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abstract

Tomography tries to reconstruct an object from a
number of projections in multiple directions. Many
application domains can be imagined, but we will fo-
cus on high throughput applications, and will there-
fore try to reduce the number of necessary projections,
while being able to generate good quality reconstruc-
tions. We apply several forms of Neural Networks, an
Artificial Intelligence method. These networks are es-
pecially suited for solving underdetermined problems,
and therefore well suited to our problem.
Many different variants of Neural Networks are devel-
oped since its introduction; some simple, while others
can consist of many nodes in many hidden layers in-
creasing its training complexity. We will here focus on
the simpler forms of Neural Networks: a feedforward
(multilayer) perceptron.
We present some experimental results, which demon-
strate the capabilities of reconstructing high quality
images using relatively simple Neural Networks.
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Chapter 1

Introduction

Tomography, or more especially computed tomography, is a technique used
in a broad variety of research areas: from medical to industrial, and archae-
ological to material studies. It can be applied to investigate (non-invasively)
the internal structure of many different types of objects and materials. Prob-
ably the most recognized application is the X-ray CT scanner, for diagnostic
purposes, as is found in many hospitals. The main idea of tomography is to
be able to visualize and analyze the internal structure of an object. Usually
some source of radiation is used to generate the so-called projection data.
However, other techniques can be applied such as magnetic resonance.

In order to visualize the internal structure of an object, the object is ex-
amined in various orientations, and when put together, a reconstruction is
made. Typically, there is a need for a large number of projections (more than
100) to reconstruct, with adequate quality, an object. This approach, how-
ever, has many drawbacks. In areas where a high throughput is required the
time needed to generate the projection data is limited, and when examining
organic tissue only a limited dose of radiation might be administered without
the risk of affecting the tissue. Therefore, we notice a need of good quality
reconstructions based on a limited set of projections, which reduces both the
scanning time as well as the amount of radiation. From here onward, we will
focus on high throughput applications in favor of medical uses, and therefore
we will only concentrate on reducing the number of projections, but not the
dose of radiation nor any other human aspects such as comfort.

Traditional reconstruction methods tend to generate better quality re-
constructions when increasing the number of projections. Furthermore, they
are static and general, i.e., they cannot be adapted to a specific application
domain. Here, we propose a different strategy. We apply Neural Networks,
an Artificial Intelligence method [12], for generating reconstructions. These
networks must be trained (which implies a one time increase in effort), but
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CHAPTER 1. INTRODUCTION 2

carry the advantage of being capable of reconstructing specific images, and
improve themselves.

This master thesis is written as a partial fulfillment of the requirements of
the degree Master of Science in the Leiden Institute of Advanced Computer
Science (LIACS) of Leiden University, and is supervised by Joost Batenburg
and Walter Kosters.

1.1 Related Work

Computed Tomography is a well studied field, and there are many publica-
tions describing virtually all its aspects. In [8, 9, 4, 7] the fundamentals of
computed tomography, as well as many technical aspects are covered.

The application of Neural Networks is a relatively new approach. In lit-
erature they are introduced as a reconstruction technique in [10] and [11].
In general, neural networks seem an uninteresting strategy for the general
problem of tomography due to its nature of dealing with large numbers of
projections, and consequently the large number of variables. It seems quite
hard to outperform traditional reconstruction techniques. However, we will
here focus on tomography problems consisting of a small set of projections
resulting in an underdetermined problem. Neural Networks are well-known
for its successful application to underdetermined problems.

In [2, 3, 1] the authors introduce Neural Networks successfully for re-
construction binary images (i.e., black and white). Two different network
topologies are investigated; a full-image network, and a single-pixel network.
The first variant tries to reconstruct a complete image at once from all pro-
jection data. The second variant reconstructs one pixel from a selection of
the projection data. Based on their conclusions we will here focus on the
single-pixel network topology. The networks used in [3] are quite large, con-
sisting of 50–200 hidden nodes. Here, we will use much smaller networks. The
disadvantage of applying a single-pixel network is its reduced ability to be
trained for specific image classes. This property is, to a much greater extend,
available in full-image networks at the expense of increased computational
complexity.

Finally, we remark that other Artificial Intelligence methods can be ap-
plied, such as Evolutionary Algorithms and Support Vector Machines, as well
as more discrete approaches such as Linear Programming.
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1.2 Outline

The remainder of this thesis is organized as follows. In Chapter 2 we introduce
the mathematical foundations of tomography, and its common implementa-
tion. In Section 2.3 we elaborate on the discretization problem as well as the
problem of generating the projection data. Chapter 3 is dedicated to the con-
cept and application of neural networks, and some variants are presented. In
Chapter 4 we explain the experiments performed and the generated results
are presented. We conclude the thesis by a summary of the main conclusions
in Chapter 5.



Chapter 2

Tomography

In tomography, we try to reconstruct an object from a number of projections
in multiple directions. Here, we will focus on projections obtained by parallel
beams through a finite object. We assume that this object is contained in
the disc

A =
{
(x, y) ∈ R

2 : x2 + y2 ≤ R2
}

(2.1)

with radius R > 0, see Figure 2.1. The object is an image described by the
real-valued grayscale mapping f : A→ [0, 1] where 0 is black and 1 is white;
intermediate values can be interpreted as shades of gray. The hatching in
Figure 2.1 only defines the outline of the object, and not its internal structure.

R

y

x

Rf (L)

θ

A

Figure 2.1: The basic principle of tomography.
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The attenuations of the beams are measured on an infinite detector. Dif-
ferent projections are generated by rotating the detector around the object.
The construction of the projections is performed by the so-called Radon
transform, which is the integral transform of the function f over straight
lines L:

Rf (L) =

∫

L

f (ℓ) dℓ. (2.2)

For angle θ we define: Lθ,τ = {(x, y) ∈ A : τ = t}, with t = x cos θ + y sin θ.
The Radon transform Pf of the function f is defined as:

Pf (θ, τ) =

∫

Lθ,τ

f (x, y) ds for θ ∈ [0, π) , τ ∈ R. (2.3)

The reconstruction of the original image from its projections is obtained
from applying the inverse Radon transform [6]:

f (x, y) =

∫ π

θ=0

∫
∞

τ=−∞

h (τ − t)Pf (θ, τ) dτ dθ, (2.4)

where h is a suitable weight or kernel function acting as a filter, see Sec-
tion 2.2.

Discrete tomography focusses on the reconstruction of images, which are
reconstructed using a discrete set of pixel values or a discrete rasterization
of the function f .

