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Cell Nucleus: Where the 
genes are.

www.grad.ttuhsc.edu/courses/histo   
Texas Tech University Health Sciences Center

Genes are DNA sequences

DEFINITION  Human breast cancer susceptibility (BRCA2) mRNA, complete cds.
ORGANISM  Homo sapiens

Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.

FEATURES             Location/Qualifiers
source          /map="13q12-q13"

/chromosome="13"
CDS             229..10485

/gene="BRCA2"
/codon_start=1
/product="BRCA2"

/gene="BRCA2”
ORIGIN

1 ggtggcgcga gcttctgaaa ctaggcggca gaggcggagc cgctgtggca ctgctgcgcc
61 tctgctgcgc ctcgggtgtc ttttgcggcg gtgggtcgcc gccgggagaa gcgtgagggg

121 ctcgggtgtc ggtggcgcga gaggcggagc cgctgtggca atccaaactc gccgggagaa
[180 lines deleted]     
10921 ttacaatcaa caaaatggtc atccaaactc aaacttgaga aaatatcttg ctttcaaatt
10981 gacacta

www.ncbi.nlm.nih.gov/Entrez
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Protein

mRNA

DNA

transcription

translation

CCTGAGCCAACTATTGATGAA

PEPTIDE

CCUGAGCCAACUAUUGAUGAA

Microarray
Individual genes can be compared 
using a ‘Competitive Hybridisation’
Microarrays allow this experiment to 
be carried out on a mass scale at a 
microscopic level
Typically 6-30 thousand genes can 
be analysed on one chip 
simultaneouslyCy5

Cy3

Cy5

Cy3

+ + 

+ + 

Extract RNA

Treated Cell

Normal Cell

Human Genome

Dye 

Print Array

cDNA microarrays: the process
Building the chip:

MASSIVE  PCR PCR PURIFICATION 
and PREPARATION

PREPARING SLIDES PRINTING

RNA 
preparation:

CELL CULTURE 
AND HARVEST

RNA ISOLATION

cDNA PRODUCTION

Hybing the 
chip: POST PROCESSING

ARRAY HYBRIDIZATION

PROBE LABELING

SCANNING THE CHIP

Adapted from Schena & Davis
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cDNA microarrays: Building the chip

Arrayed Library
(96 or 384-well plates)

PCR amplification Consolidate into 
well plates

Spot as microarray
on glass slides

(Ngai Lab, UC Berkeley)

96 well plate 
Contains cDNA 
probes

Glass Slide
Array of bound cDNA probes 

4x4 blocks = 16 print-tip groups 

Print-tip 
group 7

Print-tip 
group 1

Pins collect cDNA 
from wells

cDNA microarrays: RNA preparation

mRNA is reverse-transcribed into cDNA and labelled.

cDNA microarrays: Hybing the chip
Hybridizing of labelled cDNA target 
samples to cDNA probes on the slide

cover 

slip

Hybridize for 

5-12 hours
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cDNA microarrays: brief summary

cDNA “A”
Cy5 labeled

cDNA “B”
Cy3 labeled

Hybridization Scanning

Laser 1         Laser 2

+

Image Capture

Biological 
Question

Sample   
PreparationMicroarray

Life Cycle

Data 
Analysis & 
Modelling

Microarray
Reaction

Microarray
Detection

Taken from Schena & Davis

Biological question
Co-expressed genes

Sample class prediction etc.

Testing

Biological verification 
and interpretation

Microarray experiment

Estimation

Experimental design

Image analysis

Low-level analysis

Clustering Discrimination

16-bit TIFF files

Microarray gene expression 
Data

Gene expression data on p genes for n samples

Genes

mRNA samples

Gene expression level of gene i in mRNA sample j

=
Log( Red intensity / Green intensity), or

sample1 sample2 sample3 sample4 sample5 …
1 0.46 0.30 0.80 1.51 0.90 ...
2 -0.10 0.49 0.24 0.06 0.46 ...
3 0.15 0.74 0.04 0.10 0.20 ...
4 -0.45 -1.03 -0.79 -0.56 -0.32 ...
5 -0.06 1.06 1.35 1.09 -1.09 ...

Log(Signal)
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Veronica Vinciotti

From experimental design 
to gene networks

Sample A Sample B

RNA

cDNA

Cy3-dCTP Cy5-dCTP

DNA
microarray

A=B
A < B

A > B

DATAEXPERIMENTAL
DESIGN

IMAGE
ANALYSIS

CLUSTERING/
CLASSIFICATION

BIOLOGICAL
NETWORKS

TWO-CHANNEL DNA MICROARRAY EXPERIMENT

Experimental Design Experimental Design Issues

Technical variation
Replicated genes on the slide

Biological variation
Samples from different individuals

How to allocate samples to arrays
Which two conditions should be compared 
on one array?
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Choice of Design
Question: Given number of conditions (e.g. time 
points) we wish to compare and a number of arrays 
we can afford to make, what is the most efficient 
design?

