
Algoritmiek 2026/Grafen en bomen

Algoritmiek

9 februari 2026

Grafen en bomen

1

Algoritmiek 2026/Grafen en bomen Even praktisch. . .

• dinsdag 10 februari geen werkcollege

• bomenpracticum, woensdag 11 februari, 15.15-17.00 in computerzalen

DM.0.09, DM.0.13, DM.0.21

2

Algoritmiek 2026/Grafen en bomen Voorbeelden

✉ ✉

✉ ✉

✉

✉0 1 2

5 4 3

1.

V = {0,1,2,3,4,5};

E = {(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), (4,1)}

✉ ✉

✉ ✉

✉

✉

✲ ✲

✲ ✛

✻

❄✁
✁
✁

✁
✁
✁ ❆

❆❆❑

❆
❆❆❯

0 1 2

5 4 3

2.

V = {0,1,2,3,4,5};

E = {(0,1), (2,1), (2,3), (4,3), (5,4), (5,0), (4,1), (1,4)}

✉ ✉

✉ ✉

�
�

�
�
�
�

0 1

3 2

1 4

2

5

7

3.

V = {0,1,2,3};

E = {(0,1), (1,2), (2,3), (0,3), (1,3)}

3

Algoritmiek 2026/Grafen en bomen Paden en kringen en ...

Een pad van u naar v is een rij knopen waarvoor geldt dat tussen elk

tweetal opeenvolgende knopen uit die rij een tak zit (resp. een pijl loopt

van de ene naar de volgende knoop; dan: gericht pad).

Lengte van een pad = aantal takken op dat pad = aantal knopen - 1.

Als alle knopen verschillend zijn heet het pad enkelvoudig.

Een kring in een ongerichte graaf is een pad met minstens 3 knopen, dat

begint en eindigt in dezelfde knoop en dat geen enkele tak meer dan één

keer bevat. Analoog gerichte graaf.

Een ongerichte graaf heet samenhangend als er tussen elk tweetal knopen

u en v een pad loopt.

Een graaf die geen kringen bevat heet acyclisch.

4

Algoritmiek 2026/Grafen en bomen Kringen - voorbeeld

✉ ✉

✉ ✉

✉

✉0 1 2

5 4 3

1.

V = {0,1,2,3,4,5};

E = {(0,1), (1,2), (2,3), (3,4), (4,5), (5,0), (4,1)}

5

Algoritmiek 2026/Grafen en bomen Graafproblemen

Een zeer bekend graafprobleem:

Koningsberger bruggen probleem Hoezo graafprobleem?

6

Algoritmiek 2026/Grafen en bomen Eulerkring

Definitie: een wandeling (pad) in een ongerichte graaf die terugkeert in

zijn beginpunt en die alle takken precies één keer doorloopt heet een

Eulerkring∗. Analoog: Eulerpad.

Probleem. Gegeven een ongerichte graaf G. Heeft G een Eulerkring?

Voorbeeld:

✇

✇✇

✇

✇✇ ✇
❅
❅
❅

❅
❅

�
�
�

�
�

�
�

�
�

�

❅
❅

❅
❅

❅

❜
❜

❜
❜

❜
❜

❜❜

✧
✧

✧
✧

✧
✧

✧✧

❜
❜
❜
❜
❜

❜
❜❜

✧
✧
✧
✧
✧

✧
✧✧

6

2

5

3

71 4

Voor deze graaf is 1 2 3 4 5 3 7 5 6 7 2 6 1 een Eulerkring.

∗ Een kring is een pad met minstens 3 knopen dat begint en eindigt in dezelfde knoop

en dat geen enkele tak meer dan één keer doorloopt.

7

Algoritmiek 2026/Grafen en bomen Graafproblemen

Nog een zeer bekend graafprobleem:

Koningsberger bruggen probleem Vierkleurenprobleem

Hoezo graafprobleem?