To find a discrete approximation, we substitute the integrals for summa-
tions. First, we choose a fixed number of angles k (equally dividing the 0 to
π semicircle):

f (x, y) =
k∑

d=1

∫
∞

τ=−∞

h (τ − t)Pf (θd, τ) dτ, (2.5)

where θd is the d-th angle. We now simplify the expression for the kernel
function by introducing τ ′ = τ − t:

f (x, y) =
k∑

d=1

∫
∞

τ ′=−∞

h (τ ′)Pf (θd, τ
′ + t) dτ ′, (2.6)

and finally, approximate the remaining integral by choosing a finite detector
size, D, so h (τ ′) = 0 when |τ ′| > D:

f (x, y) =
k∑

d=1

S (d, t) , (2.7)
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where we defined:

S (d, t) =
D∑

τ ′=−D

h (τ ′)Pf (θd, τ
′ + t) . (2.8)

As the kernel is constant for equally spaced angles in the semicircle, we can
precompute the summation in (2.8) before applying the kernel function h:

f (x, y) =
D∑

τ ′=−D

h (τ ′)
k∑

d=1

Pf (θd, τ
′ + t) . (2.9)

2.1 Filtered Back Projection

In tomography the calculation of Equation (2.7) and Equation (2.8) are usu-
ally performed by the filtered back projection algorithm, where h is, usually,
the Ram-Lak kernel introduced in Section 2.2.

In practical applications, filtered back projection is implemented by cal-
culation via the frequency domain, or more especially the Fourier domain. In
the Fourier domain, the convolution operator (see Equation (2.10)) translates
to a much simpler multiplication, and therefore reduces the computational
complexity. The convolution is performed by applying the kernel to the pro-
jection data. Note the similarity between Equation (2.4) and Equation (2.10).
The convolution operator is defined as:

∫
∞

−∞

φ (τ ′)ψ (t− τ ′) dτ ′, 0 ≤ t (2.10)

Here, we will not use the Fourier domain, but rather calculate the con-
volution of the kernel with the projection data in the spatial domain. As is
suggested in Equation (2.8) we choose the kernel to be static, and conse-
quently shift the projection data against it. Therefore we introduce a shift
operator which aligns the projection data for a certain image pixel x, y with
corresponding τ ′, and a certain angle θd. The shift amount is denoted by t.

This implies, on a finite detector, that some projection data will be shifted
outside the detector range, and some “new” projection data is shifted onto
the detector. We will deal with this phenomenon as follows: the data shifted
out of range is discarded, and the new data is treated as being 0, as it would
be on an infinite detector.

In Figure 2.2 some reconstructions are presented generated with the fil-
tered back projection algorithm with varying numbers of projection angles.
Note the increase in the so-called image artifacts by decreasing numbers of
projections.
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Figure 2.2: Top row: the original 128 × 128 image. Bottom row from left to
right: filtered back projection reconstructions for the number of projection
angles k = 50, 20, 5.

2.2 Kernel Function

In reconstructing an image from its Radon transform, we use a so-called ker-
nel function. This function is not of arbitrary form. Each pixel is a projection
onto the detector at a certain place τ (for angle θd). We expect that the mea-
sured value on the detector at position τ is likely to contribute highly to the
reconstruction of the pixel in question, and values at a large distance from
τ will not influence the reconstruction of that pixel so much. Several kernel
functions can be used. Often the so-called Ram-Lak kernel, only defined in
the integer domain, or ramp filter is applied, see Figure 2.3:

h (σ) =







π
4

if σ = 0,

− 1
π2σ2 if σ is odd,

0 otherwise,

(2.11)

where σ ∈ Z. Note that the kernel is symmetric around 0, as expected.
Besides the Ram-Lak kernel there are other possibilities. The Ram-Lak

kernel is extremely sensitive to noise because of the emphasis on the higher
frequencies. In implementation domains, subject to noise, often alternative
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Figure 2.3: Ram-Lak kernel of size 64. The kernel is discrete, however, for
better readability the discrete values are connected by linear interpolation.

kernels are used, such as the Shepp-Logan kernel, which is a modification of
the Ram-Lak kernel by multiplication with the sine function.

2.3 Discretization

Instead of the function f we use a rasterized image I of N ×N pixels, with
integer N > 1. In order to perform the computations in the real-valued
domain we use the following conversion rules for a pixel I (r, c):

x =
2c

N
− 1 for integer c ∈ [0, N − 1], (2.12)

y =
2r

N
− 1 for integer r ∈ [0, N − 1], (2.13)

where (x, y) ∈ A and we defined A to be the disc with radius R = 1. Although
the image I is square, we disregard all pixels for which x2 + y2 > 1. This
allows us to define the detector size D to be 1. This detector will also be
rasterized into a line of N pixels.

The conversion functions map a pixel I (r, c) to the interval [−1, 1] which
will, in turn, be mapped to a pixel on the detector. In general, a pixel will
not be mapped to a single pixel on the detector, it will instead be mapped
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between two pixels. Now, we have to decide how the image pixel will con-
tribute to the possible pixels on the detector. Several strategies can be ap-
plied. Roughly, they can be divided into two categories. First, a single pixel
on the detector receives the full contribution of an image pixel, for example,
the nearest neighbor approximation. Secondly, we can distribute the contri-
bution of an image pixel over the detector pixels, as is, for instance, done by
linear interpolation.

θ

a b

Figure 2.4: Subsampling and linear interpolation with m = 2.

In order to increase the accuracy of the projections, and, ultimately, the
reconstruction, we apply a subsampling technique. This strategy is especially
beneficial for small values ofN . Each pixel in I is divided intom×m subpixels,
wherem is the sampling rate, with integerm > 1. Typically,m = 2 orm = 3.
Each subpixel is then projected onto the detector. Again, a subpixel is, in
general, mapped between two pixels on the detector, and we must now apply
one of the aforementioned strategies. There are, however, some difficulties
with this technique. Assume our image to be perpendicular to the detector
position (θ = 0). Each pixel (or its center) coincides with the centre of a pixel
on the detector. So if no subsampling is applied the projection data is the
sum of the pixel columns of the image. This is exactly as expected. If we now
introduce a subsampling, e.g., let m = 2, the contribution of a pixel from the
image is now distributed over three pixels on the detector, as is demonstrated
in Figure 2.5. This effect may be unwanted and responsible for unpredictable
results during reconstruction. To counteract this effect we propose the same
subsampling technique on the detector. Each detector pixel is divided into m
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subpixels, which are aggregated (summed) to a single pixel later. The centers
of each subpixel in the image coincide with the centers of the subpixels on
the detector. After aggregation, the result is the same as before, indifferent
to the level of subsampling. This method still preserves the beneficial effects
of subsampling for θ 6= 0.

ab

Figure 2.5: Subsampling and linear interpolation for θ = 0.

A second pitfall lies within the implementation details of the subsam-
pling algorithm. A naive approach can easily lead to several subpixels being
mapped outside the detector range, while their counterparts are not.

Although the aforementioned approaches work well in practise, they do
not satisfy Equation (2.7). A more accurate, but perhaps also more elaborate,
projection technique involves calculating the mass “above” a certain detector
pixel. As such a pixel has a certain width we overlay the image with bands
and calculate the mass within a band to be the value of that detector pixel.
The resolution of the detector can be chosen freely. In general these bands
intersect the image pixels in all possible ways, see Figure 2.6.

