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Abstract: We explore pattern discovery within the game of tennis. To this end, we formalize events in a match, and
define similarities for events and event sequences. We then proceed by looking at unbalancing events and their
immediate prequel (using pattern masks) and sequel (using nondeterministic finite automata). Structured in
this way, the data can be effectively mined, and a similar approach might also be applied to more general
areas. We show that data mining is able to find interesting patterns in real-world data from tennis matches.

1 INTRODUCTION

The analysis of tennis sequences has been studied be-
fore with an aim to either automatically annotate the
score or to classify the content for later retrieval, see,
e.g., (Sudhir et al., 1998; Calvo et al., 2002; Christ-
mas et al., 2005; Zhu et al., 2006). This analysis and
the methods to recognize and classify the images have
been usually undertaken by the computer vision re-
search community. However, the study of the captured
data in order to find patterns and relationships be-
tween variables (Tan et al., 2005) is relatively novel.
The objective of this paper is to establish a framework
that allows us to obtain such knowledge.

The contributions of this paper are fourfold.
Firstly, we establish a framework for multivariate
data mining based on distances and thresholds. Sec-
ondly, we introduce the concept of pattern masks as a
means to mine regular patterns. Thirdly, splitting pat-
terns into a prequel and a sequel, we propose an ef-
ficient algorithm to mine winning patterns, anchored
on so-called unbalancing events. For the prequel we
consider a distance notion based on event similari-
ties, whereas the sequel has to comply with a non-
deterministic finite automaton. Finally, we apply the
framework to real-world examples and extract novel
knowledge in the sports strategy arena. In this way,
where current analysis simply states winner percent-
ages, we are able to indicate how these winners were

performed and how they relate to each other.
The rest of the paper is organized as follows. Sec-

tion 2 contains related work. In Section 3 we formal-
ize a tennis match and present definitions used in the
rest of the paper. In Section 4 we define the concepts
of multivariate similarity, similarity thresholds and
pattern masks, as well as the mining problem to con-
sider. In Section 5, we propose an algorithm to find
winning patterns. Finally, we present the results ob-
tained in Section 6 and the conclusions in Section 7.

2 RELATED WORK

Wang et al. (Wang et al., 2005) treat the subject
in a similar way, but they only consider relative
player movements and no other variables. Wang and
Parameswaran (Wang and Parameswaran, 2005) take
into account 58 possible patterns and try to find
them in the footage using Bayesian networks. Zhu
et al. (Zhu et al., 2007) propose a tactic representa-
tion based on temporal-spatial interactions in soccer.
Lames (Lames, 2006) focuses on relative phases of
lateral displacements.

Schroeder et al. (Schroeder et al., 2005) use a
framework based on short term and long term mem-
ory that allows an incremental processing of data
streams. However, the tennis model used only in-



cludes one variable (the ball landing position) and
only eight different locations. Chu and Tsai (Chu and
Tsai, 2009) use symbolic sequences to tackle tactics
analysis. They use players location (four areas), play-
ers movement direction (up, down, left, right, still)
and players speed (fast, medium, still) to find frequent
movement patterns.

3 FORMALIZATION

In this section we explain how we formalize a tennis
match between two players, 1 and 2. For the rules of
tennis, the reader is referred to (International Tennis
Federation, 2010).

Although many computerized systems exist for
collecting and managing observational data, our need
to record the exact position of the players and the ball
on the court, forced us to develop a standalone appli-
cation that allowed us to calculate those positions on
a reference court model by means of computer vision
algorithms and camera calibration techniques. It is not
the aim of this paper to detail the methods and algo-
rithms used to obtain the data. The interested reader is
referred to (Hartley and Zisserman, 2003; Hayet et al.,
2005) for further information. Along with player and
ball positions, other relevant variables were also col-
lected as part of our sequential data.

