X
X
X

TPD

University of Amsterdam TNO Institute of

Faculty of Mathematics, Applied Physics
Computer Science, Physics

and Astronomy

Kruislaan 403 P.O. Box 155

1098 SJ Amsterdam, 2600 AD Delft, The Netherlands
The Netherlands Stieltjesweg 1

2628 CK Delft, The Netherlands

SCIL _Image
verson 1.4
User Manual
WINDOWS version

May, 1998

Copyright notice

Copyright © 1992-1998 by University of Amsterdam, Faculty of Mathematics and Computer
Science, Amsterdam, The Netherlands and TNO Institute of Applied Physics, Delft, The
Netherlands. All rights reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or computer language,
in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of TNO Institute of Applied Physics, Delft,

The Netherlands.

Disclaimer

It is believed that the information in this publication is accurate as to the date of publication;
this information and the software package, which is described, are subject to change without
notice. Furthermore, University of Amsterdam, Faculty of Mathematics and Computer

Science and TNO Institute of Applied Physics make no representations or warranties as to the
accuracy or completeness of this publication, nor as to the accuracy or completeness of the
software-package it describes. All other warranties, express or implied, are hereby
disclaimed, specifically including, but not limited to, express or implied warranties of
merchantability or fitness for a particular purpose.

Chapter 1 Outlinesof SCIL_Image......cccccecveieeiiriieeciecee e 1-1
Thefour layers of SCIL_IMAJE........cccuiiririiieieesiere s 1-2
Using the system at the application |evel...........cccooiriiiiiici e 1-2
Using the system as an interaCtive USEYoocoveierenireneeeesee e 1-2
Using shorthand typing for application development...........cccocveevveeveeieseenens 1-3

(@00 011 0] IS =1 = 1= | £ 1-3
Programming an image processing fUNCHION.ccverereeierienese e 1-4
Making your OWN TIDrary ... 1-5
Building @pPliCaLIONS..........oiiiiieriestieeee et 1-5
SCIL and the Image lIDrary ... s 1-5
Onreading thiSMANUELooiririie s 1-6
Summary of the Chapters..........ccoiirr s 1-6
WHY SCIL_IMAJE 2 ...ttt sttt 1-8
A multi-level interactive processing enViroONMENt...........ccoerereereererereseseseseenens 1-10
SCIL: Library Nanaler..........coooirinirieeeese e 1-10
SCIL: CoiNLEIPIELEN ...ttt bbb 1-11
SCIL: Command EXPANETccerererieierierie sttt enes 1-11
SCIL: Menu and dialog gENEIaLo............ooiririereneneseeeeee e 1-12
The IMage liBrarieso 1-12
IMBGE INFIASIIUCIUIE.........oviiiieerieeieeee et 1-12

Binary mathematical Morphology.........cccceoerirenenininieee e 1-13
Numerical analysis of ObJeCtSIN IMAJES........cccceverererieeee e 1-13
Chapter 2 Setting up SCIL_ImMageccccevcveveriie e 2-1
Setting Up: SLEP DY SEED ... 2-2
The SCIL_IMage FOIAENcceeeeeeceee et 2-4
Your SCIL_Image ENVIFONMENE...........ccoiiieiieie et ee et 2-6
Chapter 3 Getting started.........cccveveeieeiieneeee e 31
BEfOre YOU DEGIN.......ooeiieee e e s 3-2
The Five Modes of Interaction with SCIL_ImMage........ccoccevervenennenieneeseeie e 3-2
SesSioN ONE: VIEWING IMAJES.....cc.eeiieiiiiesieeiie ettt ee e 3-3
Session Two: Using the SCIL_Image Menu SyStem..........coccveevenieneeneneeseeene 3-13
Session Three: Using the SCIL_Image Command Line Modeccceevreerieenene. 3-21
Session Four: Programming in SCIL_IMage........cooceeiiieierie e 3-26
Making a New Compiled Version of SCIL_ImMage........cccceveeierinieeneninneeeeeeees 3-30
The Commands of the SCIL_Image MeNUS...........ccceeiirirnenienieneeee e 3-37
L e et reenre s 3-37
B 3-37

S O | OSSOSO 3-38
LNIBGIE. .. ne e 3-38
D1 o] = YRR 3-40

(@7 011 o 1SS 3-40
ATTTNMELIC ..o et sa e s neenae s 3-41
[EOOIS .ttt e a e e e re e 3-41
The Properties of TeXt WINCAOWS.........ccoiiiiieriiiieseeie e 3-42
ON-lINEMANUEIS........eiiieieee et et re e 3-43
REFErenCe ManUaL.............ooeiiiiieee e 3-43
Chapter 4 The C INtErPreter ..o 4-1
SCIL_IMAJE AN C ...ttt e 4-2

ANSI-C COMPALTDHITY ... 4-3

The DireCt COMMANT IMOOE ... nnnnnnn 4-3

TREMACIO MOUE........ooiieiieeeee et ae e ne s 4-5
The Programming Mode: Interpreted C-functions and UFOS............ccccoeceevieecnneene 4-7
Program Development COmMMENGS..........ccociieeieriieneereeeesee e 4-9
chain <filename> [@gS]ccooeriire e e 4-10

TS S = = o | OSSPSR 4-10
1080 <FIHENAMES ... e e 4-10
logon <filename> [0gOfT ..o 4-11
MACrO [-1] [-V] KMBCIOFHE> ... 4-11
001725 TSP PRSPPI PRSPPI 4-12
0T =0 SRR 4-12
THME SCOMIMANTS ... et 4-12

the interrupt: PaUSE/BreaK.........ccccueieiieiiie e 4-13
NEIP FACHITIES, ... 4-13
Ctrl-H <selection>Citrl-Enter <command> ? ? <pattern>...........ccccoeveenen. 4-13

Errors, Warnings and DIiagNOSLICScovueriinierienie e 4-15
Features of SCIL_Image S C-INtErPreter.........oieeeieerenienee e 4-16
Chapter 5 Advanced SCIL_Image.......ccccceveeveeiieiiee e 5-1
Adding New FUNctionsto SCIL_IMageccecueieriiriirierenierieeieeeee e 5-2
Making a Command Description File (CDF)cccovrirenirieeesese e 5-3
COMMIENT EINETY .. e e 54
MENU EINETY ottt s sre s s sne s nane e 54
LU= 0 = ST =010 YOO PR PR PRS 5-5
VaTADIE BNTNY ..o e 5-5
COMIMANG ENETY ...ttt bbbttt e e bbb sr e bt enes 5-6
SCIL_ImMage SPECial TYPESccuevueriirierieieiiesie st sttt b s 5-10
Very Advanced SCIL_IMage: NEW TYPES.....cveieriririerenierieeeeee e 5-14
Creating a New Compiled SCIL_ImMage Versionc.ccoeveeeeeenenenesesieseseseens 5-16
Adding On-line Manual Filesto SCIL_IMage.........ccuererirereeiieeresese e 5-17
Chapter 6 Thelmage 2.1 library in SCIL_Image.......ccccceeeevveeiieennenne 6-1
L0 (8T 1o o SRR 6-2
IMAQE INFIASLIUCLUIE........ccveeeie ettt e neenre s 6-3
INValid OPEILiONS........cceecieeiecee ettt re e 6-3
Image display and window management............cceeeereeeeveereeceeseese e 6-4
IMOUSE DULLONS......c.eeiieiieie ettt s 6-4
Thetitle bar of iMage WINAOWSccccviiieiieiececeere e 6-4

The left MOUSE DULLONooviieeee e 6-4
Displaying the IMAgEcceeeeceeceee et 6-5
Displaying 3D IMAQgES.......ceeiueiieereeie e seese e ste e e e s s e sreenne e 6-6

The right MoUSE BULLONcoiieececec e 6-6
Changing aWINAOW SSIZE........cceeieeieiie ettt nre s 6-7
Changing awindOwW S POSITION........cccviieieeie et 6-7
Display 100KUP table........ccveeieeeeceee e 6-7

[MAgE MANAGEMENT ... e be e b sbe e sne e anes 6-8
Creating and destroying IMagES..........cccueieeieeieeseeseeee e steeseeseesre e seesres 6-8
Changing IMAJE SIZESccveiieceesiecete ettt ettt e sre et ae e e nre s 6-9
Changing IMAaQE tYPES.......ccveieieeieeie et este et e et sre s re e eneenre s 6-9
Converting images into Other tYPES........ccveieeeeveere e 6-9

FillING TMBOES ..ottt 6-10
Region of interest (ROI) PrOCESSINGcovveerveieerrieiesiesreeieeseesreeseesseesseessesseessens 6-10
=0 TS Y 0TSSP 6-11
Grey valued images (GREY _2D & GREY _3D)cccccvveevieeie e 6-11

Data representation of grey valued images...........cccveeeveeveeveeceececcee s, 6-11

Usage of grey valued iIMagES...........cceeveeiiieecie e 6-12

Examples of grey valued Operations............ccoceveeiereenennesieeseesee e 6-12

Binary bitmapped images (BINARY _2D & BINARY_3D) ..ccccocovvieveriineenens 6-12
Data representation Of DiNary iMagesccceeeeieriereereenie e e 6-12

Usage Of DINAIY IMAJES.......cooeiiiiieriieee et 6-13
Examples of binary Operations..........ccoceveereeeenienesee e e 6-13
Floating point images (FLOAT_2D & FLOAT _3D) ..ccceevvrieneeieneenieeie e 6-14
Data representation oOf float IMageScevvviererie e 6-14

Usage Of float IMAagES.......coeeuiiiireeieee et e 6-14
Examples of operations on float images..........cccceveeeererienieneeie e 6-14
Complex images (COMPLEX_2D & COMPLEX_3D)....ccccoceveenenenneeniesenee 6-15
Data representation of COmMplexX IMAagES........ccceeveriereererniesesee e 6-15

Usage of COMPIEX IMBGES.......cccveiirierierieeie e 6-15
Examples of operations on complex iMmages..........ccceeererrerieeneenieseesienneenn 6-15
Labeled images (LABEL_2D & LABEL_3D)cccooiiiriinieneeie e 6-16
Data representation of labeled images.........ccocvveeieienenienceseee e 6-16

Usage of 1abeled IMagES.........ooeeiieieee e 6-16
Examples of operations on labeled images..........ccccvvvvervenienenie e 6-16

Color images (COLOR_2D & COLOR_3D)ccceeruererrieeieseesieesieseesiesseesen e 6-17
Data representation Of COlOr IMAGEScovvriereeiienieree e 6-17