An image pixel, which measures 1× 1, can be divided into three separate
regions: two triangular regions, and a parallelogram. The areas can be cal-
culated as follows, for a given projection angle θ, with 0 ≤ θ ≤ π

4
. Let Ia be

an interval between p1 and p2 with width w at offset s from p1. The area Aa

of the corresponding “capped” triangle is calculated as follows:

Aa =

{
w(w+2s)
sin 2θ

if θ 6= 0,

0 otherwise.
(2.14)
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θ

θ

Aa
Ab

p1 p2 p3 p4
s w

Ia Ib

Figure 2.6: Projected mass calculation.

Note that d (p1, p2) = sin θ. If s = 0, we get the value w2

sin 2θ
(if θ 6= 0) for

Aa, which easily generalizes to a more general formula. So, if s = 0 and
w = d (p1, p2), we get Aa =

1
2
tan θ.

Let Ib be an interval between p2 and p3 with width w. The area Ab of the
parallelogram is calculated as follows:

Ab =
w

cos θ
(2.15)

Note that d (p2, p3) = cos θ−sin θ. So, if w = d (p2, p3), the area Ab is 1−tan θ.
Combined with the areas Aa and Ac the total area equals 1 for the pixel.

Let Ic be an interval between p3 and p4 with width w at offset s from p4.
This interval is analogous to Ia, so the corresponding area is calculated as
follows:

Ac =

{
w(w+2s)
sin 2θ

if θ 6= 0,

0 otherwise.
(2.16)

Empirical results from comparing these projection strategies show that
there is not a great difference in the average absolute error between recon-
structions generated from subsampled (m = 2) projection data, and the pro-
jected mass approach. In order to speed up the calculations of the projection
data we will use the subsampling technique. Note that in all aforementionend
projection strategies the total mass of the reconstruction is always equal to
the total mass of the corresponding object.



Chapter 3

Neural Networks

An (Artificial) Neural Network is a computational model that is inspired by
the structure of a biological neural network such as the human brain [12].
It consists of interconnected neurons passing information to each other. The
structure is often adaptive based on internal or external data. This concept
is referred to as learning. Many different forms exist today. Here, we will first
focus on a simple form of a feedforward network called a perceptron.

3.1 Linear Perceptron

A perceptron is the simplest of feedforward networks, i.e., a linear classifier:

net (~a) = ~w · ~a− b, (3.1)

where ~a is a real-valued input vector which is mapped to an output value
(also real-valued) net (~a), ~w is a real-valued vector of weights, and b is a
“bias”, a constant term that does not depend on any input. To model the
bias we define a0 = −1, which is connected by the bias weight w0, and we
get net (~a) = ~w · ~a, where we added one dimension to the vectors.

Training the network is performed by updating the weight vector accord-
ing to the error observed by offering a training input. The error is defined as
t− net (~a), with t the target output. The update rule for a single weight wi,
with 0 ≤ i ≤ n is:

wi ← wi + α ai (t− net (~a)) (3.2)

or in vector form:
~w ← ~w + α~a (t− net (~a)) , (3.3)

where α ∈ [0, 1] is the learning rate, and n the number of input nodes of the
perceptron excluding the bias input a0. For linear perceptrons we will fix the

12



CHAPTER 3. NEURAL NETWORKS 13

value of α to 0.01. Often a variable learning rate is used which is decreased
over training or adjusted according to the current error.

The computational properties of a linear perceptron show a remarkable
similarity with the computations in Equation (2.7) and Equation (2.8). We
expect a linear perceptron to be able to simulate these computations. The
weights should form the kernel function, and, for many projections, we expect
the weight vector be very similar to the Ram-Lak kernel.

A perceptron performs best if its input vector is in a certain domain de-
pending on the current weight vector initialization and α value. Commonly
values from the interval [0, 1] are used. From Equation (2.3), we can clearly
observe that the generated input vectors will be outside this domain. There-
fore, we introduce a linear scaling with N .

The order of the summation in Equation (2.7) and Equation (2.8) can be
changed, because the kernel function h is constant for d and t. This allows
us to precompute the summation of the projection data for all angles. Each
projection has an equal share in the reconstruction of a certain pixel. If we
perform this precomputation we can reduce the number of input nodes for
our perceptron to N and therefore also the number of weights. A reduced
number of weights should make training easier and faster. Therefore we pro-
pose the topology in Figure 3.1, where ΣPr is the symbolic notation for the
precomputed summation for all projection angles d.

. . .

︸ ︷︷ ︸

ΣPr

Figure 3.1: Linear perceptron with N input nodes, and one output node. The
total number of weights is N +1. The bias node and weight are not depicted,
but assumed to be present within the output node.

This topology consists of only one output node capable of reconstructing
one pixel of the image. In order to reconstruct the complete image we apply
the perceptron N2 times. The input for reconstructing a single pixel is heavily
dependent on that pixel. Therefore, we preprocess the Radon projection data
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for depending on a certain pixel. The projection data is “shifted” such that
the projection (according to Equation (2.3)) is centered around τ . Missing
values are replaced by zeros (as it would be on an infinite detector).

The aforementioned topology handles all input data independently, be-
cause of the precomputation optimization. This topology is therefore only
useful for projection data generated from a set of angles that equally divides
the full semicircle. However, in practice, it might be the case that certain
projections are flawed or missing altogether. Furthermore we can imagine
situations in which it is impossible to gather projection data from every
angle within the semicircle, e.g., only a section of the semicircle can be mea-
sured. In these cases an “exact” reconstruction is nearly impossible. Neural
Networks, on the other hand, are especially capable of handling underde-
termined data. To cope with these kinds of data we propose an alternative
topology in Section 3.5.

3.2 Multilayer Perceptron

A multilayer perceptron is a feedforward network organized in multiple lay-
ers (an input and an output layer, as well as (several) hidden layers), see
Figure 3.2. Each layer is fully connected to the next. In contrast to the per-
ceptron model each node has a nonlinear activation function. It can be shown
that each multilayer perceptron using only linear activation functions has an
equivalent perceptron model. In practice two nonlinear functions are used:

φ1 (x) = tanh (βx) , (3.4)

and

φ2 (x) =
1

1 + e−βx
, (3.5)

where the steepness parameter β is often chosen equal to 1. Both activa-
tion functions have easy to calculate first derivatives, which come handy in
the back propagation algorithm: φ′

1(x) = βφ1(x) (1− φ1(x)), and φ′

2(x) =
β (1− φ2(x)

2) respectively. Here, we use Equation (3.5) as its output do-
main is the interval [0, 1], naturally suited to our application domain. Often,
Equation (3.4) is used as activation for the nodes in the hidden layers as it is
symmetrical around 0. However, we use Equation (3.5) as the activation func-
tion for the nodes in the hidden layer as no significant benefit was gained by
applying the other one, and it reduces the complexity of the implementation.