8

Algoritmiek 2026/Grafen en bomen Vierkleurenprobleem

Kleur de landkaart met maximaal vier kleuren onder de restrictie dat bu-

urlanden een verschillende kleur hebben:

9

Algoritmiek 2026/Grafen en bomen Vierkleurenprobleem

Kleuring van de landkaart met maximaal vier kleuren onder de restrictie

dat buurlanden een verschillende kleur hebben:

10

Algoritmiek 2026/Grafen en bomen Representaties

Adjacency matrix: de gerichte graaf wordt gerepresenteerd door een

tweedimensionaal array int graaf[n][n] (n het aantal knopen), waarbij

graaf[i][j] aangeeft of er een pijl van i naar j gaat.

Adjacency list: de gerichte graaf wordt gerepresenteerd door een eendi-

mensionaal array buur* graaf[n] (n het aantal knopen), waarbij graaf[i]

de ingang is tot een lijst van knopen waarvoor er een pijl is van i naar die

knoop. De buurlijst bevat dus alle uitgaande pijlen uit i.

Adjacency list representatie in C++:

class buur

{ public:

int knoopnummer;

buur* volgende;

}; // buur

buur* graaf[n];

11

Algoritmiek 2026/Grafen en bomen Gericht

Adjacency matrix en adjacency list voor voorbeeldgraaf 2:









0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 1 0 0
0 0 0 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0









adjacency matrix
✉ ✉

✉ ✉

✉

✉

✲ ✲

✲ ✛

✻

❄✁
✁
✁

✁
✁
✁ ❆

❆❆❑

❆
❆❆❯

0 1 2

5 4 3

5

4

3

2

1

0

−→

−→

Λ

−→

−→

−→

0

1

1

4

1

−→

−→

−→

Λ

Λ

4

3

3

Λ

Λ

Λ

adjacency list

12

Algoritmiek 2026/Grafen en bomen Opgave 10.

Geef een algoritme dat de pijl (i, j) in een gegeven gerichte graaf om-

draait.

// het array graaf (buur* graaf[n]) bevat de gerichte graaf

13

Algoritmiek 2026/Grafen en bomen Opgave 10.

Geef een algoritme dat de pijl (i, j) in een gegeven gerichte graaf om-

draait.

// het array graaf (buur* graaf[n]) bevat de gerichte graaf

buur* hulp = graaf[i];
buur* vorige = nullptr;
while (hulp->knoopnummer != j) { // knoop j zoeken

vorige = hulp;
hulp = hulp->volgende;

}

14

Algoritmiek 2026/Grafen en bomen Opgave 10.

Geef een algoritme dat de pijl (i, j) in een gegeven gerichte graaf om-

draait.

// het array graaf (buur* graaf[n]) bevat de gerichte graaf

buur* hulp = graaf[i];
buur* vorige = nullptr;
while (hulp->knoopnummer != j) { // knoop j zoeken

vorige = hulp;
hulp = hulp->volgende;

}

if (vorige == nullptr) { // j is eerste buur van i
graaf[i] = hulp->volgende;

}
else { // j is niet eerste buur van i

vorige->volgende = hulp->volgende; // haal buur j uit lijst
}
delete hulp; // gooi buur j weg

15

Algoritmiek 2026/Grafen en bomen Opgave 10.

Geef een algoritme dat de pijl (i, j) in een gegeven gerichte graaf om-

draait.

// het array graaf (buur* graaf[n]) bevat de gerichte graaf

buur* hulp = graaf[i];
buur* vorige = nullptr;
while (hulp->knoopnummer != j) { // knoop j zoeken

vorige = hulp;
hulp = hulp->volgende;

}

if (vorige == nullptr) { // j is eerste buur van i
graaf[i] = hulp->volgende;

}
else { // j is niet eerste buur van i

vorige->volgende = hulp->volgende; // haal buur j uit lijst
}
delete hulp; // gooi buur j weg

hulp = new buur; // voeg nu i vooraan in de buurlijst
hulp->knoopnummer = i; // van j toe
hulp->volgende = graaf[j];
graaf[j] = hulp;

16

Algoritmiek 2026/Grafen en bomen Bomen

Definitie: een boom is een samenhangende (= uit één stuk bestaande)

ongerichte graaf zonder cykels (= kringen).