3.1 Definitions

We will consider an event as a single stroke episode.
This event will contain all attributes that characterize
the stroke, i.e., the player that hits the stroke, the type
of stroke, the position of both players at the time of
hitting the ball, the position of the ball landing on the
opponent’s side after the stroke, the generated speed
of the ball, etc. A rally, on the other hand, refers to the
sequence or series of events that completely describe
the strokes exchanged by the players during a game
point. In other words, a rally will always start with a
service and will end with the final stroke that leads to
the conclusion of the point.

We will also define a partial rally as a subse-
quence of a rally. Partial rallies are made of consec-
utive events, with players alternating. For instance,
looking at rally 〈A,B,C,D,E〉, then 〈B,C,D〉 is a par-
tial rally, whereas 〈B,D〉 is not.

3.2 Reference Model

All integer coordinate pairs of events will be in the set
C = {0,1, . . . ,316} × {0,1, . . . ,768}. The positions
between (0,0) and (316,768) represent coordinates

both inside and outside of the court, being (50,150)
and (266,618) the coordinates of the top left corner
and the bottom right corner of the doubles court re-
spectively. This reference system gives us 2.5m of
space at each side of the doubles sidelines and 7.5m
at each side of the baselines which is sufficient to cap-
ture all the action within a match.

Because the players change sides every couple of
games, a transformation in the coordinates is needed
so that the data is always coherent.

3.3 Attributes Considered

We will now first focus on the stroke level and rally
level. There we have the following attributes (for each
attribute the possible values are mentioned):

• pl: player hitting the ball, {1,2};

• st: stroke type, {FS,SS,FH,FHS,BH,BHS,VOL,
SM,LOB,DSH}, corresponding to: first serve,
second serve, forehand, forehand sliced, back-
hand, backhand sliced, volley, smash, lob and
drop shot, respectively;

• P1 = (x1,y1): position of the player when the ball
is hit, C;

• P2 = (x2,y2): position of the opponent when the
ball is hit, C;

• P3 = (x3,y3): position of the ball when it bounces
on the opponent’s half of the court, C;

• sb: speed of the ball generated after the stroke,
{slow,normal, fast};

• us: unbalancing stroke that breaks the exchange
equilibrium, {0,1,2,3}.

As an example, a sequence including the first
events within a rally might look like this:
〈(2,FS,(142,618),(231,56),(163,267), fast,1),
(1,BHS,(191,64),(134,610),(103,566),slow,0),
(2,FH,(78,608),(173,55),(108,239), fast,2), . . .〉

Most attributes are self-explanatory. Attribute us
represents the intention of one player to attack and
destabilize the rally with his/her stroke. The non-zero
values indicate whether it is a first, second or third at-
tack. Very rarely a player will need more than three
strokes to finish an attack, and in such a case, one
could argue that the opponent did recover from the
initial attack and lost the point later on due to a new
and different attack.



4 PATTERN MINING

In this section we describe all necessary definitions.
We start with relatively simple similarity measures,
and generalize these to so-called pattern masks.

4.1 Similarity Measure

First, we define a similarity measure sim be-
tween individual events. In this case, when we
have events e = (pl,st,P1,P2,P3,sb,us) and e′ =
(pl′,st′,P′1,P

′
2,P
′
3,sb′,us′), we put:

sim(e,e′) = simplayer(P1,P′1)+ simplayer(P2,P′2)
+ simball(P3,P′3)+ simstroke(st,st′)
+δ(sb,sb′)+δ(us,us′) (1)

if pl = pl′, where each function determines the simi-
larity between the corresponding attributes. If pl 6= pl′

then sim(e,e′) = 0 (it is in this case also possi-
ble to apply a rotation to the coordinates involved;
we will return to this issue in a subsequent paper).
With dist(P,Q) representing the Euclidean distance
between points P and Q, we define:

simplayer(P,Q) = f (dist(P,Q)) ∈ [0,1] (2)
simball(P,Q) = g(dist(P,Q)) ∈ [0,1] (3)

simstroke(st,st′) = δ(st,st ′)+ ε(st,st′) ∈ [0,1] (4)

δ(u,v) =

{
1 if u = v
0 otherwise (5)

Here we have used suitable monotonically decreasing
functions f and g with f (0) = g(0) = 1. The function
ε allows for additional weight in the case of near equal
stroke types. All of the six terms can get their own
weight, if necessary (cf. Section 4.3). Note that 0 ≤
sim(e,e′)≤ simmax for suitable simmax ≤ 6.

