Algoritmiek 2026/ Toestand-actie-ruimte

Derde college algoritmiek

16 februari 2026

Toestand-actie-ruimte

Algoritmiek 2026/ Toestand-actie-ruimte Even praktisch. ..

e woensdag 18 februari: geen practicumbijeenkomst

e dinsdag 17 februari: wel werkcollege (4 verder met bomenpracticum?)

Algoritmiek 2026/ Toestand-actie-ruimte Opgave 2 bomenpracticum

Niet de bedoeling: gebruik (member-)variabele knoop: :niveau:
int binaireboom: :hoogte_p(knoop *ingang) {

if (ingang !'= nullptr){
if ((ingang->links == nullptr) && (ingang->rechts == nullptr))

// een blad
return ingang->niveau;

else if (ingang->links == nullptr) // alleen een rechter kind
return hoogte_p(ingang->rechts);

else if (ingang->rechts == nullptr) // alleen een linker kind

return hoogte_p(ingang->1links);
else // twee kinderen
return max(hoogte_p(ingang->links), hoogte_p(ingang->rechts)) ;
}
else
return O;

}//binaireboom: :hoogte_p

https://liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/werkcollege/opgaven2algoritmiek.pdf

Algoritmiek 2026/ Toestand-actie-ruimte Opgave 2 bomenpracticum

Wel de bedoeling: bereken hoogte van subboom zelf:
int binaireboom: :hoogte_p(knoop *ingang) {
if (ingang==nullptr) // een boom bestaande uit 1 knoop heeft hoogte O
return -1; // dus een lege boom heeft hoogte -1

return max(hoogte_p(ingang->links), hoogte_p(ingang->rechts)) + 1;

}//binaireboom: :hoogte_p

Algoritmiek 2026/ Toestand-actie-ruimte Toestand-actie-ruimte

Probleem — Toestand-actie-ruimte

Een toestand-actie-ruimte (toestand-actie-diagram, state transition dia-
gram, toestandsruimte, state space)

e Bestaat uit alle mogelijke toestanden en acties

e Begintoestand, eindtoestand(en)

e Een actie veroorzaakt een overgang van de ene (toegelaten) toestand
naar een andere

e Oplossing van het probleem: een opeenvolging van acties die van de
begintoestand naar een eindtoestand leiden

Algoritmiek 2026/ Toestand-actie-ruimte Boer, wolf, geit, kool

Voorbeeld 1: Old world puzzie (Ex. 1.2.1.)

We hebben een kool, een geit, een wolf en een boer. Deze moeten met
een bootje van de ene kant van de rivier naar de andere. In het bootje
kan alleen de boer met één ander iets. Als de boer er niet bij is zal de

wolf de geit opeten en de geit de kool. De boer is de enige die de boot
kan “besturen’ .

Vraag: Hoe kan alles naar de andere oever verplaatst worden?

Algoritmiek 2026/ Toestand-actie-ruimte Toestand-actie-ruimte

K|IBGW —— KBG|W
KGWB| —— KW|BG —— KWB|G G|KWB —— GB|KW —— [BGKW
W|BKG —— WBG|K

Merk op: de boot ligt altijd aan de oever waar de boer zich bevindt.

De oplossing is een kortste pad van de begintoestand naar de eindtoes-
tand: hier zijn er twee, bij beide moet de boer 7 keer de rivier oversteken.

Algoritmiek 2026/ Toestand-actie-ruimte Toestand-actie-ruimte

BG
KIBGW —— KBG|W
va/ \BK
BG B B BG
KGWB]| KW|BG —— KWB|G G||KWB —— GB|KW —— [BGKW
BK\ /va
W|BKG —— WBG|K
BG

Merk op: de boot ligt altijd aan de oever waar de boer zich bevindt.

De oplossing is een kortste pad van de begintoestand naar de eindtoes-
tand: hier zijn er twee, bij beide moet de boer 7 keer de rivier oversteken.

Algoritmiek 2026/ Toestand-actie-ruimte Studenten en professoren

Een leuke variant op dit probleem is het volgende:

We hebben drie professoren en drie studenten. Deze moeten allemaal met
een bootje van de ene kant van de rivier naar de andere. In het bootje
kunnen hooguit twee personen. Op beide oevers mogen de professoren
niet in de meerderheid zijn, anders worden de studenten nerveus.

Vraag: Hoe kan iedereen naar de andere oever verplaatst worden?

Merk op dat in tegenstelling tot het boer-wolf-geit-kool-probleem hier
iedereen de boot kan “besturen’” . Er moet nu dus in een toestand worden
aangegeven waar de boot ligt.

Er zijn 4 verschillende oplossingen, elk met 11 keer overvaren.