Usage Of COIOr IMBYGES.........eeiueiieiieieeie ettt 6-18
Expression evaluation onimageS (€Val)coceeverrieerenieseseee e 6-19
StOring iMAagES ON TiSK......oc.eiieieceee e e 6-22
TRETCSTOIMAL ... et 6-22
TRE TIFF FOMMEL ..o et 6-22
THE JPEG FOIME@L.....ceeieeeieeeeee et et 6-23
TRE TCL fOMMELo et ee e 6-23
THEATM FOIMEL ..o et s 6-23
Non image data (Var_ODJECLS)cooiiiiiiiee s 6-24
Behavior of var_ODJECLS........c.ooeei s 6-24
Datatypes Of Var_ODJECES.......c.oceeiiiiieiieiee et et 6-25
Examples uSiNg Var_ODJECES........cceiuiieieeiesee et st 6-25
EXAMPIE L. 6-25
EXAMPIE 2 .. 6-26
EXAMPIE 3 . e e 6-26
Storage of var_0bjeCtS 0N diSK.........coeriiriiiieie e 6-26
HIStOgram ODJECES ..o e 6-26
Chapter 7 Introduction to Image 2.1.......ccccveveevieeieeceeee e 7
WHhaL ISTMBGE2. L ...ttt bbbt 7-2
IMBGE INFIBSIIUCIUIE.........oviieeiterieeeeeiee et 7-2
IMAOE TYPES ...t nne e 7-2
Advanced and extensive set of image Operations...........ccooevererenereseseseenenns 7-3
Fast IMPIEMENLALIONS..........ooiiiierieeee e e 7-3
Abstract error and 1/0O handlingccooeiererininereeee e 7-3
Publish and subscribe mechaniSm ..o 7-3
The structure of thiSmanUalcccoeeiereceeree e 7-4
Theneed fOr IMAJE2.1 ... 7-4
Structure of the IMage [IBrary ... 7-5
Writing your own image processiNg rOULINES.........ccerereereeriereeresiesiesiesieeieeneens 7-5
CUSLOM IMAGE LYPES......eeeeteeieriee sttt 7-6
Measurement Of ODJECES (AlO)oiuiiuiriiieeee e 7-6
BINAIY IMAGES ..ottt sa e 7-6
APPENTIXES ...ttt sttt bbbt e et bbb b ae e 7-7
Appendix: ICSfileformat desCription..........covrereririeriierierese e 7-7

Chapter 8 Publish and SUDSCribe ..., 8-1
GENEEl ASPECES ...ttt et b e enes 8-2
ODBJECE FEQUITEMENTS.......covitereesterieeee et 8-2
Subscribing and unsubsCribing t0 ODJECES........c.cooirerererce e 8-3
RECEIVING MESSAGES ...ttt sttt b b 8-3
PUDIISNING MESSAJES ...ttt 8-4
PrOCESSING MESSAGES.......eeuiiieiirte sttt ettt sttt e et e b b eae e 8-4
IMIESSAJES ...ttt s n e 8-5
Publish and Subscribein the Image library ... 8-5
Top-1evel PUDIISNES........coueiee e 8-5
IMBGE PUDIISNES ... e 8-6
Color-lookup table publiShES...........ccoiiiie e 8-7
Top-level Histogram publiShes...........coieiiiieneeeee e 8-8
HiStogram PUBIISNES.........ccoiiiiree e 8-8
Error stack pUBIiShES........c.coiiie e 8-9
Chapter 9 Programming with Imageccccccvvcveve e 9
INtrodUCtiON tO TMAJE......ccueeieceeecee ettt e neenre s 9-2
THE IMBOE LYPES...ee ettt st e e s beere e e sre e e e 9-4
Grey ValUB IMAQGES........ccueeeeeeeeite e steese ettt st re e neenne s 9-4

Binary bitmapped iMagEScceieeie e 9-4
Floating POiNt IMAJES.......cceeiueiieireeieeee st et re e 9-4
COMPIEX IMBYES.....c.veeeeeieecteeiecee st erte et e steeste e e e sae e s e e steeaesreesreenesneensean 9-5
Label€d IMAOES.....cc.ecieceeecece et 9-5

(@0 T gl [117="o === SRS 9-5

THE IMAGE SITUCLUE. ...ttt sttt sttt 9-6
FagT= o Lol = o S S 9-7
Region of interest data structure (rectangular).........ccccoeeeveeieeseeceseeseece e 9-8
Region of interest data structure (arbitrary shaped)..........ccccocevveievieeneeieseenen, 9-9
OPEration COUNLENcciuieeeereeiteeeeereesteeeesteesseseesre e e sseesseeeesreesseensesseesaeeneesnes 9-9
HaT=o T 1 g o S UR 9-10
Image Color LOOKUP TaDIESceciiiieciece et 9-11
Dynamic adjustment (Pre_op, POSL_0P)ccvoeeiiieieieereeee e 9-12
Thepre _Op fUNCLION.........cooeieee et 9-14
COMPARE MOEciuiitirieiiiriieieie ettt st st 9-15
ADJIUST(_NIP) MOGE........ciiiuiriieieiesiesie st 9-15
Output equal tO TNPULcveeeeeeieie et nre s 9-16
Output Of SPECITIC LYPE....c.veeeeceicte e 9-16

(@01 Y11 0| SRS 9-16

Type of input, SIZeS Of QULPULccveeieeeeceeeceeeee e 9-17
SPECIAI SIZES.....eeeieieeieee ettt sttt e e neenre s 9-17

(@ =g To [o= o] o SO 9-18
Multiple CallSTO Pre 0P ...cceeveeeecieee et 9-18

The post_ 0P FUNCLION ..o e 9-19
(@I To oo 1S i o o SO 9-19

A SIMPIE EXAIMPIE ...ttt st enre e ens 9-19
Explanation of the function COE:ccceevviieiicie e 9-20
Error handling and reporting..........ccceeeeeeeieseeseee e 9-21
L OCELION Of TN EITON ... e 9-21
Return values Of TUNCLIONS..........coiiiiiirieieer e 9-22
T g 70T [1T oo ST 9-22
CheCKING FOULINESeecueeiecee sttt sttt s sre s e e saeetesneesneenne e 9-23
ChECK FUNCLIONSoveiiie et 9-24

Check_image INLEGIILYocuieie et 9-25

TEXTUA OULPUL ...ttt st e bt sne e sbeeneesneenneas 9-26

FUNCLION OVEITOBAINGcoveieiee e e e 9-27
TRIEE TAYEI'S.....ceeeeee e ettt 9-27
GENENiC FUNCLION [AYE ..o 9-28
Parameter checking and image adjustment...........cccooevernenieneene e 9-28
Processing the dataL..........coceeviiiiiieieeee e 9-29
OVErload taDIES ..o s 9-30
Overruling the default implementation.............ccoceieeiinenenie e 9-31
[DF: k= Xole] 0\V7= (Tl g W (o0 01V/= o | SRR 9-32
Super type of animage liNe ..o s 9-32
COMMON _LINE SIIUCKUI......eeeieieiee et 9-32

Source function SPECITICALION.coiiiiireiee e s 9-33
Destination function SPECITICAIONcoeriirieririe e 9-35
User SPECITIEd CONVEISIONoceiiiieieiiesiee ettt nee s 9-37

[V 2= 0] o= £ SRR 9-37
Var_ODJECE SITUCIUNE. ...ttt e s 9-37
Programming With Var_0DJECES..........coeiiiriiiieeee e 9-39
CheCkS 0N Var_ODJECESooiiiiiiesieee e 9-39
Conversion of var_objectsto images and VICE VEI'Sa.........ccceeeveenereeneeniesennees 9-39
HISLOGram SITUCTUNE......c.eeoieeieceectee et s ne s 9-40
Programming with histogram ODJECES.........coieeiirieiieree e 9-42
Chapter 10 Analysisof Imagesand Objects (Al1O) ...ccccovvvceevieccieennnne 10-1
General Conceptsin Microscopical Image ANalySiS........cceeeeeieieneneneneseseeeenes 10-2
Components of the ATO FramEWOTKcoeeeeieieree s 10-3
LaDEIING ODJECES.....ceeeeeeeeee e e 10-3
Measuring individual ODJECES..........coiiiririeerer e 10-3
ODBJECt MANIPUIBLION.......ceiieieieiirieeieeie e 10-4
IMBYE SO ... 10-4
DireCt ManiPUIBLIONcoveiiereiiesiesiieeeee et 10-4

AN ATO SAMPIE SESTION....c.eeiiiieeieiesie sttt et sa b e sae e 10-4
[NtEractive MEBSUIEIMENTeceeeeeeeeees et ste et e et esreeae s e e sseenneeneennens 10-6
Implementation of the interaction Part...........c.covererririeresese e 10-7
The point_object() TUNCLIONcccooeiiieees e 10-7
Chapter 11 Bitmapped binary images........ccccccevvveveeviecceesee e 11-1
Erosions, Dilations and Logarithmic Decomposition...........ccccveeeveereeieseesie e 11-2
Algorithmic Implementalion............cooeeiiieiecce e 11-4
Data REPrESENTAION.........coivieieceeecteee ettt sre e e e nne s 11-4
Implementation of the Pixelwise Logical Operations...........ccoceeceeeeieseesieennene. 11-6
Implementation of the Morphological Operations.............ccccevveveeieeiecieeseenene 11-7
EVAIUBLION ...ttt e 11-8
Pixelwise LogiCal OperationsS..........cccceeieeiieiieesiee e sreeee et eee e seenneas 11-9
Morphological TransformS.........cccvcceieeiieie e 11-10
Discussion and CONCIUSIONScoueiuirieriieinieie et see e e sneeneas 11-10
LITEIBIUIE. ...ttt st b ettt ettt e e e nbenb e b e b e sneene e 11-11
Chapter 12 New image tYPeS......ccceiiiriie et 12-1
Implementing a8 NeW IMAJE tYPE.......ooueririerierieeie et neeas 12-2
DefiNeS and SIIUCLUIES.........oouiiiecieeie ettt st nne s 12-3
Creation and dEStIUCLIONc.oieeierieeie e 12-4
Copying apart Of the IMagE.........coceeiirieieee e 12-6
Displaying the IMAGEcooueeieeeecieee et st ae s 12-8

Image type INfOrMELTON..........coeiieeie e 12-11

Conversion to Other IMage tYPES......cvvieeriiee e 12-12

The overload table...........ooiiiiiieee e 12-14

LOW LBVEIS. ..ttt ettt s st ne e 12-15
Testing the IMAgE tYPE.......oieieee et 12-18
Defining an iMage SUDLYPEcc.eoivieie et 12-19
Chapter 13 Creating an Image Application.........c.ccveeverierienneeneennne 13-1
F TNz 2= £ o o USSR 13-2
Error NANAIINGcc.oieieeeee s 13-2
Text OULPUL NANAITNG ... 13-3
COlOr LOOKUP TADIES.ceeeeieieeeieie st 13-3

SAMPIE COUR. ...ttt bbbt enes 13-3

Chapter 1 Outlinesof SCIL Image

In this chapter an outline of SCIL_Imageis given. Because
SCIL_Image is a multi-layered and multi-purpose system, this may
help you in orienting yourself in the system’s use.

Read this chapter if:

* You are using the system as an interested user of image
processing applications,

* You are using the system to develop image processing routines
or applications or,

* Youaretoinstal the system, or,

* You want to understand the SCIL_Image philosophy.

Do not read this chapter if:

* You are using an application based on SCIL_Image, and
SCIL_Image and the application have been properly installed for
you. Read the application manual and in alater stage read this
manual if necessary.

SCIL_Image 1.4 — User Manual

Thefour layersof SCIL_Image

SCIL_Image is an extensive multiple layered system for image processing and for the
development of applications in the image processing domain. As a consequence of the layered
structure, SCIL_Image can be operated by users with various levels of expertise with image
processing and with various levels of programming skills: from a user of an image processing
application to an image processing system developer.