CHAPTER 3. NEURAL NETWORKS 15

. . .

. . .

︸ ︷︷ ︸

ΣPr

Figure 3.2: Multilayer perceptron with N input nodes, h hidden nodes, and
one output node. The total number of weights is h (N + 1)+h+1 (including
weights for the bias nodes). The bias nodes and weight are assumed to be
present in each hidden and output node.

The weight update rules for multilayer perceptrons are different from the
update rule for a linear perceptron. There are two cases:

w
(1)
j,i ← w

(1)
j,i + α · φ

(

in
(1)
j

)

·∆
(1)
i , ∆

(1)
i = Errori · φ

′

(

in
(0)
i

)

, (3.6)

where w
(1)
j,i is the weight from node j in the hidden layer to node i in the

output layer, Error = ~t − net (~a) analogous to the linear perceptron (note

that target ~t and net output net(~a) are vectors), in
(0)
i =

∑

jw
(1)
j,i φ

(

in
(1)
j

)

is

the weighted input for node i (summation over hidden nodes j), and in
(1)
j =

∑

kw
(2)
k,jak (summation over input nodes k), and:

w
(2)
k,j ← w

(2)
k,j + α · ak ·∆

(2)
j , ∆

(2)
j = φ′

(

in
(1)
j

)∑

i

w
(1)
j,i ∆

(1)
i , (3.7)

where w
(2)
k,j is the weight from node k in the input layer to node j in the hidden

layer, and
∑

iw
(1)
j,i ∆

(1)
i is the summation over the output nodes i. Note that

we will commonly use only one output node.

3.3 Initialization

The training rules introduced in Section 3.1 and Section 3.2 are completely
deterministic. However, commonly, a nondeterministic initialization is used
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to avoid a guaranteed trap in a subglobal “optimum”. The initialization
is, therefore, not trivial and may have a huge impact in the convergence
of the Neural Network. For linear perceptrons this effect is, generally, not
too severe as the magnitude of the adjustment of the weights is always the
same. A wrongly initialized network is likely to converge eventually. Note that
initialization outside the interval [−1, 1] may result in divergent behavior.
In all cases, a suitable distribution must be chosen. Two distributions are
commonly used; the uniform distribution, and the normal distribution. We
will use the normal distribution. For a linear perceptron we fix µ = 0.5, and
σ = 0.25, where µ is the aimed for mean, and σ the standard deviation.

For nonlinear perceptrons, and consequently, multilayer perceptrons the
initialization problem is harder. The introduction of nonlinearity is the main
culprit. For both activation functions from Equation (3.4) and Equation (3.5)
the behavior is similar. The use of the first derivative in updating the weights
results in a very small update when the input of a node is very large or very
small. Only in a small interval, controlled by the parameter β, the weight
adjustments are similar to the linear case. Besides the danger of divergent
behavior we face an additional hazard: being trapped in an inescapable re-
gion of the activation function. A good strategy is to assure that we start
(from initialization) in the region where we have a linear-like behavior. We
must be careful with adjusting parameter β as we might end up with a com-
pletely linear perceptron, and therefore reducing the additional capabilities of
a nonlinear perceptron. We fix µ = 0, and σ = 0.25 for nonlinear perceptrons.

3.4 Example Reconstructions

In this section we present some example reconstructions generated by the
various perceptrons. In Figure 3.3, we give three reconstructions generated
by a linear perceptron, nonlinear perceptron, and a multilayer perceptron.
For each of the reconstructions 32 projection angles are used.

Compared with the filtered back projection reconstructions in Figure 2.2,
we can distinguish a notable difference. Where we observe in reconstructions
generated by the filtered back projection algorithm mainly image artifacts, in
the perceptron generated reconstructions they are almost completely absent,
however, the object boundaries are much “softer”. This effect is especially
observed when there are many edges in the images as is the case in this exam-
ple. The multilayer perceptron behaves better with respect to the sharpness
of the reconstruction. The nonlinear perceptron shows a behavior in between.
There is more sharpness than in the case of a linear perceptron, however, the
intensities seem less acurately reconstructed.
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Figure 3.3: Top row: the original 128 × 128 image. Bottom row from left to
right: reconstructions generated by a linear perceptron, nonlinear perceptron,
and a multilayer perceptron respectively. In all cases 32 projection angles were
used.

3.5 Alternative Topologies

The aggregation introduced in Section 3.1, the precompution of the projec-
tion data for all k angles (ΣPr), might be too restrictive for finding better
reconstructions. It would be nice to offer all projection data (still shifted for
the specified pixel) to the network. However, a naive approach may quickly
lead to an explosion of the number of weights in the Neural Network, ren-
dering training practically impossible. We therefore propose an alternative
network topology, called multistage perceptron, where the number of weights
does not exceed the number of weights of the multilayer perceptron, while of-
fering all projection data separately. A multistage perceptron, cf. Section 3.4,
consists of a number of perceptrons (here k) connected by another percep-
tron. It might also be seen as a “partitioned” multilayer perceptron where
the input layer is not fully connected to the hidden layer. There are several
partitions, maybe one for each projection angle, of the input nodes belonging
to a certain hidden node.

We can reduce the number of weights even further by observing the sym-
metry in the kernel function. We can aggregate the inputs at the same dis-
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tance from τ .

. . .

. . . . . . . . . . . .

Figure 3.4: Multistage perceptron with a hidden node for each of the k pro-
jections.

Another possible reduction in weights can be achieved by a nonlinear
aggregation around τ . Instead of creating an input for every detector element
we choose an exponentional increase in the distance from τ supported by the
observation that pixels far from the current pixel are less likely to contribute
highly to its reconstruction. This reduced the number of weights to k logN ,
where k is the number of projections, and N the dimensionality of the image.

Empirical study of this topology did not show a significant improvement
over more traditional perceptron topologies. However, we are convinced that
a significant improvement in reconstruction quality can only be achieved
by somehow eliminating the aggregation. For the experiments performed in
Chapter 4 we will not use this topology, nor will we explore the alternative
nonlinear aggregation. Instead we will leave this as a promising area for
further research.



Chapter 4

Experiments

In this chapter we describe the experiments performed. We start by introduc-
ing artificial image classes, and present the experiment parameters and set-
tings. The first experiment aimes to illustrate the statement in Section 3.1 a
linear perceptron is capable of simulating Equation (2.7), and Equation (2.8)
We then explore the cross class reconstruction capabilities, and finally, ex-
periment with a real-life case study.

4.1 Image Classes

We construct a number of artificial image classes to experiment on. For all
image classes we fix the dimensions to 128× 128 pixels:

• 2 Ellipses (overlay) — 2 ellipses of random intensities (maybe
with the same intensity) which may or may not (partially) overlap
each other. The ellipses are drawn in a nondetermisitic order. The last
drawn ellipse determines the ultimate intensity,

• 20 Small ellipses (overlay) — 20 small ellipses of random inten-
sities,

• 5 Concentric ellipses (overlay) — 5 concentric ellipses of ran-
dom intensities; only their respective center points are equal,

• Random noise (1000) — 1000 pixels of a random intensity in an
otherwise black image,

• Random noise (10000) — 10000 pixels of a random intensity.

