek 2026/Toestand-actie-ruimte Snelste oplossing

De snelste oplossing gebruikt de volgende strategie en zorgt voor 4 liter

in de kleine kan. Er is overigens ook een (iets) langere oplossing, die 4

liter in de grote kan achterlaat.

Herhaal

Herhaal

Vul de kleine kan;

Giet over in de grote kan;

totdat (de grote kan vol is) of (oplossing gevonden)

Als nog geen oplossing gevonden

Grote kan leeggooien;

Giet uit de kleine kan over in de grote kan;

totdat oplossing gevonden

33

Algoritmiek 2026/Toestand-actie-ruimte Oplossing

Wanneer oplossing mogelijk?

34

Algoritmiek 2026/Toestand-actie-ruimte (Werk)college

• Lezen/leren bij dit college:

Paragraaf 6.6 (subparagraaf ‘Reduction to Graph Problems’)

Paragraaf 4.5 (subparagraaf ‘The Game of Nim’)

slides

• Werkcollege:

Dinsdag 17 februari 2026, 11.00–12.45 (Gorlaeus BW.0.19, DM.1.09)

• Opgaven:

zie https://liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

• Geen Practicumbijeenkomst op woensdag 18 februari 2025

• Volgend college:

maandag 23 februari 2026, 11.00–12.45

• Programmeeropdracht 1. . .

35

https://liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