Using the system at the application level

An image processing application is a set of image processing commands or atailored program
made available to the user, usually in the form of amenu option. It is possible that the
standard image processing operation of SCIL_Image are still available to the user, but
sometimes they are not. Thisis not the choice of the SCIL_Image team, but rather a choice of
the developer of that specific application. Using the system at the application level boils down
to selecting options with the mouse and filling in parameter values where needed. The manual
of the specific application is not a part of this manual, as this manual describes only the
generic use of the SCIL_Image system. To get an overview of the standard SCIL_Image
system, the reader isreferred to the chapter "Getting started” on page 3-3-1. for introductory
sample sessions. The remainder of this manual is about using SCIL_Image for interactively
analyzing images using the extensive image processing library of SCIL_Image, for building
image processing applications.

Using the system as an interactive user

At the highest level of use, functions can be executed one by one by interactively selecting
them from the menu system. All operations of SCIL_Image are available to the interactive
user ranging from reading an image, displaying the image to enhancing the contents, making a
histogram or a Fourier spectrum, performing mathematical morphology, and so on. A quick
overview of the functionsis given in the guided tour through the system, see"Getting
started" (chapter 3). More information on the image processing functionsis given in
"Introduction to Image 2.1" (chapter 7) and further. The best way to get acquainted with the
system is, however, to use and try functions on your images.

To enhance the flexibility of the system, functions have parameters and optionsto be filled in
by the user. A parameter may be the symbolic image name, a code to change the behavior of
the operation, a value used as a selection criterion, etcetera. In selecting the image processing
functions from the menu, the user is assisted by the system in the selecting parameter values.

1-2 Outlines of SCIL_Image

SCIL_Image 1.4 — User Manual

Usually adefault value is available which should normally do the job. Also, with ailmost all
functions, help is available giving awritten explanation to the purpose and method of the
function and its parameters.

Using shorthand typing for application development

When amenu option has been selected it is translated by SCIL into acommand. The
command appears in the text window. Subsequently, it will be executed. In SCIL_Image, any
menu selection is automatically translated to awritten command, inserted in the text window
and executed only then. Thisis done to serve the user as he or she becomes more experienced
with the system and the image processing libraries. More experienced users may find
interaction viathe menu system tedious. They rather type commands by their name, rather
then selecting them from the menu. In SCIL_Image, a user may type the commands in the text
window directly. As all menu commands are translated into written commands, typing
commands may be mixed with selecting and executing items from the menus. Thereisno
difference. Using the menu system is easier to learn and there is more support to the user in
selecting parameter values and options, but typing commands is quicker. Therefore,
simultaneous use of the two interface levels combines the best of both worlds.

Control statements

At a point, connecting image processing commands may no longer be good enough to reach
your image processing target. Frequently, streams of image processing commands are
combined into a new, high level image processing operation. Or, a set of commandsis
executed as many times as there are particles in the image. Or, some stream of image
processing commands is repeated to improve the quality of the image until it cannot be
improved any further. Or, an image processing measurement function results in a numerical
value (e.g. the image contrast, or the number of particlesin the image) and that number is
needed as a parameter value in another operation (e.g. an operation to normalize the contrast
or an operation to select al particles with a certain minimum area).

If such a control over the flow through the image processing commands is desired, control
statements are needed. These statements cannot be selected from the menu, they can only be
typed in the text window. The SCIL_Image system uses the syntax of the C programming
language in specifying the control commands. A control command is typed in the text
window in the standard C syntax. Upon completion by the <return> or <enter> key, the
statement is interpreted and executed. The C interpreter will check for syntax, availability of
the requested function and then issue the requested function. For an example, see the guided
tour in "Getting started" on page 3-3-1.

Outlines of SCIL_Image 1-3

SCIL_Image 1.4 — User Manual

Conceptual levels

M odes of operation

menu bars
Command SCIL menu Interactive operation
Description system with menus and
File dialogue boxes

text window

SCIL command expander / \

Command Expander
and
C interpeter
SCIL
C-l nterpreter K /
SCIL library
handler

/1
/]

@
Image User defined oro
ibraies Q) imported

libraries

Figure 1-1 : The layers of SCIL_Image and its modes of operation

Programming an image processing function

Going one step further in expertise, the need may arise to developed a new image processing
function. This can be done by programming at the level of the C interpreter. Newly devel oped
functions can be made available quickly in the SCIL_Image system by inserting the necessary
function identification information in the Command Description File. Restarting the system is
sufficient to integrate your new interpreted function with standard SCIL_Image. The function
will appear in menus and is ready for use.

The Command Description File contains the layout of the menu-system and on each available
command; the information needed by SCIL _Image to execute that command properly.
Modifying the Command Description File is appropriate is you wish to hide some (or the

1-4 Outlines of SCIL_Image

SCIL_Image 1.4 — User Manual

majority) of the Image functions from your users' sight. Or, may you wish to re-order the
image processing functions differently over the menus, more suited to your specific needs.
This can al be done by editing the Command Description File.

Making your own library

When a algorithm has been fully developed and tested, the set of commands which constitute
the algorithm used can be converted to C-routines with little effort. In general, thisonly
requires the addition of a subroutine header and tail. A new routine can be added to
SCIL_Image by compiling it with a standard C compiler and inserting the routine in your own
library. At the same time, the name of the function and the parameters and the admissible
parameter values must specified in the Command Description File to make it acquainted to
the system. When this has been done correctly, the function will be available to the user in the
same way as any of the standard image processing functions.

Building applications

For a specific application it is often felt desirable to provide the user access to only those
menu items which are meaningful for that particular applications. To accomplish this, the
user interface of the SCIL_Image system can be altered at will by adding, removing and re-
ordering menus and menu items.

SCIL and thelmagelibrary

Although from the outside SCIL_Image looks like a fully integrated environment, in reality it
is constructed from two separate entities, SCIL and Image. SCIL being the C-interpreter and
menu & dialog generator. And Image (the Image 2.1 library) being the Image infrastructure
and alarge set of image processing functions. These two parts, supplemented by a user
interface for the visualization of the images make up the SCIL_Image package.

The Image library can be used separately to create stand alone (end-user) applications. This
means that after trying out some new ideas and gradually devel oping image processing
functionsin the full featured SCIL_Image environment, they can be used at once in these
stand alone applications.

Outlines of SCIL_Image 1-5

SCIL_Image 1.4 — User Manual

On reading this manual

Thisisversion 1.4 of the SCIL_Image manual. To work with SCIL_Image it is not necessary
to read the entire manual, neither is it necessary to have experience with the programming
language C, even though the system is based on a C interpreter.

When using the SCIL_Image system for command execution only, it is sufficient to know
about the menu system and the command level. Selecting an item from a pull down menu will
result in interaction with the system via adialog box and subsequent execution of the
command. Reading Chapters 1 through 3 should be sufficient for this level of use, although
Chapter 4 may also be useful. On the other hand, if the system is used for the devel opment of
new routines and applications, it will be necessary to become familiar with the system’s
philosophy and C. In fact, the step from a sequence of commands typed in the window to a
complete C-program is small. Advanced use of C and the image data structures may boost
development greatly. When devel oping algorithms and applications, reading Chapters 4 and
beyond is recommended.

Summary of the Chapters
Part | of the manual provides a general orientation:
Chapter 1 gives aglobal description of the SCIL_Image system.

Chapter 2 explains how users should set up their personal environment and obtain a
personal version of SCIL_Image.

Chapter 3 describes how to start using the system and presents sample sessionghich
allow users to get some experience using the system. The chapter ends
with adiscussion on some general design issues, such asthelook and feel
of the user interface.

Part |1 is about the interaction system SCIL and Image as part of SCIL_Image

Chapter 4 describesthe Cinterpreter SCIL. It explains thedirectcommand modéhe
program modgthe history mechanispthe commandexpanderthe line
editor and various SCIL commands.

Chapter 5 describes advanced use of the C interpreter, including how to add new
routines to the system, and how to modify theuser interfaceThisis
particularly useful for application devel opers.

1-6 Outlines of SCIL_Image

SCIL_Image 1.4 — User Manual

Chapter 6

deals with the image processing of Image as part of the SCIL _Image
environment. The philosophy and general behavior of the image processing
infrastructure and user interface are discussed

Part 111 isthe programmers manual of the Image 2.1 library.

Chapter 7
Chapter 8

Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13

is an general introduction to the Image 2.1 library and to the manual.

deals with the publish and subscribe message passing mechanism. Image
2.1 uses this to communicate with any interface.

focuses on advanced use of Image, particularly useful for the program
developer of image processing functions.

describes the AlO-library.
handles the philosophy and use of the binary bitmapped routines.
describes how to implement new image types.

is about writing an application with the Image 2.1 library

Outlines of SCIL_Image 1-7

SCIL_Image 1.4 — User Manual

Command SCIL menu and
Description dialogue system
File Chaoter 5
Y
SCIL command expander
Chapter 4
Y
SCIL C-Interpreter
Chapter S

Chapter 5 |
SCIL library handler

Image L User defined or@
Library <« :{Efgrﬁteesd
Chapters 7to 13 Chapter 5

Figure 1-2 : Anindex into the SCIL_Image manual

Why SCIL _Image ?

Interactive environments have always played an important role in image processing, because
of itsvisual nature. Generally, there are no off the shelf solutions available for image
processing problems. The visual evaluation of image processing techniques helpsto find
solutions to these problems. The immediate feedback interactive systems provide reduces the
time necessary to develop new applications. Furthermore, the ability to see the results of
commands and to modify code or parameters within seconds brings new insights, for example
asto how sensitive an algorithm isto a small change in the image.

The natural alliance between interactive systems and image processing has led to the
development of an enormous variety of software systems for image processing, most of which
are bound to specific hardware or tailored to a specific image processing application domain.

1-8 Outlines of SCIL_Image

SCIL_Image 1.4 — User Manual

However, Preston concluded in his 1981 survey covering 72 image processing languages, that
the diversity in image processing environments is not justified since image processing
applications are not so disparate as to require unique and specialized data types or different
programming constructions. Rather than creating a new highly specialized language it is
better to make use of an existing programming language.

The functionality of existing programming environments range from a collection of library
routines, viacommand driven systems or menu driven systems, to highly specialized
programming languages.

In thefirst category of systems each of the routines comprise a command. No environmental
support is provided. Although this category offers the advantage of development in a standard
programming language, these systems are less suited for interactive image processing and are,
in general, not user-friendly.

Command driven interactive systems or command interpreters are characterized by prompt
execution of image operations. The functionality of command interpreters ranges from those
which offer the execution of operations and the control of parameters to those which provide
variable declaration, expression evaluation, flow control and/or procedure execution. It is
important that command interpreters provide tools for the constructions of new commands
composed of a sequence of basic commands. Although systemsin this category are geared
towards interactive processing most do not have the flexibility and complexity inherent in a
standard programming language. Moreover, the diversity of semantics and syntax between
interpreters obstructs user acceptance. An additional disadvantage of command interpretersis
that the names of commands and the sequence and meaning of the parameters must, in most
cases, be known by heart.

In contrast, menu-based interactive systems allow easy access to image processing
commands. By the menu system, help can be offered to the user, aswell as default values of
parameters can be suggested. The menu system provides a user-friendly interface suitable for
novice users.

Based on the above discussion, we believe an image processing environment should fulfill the
following requirements:

» The system should contain an extensive set of image processing routines, readily
available to the user.