Which Design is Best?
Loop-type of designs have been shown 
to be more efficient than reference 
designs

Both theoretically and experimentally
Loop designs allocate the resources 
more efficiently to compare the 
conditions of interest

In a reference design, 50% of the 
resources are used on a reference sample, 
of little interest to biologists

However…
The data that come out of loop-type of 
designs are less intuitive

One can use a simple linear model to obtain 
estimates of the contrasts

How to extend loop designs to large studies
Comparing all possible pairs of conditions 
becomes unrealistic for large studies

How to measure the efficiency of a design
The design should provide precise estimates of the 
parameters of interest
The design should be robust to the situation when 
arrays get missing/damaged or the experiment 
has to be extended in future

Design for Large Studies
(Vinciotti et al, 2004, Bioinformatics)
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Karl Fraser

Current Image Processing 
Techniques

Current techniques rely upon operator 
assistance and prior knowledge
At present, no one method has been 
successful in blindly processing a slide 
with excess noise
Rather than focus on one technique, we 
instead propose an adaptable framework 
which can be developed to combine 
multiple techniques

Current Processing
GenePix® Method

Current Processing…cont
GenePix® Method
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Problems Copasetic Analysis

Image Layout

Acquire high level 
image information 

(gene blocks)

Image Layout

Acquire high level 
image information 

(gene blocks)

Image Structure

Acquire low level 
image information 
(individual genes)

Image Structure

Acquire low level 
image information 
(individual genes)

Copasetic Clustering

Applies a clustering 
algorithm to the entire 

image surface

Copasetic Clustering

Applies a clustering 
algorithm to the entire 

image surface

Structure Extrapolation Feature Identification

Final Analysis

Summarise data 
(calculate gene 
spot metrics)

Final Analysis

Summarise data 
(calculate gene 
spot metrics)

Final Analysis

Summarise data 
(calculate gene 
spot metrics)

Data Services Data Analysis

Post Processing

Clean up image 
(compensate for 

background noise)

Post Processing

Clean up image 
(compensate for 

background noise)

Post Processing

Clean up image 
(compensate for 

background noise)
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k HISTORICAL RESULTS

FINAL RESULTS

Data Stream

Service Request Helper Task

Core TaskData StreamData Stream

Service RequestService Request Helper Task

Core Task
Output

Log2 ratios and 
related statistics

Output

Log2 ratios and 
related statistics

Input

Raw 16bit cDNA 
microarray 

images

Spatial Binding

Identify and group 
regions of interest 
(a genes pixels)

Spatial Binding

Identify and group 
regions of interest 
(a genes pixels)

Vader Search

Enhance ‘Spatial 
Binding’ using 

historical results

Vader Search

Enhance ‘Spatial 
Binding’ using 

historical results

ITE: Data Filtering

Analysing the raw data may not be beneficial
Filtering can clean, emphasis genes
For example, input-output response curves

Filtered DataRaw Data

ITE: Data Transformations

Sometimes a different perspective can help…
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CC 2: Conceptual Overview
In

pu
t

O
ut

pu
t

La
ye

r 0
La

ye
r 1

?

CC: Standard Clustering
Standard Clustering

Copasetic Clustering

• Clustering is performed 
locally

• Pyramidic process used to 
combine results

• Standard clustering 
approach is unfeasible due 
to large datasets

Input Output

?

Input Layer 1 Layer 2 Layer 3 Output

CC: Historical Information

Input Output

?
• Search is biased to local regions

• This is very powerful when 
combined with the historical 
information saved from different 
levels

• Still makes use of traditional 
techniques

Input Layer 1 Layer 2 Layer 3 Output Consensus 
Output

Copasetic Clustering

Standard Clustering

T:KT:KT:FT:F

C:KC:KC:FC:F

Example process
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CC: Microarray Results

• A microarray slide that contains ~10 million observations (1.2M FG)
• Black squares show regions where extreme values have distorted local area

Post-Processing & Final 
Analysis

Overall Results

Provided a 1 – 3dB (PSNR) improvement over 
GenePix® as used by an expert operator

HGMP 1 HGMP 2

Stephen Swift
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Clustering and Grouping (1)

Clustering
Arranging Objects (as Points) into Sets 
According to “Distance” on a Hyper-Graph

Grouping
Arranging Objects into Sets According to Some 
Inter-Object Relationship

Each Set is Usually Mutually Exclusive

Will Not Consider “Fuzzy” Clustering

Clustering and Grouping (2)

Problem

Clustering Grouping

Distance
Matrix

Relationship
Matrix

Cluster
Worth

Clustering
Method

Application 1 – MTS Decomposition

-3
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-1

0

1

2

3
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-3

-2

-1

0
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2

3

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Application 2 – Email Logfiles