Algoritmiek 2026/ Toestand-actie-ruimte Nim

Voorbeeld 2: NIM

e We beginnen met één stapel van n lucifers (begintoestand)

e Er zijn twee spelers: A en B

e De spelers pakken om de beurt 1 of 2 lucifers (acties)

e Het spel is afgelopen als er geen lucifers meer op de stapel liggen
(eindtoestand)

e De speler die de laatste lucifer(s) pakt heeft gewonnen

Gevraagd: is het spel winnend voor degene die begint?

10

Algoritmiek 2026/ Toestand-actie-ruimte Nimn=25

toestand-actie-ruimte (spelboom) n =25
(niet helemaal compleet)

i /5\

= /4\ /3\

A 3 2 2 1
/ \ A wint A wint A wint

B 2 1

B wint B wint

11

Algoritmiek 2026/ Toestand-actie-ruimte Nimn=25

Winnend voor A.
Winnende zet: 2 lucifers wegnemen

: /5\
A AN

/o

12

Algoritmiek 2026/ Toestand-actie-ruimte Nimn =26

13

Algoritmiek 2026/ Toestand-actie-ruimte Nim n =26

toestand-actie-ruimte (spelboom) n =6

T
VNN
ANANANEE
/ \ Bwint Bwint Bwnt Bwint B wint

A wint A wint

14

Algoritmiek 2026/ Toestand-actie-ruimte Nim n =26

A kan niet winnen (bij perfect spel van B)

5/6\
SN SN
/\ /\ /\

/\

15

Algoritmiek 2026/ Toestand-actie-ruimte 2persoonsspelen en recursie

Een stand is winnend voor degene die aan de beurt is
als een van de directe (= in 1 zet te bereiken) vervolgstanden
NIET winnend is voor de tegenstander.

Een algoritme dat bepaalt of een stand winnend is, ziet er dus ruwweg
ZO Uuit:

Loop alle mogelijke directe vervolgstanden af:

e Kijk of je er een tegenkomt die not winnend is voor de tegenstander:
recursie

e 7O ja, dan is de oorspronkelijke stand winnend (en heb je meteen een
winnende zet) en hoef je niet verder te Kijken

e 7O nee, dan de volgende vervolgstand proberen

Als alle vervolgstanden zijn geweest is de oorspronkelijke stand niet win-
nend.

16

Algoritmiek 2026/ Toestand-actie-ruimte Nim n =26

A kan niet winnen (bij perfect spel van B)

17

Algoritmiek 2026/ Toestand-actie-ruimte Structuur algoritme

winnend(stand) : :

if eindstand(stand) then
// makkelijk; bijv return false;
else
for alle mogelijke zetten i do
kopie := stand;
doezet (kopie,i);
if not winnend(kopie) then
return true;
fi
od
return false;
fi

Zie ook Programmeermethoden (college over recursie)

18

Algoritmiek 2026/ Toestand-actie-ruimte VVoorbeeld:

nim

Gebruik een kopie en doe daarin de zetten:

bool nimwinst (int stand) {

int lucifer, kopie;

if (stand == 0) // de tegenstander heeft zojuist
return false; // de laatste lucifers gepakt
else { // directe vervolgstanden aflopen

for (lucifer = 1; lucifer <= 2; lucifer++) {
kopie = stand; // maak een kopie
kopie -= lucifer; // doe een zet in de kopie
if (!'mimwinst (kopie))
return true;

¥

return false;

} // else

19

Algoritmiek 2026/ Toestand-actie-ruimte Nogmaals: nim

Met terugzetten:

bool nimwinst (int stand) {

int lucifer;
if (stand == 0) // de tegenstander heeft zojuist

return false; // de laatste lucifers gepakt
else { // directe vervolgstanden aflopen
for (lucifer = 1; lucifer <= 2; lucifer++) {
stand -= lucifer; // doe een zet
if ('nimwinst (stand)) {
stand += lucifer; // terugzetten

return true;

}

stand += lucifer; // terugzetten

}

return false;

} // else

20

Algoritmiek 2026/ Toestand-actie-ruimte Structuur algoritme

Met terugzetten:

winnend(stand) ::

if eindstand(stand) then
// makkelijk; bijv return false;
else
for alle mogelijke zetten i do
doezet(stand,i) ;
if not winnend(stand) then
undoezet(stand, i) ;
return true;
fi
undoezet (stand,i) ;
od
return false;
fi

Zie ook Programmeermethoden (college over recursie)

21

Algoritmiek 2026/ Toestand-actie-ruimte Torens van Hanoi

VVoorbeeld 3: Torens van Hanoi

Gegeven n (n > 1) schijven, alle verschillend in grootte, en 3 palen. In de
beginsituatie liggen alle schijven boven op elkaar om één paal, waarbij er
geen grotere schijf op een kleinere ligt. De andere 2 palen zijn leeq.

Opdracht: Breng de hele toren (zo snel mogelijk) naar een van de lege
palen door het een voor een verplaatsen van schijven van de ene paal naar
de andere.