* Visua feedback must be given in immediate response to selected or specified
commands, at least the ones which modify the image.

* A menu system and command interpreter should be available simultaneously to
support novice and advanced users.

Outlines of SCIL_Image 1-9

SCIL_Image 1.4 — User Manual

* It should be possible to both develop and use applications within the same
environment, to escape the gap between program devel opment and use.

* One package should be made available on a variety of machines rather than separated
ones developed for each machine type. This includes the window system and the
command language.

» It should be possible to execute commands specified in a shorthand form.

* Theimage processing functionality of the system should be extensible both with
private routines as well as routines from other packages accessible as a subroutine
library. As an example, consider extending SCIL_Image with an interface to a
database package, a spreadsheet or a statistical package.

A multi-level interactive processing environment

SCIL_Image has been developed as a multi-level environment. Figure 1-3 shows the internal
levels of the environment.

SCIL: Library handler

To provide expansion of the system, software libraries are linked viathe library handler. The
system comes with quite afew libraries for image processing functions. Through the Library
handler, the system can be expanded with external libraries or with any other user provided
software library. The data structures to get access to the image or parameter dataasin usein
SCIL_Image are documented in"Programming with | mage'. Compiled routines can be
integrated in the system by adding an entry to a Command Description File.

1-10 Outlines of SCIL_Image

SCIL_Image 1.4 — User Manual

Command SCIL menu and
Description dialogue system
File

Y
SCIL command expander

Y
SCIL C-Interpreter

Y
SCIL library handler

T TS

Figure 1-3 : The multi-level interactive environment SCIL.

SCIL: C-interpreter

Using SCIL, aC interpreter for command interpretation ensures general programmeability
since algorithms are developed with the full capabilities and flexibility of the C programming
language. An additional advantage is that because development takes place in an interpreter,
using standard C syntax, the source code can be compiled and incorporated in the system,
with the use of the library handler.

SCIL: Command expander

The basic task of the command expander is to tranglate shorthand commands entered by the
user to acomplete C statement. Thisisto avoid the user being bothered with the precise
typing of the C punctuation whenever possible. Simultaneously, the command expander
checks the arguments of functions for consistency and, if any are missing, fillsin default
values. The command expander operates according to a Command Description File (CDF), in
which the information on each command and its arguments is stored.

Outlines of SCIL_Image 1-11

SCIL_Image 1.4 — User Manual

SCIL: Menu and dialog gener ator

The menu-and-dialog generator provides an interface that makes it possible to select
commands via the mouse rather than by typing them. The interface is generated when
SCIL_Image is started based on specifications in the Command Description File. When the
user selects amenu option, adialog box is generated. The box gives the parameters of the
command with their defaults and ranges. The graphical presentation of the itemsin thedialog
box is adjusted by the type and range of the parameters. In SCIL_Image, the menu-anddialog
generator performs an educated guess to produce the most convenient dialog.

Thelmagelibraries

The Image libraries offer alarge variety of image processing tools. Figure 1-4 gives an
overview of the libraries available in Image. As a user, you will not notice the existence of
different libraries because the library handler and the Command Description File make every
function known to the system in the same way.

A large variety of filter and image manipulation routines are available. These include
arithmetical operations, Fourier transformation, geometrical routines, and image
measurement. A number of these have been adapted from the well known TCL-Image
package. There are too many functions to discuss here, we only give afew examples. A quick
overview is given in the guided tour in " Getting started" (chapter 3).

N
N

JCICT

Bitmapped functions for AlQ library for
fast mathematical (interactive) object
morphology with arbitrary Q measurement
structuring elements] Chapter 10
Chapter 11 The Image infrastructure

and display

I mage processing operations,
all separated per image type.
Chapter 6 and 7

Chapters 9 and 12

Figure 1-4: The Image libraries.

Imageinfrastructure

Image is based on adivision of the images and image processing routines by type. Thistype
mechanism simplifies the management of images, and makes programming with different
types of images easy. Each type hasits own functions for type dependent tasks, that are
accessed by function overloading. Currently available typesin both 2D and 3D are: binary,

1-12 Outlines of SCIL_Image

SCIL_Image 1.4 — User Manual

grey value, float, complex, label and color. The image infrastructure is particularly helpful in
maintaining afail-safe program when programming in an extensive image processing system.
When you are an advanced programmer of SCIL_Image, you may wishto define your own
image types. Y ou can do so, but it is advised only to do so when you have the proper
experience. See Chapter 12 for details.

Binary mathematical mor phology

A complete and fast implementation of mathematical morphology routines is available. These
include routines for erosion, dilation, closing and opening, using arbitrary sized and shaped
structuring elements. These are optimized implementations for circular structuring elements.
Grey value morphology operations are also included in the Image libraries.

Numerical analysis of objectsin images.

When images consist of a set of small objects, such as microscopical images of cells and
grains, or local details, the Al1O-library provides facilities to measure object features.

M easurements can be made in automatic or interactive mode. The list of such feature values
isstored in an editable file. Such afile may be converted (with the aid of an editor) into afile
suited for a standard statistical package.

Outlines of SCIL_Image 1-13

Chapter 2 Setting up SCIL _Image

This chapter describes how to set up SCIL_Image. It tells you how
toinstall the SCIL_Image software, and how to set up your
working environment.

Read this chapter if:
* You are setting up SCIL_Image.
* Youwould like to change your working environment.

Do not read this chapter if:
» SCIL_Imageisworking to your satisfaction.

SCIL_Image 1.4 — User Manual

Setting Up: Step by Step

In this section, we assume that you have just received your SCIL_Image package. That
package consists of:

* A CD-ROM with the SCIL_Image package.
* A Hardware Protection Key (dongle).

* A License Registration Form (containing the license code string).

Y ou need the following to run SCIL_Image:
» A 486/DX computer, 33 MHz or better.
* Atleast 12 Mb of memory
* A 1024x768 monitor with 256 colors (recommended).
* A hard disk with minimally 15 Mb of free space (recommended).
* Windows 95 or Windows NT 4.0.

* Microsoft Visual C++ compiler (only if you wish to extend SCIL_Image’s
functionality).

2-2 Setting up SCIL_Image

SCIL_Image 1.4 — User Manual

The installation procedureis as follows:

1) Insert the CD-ROM in your CD-ROM drive and start the installer (setup.exe) by double
clicking itsicon:

=

2) Theinstaller (the workings of which should be self-explanatory) will install
SCIL_Imagein adirectory of your choice. When finished, thesetup program will have
created a program group and a program item, which is represented by the SCIL_Image
icon:

SCIL_Image

3) Before you can run SCIL_Image you will need to put the license code from the License
Registration Form into the file license.scl’ in the t:\scilimagel4' directory. Use a
standard editor to typein the license code, carefully copying it, including the difference
between upper and lower case symbols.

4) Non demo licenses: Plug the hardware protection key (thedonglg into the printer port
(the outlet port connecting the computer to the printer). Please note that you must have
choosen the dongle-driver item during the installation.

5) On Windows95 some settings were added to your autoexec.bat file and on Windows
NT some settings were added to the system control panel (in the Environment Tab).

Y ou could now start with chapter 3’ Getting Started’, to get acquainted with the workings of
SCIL_Image. Before you do, glance over the rest of this Chapter. It discusses the various
folders and files, and also tells you what is involved in moving them elsewhere (section 2.3).
Also, if you are not quite happy with the number and size of image windows SCIL_Image
displays after starting up, you can change them by editing the file’scilinit’ (section 2.3).

Setting up SCIL_Image 2-3

SCIL_Image 1.4 — User Manual

The SCIL _Image Folder

In this section, we describe the contents of the SCIL_Image files and directories- The
'scilimag’ directory contains a number of sub-directories:

=-7 scilimage14 =]

=1 Prag

-7 comfiles
=27 example
-7 inchude
-1 lib

-0 mylib
-7 overload J

-7 rezounce

D grey_2d ;I
In the main directory 'scilimag’, you find the following:

‘Demo: brochure. pdf license.scl
docu cormfile '@ readme. doc
Help grab32.dll @ zoilimag. exe

Images grabcal. dll Scilirit

Prog imageZ_1.txt

brochure.pdf a brochure about SCIL_Image

comfile SCIL_Image command description file

grab32.dll sample framegrabber dl

grabcol.dll sample framegrabber dl

image2_1.txt ASCII tekst file with additional notes

license.scl file which must contain your license code
readme.doc release notes regarding this version of SCIL_Image
scilimag.exe the SCIL_Image executable

2The hierarchy of the files and directoriesin SCIL_Image was carefully planned, so please do
not move files (or directories) to other directories before you know exactly what the files
(directories) are used for. If you do move them, be sure that SCIL_Image can locate them (see
Section 2.3).

2-4 Setting up SCIL_Image

SCIL_Image 1.4 — User Manual

scilinit theinitialization file for SCIL_Image
It contains the following directories:

The’demo’ directory

Thisfolder contains demonstration files with examples.

The’help’ directory

Thisfolder contains SCIL_Image’ s on-line Help facility.

The’images directory

Thisfolder contains images. Most of these images are used by the demos, so do not
remove them in order to save space.

The’prog’ directory

The’prog’ directory isforSCIL_Image support, and contains files and programs which
you need to build your own version of SCIL_Image. We will explain the procedure for

that in Chapter 5.

comfiles comfiles.mak T overload.obj

example I akefile T seilres

inchude makefile lib zoilimageld.dsp

it M akefile. sl) sciimage14. dsw

mylib E mbkoverld exe @ apzfunc. o

overlnad E mkaysfnc. exe 21 zpsfunc.obj

resource @ overload.c

FIC_eWmp ovverlinad. mak
comfiles directory with Command Description Files
example directory containing some of the examples used in this manual
icons directory with the icons used by the SCIL_Image user interface
include directory containing include files
lib directory containing the SCIL_Image functions
mylib directory to store your own SCIL_Image functions
overload directory with files for command overloading
resour ce directory with resource files and icons
src_exmp directory with sample C filesreferred to in Chapter 8
comfiles.mak external makefile for Microsoft Visual C++
makefilelib (.scl) sub-makefiles used by ‘makefile’
mkoverld.exe program to create the file 'overload.c'
mksysfnc.exe program to create sysfunc.c from the comfile
overload.c c-file needed to create a new SCIL_Image executable
overload.mak external makefile for Microsoft Visual C++

Setting up SCIL_Image 2-5

SCIL_Image 1.4 — User Manual

overload.obj compiled overload file

scil.res compiled resources

scilimagel4.dsp project file for Microsoft Visual C++ 5.0
scilimagel4.dsw project workspace file for Microsoft Visual C++ 5.0

sysfunc.c c-file needed to create a new SCIL_Image executable
sysfunc.obj compiled sysfunc file
Your SCIL_Image Environment

SCIL_Image resides on your computersin directories of your choice. Y ou have to tell

SCIL_Image what these directories are. When you have just installed the system, everything
iswhereit is expected, and you can immediately start with the sample sessions in Chapter 3.
, You may want to move everything somewhere else. Y ou then have to edit thefile

, inthe t:\scilimagel4’ directory. Y ou can do thisfrom SCIL_Image, using the

Later on
'scilinit’

'File:Open C Program’ menu entry, which contains a standard editor.