The features of these images are always cropped to the disc A. The first three
classes resemble objects consisting of larger homogeneous areas of constant

19
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greylevel, while the random noise images are mainly used to validate results.
Some samples of each image class are presented in Figure 4.1.

Figure 4.1: Example images from five different image classes named (from
top to bottom): 2 Ellipses (overlay), 20 Small ellipses (overlay),
5 Concentric ellipses (overlay), Random noise (1000), and Ran-
dom noise (10000).

4.2 Experiment Parameters

An incremental training approach is used. A single image of a particular
image class is generated from which a number of pixels are selected randomly.
Each pixel is a training instance. The weights are updated after each training
instance. Alternatively, we could have used batch training, where a number
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of training examples is offered to the network. The resulting changes are
aggregated before being applied at once.

We call the usage of an image an epoch. In each epoch a number of pixels
are selected as training instance. We refer to the number of selected pixels as
iterations. In Appendix A, a comprehensive table of average absolute errors
is given for all image classes and all experiments. Here, the number of epochs
is fixed to 10,000, and the number of iterations is fixed to 3,000. A set of
50 predetermined images (for each image class) serves as validation set. The
reported errors are measured on the validation set. The average absolute
error is calculated as the absolute difference between each pixel in the original
image with its corresponding reconstructed pixel, and averaged over the total
number of pixels within disc A. Furthermore, the errors are averaged over
the number of images in the validation set.

As a general rule training requires more examples when the Neural Net-
work contains more weights. Therefore it seems reasonable to have a different
number of examples for a linear perceptron and a multilayer perceptron. How-
ever, here we fixed the number of training instances for all networks to the
aforementioned settings. For the experiments on alternative network topolo-
gies we adjusted the number of training examples to the particular network.
The precise number of instances is presented with the results.

For many experiments we choose the parameter k, the number of pro-
jections, to be 2, 4, 8, 16, 32. Note that we do not expect “reasonable” recon-
structions for k = 2, and k = 4 (see for example Figure B.3 bottom row).
Instead, these settings are used to validate results, and, possibly, gain some
insight in the method of approach of the Neural Networks. The projections
angles always equally divide the 0 to π semicircle. In Appendix B, five se-
lected reconstructions from the validation set are shown.

4.3 Simulating Filtered Back Projection

The first experiment aims to prove a statement from Section 3.1: A linear
perceptron should be able to reconstruct an image from its Radon projections
(for a large number of angles) as good as Equation (2.7) and Equation (2.8).
As a training set we generate a set of 10,000 (the number of epochs) random
128 × 128 images from the image class 2 ellipses (overlay), see Fig-
ure 4.1. For each image we offer the Radon transform projections for k = 32,
and 3,000 randomly chosen pixels as target outputs for a total of 30,000,000
training examples. In Figure 4.2, the differences in the reconstructions be-
tween filtered back projection and a linear perceptron are shown. As can
clearly been observed from Table 4.1, the average absolute errors obtained
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from the linear perceptron approach are structually less than the errors from
filtered back projection. We can therefore conclude that a linear perceptron
is capable of simulating Equation (2.7) and Equation (2.8).

Figure 4.2: The original image (top row) and filtered back projection re-
construction (middle row) versus a linear perceptron reconstruction (bottom
row) with 32 projections. The images are taken from the validation set of the
2 Ellipses (overlay) image class.

Table 4.1: Average absolute errors on the filtered back projection reconstruc-
tion and the linear perceptron reconstruction.

Filtered back
projection

Linear
perceptron

Image class Projections Average

error

Standard

deviation

Average

error

Standard

deviation

2 Ellipses
(overlay)

32 0.0458 0.0688 0.0205 0.0402

16 0.0751 0.0862 0.0345 0.0482

8 0.1198 0.1262 0.0548 0.0632

4 0.1852 0.2017 0.0861 0.0865

2 0.2807 0.3135 0.1588 0.1401

From Figure 4.2, some differences in the reconstruction images between
the filtered back projection and the Neural Network approach can be ob-
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served. So-called image artifacts are present in the filtered back projection
reconstruction giving the objects in the image a textured appearance, as well
as “phantom” objects. These artifacts are strongly oriented to the projection
angles. This is especially true for k < 32. In the Neural Network generated
reconstructions there are less image artifacts at the expense of softer bound-
aries of the objects.

4.4 Cross Class Validation

In Appendix A, a comprehensive table of average absolute errors is given for
all experiments. As can be seen in Appendix A, the average errors are by
no means constant with respect to the image classes. Therefore the question
arises if a network is trained in reconstructing a certain image class, and
can consequently perform worse on other image classes. To investigate this
phenomenon we performed a cross validation. The comprehensive results are
presented in Appendix C. In Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6,
and Figure 4.7, we show graphical representations of these results. Note that
the vertical axis has a logarithmic scale.
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Figure 4.3: Average absolute errors for cross class validation with all image
classes. Neural Networks trained on the 2 Ellipses (overlay) image class.
We use a linear interpolation between the discrete results for better read-
ability. Note that the results for filtered back projection are constant as no
training is performed.

As can be observed from Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6,
and Figure 4.7, there is a notable variation in reconstruction quality between
the Neural Network variants. But also, there is a considerable variation in the
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Figure 4.4: Average absolute errors for cross class validation with all image
classes. Neural Networks trained on the 20 Small ellipses (overlay)
image class.
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Figure 4.5: Average absolute errors for cross class validation with all image
classes. Neural Networks trained on the 5 Concentric ellipses (over-
lay) image class.

reconstruction quality between the various image classes trained on. Overall
there is no clear “winner” indicated. However, for the ellipses image classes
the Neural Networks all perform generally better than filtered back projec-
tion, with, maybe, an exception for the networks trained on the 20 Small
ellipses (overlay) class, and validated against the 5 Concentric el-
lipses (overlay) class. In general, we conclude that some image classes are
better for training than others. Here the 5 Concentric ellipses (over-
lay) class is a good choice. This observation has a huge effect on future
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Figure 4.6: Average absolute errors for cross class validation with all image
classes. Neural Networks trained on the Random noise (1000) image class.
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Figure 4.7: Average absolute errors for cross class validation with all image
classes. Neural Networks trained on the Random noise (10000) image
class.

implementations as it is essential to find a good training class.
For the random noise image classes the conclusion is slightly different,

especially the Random noise (10000) image class. Here, both approaches
show a more similar reconstruction quality. In general, it seems not a good
idea to train Neural Networks on random noise, but when trained on a dif-
ferent image class, the networks are capable of reconstructing random noise
considerably better than filtered back projection.
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4.5 Real-life Case Study

The projection data for the real-life case study is not artificially created, but
it is instead actual real-life output of a CT scanner. In this case the object
is a rough diamond. The data set consists of 332 slices of the diamond, see
Figure 4.8. The dimensions of the images are originally 1024 × 1024 pixels.
We reduced this dimensionality to 384 × 384 pixels for two reasons; first,
the diamond is rather small compared to the full image size, and secondly,
it reduces the computation times significantly. Per slice 500 projections are
included (equally dividing the 0 to π semicircle).

