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Cell Nucleus: Where the
genes are.

Genes are DNA sequences

DEFINITION Human breast cancer susceptibility (BRCA2) mRNA, complete cds.
ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes; Metazoa; Chordata;
Vertebrata; Eutheria; Primates; Catarrhini; Hominidae; Homo.
FEATURES Location/Qualifi

source /map=""13q12-
/chromosome="13"
CDs 229..10485

/gene="BRCA2"
/codon_start=1
/product="BRCA2""
/gene="BRCA2”
ORIGIN
1 ggtggcgega gettctgaaa ctaggcggca gaggcggage cgetgtggea ctgetgegee
61 tctgctgege ctcgggtgte ttttgeggey gtgggtcgee gecgggagaa gegtgagggg
121 ctcgggtgtc ggtggcgcga gaggcggage cgctgtggea atccaaactc gccgggagaa
[180 lines deleted]
10921 ttacaatcaa caaaatggtc atccaaactc aaacttgaga aaatatcttg ctttcaaatt
10981 gacacta




DNA is denatured GACT
by heating Renaturation

DNA CCTGAGCCAACTATTGATGAA

transcription
\ 4

mRNA CCUGAGCCAACUAUUGAUGAA

translation 3 GCAU
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cDNA microarrays: the process
Mi croarray Building the chip:
Individual genes can be compared \
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cDNA microarrays: Building the chip

——» PCR amplification — Consolidate into
well plates

Arrayed Library
(96 or 384-well plates)

Spot as microarray
on glass slides

(Ngai Lab, UC Berkeley)

Pins collect cDNA
from wells
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cDNA microarrays: RNA preparation

human sample collection
tissue banks

model systems

pathology microdissection
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§ — sources of RNA &
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mRNA is reverse-transcribed into cDNA and labelled.

cDNA microarrays: Hybing the chip

Hybridize for
5-12 hours




cDNA microarrays: brief summary
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Taken from Schena & Davis

Biological question
—> Co-expressed genes
Sample class prediction etc.

[ Experimental design }

v

[ Microarray experiment }

L 16-bit TIFF files
{ Image analysis

[ Low-level analysis J

Estimation m """ [ Clustering ] [Discrimination}

Biological verification
and interpretation

Microarray gene expression

Data
pression data on p genes for 7 samples
mRNA samples
| sample1 sample2 sample3 sample4 sample5 ...
1 046 030 080 151  0.90
2 -0.10 049 024 006 046
Genes 3 0.15 0.74 0.04 0.10 0.20
4 045 -1.03 -079 0568 -0.32
5 006 106 135 -1.09

Gene expression level of gene iin mMRNA sample j
{ Log( Red intensity / Green intensity), or

L Log(ziona)




Veronica Vinciotti

From experimental design
to gene networks
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Experimental Design Issues

#Technical variation
= Replicated genes on the slide

#Biological variation
= Samples from different individuals

#How to allocate samples to arrays

= Which two conditions should be compared
on one array?




Choice of Design

4 Question: Given number of conditions (e.g. time
points) we wish to compare and a number of arrays
we can afford to make, what is the most efficient

‘Which Design is Best?

#Loop-type of designs have been shown
to be more efficient than reference
designs
= Both theoretically and experimentally

#Loop designs allocate the resources
more efficiently to compare the
conditions of interest
= In a reference design, 50% of the

resources are used on a reference sample,
of little interest to biologists

design?
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# The data that come out of loop-type of
designs are less intuitive
= One can use a simple linear model to obtain
estimates of the contrasts
# How to extend loop designs to large studies
= Comparing all possible pairs of conditions
becomes unrealistic for large studies
# How to measure the efficiency of a design

= The design should provide precise estimates of the
parameters of interest

= The design should be robust to the situation when
arrays get missing/damaged or the experiment
has to be extended in future

Design for Large Studies

(Vinciotti et al, 2004, Bioinformatics)

A-Optmality Score for Contrasts: Tr[ Inv(X %) | = 158 4578
I of arrays =90 N of conditions = 30




Karl Fraser

Current Image Processing
Techniques

Current techniques rely upon operator
assistance and prior knowledge

At present, no one method has been
successful in blindly processing a slide
with excess noise

#Rather than focus on one technique, we
instead propose an adaptable framework
which can be developed to combine
multiple techniques

Current Processing

GenePix® Method

&. Diock Preperties for Diock #32

Current Processing...cont
GenePix® Method




Problems

Copasetic Analysis
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ITE: Data Filtering

# Analysing the raw data may not be beneficial
# Filtering can clean, emphasis genes
# For example, input-output response curves

| Filtered Data |

| RawbData |

e i

ITE: Data Transformations

Sometimes a different perspective can help...