RunEdit - [C:\szcilimagel4\S5cilinit]

printf{“Welcome to ICIL Image 1.4/Windowsin'); ;l
SETEMU("PICT=c:\\scilimage14i\images"};

SETENU(""MACRO=c :\\scilimage14\\prog\iinclude;
c:\iscilimaget1dyhdemo;czyhvscilimage14ivdemo\ymacro;");
SETENU("SCIL=c:\\scilimage14\\"');
SETENU("SCIL_HELP=f:\\scilimage14\\help\\scilimag.hlp");

-

a| | vl

There are four variables that tell SCIL_Image where its directories are on your computer. Y ou
have to use these variables to tell SCIL_Image whereto find your data and programs. These

variables are called environment variables

PICT

MAC

SCIL

2-6

The folders where images are kept. At delivery thisis set relative to the
directory in which you chose to install SCIL_Image, so in our example:

‘c:\scilimagel4\images’.

RO The folders which contain programs, macros and include files for
At delivery set to: ‘c:\scilimagel4\prog\include, c:\scilimagel4\demo,

c:\scilimagel4\demo\macro'.

The location of ‘comfile’. At delivery set to ‘c:\scilimagel14'.

Setting up SCIL_Image

SCIL_Image 1.4 — User Manual

SCIL_HELP Thefile containing the on-line Help facility.

When you start to process your own images with SCIL_Image, you can either store those in
the directory 'c:\scilimagel4\images , or in adirectory of your own. In the latter case, you
have to change the environment variable PICT by adding on the names of the directories
which contain your images.

When you write programs or generate macros, you can keep those in one of the directories
listed in the 'scilinit’ file or in one of your own directories, which you must add to the
environment variable MACRO.

SCIL_Image finds other initialization information in the’scilinit’ file, for instance on the
number of image windows it pops up when starting. Such information can be changed to your
liking, except that you cannot ask for more than four (4) default images. Also, you shouldnot
change the order of theinitialization statements.

The specific settings of the size and position of your SCIL_Image window, and of its
subwindows such as the Worksheet and the History windows, are stored in afile’scil.ini’
which SCIL_Image creates in the Windows directory. It is updated at the end of every session
with your most recent preferred settings. When you restart SCIL_Image, it will look the same
aswhen you last left it.

Setting up SCIL_Image 2-7

Chapter 3 Getting started

This chapter contains four sample sessions to get you acquainted
with SCIL_Image.

Read this chapter if:

* You have never used SCIL_Image.

* Youwant to follow some typical action scenarios.

* You want an overview of the menu contents.

* You want to know how different interactive tools can be
combined.

Do not read this chapter if:

* You are familiar with the SCIL_Image menu system and
command interpreter.

» SCIL_Image has not been properly installed (see Chapter 2).

SCIL_Image 1.4 — User Manual

Before you begin

Y ou should already be familiar with basic Windows concepts such as:

Using icons

Using the mouse actions - point, drag click and double-click
Pulling down menus and choosing commands

Scrolling in windows

Resizing and moving windows

Terms such as dialog box list boxand button

If you are not familiar with these, consult your Windows manual 1

The Five Modes of Interaction with SCIL _Image

There are five ways in which you can engage in image processing with SCIL_Image. They
are, in order of complexity:

viewing images and using interactive tools

using mouse and menu

command line typing and use of ' macros

making your own interpreted programs and reaching them from menus

making your own compiled version of SCIL_Image

1 SCIL_Image was originally written for systems using the UNIX operating system. Asa

consequence, it has afew properties that are not quite ’ standard Windows behavior’. For

instance, image processing commands require the name of the image explicitly as an input

parameter - they do not just work on any image you select with the mouse, as you might

expect. We will point out those non-standard properties at the appropriate locations.

Getting started

SCIL_Image 1.4 — User Manual

We will explore these modes of interaction in five sample sessions. These sample sessions are
not exhaustive, but they give you an impression of what can typically be done in each of the
interaction modes. We end this chapter with an overview of the SCIL_Image commands that
can be found in the menus. A lot of the factual information of this chapter may be found in
the Help pages of SCIL_Image (in SCIL_Image, pressCrtl-H, go to the’ Contents' menu of
the Help facility, and press’>>’ or select atopic of your choice).

Session One: Viewing Images

To start SCIL_Image:

double-click on the SCIL Main Window icon

SCIL_Image

Figure 3-1: The SCIL_Image program icon

If al iswell, the system displays a menu bar, four windows named A, B, C, and D at the top
of the screen, two text windows named Worksheet and History, and a status bar with tool
buttons at the bottom. (If you are using a small screen display some of these windows may
not be fully visible. Also the image windows will be black at start-up - in the picture below,
we have put in an image for added interest.)

Getting started 33

SCIL_Image 1.4 — User Manual

f#m SCIL Main Window

File Edit SCIL Image Dizplay Options Anthmetic lools Window Help

7L A [g2D) 256256 M [E Y B (92D) 256%256 M= EYT - C (92D) 256256 ||
= = =
. — -
= —

(=t Worksheet

A T

SCIL_Image 1.4\Windows

Il_f History == B2

readfile “trui" A 300 300 = (c) Copyright 1991-1998 by University of Amsterdam
Faculty of Mathematics and Computer Science
Amsterdam, The Netherlands.

License number : 9110aa

Owner : SCIL_Image development
Welcome to SCIL_Image 1.4/indows
readfile "'trui" A 300 300

ooty | | =

Figure 3-2 : The opening screen of SCIL_Image

The windows you see are all standard windows, which may bemoved around, resizesthd
scrolledin the standard Windows way, as well asminimized The bar at the bottom of the
SCIL Main Window has a status indicator on the left which should now read ’ Ready’.

The system isready to receiveitsfirst instruction. In this session we concentrate on display of
Images, so first, open an image.

Point with the mouse at the’Image’ menu; click and hold. A menu will appear.
M ove the mouse pointer, while holding down the button, to theitem named
'l_O’. Another menu appears; movethe pointer to 'readfile’ and release.

(You can actually also do this by clicking on the menus that appear, rather than holding the
mouse.) From now on we will abbreviate mouse action sequences. Thus the above sequence
becomes:

34 Getting started

SCIL_Image 1.4 — User Manual

select 'Image:l_O:readfile

The menu will disappear and aSCIL_Image dialog bowill pop up.

(& readrile] S |

Filename: [trui Browse. _. |
image: 0]

X Position: [700

Y Position: [200

oK Dolt | Dismiss | Help |

Figure 3-3 : A dialog box

A SCIL_Image dialog box may contain several items. The command you just selected is the
title of the box - in this case, readfile. The four buttons at the bottom are found in all dialog
boxes.

. button executes the command and removes the dialog box.
. button executes the command but keeps the dialog box.
. button gives on-line help information about the command .

. button closes the dialog box (it has the same effect as clicking the close box
in the upper left corner of the dialog box).

(Thereis no need to make the dialog box disappear before you open up another one -
SCIL_Image will retain the last one if they conflict). The default image 'trui’ is not very
Interesting (you may view it by clicking 'OK’.) To select an image from the library that is
included with SCIL_Image, select the browse button.

click 'Browse

A dialog box ' Open’ appears, in which you can select an image file in the normal way you
select filesin Windows. The images are in the sub-directory 'images’ of the directory
'scilimag’. You will find a number of files. Let us select ' schema.dat’, by double clicking.

Getting started 35

SCIL_Image 1.4 — User Manual

[]

Laoak jn: I £ Images j 5
Broize.im Housze. dat Truiics
Cermet.im] Jello.ti Truiids

Chromo3d.ics b aan.im

Chromaad.ids Orka256.ics
] Flaminge it Orka256.ids
B Gogh ti

chema.dat

File narne: ISchema.dat Open

Files of type: [Files () I Cancel

i

[Open az read-only Help

Figure 3-4 : Thefile browser.
The Open dialog box disappears and we return to the 'readfile’ dialog box.
click "OK’ or 'Do It’
The command 'readfile’ is now executed and an image appearsin window A. Note that at the
same time, the text:
readfile" c:/scilimagel4/images/schema.dat” A 300 300
appears in both the Worksheet and the History windows (the latter may still be anicon). This

will always happen when you execute a command; we will demonstrate the use of these
windows in Session Two.

BZr & (g2D) 256=256 HE E
: : e

i

K

Figure 3-5: The "schema" image

3-6 Getting started

SCIL_Image 1.4 — User Manual

Theimageis displayed in the window labeled A. Thiswindow is called aviewportto image
A; you may define several viewports for the same image (which we will do later in this
session). When you use the scrollbars of the viewport, you see that they move the viewport
over theimage.

scroll window A using the scrollbars

Thisis useful when looking at parts of large images. On the "schema" viewport, a black
border scrollsin, to indicate where the actual image data ends. Y ou can scroll only until one
of the corners of the image reaches the center of the viewport.

Theimagein A isatwo-dimensional, grey-valued image, of 256 by 256 pixels (picture
elements). Thisisindicated on the title bar by ' A[g2D]256* 256'. Y ou can inspect the
individual pixels by pointing and clicking:

click on image A to select it
click again on image A and drag

In the status bar, a set of numbers appears which change when you drag:

[156,112] 214

The first two numbers indicate the position where you clicked, the third number is the grey-
value. For an image of type'g2D’, thisis an integer. The position numbers are the coordinates
of the pixel (picture element) of the stored image, not of the point in the viewport. (For
example, the capacitor on the right always has coordinates [150,164], no matter how the
viewport has been scrolled.). There are anumber of image typesin SCIL_Image, including
real-valued images [f], complex-valued images [c], binary images [b] color images [col]. We
will come across them in the course of the next demo session.

Y ou can have several viewports connected to the same image. Let us generate a second
viewport on image A:

select 'Display:create display’

select 'Imageto connect display to’ : A

click "OK”

A new viewport appears, also labeled ' A[g2D]256* 256’, since it displays the same image. To
show that these viewports are indeed displaying the same image, let us perform an operation
on the image:

select 'Image:Histogram:equalize

Getting started 3-7

SCIL_Image 1.4 — User Manual

select "Output Image’ : A
click "OK”

Image A is processed in-place, and the changing result isimmediately reflected in both
viewports. The use of severa viewports on the same image can be combined with the tool
buttons on the status bar. Y ou select viewportswith the right mouse button (whereas you
select windowswith the left button):

select one of the viewports on A by clicking on it with the right mouse button

A green border in the viewport indicates that it has been selected.

click the zoom-and-pan icon

S

A ’Zoom & Pan’ interaction window pops up, with a miniature viewport displaying image A.

F;i'.-zrru:nmtzl:"an !EI

T] [P |
» " _I

20x | 25x | 3.0x |

P 0
v _conter | 2]

+Z

Figure 3-6 : The Zoom & Pan window

When you point and drag on the little copy of A inthe’Zoom & Pan’ window, the selected
viewport changes asif you were scrolling it. When you click on one of the numbered buttons,
the zoom factor of the display changes - you may also change this more continuously with the
sliding bar.

play around with the’Zoom & Pan’ options
Again, achangeinimage A isreflected in all viewports. Y ou may verify this by reading in
the original image:

select 'Image:1/O:readfile

click 'Browse’

double-click ’c:/scilimagel4/images/schema.dat’
click "OK”

3-8 Getting started

SCIL_Image 1.4 — User Manual

All three viewports on image A change their displayed contents.