Figure 4.8: Example images from the real-life data set. Slices 50, 145, and 20
reconstructed using filtered back projection with 500 projections.

In contrast to the earlier experiments, we have no original image to train
on. We used the filtered back projection reconstruction using all 500 pro-
jections as an approximation of the original image. Then we were interested
in the reconstruction quality of a linear perceptron versus the traditional
filtered back projection approach, of course using (much) fewer projections.

We apply a linear perceptron for several reasons. First, it is the most
simple topology having the fewest number of weights which makes it easy and
fast to train. The initialization is easier because of its linearity. The second
motivation regards the practical implementation. The weights resulting from
a trained linear perceptron are assumed to be easily embedded within existing
implementations.

For this experiment we randomly select 1,000 slices, and from each se-
lected slice we randomly select 10,000 pixels as training example resulting
in a total of 10,000,000 training instances. The perceptron was trained using
50 projections equally dividing the total of 500 projections. In Figure 4.9
the resulting weight vector is shown. The symmetry can be clearly observed.
Note that the resulting values are scaled down because of the preference of
the input domain [0, 1] of the linear perceptron. Furthermore, the features
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Figure 4.9: Weight vector of a linear perceptron after 10,000,000 training in-
stances. The discrete weights are connected by linear interpolation for better
readability.

are much less “sharp” as compared to for instance the Ram-Lak kernel in
Figure 2.3. The resulting reconstructions, as are shown in Figure 4.10, are
softer as well.

Figure 4.10: Reconstructed image by a linear perceptron. 50 projection angles
where used (equally dividing the semicircle), and the perceptron was offered
a total of 10,000,000 training instances.
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As an alternative approach to training, we could train a perceptron on
another image class, e.g., one of the artificial image classes from Section 4.1.
Note that the dimensionality of the image should be equal to the dimen-
sionality of the ultimate reconstructions. Therefore we should scale up the
artifical images to 384 × 384 pixels. As is demonstrated in Section 4.4, the
reconstruction quality depends on the selected image class for training. This
choice is not trivial. Due to the appearance of the objects in the real-life
data set (see Figure 4.8, we choose the 2 Ellipses (overlay) image class
to train on.

Table 4.2: Real-life average absolute errors.

Average
error

Standard
deviation

Filtered back projection (k = 50) 0.1198 0.1262
Linear perceptron 0.0548 0.0632
Linear perceptron (cross class) 0.1023 0.1103

In Table 4.2 the average absolute errors are presented. The linear percep-
tron trained on the real-life data set performs best as can be expected. We
observe about the same difference in reconstruction quality with regard to
the filtered back projection algorithm as is observed on our artifical image
classes reconstructions. We might conclude that a linear perceptron can be
applied in real-life. The cross class trained perceptron is still slightly better
than filtered back projection.
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Conclusions

Here, we present a summary of the conclusions from the experiments in
Chapter 4. As a general rule, neural networks are capable of being applied
for reconstructing very good quality images, especially when the image reso-
lution is low, and there are only a few projections. They lose their advantage
over the traditional filtered back projection technique when there are many
(over 100) projections available. In theory, a linear perceptron is able to sim-
ulate the filtered back projection strategy, i.e., we can choose the weight
vector to be identical to the kernel used. Training a network does not guar-
antee convergence to this kernel. In fact, it is quite hard to train a Neural
Network (using the aggregation approach) when many projections are used.
The (aggregated) input vector shows little variation hampering its training
abilities, and making the network very sensible to its initialization values.

The measurement for image quality used in Chapter 4 is the average ab-
solute error. Clearly, Neural Networks are capable of reducing this measure-
ment compared to the filtered back projection technique. From Figure 4.2,
we can observe several differences of the approach of both techniques. While
filtered back projection tends to recreate sharply defined boundaries around
objects, the Neural Networks, especially the linear perceptron, make these
edges softer. The reconstructions from filtered back projection suffer from
many image artifacts, while they are almost absent in the reconstructions
from the linear perceptron. It seems that the lower error values are mostly
achieved by eliminating these artifacts, while losing some on the sharpness of
the objects. This observation is supported by the, on average, higher error for
the 20 Small ellipses (overlay) image class compared to other image
classes with less ellipses, i.e., less boundaries.

The results from the real-life data set case study presented in Section 4.5
are encouraging. A linear perceptron is capable of generating high quality
reconstructions of real-life data. It is very beneficial to train on the same
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class as the objects that will be ultimately reconstructed, however, due to
the limited size of our real-life data set no hard conclusions can be drawn.
The resulting weight vector from the trained linear perceptron can be easily
transferred to existing practical implementations, and therefore, instantly
improve reconstruction qualities.

5.1 Future Research

Many areas of future research remain. As we explored the behavior of simple
Neural Networks (i.e., perceptrons) other topologies could be investigated,
especially regarding the elimination of the aggregation operator. We pro-
posed in Section 3.5 an alternative topology. No significant improvement was
observed on our data sets, however, and this should be investigated further.

As was concluded in Section 3.3, the initialization of the perceptrons is
not trivial nor are the other parameters such as the learning rate. A com-
prehensive study could be performed on initialization and parameter setting.
Furthermore, additional learning concepts could be introduced such as weight
decay, or boosting. For multilayer perceptrons there is an additional choice
for the activation function.



Appendix A

Overview Table

In Table A.1, a comprehensive overview of all average absolute errors and
their corresponding standard deviations is given for all network topologies
and the filtered back projection algorithm. Each strategy is performed on a
decreasing number of projections k = 32, 16, 8, 4, 2.
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Image class Projections Average

error
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Average
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Standard
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Average
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Average

error

Standard
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2 Ellipses
(overlay)

32 0.0458 0.0688 0.0205 0.0402 0.0415 0.0476 0.0201 0.0416

16 0.0751 0.0862 0.0345 0.0482 0.0409 0.0532 0.0208 0.0445

8 0.1198 0.1262 0.0548 0.0632 0.0484 0.0596 0.0252 0.0516

4 0.1852 0.2017 0.0861 0.0865 0.0559 0.0754 0.0453 0.0835

2 0.2807 0.3135 0.1588 0.1401 0.0844 0.1397 0.0791 0.1269

20 Small
ellipses
(overlay)

32 0.0871 0.1144 0.0417 0.0633 0.0458 0.0624 0.0269 0.0536

16 0.1401 0.1480 0.0673 0.0809 0.0529 0.0752 0.0339 0.0732

8 0.2253 0.2194 0.1010 0.1112 0.0544 0.1097 0.0439 0.0982

4 0.3403 0.3291 0.1211 0.1372 0.0815 0.1470 0.0669 0.1372

2 0.5016 0.4820 0.1437 0.1572 0.1017 0.1726 0.0931 0.1628

5 Con-
centric
ellipses
(overlay)

32 0.0718 0.1016 0.0371 0.0543 0.0694 0.0779 0.0395 0.0572

16 0.1138 0.1264 0.0538 0.0657 0.0852 0.0953 0.0420 0.0685

8 0.1808 0.1850 0.0833 0.0864 0.1692 0.1560 0.0841 0.1185

4 0.2785 0.2913 0.1383 0.1290 0.1961 0.1921 0.0833 0.1133

2 0.3837 0.4451 0.5882 0.3700 0.5036 0.3791 0.2045 0.2137

Random
noise
(1000)