Wijs een speciale knoop aan, de wortel. Teken de wortel bovenaan en

alle paden vanuit de wortel naar beneden: dit geeft een hiërarchische

structuur die lijkt op een stamboom. Dit heet ook wel een georiënteerde

boom. Meestal spreken we gewoon van een boom.

Stamboomterminologie:

kind ←→ ouder,

afstammeling ←→ voorouder.

In een georiënteerde boom hebben we

dus ouder-kind relaties tussen knopen.

17

Algoritmiek 2026/Grafen en bomen Voorbeeldboom

Terminologie:

takken, knopen, niveau, hoogte, wortel,

bladeren ←→ interne knopen

wortel

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

�
�

�
�

❅
❅
❅
❅

PPPPPPPPPPPPPPP

�
�

�
�

❅
❅
❅
❅

�
�

�
�

❅
❅
❅
❅

✁
✁
✁✁

❆
❆
❆❆

�
�

�
�

❅
❅
❅
❅

A

S D F G

H J K L Z

X C V B N M

bladeren

De wortel (hier A) is de enige ingang tot de boom.
18

Algoritmiek 2026/Grafen en bomen Meer bomen

• Een acyclische graaf die niet samenhangend is heet een bos. Het is

namelijk een collectie bomen.

• Voor bomen geldt: aantal takken = aantal knopen - 1.

• Een geordende boom is een boom waarin van elke knoop de kinderen

geordend zijn: oudste kind, een na oudste kind, . . ., jongste kind.

• Onderstaande bomen zijn als georiënteerde bomen wel gelijk, maar

als geordende georiënteerde bomen niet:

❡ ❡
�

�
�

❅
❅
❅

�
�

�

❅
❅
❅❡

✁
✁
✁

❆
❆
❆

❡ ❡ ❡ ❡
✁

✁
✁

❆
❆
❆

❡

❡ ❡ ❡ ❡ ❡❡

19

Algoritmiek 2026/Grafen en bomen Binaire bomen

Een binaire boom is een boom waarin elke knoop ofwel nul, ofwel één

ofwel twee kinderen heeft; als een knoop twee kinderen heeft dan is het

ene kind het linkerkind, het andere het rechterkind; als een knoop één

kind heeft, dan is dit ofwel een linkerkind, ofwel een rechterkind.

...

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

linkerkind rechterkind

✁
✁

✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆

...

✒✑
✓✏

✒✑
✓✏

❆
❆
❆
❆
❆
❆
❆

één kind: rechterkind

20

Algoritmiek 2026/Grafen en bomen Binaire bomen: recursief

Recursieve definitie: een binaire boom is een eindige verzameling knopen

die ofwel leeg is, ofwel bestaat uit een speciale knoop (de wortel) en twee

disjuncte verzamelingen knopen die samen de rest van alle knopen vor-

men. Die knoopverzamelingen vormen beide ook weer een binaire boom:

de linkersubboom en de rechtersubboom.

✒✑
✓✏
✏✏✏✏✏✏

PPPPPP
✁

✁
✁
✁

✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁

✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆

linkersubboom rechtersubboom

wortel

21

Algoritmiek 2026/Grafen en bomen Implementatie

class knoop { // een struct mag ook

public:

knoop () { // constructor

info = 0;

links = nullptr;

rechts = nullptr;

}

int info;

knoop* links;

knoop* rechts;

}; // knoop

De binaire boom wordt gerepresenteerd door middel van een pointer naar

de wortel:

knoop* wortel; // de ingang tot de binaire boom

Netter om een klasse te gebruiken: zie Programmeermethoden en ook bij

bomenpracticum
22

Algoritmiek 2026/Grafen en bomen Wandelingen -1-

WLR (preorde):

bezoek wortel

doorloop linkersubboom WLR

doorloop rechtersubboom WLR

LWR (symmetrisch):

doorloop linkersubboom LWR

bezoek wortel

doorloop rechtersubboom LWR

LRW (postorde): analoog

5✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

1
❅
❅
❅
❅

7
�

�
�

�

❅
❅
❅
❅

3
✁
✁

✁
✁

2

❆
❆
❆
❆

4

6 9
✁
✁

✁
✁

8

23

Algoritmiek 2026/Grafen en bomen Wandelingen -2-

void preorde (knoop* root) {

if (root != nullptr) {

cout << root->info << endl;

preorde (root->links);

preorde (root->rechts);