SITE A-02SITE A-01 SITE A-03 SITE A-04 SITE A-05

SITE A

SITE B-01 SITE B-02

SITE B

SITE C-02SITE C-01 SITE C-03 SITE C-04 SITE C-05

SITE C

SITE D-01 SITE D-02 SITE D-03

SITE D SITE X-YZ

SITE X

KEY

Server Name

Server

Network Connection

Physical Site

Site Name
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Application 3 – Microarrays Vectors and Distances (1)

Many Methods are Designed to Work on Distance 
Metrics, e.g. K-Means

They Assume that the “Triangle Inequality” Holds

This is NOT the Case for Many Applications, e.g. 
MTS Decomposition Using Cross-Correlation

More General “Grouping” Methods Must be 
Chosen

Vectors and Distances (2)
Distance Matrices

Euclidean

Correlation

Minkowski

Manhattan

Mahalanobis

Relationship Matrices
How Long is a Piece of String?

Often Application Dependant

Cluster Worth (1)

The Choice of Correct Metric for 
Judging the Worth of a Clustering 
Arrangement is Vital for Success

There are as Many Metrics as Methods!

Each has Their Own Merits and 
Drawbacks
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Cluster Worth (2)

Sum of Squares by Cluster

Homogeneity (H)

Separation (S)

H/S

Maximum Likelihood

Minimum Description Length

Etc…

The Number of Clusters
Many Applications Specify the Number of 
Clusters a Solution Requires, e.g. the Email 
Server Application

Many Do Not, e.g. Microarray Data

Determining the Number of Clusters is Very 
Difficult

A Choice of Method that Locates the Number 
of Clusters and Their Contents is Often 
Desirable

Methods
Statistical

K-Means

Hierarchical

PAM

Optimisation / Search /AI
Evolutionary Computing

SOM

Hill Climbing and Simulated Annealing

KDD and Others, e.g. CLARIS, EM

Comparing Clusters and Methods

H40 K40 SOM40 HC40 SA40

H40 - 0.609 0.041 0.640 0.647

K40 - - 0.053 0.536 0.540

SOM40 - - - 0.082 0.074

HC40 - - - - 0.879

SA40 - - - - -

Metrics Can Be Used To Compare Method 
Result Similarity
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Consensus Clustering

Clustering Results Can Vary Depending on the 
Method Used
Combine the Results of Multiple Methods into 
One Set of Consensus Results
An Algorithm is Needed For Generating 
Consensus Clusters Given the Agreement 
Matrix
We Use an Approximate Stochastic Algorithm 
Called Simulated Annealing

Consensus Clustering

Agreement Matrix
Consensus Clusters

Input Cluster Results
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The Agreement Matrix Scalability Issues
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Summary (1)

Clustering and Grouping Problems are 
Hard!

Especially Microarray Data

Difficult Choice of Metric, Cluster Worth 
and Method Against Problem

There is No Free Lunch!

Allan Tucker

MicroArray Data

High dimensional
Small number of samples
Model the data

Classification
Feature selection
Knowledge discovery

Model complexity issues

Effect of Model Complexity

sample size
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Identifying Predictive Genes

Naïve Bayes Classifier
Well established
Minimises parameters

Feature selection
Local stepwise methods
Global search (SA)

Resampling methods
Cross validation

Identifying Predictive Genes

Identify genes robustly
Data perturbed during CV
Repeats of stochastic SA search

Assign confidence based upon the 
frequencies of genes being selected
Limit maximum number of links -
MDL

Confidence Scores

Relatively small number of genes 
Identified with high confidence
Consistency between runs

genes
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Identified Genes
B-CELL PROSTATE

GeneBank Proportion GeneBank Proportion
AK023995 0.862 AA055368* 0.5
U15173* 0.796 N64741 0.34
L21936 0.488 AA487560* 0.33
D83785 0.454 W47179 0.27

BC014433 0.442 AA486727 0.26
U59309 0.277 AA455925 0.25
-47202 0.25 H29252 0.25

Z14982* 0.169 AA010110 0.24
BC016182* 0.162 AA180237 0.23

U82130 0.146 AA443302 0.2
Z80783 0.131

BC009914 0.127
U77949 0.112
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Expert Knowledge

Lots of other information available
Pathway Information
Gene Ontology
Sequence Information
Functional information

Use this data as prior knowledge
Update with data

Bayesian Classifiers

TAN - No longer 
assume 
independence 
between features

BNC – Include class 
node as a normal 
variable

Dynamic Bayesian Networks

g0

g1

g2

g3

g4

t-5       t-4       t-3       t-2        t-1        t

Genes

Time Lag

Summary (2)

When micro-array data only has small 
samples:

Simple models with small parameters best
Global search for parameters better

Bayesian networks can incorporate 
different types of data
Update expert knowledge with data
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Conclusion

Biological data are very noisy 
Modelling biological systems, at 
systems level?
More integrated computational 
methods for organising and 
analysing data
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