Regels:

e Alleen de bovenste schijf van een stapel kan verzet worden
e deze mag alleen bovenop een andere stapel gelegd worden.

e Restrictie: er mag nooit een grotere schijf op een kleinere gelegd
worden.

Een toestand is in dit geval een verdeling van de schijven over de palen,
waarbij (als gevolg van de restrictie) geen grotere schijf op een kleinere

ligt. Een actie is het verplaatsen van een schijf volgens de spelregels.
22

Algoritmiek 2026/ Toestand-actie-ruimte Toestand-actie-ruimte n = 3

1___JJ
LU/ NEL
any Ik
sy / TN\ e
VAN EE NI WAN I
#| L] <L) LY e

2?‘ | ‘ ‘ ‘ | 20

4 I e

o6 o5 24

23

Algoritmiek 2026/ Toestand-actie-ruimte Oplossing Hanoi n = 3

Optimale oplossing voor n = 3.

e Q.ELE

24

Algoritmiek 2026/ Toestand-actie-ruimte Oplossing Hanoi algemeen

\\ = /

Recursieve oplossing van de Torens van Hanoi

25

Algoritmiek 2026/ Toestand-actie-ruimte Kannen

Voorbeeld 4: Kannenprobleem

We hebben twee kannen: een grote met een inhoud van 8 liter, en een
kleine met een inhoud van 5 liter. Op de kannen staat geen maatverdeling.
Verder hebben we de beschikking over een waterkraan en een afvoer. Bij
aanvang zijn beide kannen leeg.

Vraag:. Hoe krijgen we precies 4 liter water in een van de twee kannen?
En liefst zo snel mogelijk.

26

Algoritmiek 2026/ Toestand-actie-ruimte Intermezzo

Een Intermezzo

Die Hard

27

https://www.youtube.com/watch?v=2vdF6NASMiE

Algoritmiek 2026/ Toestand-actie-ruimte Toestanden en acties

We onderscheiden toestanden en zinvolle (1) acties:
Toestand: . ..

Begintoestand: ...

Eindtoestanden: . ..

Acties: ...

28

Algoritmiek 2026/ Toestand-actie-ruimte Toestanden en acties

We onderscheiden toestanden en zinvolle (1) acties:

Toestand: Een paar (z,y) met 0 <z <8 en 0 <y < 5. Hierin is = de
inhoud van de grote kan en y de inhoud van de kleine kan.

Begintoestand: beide kannen leeg, dus (0,0)

Eindtoestanden: alle toestanden met 4 liter in een van beide kannen,
dus (4, y) en (X, 4)

Acties: vullen, legen en overgieten

een kan geheel (aan)vullen

een kan geheel leeggooien

de ene kan leeggooien in de andere

- van de ene kan in de andere gieten totdat deze vol is

29

Algoritmiek 2026/ Toestand-actie-ruimte Toestandsruimte

inhoud kleine kan

0] 1 2 3 4 5 6 V 3
5 % % % % % % % 5
4 +4
3+ +3
2+ + 2
1+ +1
0 | | | | | | | 0

0] 1 2 3 4 5 6 7 38

inhoud grote kan

30

Algoritmiek 2026/ Toestand-actie-ruimte ... met mogelijke acties

inhoud kleine kan

5 5
4 4
3 3
2 2
1 1
0 0

inhoud grote kan

31

Algoritmiek 2026/ Toestand-actie-ruimte Oplossing

inhoud kleine kan

5 | | | | 5
4- 4
3+ +3
2 \ 2
1-+ +1
0 | | | | 0

inhoud grote kan

32

Algoritmiek 2026/ Toestand-actie-ruimte Snelste oplossing

De snelste oplossing gebruikt de volgende strategie en zorgt voor 4 liter
in de kleine kan. Er is overigens ook een (iets) langere oplossing, die 4
liter in de grote kan achterlaat.

Herhaal
Herhaal
Vul de kleine kan;
Giet over in de grote kan;
totdat (de grote kan vol is) of (oplossing gevonden)

Als nog geen oplossing gevonden
Grote kan leeggooien;
Giet uit de kleine kan over in de grote kan;
totdat oplossing gevonden

33

Algoritmiek 2026/ Toestand-actie-ruimte Oplossing

Wanneer oplossing mogelijk?

34

Algoritmiek 2026/ Toestand-actie-ruimte (Werk)college

e Lezen/leren bij dit college:
Paragraaf 6.6 (subparagraaf ‘Reduction to Graph Problems’)
Paragraaf 4.5 (subparagraaf ‘The Game of Nim')
slides

e \Werkcollege:
Dinsdag 17 februari 2026, 11.00—12.45 (Gorlaeus BW.0.19, DM.1.09)

e Opgaven:
zie https://liacs.leidenuniv.nl/~vlietrvanl/algoritmiek/

e Geen Practicumbijeenkomst op woensdag 18 februari 2025

e VVolgend college:
maandag 23 februari 2026, 11.00—-12.45

e Programmeeropdracht 1. ..

35

https://liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