32 0.1775 0.2046 0.0867 0.1339 0.1009 0.1366 0.0779 0.1263

16 0.2297 0.2391 0.0818 0.1430 0.0916 0.1426 0.0642 0.1425

8 0.3048 0.3004 0.0855 0.1467 0.0911 0.1453 0.0862 0.1450

4 0.4077 0.3929 0.0777 0.1527 0.0849 0.1500 0.0760 0.1529

2 0.5572 0.5247 0.0728 0.1561 0.0810 0.1528 0.0763 0.1546

Random
noise
(10000)

32 0.4141 0.3727 0.2517 0.2186 0.2511 0.2284 0.2592 0.2173

16 0.4966 0.4579 0.2785 0.2156 0.2824 0.2229 0.2783 0.2149

8 0.6325 0.5911 0.2957 0.2200 0.3001 0.2277 0.2939 0.2176

4 0.8386 0.7896 0.2937 0.2456 0.2998 0.2712 0.2932 0.2338

2 1.1336 1.0586 0.3146 0.2295 0.3222 0.2397 0.3067 0.2218



Appendix B

Overview Reconstructions

In Figure B.1, Figure B.2, Figure B.3, Figure B.4, and Figure B.5, we present
some charactistic reconstructions for each of the network topologies as well
as the filtered back projection algorithm corresponding with the results from
Table A.1.
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Figure B.1: Reconstructions of the 2 Ellipses (overlay) image class. From
left to right: the original image, filtered back projection, linear perceptron,
nonlinear perceptron, multilayer perceptron for k = 32, 16, 8, 4, 2.



APPENDIX B. OVERVIEW RECONSTRUCTIONS 35

Figure B.2: Reconstructions of the 20 Small ellipses (overlay) image
class. From left to right: the original image, filtered back projection, linear
perceptron, nonlinear perceptron, multilayer perceptron for k = 32, 16, 8, 4, 2.
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Figure B.3: Reconstructions of the 5 Concentric ellipses (overlay) im-
age class. From left to right: the original image, filtered back projection, linear
perceptron, nonlinear perceptron, multilayer perceptron for k = 32, 16, 8, 4, 2.
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Figure B.4: Reconstructions of theRandom noise (1000) image class. From
left to right: the original image, filtered back projection, linear perceptron,
nonlinear perceptron, multilayer perceptron for k = 32, 16, 8, 4, 2.
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Figure B.5: Reconstructions of the Random noise (10000) image class.
From left to right: the original image, filtered back projection, linear percep-
tron, nonlinear perceptron, multilayer perceptron for k = 32, 16, 8, 4, 2.



Appendix C

Cross Class Validation Tables

In Table C.1, Table C.2, Table C.3, Table C.4, and Table C.5, the average
absolute errors and their corresponding standard deviations are given for all
network topologies, while they were trained on a different image class.
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Table C.1: Average absolute errors for perceptrons trained on the 2 Ellipses
(overlay) image class.

Linear
perceptron

Nonlinear
perceptron

Multilayer
perceptron

Image class Projections Average

error

Standard

deviation

Average

error

Standard

deviation

Average

error

Standard

deviation

20 Small
ellipses
(overlay)

32 0.0396 0.0663 0.0464 0.0649 0.0264 0.0569

16 0.0675 0.0814 0.0493 0.0751 0.0363 0.0756

8 0.1023 0.1103 0.0696 0.1026 0.0624 0.1090

4 0.1226 0.1366 0.0896 0.1402 0.0805 0.1445

2 0.1374 0.1662 0.0850 0.1759 0.0830 0.1700

5 Concen-
tric
ellipses
(overlay)

32 0.0404 0.0588 0.0627 0.0733 0.0466 0.0675

16 0.0566 0.0692 0.0629 0.0802 0.0492 0.0811

8 0.0872 0.0906 0.0725 0.0852 0.0569 0.0900

4 0.1255 0.1194 0.0949 0.1203 0.1120 0.1611

2 0.3417 0.2483 0.2161 0.2386 0.1453 0.1573

Random
noise
(1000)

32 0.0742 0.1479 0.0725 0.1535 0.0689 0.1472

16 0.0761 0.1498 0.0717 0.1546 0.0703 0.1515

8 0.0734 0.1537 0.0733 0.1547 0.0706 0.1547

4 0.0789 0.1531 0.0720 0.1563 0.0624 0.1608

2 0.1911 0.1977 0.0470 0.1696 0.0469 0.1697

Random
noise
(10000)

32 0.2854 0.2147 0.2789 0.2427 0.2608 0.2487

16 0.2906 0.2174 0.2866 0.2678 0.2817 0.2908

8 0.2968 0.2200 0.2886 0.2514 0.2888 0.2741

4 0.2964 0.2320 0.2958 0.2703 0.3184 0.3696

2 0.4601 0.3791 0.4345 0.3710 0.3118 0.2398
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Table C.2: Average absolute errors for perceptrons trained on the 20 Small
ellipses (overlay) image class.

Linear
perceptron

Nonlinear
perceptron

Multilayer
perceptron

Image class Projections Average

error

Standard

deviation

Average

error

Standard

deviation

Average

error

Standard

deviation

2 Ellipses
(overlay)

32 0.0267 0.0391 0.0655 0.0749 0.0305 0.0520

16 0.0365 0.0483 0.0773 0.0885 0.0319 0.0615

8 0.0542 0.0644 0.0593 0.0915 0.0259 0.0582

2 0.2005 0.1646 0.1806 0.2126 0.1154 0.1470

4 0.0881 0.0888 0.1220 0.1582 0.0447 0.0862

5 Concen-
tric
ellipses
(overlay)

32 0.0623 0.0606 0.2110 0.1881 0.0829 0.1193

16 0.0671 0.0723 0.2712 0.2325 0.0874 0.1279

8 0.0887 0.0924 0.2125 0.2091 0.0616 0.1013

4 0.1454 0.1408 0.4304 0.3620 0.1120 0.1590

2 0.6123 0.3798 0.5166 0.4054 0.2900 0.2480

Random
noise
(1000)

32 0.0789 0.1433 0.0573 0.1613 0.0525 0.1527

16 0.0768 0.1485 0.0550 0.1636 0.0513 0.1610

8 0.0776 0.1512 0.0485 0.1683 0.0506 0.1660

4 0.1029 0.1444 0.0465 0.1698 0.0461 0.1700

2 0.2276 0.2090 0.0457 0.1703 0.0470 0.1697

Random
noise
(10000)

32 0.2860 0.2158 0.4713 0.3900 0.2814 0.2588

16 0.2925 0.2177 0.5455 0.4344 0.2976 0.2650

8 0.2907 0.2269 0.4831 0.4015 0.2987 0.3209

4 0.2992 0.2700 0.6494 0.4877 0.3731 0.3272

2 0.7903 0.5640 0.6588 0.4920 0.4303 0.3513
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Table C.3: Average absolute error for perceptrons trained on the 5 Concen-
tric ellipses (overlay) image class.