Now that we have defined the similarity be-
tween events, we can easily determine the similarity
sim(seq1,seq2) between same-length sequences (or
partial rallies) seq1 and seq2 of single events as fol-
lows. If the length of both sequences equals n and
seq1 = 〈e1, . . . ,en〉 and seq2 = 〈e′1, . . . ,e′n〉, then:

sim(seq1,seq2) =
n

∑
i=1

sim(ei,e′i) (6)

If the sequences are of unequal length, we define their
similarity to be 0.

4.2 Similarity Thresholds

Once we know the similarity value between events
sim(e,e′) and sequences sim(seq1,seq2), we need to
establish the criteria by which we will consider two

events or two sequences as similar.We will use the
thresholds eventthr and seriesthr for this matter. Note
that we are defining two different thresholds to al-
low greater flexibility. This way, two events e and e′

will be considered similar if and only if sim(e,e′) ≥
eventthr and likewise, two sequences seq1 and seq2
of length n will be considered similar if and only if
sim(seq1,seq2)≥ n× seriesthr.

4.3 Pattern Masks

It will be shown later that we might want to compare
two sequences that do not correlate exactly. A typ-
ical example will be the response to an attack that
may produce different answers. For instance, a fast
first serve to the same corner may result in 1) an ace,
2) a forced error or 3) a short ball that will trigger
a winner. All these cases have one thing in common:
the initial attacking service. However, the short ball in
case 3 might bounce in many areas and therefore the
similarity measure defined above cannot be used.

Thus, in this case, the sequence similarity will be
more relaxed at certain points than others, and only
some events will enforce a high similarity condition.
In other words, we are trying to identify sequential
patterns with constraints.

Before we define the generalized pattern simi-
larity measure, we introduce the concept of a pat-
tern mask pmask = 〈sim1,sim2, . . . ,simn〉, where each
simi represents a particular similarity measure (a sim-
ple example being simi = sim from Section 4.1, i =
1,2, . . . ,n). This definition implies that a variety of
different similarity measures for each event within the
sequence could be used, e.g., concentrating on the
stroke types. Some similarity functions will indeed
favor certain attributes over others in order to fully
characterize a pattern.

In this case, a sequence seq1 = 〈e1, . . . ,en〉 will be
considered similar to a sequence seq2 = 〈e′1, . . . ,e′n〉
(with respect to pmask and corresponding thresholds
eventthr,i (i = 1,2, . . . ,n)), if and only if:

simi(ei,e′i)≥ eventthr,i for i = 1,2 . . . ,n (7)

Therefore, for a particular event, the similarity thresh-
old could be very low or even 0, meaning that event
wildcards could effectively be allowed. Note also that
this similarity implies the sequence similarity concept
defined in Section 4.2, when the pattern mask is made
of equal similarity functions, all sharing the same
threshold seriesthr. Instead of adjusting the thresholds,
it is also possible to rescale the similarity functions;
however, the current approach seems to have a better
underlying intuition.



4.4 Mining Problem

We are now able to define our mining problem. Given
a match between two players, we want to determine
the partial rallies that lead to winners or forced errors.
In this case, we are not so much interested in finding
very close similar partial rallies, but rather similar at-
tacking patterns that may bring about different defen-
sive responses that do not have to be exactly similar.
These patterns should also occur often enough, i.e.,
be frequent. More precisely, we define:

Mining Problem — Winning Rallies
Given a pattern mask pmask of a certain length n
with corresponding thresholds, and a minimum sup-
port threshold min support, determine those partial
rallies seq1 in the match that end with an unbalanc-
ing event, and for which there are at least min support
partial rallies seq2 that satisfy Equation 7. Such a rally
seq1 is called a winning (partial) rally.