Zoom & pan can handle several images at the same time. To show how this might be useful,
we do some simple processing on image A: wethresholdthe image, that is we make a binary
(two-valued) image in which everything lighter than a given grey-value is madeobject
(displayed asred) and everything darker than that grey-value is madebackgrounddisplayed
as black).

select 'Image: Conversion:threshold’
click "OK”

BIr B (b2D) 256=256 [_ ol =]

Figure 3-7 : A thresholded image

A binary image now appearsin window B, marking all pixelsthat were lessthan 128 in
greyvalue red (you may check this by the point-and-drag method to display positions and
valuesin the status bar.) We can use the zoom-and-pan tool to examine thisin more detail:

select image B with theright mouse button
A green border appears to show it has been selected. Note that thereis also still agreen

border around the selected viewport on image A. Now when you zoom-and-pan, the display
in both viewportsis affected.

play around with zoom-and-pan

When you de-select the viewport A from the zoom-and-pan tool (by a right-mouse click in
the viewport), viewport B is then displayed in the interaction window, and the actions only
affect that viewport. On the de-selected window, the final display settings of zoom and pan

Getting started 39

SCIL_Image 1.4 — User Manual

remain. Thus you can use the zoom-and-pan tool to permanently adjust the display of your
images. Y ou can close the zoom-and-pan tool completely by double-clicking on its close box,
or by minimizing it. Again, the final display settings then remain valid on the selected images.

Y ou might as well destroy the extra viewport on image A, since we will not be needing it any
more;

double-click on the close box of the extra viewport A
click "Viewport only’ in the dialog box

Zoom-and-pan can aso be used to view color images, or 3-dimensional images.

select 'Image:1/O:readfile

click 'Browse’

double-click ’c:/scilimageld/images/chromo3d.ids
click "OK”

Thisisa3-dimensional image of acell division. When you select it with the right-mouse
button and activate zoom-and-pan, you will see that its dialog box contains buttons for +z, -z
and ascroll bar. These can be used to step through the stack of 2-dimensional images that
form the 3-dimensional image.

- A (g3D) 160140716 [12)

¥y Zoom & Pan M= E3 |

05 | 1.0x | 1.5x

20x | 25x | 3.0x

1.0

i
Help. .. |

Figure 3-8: Viewing Z-dlices

A utility that differs from zoom-and-pan in a useful way islens. The lens command allows
you to construct an imagethat contains only part of image A, instead of just a displayed
viewport. Let us read in a grey-valued image:

3-10 Getting started

SCIL_Image 1.4 — User Manual

select 'Image:1/O:readfile
click "OK’

select "I Tools:lens

select 'Lensimage’: B

Image B becomes a 31* 31 image (since those are the default values for lens). To view it
properly, select it with the right mouse button, click on zoom-and-pan, make the zoom factor
8, then close the zoom-and-pan. Now you can move your mouse through image A, and see the
datain image B change along with it.

The other buttons on the status bar contain interactive tools that can be used for image
display, and also for simple image processing. They deal with grey values, and are therefore
not applicable to all image types. The interaction tools can also be used in combination. For
instance, we can have the histogram of image A even when we are using the ’'lens':

select image A by a left-mouse click
click the Histogram icon

Y ou can grab the green bar to read grey value and frequency from the histogram. We can
even have a histogram of the lensimage B at the same time, updated while we are moving the
lens:

select image B by left-mouse click
click the Histogram button
move around in image A by dragging thelens

The histogram changes as the image in B changes because the lens position changes. When
you are done with the lens, you have to switch it off explicitly, using the menu:

select "I Tools:stop_lens
Another histogram-based utility is the Threshold Editor, which allows you to select an
appropriate threshold for an image by looking at its histogram.

select image A
click the Threshold Edit icon

Getting started 311

SCIL_Image 1.4 — User Manual

The histogram of A isdisplayed, and by dragging the green bars you can see the effect of a
thresholding on A (you can move both bars at the same time by dragging in the middle).

experiment with Threshold Edit

When you are satisfied, you may exit by clicking 'OK’ . This executes the thresholding in
image A with the settings chosen; a binary image is the result.! If you cannot find a good
threshold, and therefore would not like to do the thresholding operation, you should exit the
tool by clicking ’Cancel’, which returns A to its original grey values.

The final interactive tool isthe Grey Map Editor.

select image A
click the Grey Map Editor icon

=

The Grey Map Editor interaction window displays a function which maps grey values of
image A to other grey values. Y ou can change this function by grabbing the nodes of the
graph and dragging them (to add or delete nodes, click the right mouse button). All displayed
copies of image A change accordingly. When exiting the Grey Map Editor, you have the
choice to keep the changes to the image (OK), or to restore the original grey map (Cancel).

Note through all of these actions that SCIL_Image allows you to have multiple interaction
windows open, and does not require you to close one before you can interact with the next. Its
way of interaction is’ modeless'.

This concludes the first sample session. Should you want to stop now:

select 'File:Exit SCIL’

11f you still had the histogram of A displayed, you will notice that it becomes void, and
displays the error message: IMAGE TY PE DOES NOT SUPPORT HISTOGRAMS.

3-12 Getting started

SCIL_Image 1.4 — User Manual

Session Two: Using the SCIL _Image Menu System

The following sample session introduces various aspects of image processing using
SCIL_Image through its menu and dialog system. Not all topics are covered, but you should
get an impression of how to work with the system.

Let usread in an image.

select 'Image:1/O:readfile
click "OK”

This a 256* 256 grey value image, asits label ' A[g2D]256* 256’ indicates. The grey values are
integers (in this case ranging between 0 and 255). Y ou can point-click-and-drag at the image
and obtain adisplay of the grey valuesin the status bar at the lower |eft.

Let usinspect some of the grey-value filteringoperationsin SCIL_Image. A laplacian
determines alocal (and rather coarse) approximation to the second derivative of the image:

select "I mage:Filter:laplace’
click "OK”

When you look at the values of thisimage, you will see that they may be negative. They are
displayed clipped to 0 and 255, s0 -126 isjust asdark as 0. Thisis the standard lookup table
for the display of g2D-type images. Y ou can check the pixel values by dragging the mousein
the image and reading the values on the status bar.

There are quite a number of image processing operations valid for image type g2D, both the
standard linear filters (convolutions) and some non-linear filters such as percentile filters and
the edge-enhancing Kuwahara filter:

select 'Image: Filter:Kuwahar &’
Parameters are pre-set to do the operation from’A’ to ' B’. Before executing the filter, change
thefilter sizefrom’5’ to’9" to make the effect more pronounced.

choose Filter Size'?’

click "OK’

Y ou will have to wait alittle while since thisis quite a complex operation. During the
operation, the status indicator in the lower left corner changes to * Running’, and an hourglass
icon appears next to it.

Getting started 3-13

SCIL_Image 1.4 — User Manual

This may be a good time to experiment with some of thefiltersin’'Image:Filter’, to acquaint
yourself with the standard capabilities of SCIL_Image. If you want a description of a
command, just press’Help’ inits dialog box, and a Help page will pop up. Forkuwahar a,
thisreads:

{2 S5CIL_Image 1.4 Windows Manual _ [O]
File Edit Bookmark Options Help

Enntentsl Index | Hach | Frrirt | 4 | B |
kuwahara

NAME ﬂ
kuwahara - edge preserving smoothing (Kuwahara)

S¥NOPSIS

#include "im proto.h”

int kuwahara (IMAGE *in, IMAGE *out, int f£=ize)

DESCRIPTION
Perform an edge preserving smoothing (Fuwahara flter) on the pels of image
"in" and store the result m mage "out".
Image "in" 15 scanned with a moving window with dimensions "fsize" * "fsize".
The command subdrndes the mowing window mto four sub-wandews. In each
sub-window the vanance of the pel values is calculated. The window wath the
lowest vanance 15 taken as the averaging window. The resulting average value
15 stored m the pozel in mmage "out" that corresponds wath the central pozel i the
moving window, This approach tends to avold the sub-windows with large
vartations i pixel values, ez due to the occurrence of an edge.

RETURN VALUES
IE OK (1) on success
MNegative error status on failure (zee i error b

SEE ALSO
edge preserve

=

Figure 3-9 : A reference manual page

Y ou can browse through this Help facility in the usual way, using ’ Contents’, ’ Search’, links
(which are underlined) or the’>>" and ’ <<’ keys, if enabled.

3-14 Getting started

SCIL_Image 1.4 — User Manual

For the next illustration of SCIL_Image, we use the ’fast-fourier transform’, which computes
the frequencies in an image. Even though this transform uses afast algorithm, it still takes
quite awhile on a standard size image. So, we reduce the image first:

select 'Image:M anipulation:change_image size
choose Image ' B’

choose New Width ' 64’

choose New Height ' 64’

click "OK”

select "I mage:Manipulation:war p_image'
choose Input Image ' A’

choose Output Image ' B’

click "OK”

Image A was an integer-valued image consisting of 256* 256 pixels (its header is
"A(g2D)256* 256"), image B consists of only 64*64 pixels (its header is "B(g2D)64* 64").
The'warp_image’ command performed the conversion. Note that the much reduced image B
looks small inits viewport. We can display it much bigger by using the zoom-and-pan button
at the bottom of the screen. We explained how to do thisin the previous session:

select image B by a right-mouse button click
click on the zoom-and-pan icon
usethedidebar in thedialog box to set the zoom sizeto 4.0

Now we do the fourier transform on the reduced image:

select 'Image: Transform:fast_fourier’
choose Input Image'B’

choose Output Image’'C’

choose ' forward’

click "OK”

Image C a'so appears small in its viewport. Y ou would like to have it zoomed in by afactor
of 4.0, just like B. Y ou can do this by a single action:

click on viewport C with theright mouse button

The zoomer instantly applies to C as well (note the green border around C).

Getting started 3-15

SCIL_Image 1.4 — User Manual

ORIGINAL IMAGE

FOURIER TRANSFORM

¥ B (02D) 64764 [_] B C (c2D) 64764 [_]
-~

4

B

-

Pfﬁi

Figure 3-10 : The Fast Fourier Transform

The header of window C reads "C(c2D)64*64". This’c2D’ indicates that the window contains
a 2-dimensional image of which the value at every pixel isacomplex number. Y ou may
check this by pointing at it - the status bar at the bottom of the screen indicates the complex

values.

SCIL_Image discriminates carefully among the various types of images. Not all operations
are implemented for all image types. For example, if you try to do a Gaussian filter on C

select 'Filter:gauss

choose Input Image’'C’

choose Output Image’'D’

click 'OK’

The command does not execute, and you get a warning box:

NN

& SCIL_Image Error

Function: gauss
Mezzage: Function iz not implemented for image tppe: COMPLEX_2D

Digmizs

Stop

Mare info

Figure 3-11: An aert box

3-16

Getting started

SCIL_Image 1.4 — User Manual

Y ou exit from this by clicking ’ Continue’2

Y ou can convert the complex image to afloat (real-valued) image by taking itsreal part,
using the command found ’ Arithmetic:Complex_based’ :

select "Arithmetic:Complex_based:real_im’
choose Input Image’C’

choose Output Image’'D’

click "OK”

The type of the new imagein window D is’f2D’, afloating point image. The image values are
not integers between 0 and 256, as in the case of 'g2D’, but real numbers (you may check this
by the click-and-drag method of viewing the image content pixel by pixel, with display in the
status bar). Some of the numbers are negative, and they are displayed as black.