} // if

} // preorde

void symmetrisch (knoop* root) {

if (root != nullptr) {

symmetrisch (root->links);

cout << root->info << endl;

symmetrisch (root->rechts);

} // if

} // symmetrisch

24

Algoritmiek 2026/Grafen en bomen Werking recursie

1. void preorde (knoop* root) {

2. if (root != nullptr) {

3. cout << root->info << endl;

4. preorde (root->links);

5. preorde (root->rechts);

6. } // if

7. } // preorde

5✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

1
❅
❅
❅
❅

7
�

�
�

�

❅
❅
❅
❅

3
✁
✁
✁
✁

2

❆
❆
❆
❆

4

6 9
✁

✁
✁
✁

8

25

Algoritmiek 2026/Grafen en bomen Werking recursie

1. void preorde (knoop* root) {

2. if (root != nullptr) {

int hulp = root->info;

3. cout << hulp << endl;

4. preorde (root->links);

5. preorde (root->rechts);

6. } // if

7. } // preorde

Lokale variabele: int hulp

5✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

1
❅
❅
❅
❅

7
�

�
�

�

❅
❅
❅
❅

3
✁
✁
✁
✁

2

❆
❆
❆
❆

4

6 9
✁

✁
✁
✁

8

26

Algoritmiek 2026/Grafen en bomen Knopen tellen

We tellen recursief het aantal knopen van een binaire boom met ingang

wortel.

Aanroep: int tellen = aantal (wortel);

int aantal (knoop* root) {

if (root == nullptr) // lege boom

return 0;

else

return (1 + aantal (root->links)

+ aantal (root->rechts));

} // aantal

Merk op dat hier eigenlijk een preorde-wandeling wordt gedaan

(althans in de code).

27

Algoritmiek 2026/Grafen en bomen Afbreken

We breken de binaire boom met ingang wortel helemaal af: hiertoe wordt

eerst de linkersubboom (recursief) weggegooid, daarna de rechtersub-

boom en ten slotte de wortel zelf. Aanroep: breekaf (wortel);

void breekaf (knoop* & root) {

if (root != nullptr) {

breekaf (root->links);

breekaf (root->rechts);

delete root;

root = nullptr;

} // if

} // breekaf

L

R

W

28

Algoritmiek 2026/Grafen en bomen Meer binaire bomen

• Voor de hoogte h van een binaire boom met n knopen geldt:

. . . ≤ h≤ . . .

29

Algoritmiek 2026/Grafen en bomen Meer binaire bomen

• Voor de hoogte h van een binaire boom met n knopen geldt:

. . . ≤h ≤ n− 1

30

Algoritmiek 2026/Grafen en bomen Meer binaire bomen

• Voor de hoogte h van een binaire boom met n knopen geldt:

⌊log2 n⌋ = ⌈log2(n+1)⌉ − 1 ≤ h ≤ n− 1

• Hoeveel binaire bomen met minimale / maximale hoogte

31

Algoritmiek 2026/Grafen en bomen Meer binaire bomen

• Voor de hoogte h van een binaire boom met n knopen geldt:

⌊log2 n⌋ = ⌈log2(n+1)⌉ − 1 ≤ h ≤ n− 1

• Hoeveel binaire bomen met minimale vs maximale hoogte: 1 vs 2n−1

• Een complete binaire boom is een binaire boom waarbij alle niveaus

geheel vol zitten, behalve eventueel het onderste. Op het onderste

niveau mogen alleen de meest rechter knopen missen.