™

B M ey




CC 2: Conceptual Overview
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CC: Standard Clustering

Standard-Clustering
» » » » » Clustering is performed
»> » locally
oD T » 1
» = - « Pyramidic process used to
» »> . - combine results
Input Output » Standard clustering

approach is unfeasible due

) . to large datasets
Copasetic Clustering
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CC: Historical Information
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* Search is biased to local regions

‘ * This is very powerful when
combined with the historical
information saved from different

levels
‘Input Output +  Still makes use of traditional
‘ techniques
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CC: Microarray Results

* A microarray slide that contains ~10 million observations (1.2M FG)
* Black squares show regions where extreme values have distorted local area

Post-Processing & Final

“Analysis

Overall Results

# Provided a 1 — 3dB (PSNR) improvement over
GenePix® as used by an expert operator
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Clustering and Grouping (1)

# Clustering

= Arranging Objects (as Points) into Sets
According to “Distance” on a Hyper-Graph

# Grouping

= Arranging Objects into Sets According to Some
Inter-Object Relationship

# Each Set is Usually Mutually Exclusive
# Will Not Consider “Fuzzy” Clustering

Clustering and

Grouping (2)

Clustering

Distance

Matrix

Grouping

Relationship
Matrix

Clustering
Method

Application 1 — MTS Decomposition

Application 2 —
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Application 3 — Microarrays

Vectors and Distances (1)

Many Methods are Designed to Work on Distance
Metrics, e.g. K-Means

They Assume that the “Triangle Inequality” Holds

# This is NOT the Case for Many Applications, e.g.
MTS Decomposition Using Cross-Correlation

# More General “Grouping” Methods Must be
Chosen

Vectors and Distances (2)

# Distance Matrices

= Euclidean
= Correlation
= Minkowski
= Manhattan
= Mahalanobis
# Relationship Matrices

= How Long is a Piece of String?

= Often Application Dependant

Cluster Worth (1)

#The Choice of Correct Metric for
Judging the Worth of a Clustering
Arrangement is Vital for Success

#There are as Many Metrics as Methods!

#Each has Their Own Merits and
Drawbacks

12



Cluster Worth (2)

# Sum of Squares by Cluster
# Homogeneity (H)

# Separation (S)

# H/S

# Maximum Likelihood

4 Minimum Description Length
# Etc...

The Number of Clusters

any Applications Specify the Number of
Clusters a Solution Requires, e.g. the Email
Server Application

# Many Do Not, e.g. Microarray Data

# Determining the Number of Clusters is Very
Difficult

# A Choice of Method that Locates the Number
of Clusters and Their Contents is Often
Desirable

= K-Means

= Hierarchical
= PAM
# Optimisation / Search /Al
= Evolutionary Computing
= SOM

= Hill Climbing and Simulated Annealing

# KDD and Others, e.g. CLARIS, EM

Comparing Clusters and Methods

H40 K40  SOM40
0.609 0.041

0.053

# Metrics Can Be Used To Compare Method
Result Similarity

13



Consensus Clustering

Consensus Clustering T LI
Input Cluster Results

# Clustering Results Can Vary Depending on the
Method Used

# Combine the Results of Multiple Methods into
One Set of Consensus Results

# An Algorithm is Needed For Generating
Consensus Clusters Given the Agreement

Agreement Matrix
g Consensus Clusters

~—
From Gen

Matrix hs
# We Use an Approximate Stochastic Algorithm T e B
Called Simulated Annealing T
J
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“Summary (1)

#Clustering and Grouping Problems are
Hard!

» Especially Microarray Data

#Difficult Choice of Metric, Cluster Worth
and Method Against Problem

#There is No Free Lunch!

Allan Tucker

‘MicroArray Data

#High dimensional
#Small number of samples
#Model the data

= Classification

» Feature selection

= Knowledge discovery

#Model complexity issues

Effect of Model Complexity

average CV error

00 02 04 06 08 1.0

B — 5links

== 500 links
— Naive

50 links
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20

40 60 80 100

sample size
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ldentifying Predictive Genes

#Naive Bayes Classifier
= Well established
= Minimises parameters
#Feature selection
= Local stepwise methods

= Global search (SA)

#Resampling methods
» Cross validation

ldentifying Predictive Genes

#ldentify genes robustly
= Data perturbed during CV
= Repeats of stochastic SA search
#Assign confidence based upon the
frequencies of genes being selected
#Limit maximum number of links -
MDL

Confidence Scores

#Relatively small number of genes
#ldentified with high confidence

#Consistency between runs

i i
LLJMMLLJJL ‘ ..4...1 .I |

eeeeeeeeee

ldentified Genes

B-CELL PROSTATE
GeneBank Proportion | GeneBank Proportion
AK023995 0.862 AA055368* 0.5

U15173* 0.796 N64741 0.34
L21936 0.488 AA487560* 0.33
D83785 0.454 W47179 0.27
BC014433 0.442 AAA486727 0.26
U59309 0.277 AA455925 0.25
-47202 0.25 H29252 0.25

214982* 0.169 AA010110 0.24
BC016182* 0.162 AA180237 0.23
uU82130 0.146 AA443302 0.2
780783 0.131
BC009914 0.127
U77949 0.112




Expert Knowledge

#Lots of other information available
m Pathway Information
= Gene Ontology
= Sequence Information
= Functional information
#Use this data as prior knowledge

#Update with data

Bayesian Classifiers

TAN - No longer
assume
independence

between features () (=) (2 (%)

BNC — Include class (c)
node as a normal
variable

‘Dynamic Bayesian Networks

Genes

%

91

92

93
94

t5 t4 3 t2  t1 t
Time Lag

“Summary (2)

#When micro-array data only has small
samples:
= Simple models with small parameters best
= Global search for parameters better
#Bayesian networks can incorporate
different types of data

#Update expert knowledge with data

17



Conclusion

#Biological data are very noisy

#Modelling biological systems, at
systems level?

#More integrated computational
methods for organising and
analysing data
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