Somewhere in the analysis of any image, you will probably create abinary imageThisisa
two-valued image, usually used to denote which pixels belong to objects, and which to the
background. Let us take an example where we want to perform measurements on the objects
in the image:

select 'Image:l_O:readfile

click the’Browse’ button

find thefile’scilimagel4/images/cer met.im’
double-click on thisfile sname

click "OK”

To convert thisinto an appropriate binary image, do the following:

select 'Image: Conversion:isodata_threshold’
click "OK”

select "Arithmetic:invert_im’

click "OK”

This produces a binary image (note the type: b2D). Let us first demonstrate some filters on
binary images from mathematical morphology:

select I mage: M or phology: er osion3x3’

2 \When you give commands one at atime, there is no difference between ' Dismiss and ' Stop’,
but if you were running a program thereis. ' Dismiss’ skips the erroneous command but il
executes the rest of the program, while’ Stop’ halts the execution of the program compl etely.

Getting started 3-17

SCIL_Image 1.4 — User Manual

choose Input Image'B’
choose Output Image ' B’
click 'Do It’

Theimage in window B has changed slightly. A more pronounced effect is achieved by
repeating the command afew times. Thisisthe reason we used 'Do It rather than 'OK’: it
leaves the dialog box visible.

click 'Do It’ 4 moretimes

Restoring the rough outline of the shape is achieved by using the dilation operation 5 times:

select 'Image:Mor phology:dilation3x3’
choose Number of iterations’5’
click 'OK’

This should give you a sense of the speed of the implementation. By the way, whilewe arein
the morphology menu, atransform in SCIL_Image related to morphology is the distance
transform:

select 'Image: M or phology:distance’
choose Input Image'B’

choose Output Image’'C’

click "OK”

A distance imagevill appear in window C. Every point in thisimage has a grey-value
proportional to the distance of that point to the closest object. (Y ou could also do the erosions
by thresholding the distance transform image.)

The binary image in window B contains many objects. SCIL_Image can perform
measurements on these objects:

select 'Image: Single_Objects:measur €

choose Interaction 'YES

click "OK”

3-18 Getting started

SCIL_Image 1.4 — User Manual

(7 Imeasure S 3
Greyimage: &~ A (B ¢ C . D
Binarpimage: A & B (. C D

Garbage level: ||]
Shape: [JYSTTN (IEAGN| [CR | [BEND |[XMIN | [XMAX |[YMIN |

[YMaX || WIDTH || HEIGHT || GRAVX || GRAVY |

Density: W GREYWAL [TRANSMIS [OD
Print resultz: & YES5 ¢ MO

Store in file: |_ Browse. .. |
0K | Dot | Dismiss | Help |

Figure 3-12 : The Imeasure dialog box
A new window called ’labelled_image’ appears, with the objectsin various colors.

£ llabelled_image (I12D) 256=256 [jim B3

Figure 3-13: A labeled image

click at individual objectsin thiswindow
In the Worksheet window, alist of feature values grows, reporting on the shape
measurements you selected. To conclude measuring:

point at the'labelled_image window
hit the <Enter>-key

Getting started 3-19

SCIL_Image 1.4 — User Manual

This is the only way you should conclude the measurfay could have written the
measurementsto afile using the’ Storein file' option of the ' measure’ dialog bokefore
starting the measuremer{isse the’Browse' button next to the bar to look through your
directories).

Y ou may need more image windows than the standard windows A, B, C and D, for instance
to store interesting results. Y ou can make a new image window by:

select 'Image:make _image’
type asImage name’my_image’

The image can have any name (aslong as it does not contain a white space), type, size and
location you want, by selecting the appropriate options in the dialog box. Creating small sub-
Images may be helpful in selecting details of larger images, in which case you may find the
'copy_part_image’ command from the ' Image’ menu useful.

When you select acommand, ' Image:copy_im'’ for instance, the choice of images includes

your newly made image 'my_image’ You should realize that the image is lost when you exit
SCIL_Imageunlessyou save it using ' Image:l_O:writefile’. SCIL_Image will not prompt you
to save the images, you have to do it yourself.

This ends the second sample session. To quit:

select 'File:Exit SCIL’

3 Clicking in the close box of the labeled image will destroy that image, but not terminate the
running program. In that case, you would still have to stop it, by using the Pause/Break key,
and Enter. Y our dataisthen not written to afile.

3-20 Getting started

SCIL_Image 1.4 — User Manual

Session Three: Using the SCIL_Image Command Line
Mode

This sample session introduces the various aspects of command line operationa
SCIL_Image. It teaches you how to give commands by typing rather than by using the menu.
Y ou will need this ability to write programsin SCIL_Image. Please work through this session
by keying in the examples. We assume that you have completed the previous sample sessions.

Restart SCIL_Imageif it is not still active:

double-click the’SCIL _Image’ icon
In the previous session, we showed how SCIL_Image can be operated using themenusystem.
In this session, we will use SCIL_Image as aC-interpreter(C being the programming
language). This meansthat if you type statements with correct C syntax, the system will

execute them without the usual sequence of compiling and loading normally required when
programming in C.

For instance, to have the system print some text, you can type this C-statement (copy thisline
precisely, including the semicolon) in the window *Worksheet':

printf(" Hello, world\n");

hit the’Enter’ key on the lower right of the numeric keypad
The’printf’ lineisalegal C-statement which will be executed immediately after you hit the
"Enter’ key. The result is that the Worksheet shows:

Hello, world

(Wewill use bold italics to indicate program output.) Notice the difference between the use
of thetwo 'Enter’ keys on your keyboard in all text windows of SCIL_Image:

"Enter’ on the keyboard (the Return key) - gives anew line, does not execute
'Shift-Enter’ on the keyboard - executes aline or selection
"Enter’ on the numeric keypad - executes aline or selection
"Ctrl-Enter’ (either of them) - pops up dialog box for a selection

(We prefer the use of the Enter on the numeric keypad.) Now type the command:

readfiletrui A <hit numeric keypad 'Enter’>

Getting started 321

SCIL_Image 1.4 — User Manual

Thisinstructionisnotalega C statement, therefore it can not be executed directly. However,
itisfirst passed through SCIL_Image’ scommand expandgawhich trans ates such typed-in
instructions into legal C statements (if possible). The instruction is then executed in the same
way the printf statement was. As the result of the above command, an imageis read from
disk and displayed in image window A. If tranglation into legal C is not possible, the system
Issues an error message. For example, try mis-spelling the command:

reafdiletrui A <hit 'Enter’>

The system responds with:

reafdilet --> variable used but not declared

The same command 'readfile trui A’ can be issued through the menu system, as described in
the previous sample session. Do so how:

select 'Image:|_O:readfile
click "OK”

Note that the command appears in the Worksheet asreadfile " trui” A 300 300. Y ou can use
both types of interaction: command-line typing and menu selection, intermixed. Of course,
you may have forgotten what the options are - the menu system always prompts you, but the
command-line system does not. In that case, you can just type a’?’ after the command, and it
will ask you for al the parameters that it needs.

type’'readf 7’
The system prompts you for the arguments of ther eadfile command, one by one. Y ou can
either pressthe return key when you like the default value, or enter your desired value. You

can also pop up the dialog box of a command, by selecting the command in the Worksheet
and hitting ’ Ctrl-Enter’ (either of the Enter keys will work):

type’'readf’, select it by double-clicking on it, and hit ' Ctrl-Enter’
An important feature of SCIL_Imageisthat C control statements can be mixed with image
processing commands, such asin:

inti; /* declaration of avariable*/

for(i=0; i<200: i =i + 10) thresh A B i;

Asyou see, this creates a for-loop which thresholds the image at different levels. The variable
"I’ iIsnow known to the system, so if you want to see this again, executing only the second line

3-22 Getting started

SCIL_Image 1.4 — User Manual

Is enough. Y ou need not re-type thisline, just execute it again by selecting it (and then
clicking on'Enter’).

Y ou can interrupt the execution of any command by using the Pause/Break key. Run the
previous command again, and interrupt it - SCIL_Image is then ready for the next command.

The Worksheet, in combination with the mouse, offers aflexible way of giving commands:

* If you want to execute more than one commamthe Worksheet, you select them by
using the click-and-drag method until al desired commands are highlighted; then hit
the’Enter’ key.

* If you want tore-execute a commajybu can do this simply by 1) moving the cursor
to that line in the Worksheet, 2) clicking to activate the line (it will not look selected,
but it is), 3) hitting ' Enter’.

* You can aso edit a commangusing the normal method (mouse selection and re-
typing), before you re-execute it. In the same way, you can remove lines that you do
not want.

Another way to re-execute commands is provided by the "History’ window. In that window,
all commands you have given are saved in the order you gave them. Y ou can reach the
History window under the*Window’ menu:

(=% History [_ =) =]

printi{"Hello, worldin"); N
readfile trui A

reafdile trui A

readfile "trui" A 300 300

readf ?

set window size A100120

int i;

for [i=0; i<200; i=i+10] thresh AB i;

for [i=0; i<200; i=i+10] thresh AB i;

] 2

Figure 3-14 : The history window

When you re-executed thefor-loop, it was listed in the history window a second time, even
though you did it by selecting the line in the Worksheet that was already there. The History
window is afaithful account of what you did. It cannotbe edited. You select linesin the
same way as for the Worksheet and execute by hitting 'Enter’.

SCIL_Image can pop up three different kinds of text windows. These are the Worksheet, the
History window, and the RunEdit window (which you create when you choose ' File:New C

Getting started 3-23

SCIL_Image 1.4 — User Manual

Program’, see below). In any of these windows, you can select text with the mouse - and if

you then hit the’Enter’ key, SCIL_Image will attempt to execute the selection.
If you perform, in any text window, the actions:

select a command name by mouse
hit ' Ctrl-Enter’
in the dialog box which popsup, select "Help’

then SCIL_Image will pop up a Help page with information on the command.

2 SCIL_Image 1.4 Windows: Manual
File Edit Bookmark Options Help

IS[=] E3

anlentsl Index | Hach | Print | 4 | 2 |

threshold

NAME
threshold - thresholding into binary image

bi_threshold - thresholding with two levels into binary image

SYNOFPSIS

#include "im proto.h'

int threshold(IMAGE *in, IMAGE *out, int lewvel)

int bi_threshold(IMAGE *in, IMAGE *out, int low, int high)

DESCRIPTION

n the binary tmage "out". Ifthe walue of a pixel 15 greater than or equal to "level” the
correspondmng bit m the "out" image 15 set to "1". Otherwise 1t 15 set to "0".

bi_threshold() converts all the pixel in the range from "low" to "high" into "1" pixels in the
"1" pixels.
RETURN VALUES
IE OE (1) on success
Negative error status on failure (see in error.h)

SERE ALSG
chp contrast stretch equalize tri state threshold lookup

threshold performs a thresholding operation on the grey walue mage "m" and stores the result

output and all pixels that are outside that range to "0" pixels. "low" and "gh" are converted to

Figure 3-15: Another manual page
An alternative way to find this Help page is:

hit ’ Ctrl-H’
click the Sear ch button

3-24 Getting started

SCIL_Image 1.4 — User Manual

type the command name

Proceeding with the example, the last command:

for(i=0; i<200: i =i + 10) thresh A B i;

IS equivalent to:

for (i=0; i<200; i =i + 10 threshold(A, B, i);

Edit the former to produce the latter, and execute it. The whole line is now a proper C-
statement, which does not need to go through command expansion to be executed since it
contains an explicit call to the C-functiont hr eshol d() . Please be aware of the difference
between C-statements and non-C-statements. If you want to know the proper C syntax for a
command called <command name>, call up its Help page by the procedure described above.