• Een binaire zoekboom is een binaire boom waarbij voor elke knoop

geldt dat de waarde in die knoop groter is dan alle waarden in zijn

linkersubboom, en kleiner dan alle waarden in zijn rechtersubboom.

32

Algoritmiek 2026/Grafen en bomen Voorbeelden

Complete binaire boom:

7
�

�
�

❅
❅
❅

9
✁
✁
✁

❆
❆
❆

3
✁

✁
✁

8 4 5

⇐⇒ 7 9 3 8 4 5

Binaire zoekboom:

5✟✟✟✟✟✟

❍❍❍❍❍❍

1
❅

❅
❅

7
�

�
�

❅
❅
❅

3
✁
✁
✁

2

❆
❆
❆

4

6 9
✁
✁
✁

8

LWR

1 2 3 4 5 6 7 8 9

33

Algoritmiek 2026/Grafen en bomen BZboom: zoeken

✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍

�
�

�
��

❅
❅
❅
❅❅

�
�

�
��

❅
❅
❅
❅❅

✁
✁

✁✁

❆
❆
❆❆

✁
✁

✁✁

❆
❆
❆❆

❆
❆
❆❆

✁
✁

✁✁

❆
❆
❆❆

60

20 80

10 40 70 100

1 15 30 75

5 25 35

toevoegen. . .

34

Algoritmiek 2026/Grafen en bomen BZboom: verwijderen

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
�

�

❅
❅
❅

�
�

�

❅
❅
❅

✁
✁✁

❆
❆❆

✁
✁✁

❆
❆❆

❆
❆❆

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
�

�

❅
❅
❅

�
�

�

✁
✁✁

❆
❆❆

✁
✁✁

❆
❆❆

❆
❆❆

60

20 80

10 40 70 100

1 15 30 75

5 25 35

❆
❆❆

✁
✁✁

100 verwijderen

=⇒

60

20 80

10 40 70

1 15 30 75

5 25 35

❆
❆❆

✁
✁✁

verwijderen van een blad

vervolgens 80

35

Algoritmiek 2026/Grafen en bomen BZboom: verwijderen

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
�

�

❅
❅
❅

�
�

�

✁
✁✁

❆
❆❆

✁
✁✁

❆
❆❆

❆
❆❆

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
�

�

❅
❅
❅

❅
❅
❅

✁
✁✁

❆
❆❆

✁
✁✁

❆
❆❆

60

20 80

10 40 70

1 15 30 75

5 25 35

❆
❆❆

✁
✁✁

80 verwijderen

=⇒

60

20 70

10 40 75

1 15 30

5 25 35

❆
❆❆

✁
✁✁

verwijderen van een knoop met 1 kind

vervolgens 60

36

Algoritmiek 2026/Grafen en bomen BZboom: verwijderen

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
�

�

❅
❅
❅

❅
❅
❅

✁
✁✁

❆
❆❆

✁
✁✁

❆
❆❆

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
�

�

❅
❅
❅

❅
❅
❅

✁
✁✁

❆
❆❆

❆
❆❆

60

20 70

10 40 75

1 15 30

5 25 35

❆
❆❆

✁
✁✁

60 verwijderen

=⇒

40

20 70

10 30 75

1 15

5

25 35

❆
❆❆

✁
✁✁

verwijderen van een knoop met 2 kinderen

verwissel met de grootste kleinere of kleinste grotere

37

Algoritmiek 2026/Grafen en bomen Werkcollege/Practicum

• Lezen/leren bij dit college:

Paragraaf 1.4 (vanaf/na graafrepresentaties),

Paragraaf 4.5 (subparagraaf ‘Searching and Insertion in a Binary

Search Tree’)

• Werkcollege: dinsdagochtend geen werkcollege

• Practicumbijeenkomst:

woensdag 11 februari, 15.15–17.00, bomenpracticum, computerzalen

• Opgaven:

zie https://liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

• Volgend college:

maandag 16 februari 2026, 11.00–12.45

38

https://liacs.leidenuniv.nl/~vlietrvan1/algoritmiek/