5 APPROACH

The key to finding similar winning patterns is to iden-
tify similar attacking events. These events will act
therefore as fingerprints in the process.

5.1 Completion of Attack Patterns

We first establish the following equivalences. If we
call 1 a first attacking event and FE a possible forced
error as a consequence of 1, and then, depending on
whether the first attack results in a winner (meaning a
stroke that will not get a response from the opponent)
or in a forced error, we state that 1,EOR ≡ 1,FE,
where EOR denotes the end of a rally. Note that FE
automatically includes this last event.

The implication of the previous equation is that
two sequences of different lengths can be similar and
will represent nonetheless the same winning pattern.
Similarly, if 2 represents a second attacking event per-
formed by the player that produced event 1, then we
have 1,./,2,EOR≡ 1,./,2,FE, where ./ indicates an
event (not being FE) that does not carry strategic in-
formation, as it is a forced defensive response, and
therefore no similarity constraint should be enforced.
It will usually be a soft ball that can be attacked. And
analogously: 1,./,2,./,3,EOR≡ 1,./,2,./,3,FE.

The three equivalences above represent the basic
patterns to finish an attack depending on whether the
attacking player needed one, two or three strokes to
finalize the point.

5.2 Pattern Prequel and Sequel

For each winning pattern, we define its prequel as the
sequence of events that appear in the pattern up to the
first attacking event. Similarly, we define its sequel to
be the remaining events in the pattern. We consider
the first unbalancing event as being part of both pre-
quel and sequel.

For the remainder of the section, and in order to
describe a winning pattern, we will use the following
convention. We will continue to use 1, 2 and 3 to in-
dicate the first, second and third unbalancing event,
FE to indicate a forced error event and ./ to indicate
any event (again not being FE). We will also use X ,
Y , Z to indicate a particular event on which we may
enforce a similarity function.

Take, for example, the following pattern. The two
players are exchanging crosscourt strokes keeping the
ball deep until one player gets a short ball that trig-
gers an attack changing the direction and driving the
ball down the line. This represents pattern 19 from
(United States Tennis Association (USTA), 1996). If
X represents the crosscourt stroke and assuming that
we do not want to impose any similarity check on the
response to the attack, then the pattern of the prequel
could be represented as: p = 〈X ,./,1〉. In this case,
the possible sequels would be 〈1〉, 〈1,FE〉, 〈1,./,2〉,
〈1,./,2,FE〉, 〈1,./,2,./,3〉 or 〈1,./,2,./,3,FE〉.
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Figure 1: NFA for the winning pattern sequel.

The sequel can be represented by a nondetermin-
istic finite state machine or nondeterministic finite au-
tomaton (NFA) which can be dealt with in the pattern
mining computation. See Figure 1 where S0 is the ini-
tial state, and SF represents the final state.

5.3 Algorithm

In order to clarify the algorithm, and to explain the
different choices made so far, we begin with an exam-
ple. Note that we will use the Mining Problem from
Section 4.4 for the prequel and the NFA from Sec-
tion 5.2 for the sequel.

Figure 2 below shows a variation on the pattern
just mentioned. Here, we are interested in studying
three events prior to the attacking one. In this case,



we use the pattern 〈X ,Y,Z,./,1〉 to try to find a sim-
ilar sequence of three events 〈X ,Y,Z〉 that will allow
the first player to attack the ball and unbalance the
opponent. The use of the pattern mask allows to se-
lect which events in the pattern should have a high
similarity. This figure also takes into account both the
prequel and sequel of the winning pattern.

Figure 2: Winning pattern similarity.