Linear
perceptron

Nonlinear
perceptron

Multilayer
perceptron

Image class Projections Average

error

Standard

deviation

Average

error

Standard

deviation

Average

error

Standard

deviation

2 Ellipses
(overlay)

32 0.0234 0.0382 0.0466 0.0785 0.0382 0.0518

16 0.0392 0.0486 0.0466 0.0837 0.0250 0.0487

8 0.0583 0.0634 0.0549 0.0770 0.0350 0.0600

4 0.1181 0.1073 0.0706 0.1279 0.0685 0.1040

2 0.1967 0.1629 0.1914 0.1856 0.1198 0.1541

20 Small
ellipses
(overlay)

32 0.0440 0.0626 0.0491 0.0990 0.0464 0.0679

16 0.0749 0.0827 0.0525 0.1124 0.0378 0.0735

8 0.1104 0.1123 0.0628 0.1115 0.0598 0.1033

4 0.1472 0.1526 0.0815 0.1820 0.1025 0.1539

2 0.1509 0.1546 0.1367 0.1589 0.1189 0.1739

Random
noise
(1000)

32 0.0770 0.1453 0.0553 0.1630 0.0920 0.1396

16 0.0753 0.1503 0.0522 0.1657 0.0683 0.1550

8 0.0798 0.1504 0.0542 0.1650 0.0718 0.1560

4 0.1328 0.1817 0.0473 0.1693 0.0558 0.1651

2 0.1893 0.1975 0.0580 0.1640 0.0608 0.1629

Random
noise
(10000)

32 0.2788 0.2147 0.2689 0.2286 0.2685 0.2251

16 0.2864 0.2186 0.2834 0.2360 0.2791 0.2509

8 0.2936 0.2204 0.4018 0.3380 0.3029 0.3098

4 0.3085 0.2272 0.4290 0.3573 0.3019 0.2706

2 0.7535 0.5456 0.6501 0.4883 0.4406 0.3687



APPENDIX C. CROSS CLASS VALIDATION TABLES 43

Table C.4: Average absolute error for perceptrons trained on the Random
noise (1000) image class.

Linear
perceptron

Nonlinear
perceptron

Multilayer
perceptron

Image class Projections Average

error

Standard

deviation

Average

error

Standard

deviation

Average

error

Standard

deviation

2 Ellipses
(overlay)

32 0.0417 0.0424 0.1000 0.1405 0.0449 0.0953

16 0.0468 0.0527 0.0770 0.1183 0.0843 0.1723

8 0.0722 0.0826 0.0755 0.1105 0.0667 0.1285

4 0.1231 0.1313 0.0615 0.0895 0.0587 0.1125

2 0.1367 0.1740 0.0965 0.1438 0.1051 0.1813

20 Small
ellipses
(overlay)

32 0.0503 0.0638 0.0975 0.1474 0.0374 0.0901

16 0.0708 0.0823 0.0786 0.1293 0.0416 0.1098

8 0.1037 0.1181 0.0918 0.1413 0.0565 0.1127

4 0.1273 0.1584 0.0956 0.1550 0.0748 0.1465

2 0.1276 0.1877 0.1091 0.1771 0.1021 0.1920

5 Concen-
tric
ellipses
(overlay)

32 0.0684 0.0642 0.1557 0.1862 0.1959 0.2439

16 0.0686 0.0727 0.1043 0.1413 0.2412 0.3194

8 0.1481 0.1395 0.1032 0.1350 0.2318 0.3005

4 0.2941 0.2389 0.1069 0.1475 0.2145 0.2734

2 0.2861 0.2775 0.2077 0.2533 0.2278 0.2957

Random
noise
(10000)

32 0.2746 0.2091 0.3957 0.3315 0.3161 0.3749

16 0.2800 0.2147 0.2905 0.2403 0.3216 0.3819

8 0.2933 0.2815 0.2955 0.2486 0.3215 0.3816

4 0.4032 0.3974 0.3056 0.3255 0.3216 0.3818

2 0.3842 0.3945 0.3163 0.3586 0.3210 0.3799
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Table C.5: Average absolute errors for perceptrons trained on the Random
noise (10000) image class.

Linear
perceptron

Nonlinear
perceptron

Multilayer
perceptron

Image class Projections Average

error

Standard

deviation

Average

error

Standard

deviation

Average

error

Standard

deviation

2 Ellipses
(overlay)

32 0.0566 0.0758 0.0818 0.0536 0.1191 0.0812

16 0.2386 0.1520 0.3001 0.1810 0.3319 0.2003

8 0.3933 0.2456 0.4699 0.2880 0.4701 0.2906

4 0.3822 0.2387 0.3868 0.2413 0.5023 0.3334

2 0.3859 0.2458 0.4117 0.2665 0.3220 0.2055

20 Small
ellipses
(overlay)

32 0.0622 0.0796 0.0836 0.0620 0.1275 0.0862

16 0.2617 0.1697 0.3236 0.2063 0.3635 0.2363

8 0.4274 0.2702 0.5076 0.3203 0.5153 0.3324

4 0.4245 0.2671 0.4364 0.2798 0.5184 0.3428

2 0.4149 0.2553 0.4429 0.2800 0.3444 0.2099

5 Concen-
tric
ellipses
(overlay)

32 0.0874 0.0896 0.0948 0.0763 0.1262 0.0986

16 0.1662 0.1209 0.1950 0.1331 0.2054 0.1396

8 0.2624 0.1841 0.2946 0.2019 0.2829 0.1923

4 0.2636 0.2031 0.2578 0.2101 0.2846 0.2165

2 0.3131 0.2128 0.3218 0.2243 0.3050 0.2030

Random
noise
(1000)

32 0.0836 0.1355 0.1237 0.1217 0.1591 0.1221

16 0.3277 0.1917 0.3998 0.2377 0.5050 0.3023

8 0.5087 0.2939 0.6094 0.3545 0.6789 0.3935

4 0.5300 0.3050 0.5812 0.3364 0.7361 0.4256

2 0.4559 0.2597 0.4931 0.2828 0.3280 0.1864
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