In this example, if we assume for simplicity that
all similarity functions in the pattern mask are the
same, eventthr,e represents the event similarity thresh-
old for the event e, and ei.us represents the unbalanc-
ing stroke attribute of event i, then the two rallies:

r1 = 〈e11,e12,e13,e14,e15〉
r2 = 〈e21,e22,e23,e24,e25,e26,e27〉

where e15 and e27 are both last events, will be similar
and belong to the same winning pattern 〈X ,Y,Z,./,1〉
if all the following conditions are true:
sim(e11,e21)≥ eventthr,X , sim(e12,e22)≥ eventthr,Y ,

sim(e13,e23)≥ eventthr,Z , sim(e15,e25)≥ eventthr,1,

e15.us = 1, e25.us = 1, e27.us = 2

The algorithm implemented to identify the win-
ning patterns is described in the pseudocode from Fig-
ure 3. Firstly, we locate events that verify the con-
dition of being first attacking events. Then for each
pattern, we expand the projected database (cf. (Pei
et al., 2001)) in depth-first fashion checking from the
pointer to the left using the similarity mask. For each
sequence found, we expand likewise the sequel to the
right checking the NFA as well. Several optimizations
are possible, like search space pruning, but the cur-
rent implementation does not focus on this issue, the
datasets being of relatively small size.

6 RESULTS

Over 3,000 events from more than 7 hours of record-
ings where captured and analyzed, covering men’s
and women’s matches in both hard and clay courts.

input R, a series of rallies;
pmask, a pattern mask (with thresholds);
NFA, an automaton;
min support, a threshold

output W , a set of winning patterns with support
begin

Put all events e from R with e.us = 1 into set S
foreach e ∈ S

support← 0
foreach e′ ∈ S with e 6= e′

if prequels similar according to pmask
and sequels satisfy NFA

support ++

if support ≥ min support
Add prequel and support to W

return W
end

Figure 3: Algorithm — Winning patterns identification.

As a first experiment, we tried to analyze the
successful service winning patterns displayed by the
players. Depending on the court surface, these points
can account for more than half the total points won
(i.e., excluding unforced errors by the opponent).The
winning pattern here is simply 〈1〉, equal to its pre-
quel (no prior events: the unbalancing stroke belongs
to a service) and the usual sequel of 〈1〉, 〈1,FE〉, etc.

The three left panels from Figure 4 show a few ex-
amples of successful service winning patterns found
for the 2010 Australian Open semifinal between Na Li
and Serena Williams. Black circles represent player
positions, yellow (light) circles refer to ball landing
positions. Each panel represents the same winning
pattern (service to the T on the Deuce court), being
completed by one, two or three strokes, respectively.

A second experiment was set up to try to find
groundstroke attacking patterns. The winning pattern
here was set to be 〈X ,Y,1〉. The pattern mask is set
in such a way that the event threshold at the first un-
balancing event (or pointer) and the event Y is fairly
high, but it is lower at the event X . Note that by low-
ering these thresholds or even eliminating the event X
from the winning pattern, we would get more results.

The outcome of this new search for the 2009
French Open match between Rafael Nadal and Robin
Söderling produced the following results: 11 ground-
stroke attacking winning sequences by Nadal all have
the same pattern. The three right panels from Fig-
ure 4 show a few examples of successful groundstroke
attacking winning patterns by Nadal. We have not
shown the completion of the attack (i.e., the sequel)
in order to make the figures clearer.



Figure 4: Successful winning patterns.

7 CONCLUSIONS

The use of multivariate sequential data mining along
with a comprehensive set of spatiotemporal attributes
has proved to be an effective approach in order to
discover successful tennis strategies within a tennis
match. To this purpose, we have introduced the con-
cepts of event thresholds, rally similarities and pattern
masks so that any winning pattern can be defined and
mined. These patterns consist of a prequel and a se-
quel, that are characterized by a pattern mask and an
automaton (that accepts unbalancing events), respec-
tively. Results demonstrate that this framework can be
of help for the analysis of tennis matches.

However, other interesting problems remain un-
solved: the identification of frequent rallies, the possi-
ble characterization of a tennis player based on his/her
rallies, the discovery of unforced-error and losing pat-
terns, and the effect of the score in the game.These
will be analyzed in subsequent papers.
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