Note carefully that although it is possible to mix legal C syntax with non-C commandsin the
SCIL interpreter, it is strongly recommended touse only legal C syntax in your programs
because they could then be compiled (which will make them faster) and added to alibrary (so
you can use them as functions in your programs).

Finally, we show you how to collect a series of commands in afile which can be executed.
Such afileiscalled amacra Let us make a macro for the set of commands that gave us the
contour of the’trui’ image. Type in the commands:

readf trui A
thresh AB
contour B

Open anew filewith ’File:New C Program’ . This pops up a RunEdit window. Copy the last
two commands from the Worksheet into the RunEdit window, using ' Edit:Copy’. Savethefile
as’contourA.mac’ in the directory ’ scilimagel4\demo\macro’. Y ou can execute the commands
in this macro by typing:

macr o contour A.mac
The macro makes the contour of any grey-valued image in window A and displays the result
in window B.

In thisway you can collect useful command sequences. However, you cannot give parameters
to macros, so if you would need a macro to make the contour of theimage in B, you would

have to write another macro. In that case, it is better to write aprogram(see the next section
“Session Four: Programming in SCIL_Image”). Macros are very useful for writing demos

Getting started 3-25

SCIL_Image 1.4 — User Manual

(which use the same images, and display results in the same way), or for saving effective
sequences of commands from a session.

This concludes the second sample session. To quit SCIL_Image, type:

exit

Session Four: Programmingin SCIL _Image

In this fourth session, we will build asmall program. We show you how to incorporate this
program as an interpreted commanihto SCIL_Image. We also demonstrate how to bring this
program into the SCIL _Image menu system.

The program will read an image from afile, threshold the image at a given level and then
show the contour in adisplay window. We call this program *myfunc’. We would like to give
it an file name, an image, and a threshold value as arguments. Make the new file ' myfunc.c’ by
selecting 'File:New C Program’ from the menu. Type in the contents of the box below:

ncl ude "i nage. h"

nyfunc(fil enane, image, |evel)
char *fil enane;

| MACE *i nmage;

i nt | evel ;

readfil e(fil enane, i mage, 0, 0);
t hreshol d(i nage, i mage, | evel) ;
cont our (i mage, i mage, 0, 8, 0) ;

}

L et us use this opportunity to show you some features of SCIL_Image that are very
convenient when you are developing programs. Suppose that you had forgotten exactly what
the arguments were of the functionr eadf i | e() . You can easily pop up the required
information without leaving the editolY ou simply select the text 'readfile’ with the mouse,
and type’ Ctrl-Enter’. The dialog box pops up, and by clicking the Help’ button you obtain
the Help page on the readfile command. Note that in the dialog box, you can also see what the
default values of the parameters to this function are.

Select 'File:Save' from the menu, and:

» giveit the name of the main function in your program, followed by ’.c’ - in this case
"myfunc.c’. The name of your file shouldalwaysbe the name of the main function
defined in it, followed by ’.c’.

3-26 Getting started

SCIL_Image 1.4 — User Manual

e storeitinadirectory contained in the MACRO environment variable (see Chapter 2),
for instance in the ’ scilimagel4\prog\example' directory.

If you do not do this, SCIL_Image cannot find your function.

Y ou can notuse this function using the ' File:Run’ command - that is reserved for complete C
programs (which should contain amai n()). To use the function, exit the editor by clicking
on the close box of the ' myfunc.c’ window (upper left button). Danot use ' File:Exit SCIL’ to
quit, it will quit SCIL_lmage altogether!

Y ou will automatically return to SCIL_Image. From SCIL_Image you can now use the
function nyf unc() by typinginitsname and list of parameters:

myfunc(" cermet”, a, 127);
When the Enter’ key is hit, your function will be loaded and executed immediately. Y ou can
not abbreviate your function to a SCIL_Image-style commandmyfunc cermet a 127, because
that could only be done if the function would have an associated ' CDF' file (see chapted).
We will demonstrate below how to do that. M&king a New Compiled Version of

SCIL_Image’we show how you can incorporate your function into SCIL_Image as a full-
fledged, compiled, command.

To help you manipulate your own programs in SCIL_Image, there are some commands you
may find useful. They can be found under the 'SCIL' menu, but may also be typed in. We
discuss some of them now.

If, for example, you wish to remove the current program from SCIL_Image's memory use the
command:

rmvar

The program and all variables connected with it have now been deleted. You can reload the
program by typing:

load myfunc.c
To inspect the text of the loaded program:
list

Several windows of text scroll by of the include file 'image.h’ (the first line in your program
file) and the Worksheet ends up looking like this:

Getting started 3-27

SCIL_Image 1.4 — User Manual

357 ¥endif /5 IMAGE_H *f :I

—File [myfunc.c |—
1 #include “image.h"
2
3 myfunc [filename, image, lewvel]
4 char *filename;

5 IMAGE *image;

6 int level;

&

8 readfile[filename, image, 0, 0);

9 threshold[image, image, level];

10 contourfimage, image, 0, 8, 0];

11} —
4 | M

Figure 3-16 : Listing code in the worksheet

A full description of these and other commands for program development can be found in
Chapter 4.

The second part of this sample session shows how you can make your programs available as
commands in ameny and make a menu of your own.

The information used by SCIL_Image to generate menus and dialog boxes residesin afile
called’comfile’. Thisfile is generated from smaller files. These are recognizable by a’ .cdf’

suffix, and all are stored in the ’ scilimagel4\prog\comfiles' directory. Y ou can add functions

and menus of your own by editing the file ‘myfunc.cdf, residing in
'scilimagel4\prog\example', and following a procedure we will now describe by an example.

Let us assume that you want your functigri unc() to appear as the commamgfunc in
the standard 'Options' menu of SCIL_Image and in a new menu which you want to call
'‘MyMenu'. Then you should edit 'myfunc.cdf' so that it contains:

$SM/Menu $SA LI MAGE

FUNC nyf unc

MENU M/Menu Qpt i ons

CPTI ONS NOT_COWP| LED

ARGS
filename - trui - * M File
image - A- - M Inage
odd - 127 1 255 Only odd val ues

Make sure that no empty lines follow the last line of myfunc.cdf'. In order to add 'myfunc.cdf'
to ‘comfile’,

1) Place 'myfunc.c'in one of the directories listed in the environment vaviabRO
(Chapter 2), such as 'scilimagel4\prog\example\myfunc.c'.

3-28 Getting started

SCIL_Image 1.4 — User Manual

2)

3)

4)

5)

6)

7)

8)

Store the CDF-file’myfunc.cdf’ in adirectory of your choice, for instance
' scilimagel4\prog\examplé\myfunc.cdf’.

Exit SCIL_Image (if it isrunning) and start the Microsoft Developer Studio
(devstudio) by double-clicking the file the workspace file for SCIL_Image:

c:\scilimagel4\prog\scilimag.dsw

From within the Developer Studio op the file’ c:\scilimagel4\prog\comfiles.mak’ lpe
sureto set the" Open as' optionto" Text" otherwisethe wrong things happen).
At the end of the COMFILES list add the line:

$(SCIL_ROOT)\prog\example\myfunc.cdf

(make sureto add it onto the last line in the block COMFILES, and preceding the
Return on the previous line by abackslash '\, just as was done on the other lines).

Save the changed comfile by clicking the save button on the button bar or choosing
"File:Save".

To create the new \scilimagel4\comfile, — |

. . " S . iy Workspace 'scilimageld': 6 prajec
rlght click the "comfile proj ect and e
choose Build.: H-EH confiles files

B comfile files
-8 grab3z files
grabool £iles
&-E8 overload files
scilimageld files

In the output window alist of files must now be printed (if not, the cdf-file you added
was older than the comfile and must be saved again).

Start SCIL_Image again (either by hitting <CTRL>F5 in the devstudio or by double-
clicking its program icon as you did before.

Asyou see, the’MyMenu' button is now present in the SCIL_Image menu bar. The command
myfunc is now an item of "MyMenu' aswell as an item of the’Options' menu. Let’stry it:

select 'MyM enu: myfunc’

A dialog box pops up for your personal command, which you may execute by clicking ’OK’ .

The function myf unc() isnot yet acompiledfunction; it is still loaded from the file
"myfunc.c’ and theninterpreted It is possible to add the function to the library of compiled
functions of SCIL_Image and so make it into a full-fledged command, but explanation of that
will have to wait till Chapter 5.

Getting started 3-29

SCIL_Image 1.4 — User Manual

This concludes the fourth sample session.

Making a New Compiled Version of SCIL Image

In this sample session we will show you how to embed your functions as commands in a new
compiledversion of SCIL_Image. We take a simple example in image processing. At first,
this example shows you how to obtain pointers to images - then we extend it to use the
convenient error checking functions of SCIL_Image. Finally, we extend it once more to make
onecommand that treats images of various types (in this case integer-valued and real-valued
Images).

We will write a program for a command that adds 1 to an image - not very useful, but it
illustrates the issues involved. We enter it using the’ File:New C Program’ menu selection:

/* add_one.c : first version */

#i ncl ude "i nage. h"

g_add_one (I MACE *in, | MACE *out)

{
P XEL *indata, *outdata;
| ong num

indata = |nmagel nData(in);

outdata = | mageQut Dat a(out) ;

num = I mageS ze(in);

while (--num *out dat a++ = *(i ndata++) + 1;

di spl ay_i mage(out);

Note that we do not need to start with mai n() , since SCIL_Image will be the main program
that will call thisfunction. Thus the terms’ program’ and ’function’ are almost synonymous.
We use 'program’ for the contents of the file, including the#i ncl ude statement and
possible other functions. A 'function’ is then any of the function bodiesin the program. The
"main function’ isthe functioncany_nane>() definedinthefile’<any name>.c’.

The program itself looks much like you would expect from a C-program. The include file
"image.h’ contains the definitions of thd MAGE and Pl XEL data types, and also of the pre-
processor macros| magel nDat a(), | mageQut Dat a() and | mageSi ze() . The use of
these macrosis explained in the chapter "Programming with Imagé' - for now, know that the
first two return the pointers to the input and output images, and the third returns the size of an
image.

3-30 Getting started

SCIL_Image 1.4 — User Manual

Initself, this function can be used, but it is not yet properly embedded within the SCIL_Image
structure. If you execute it, you will need to call the functiondi spl ay_i mage()

explicitly, to display the image. To embed the function properly into SCIL_Image, we add
some lines:

/* add_one.c : version 2 : pre_op, post_op added */

#i ncl ude "i nage. h"
#include "iminfra. h"

g_add_one (I MACE *in, | MAGE *out)

{
PIXEL *indata, *outdata;
| ong num

if (!'pre_op(in,out, ADJUST, G 2D SPEC GREY_2D))
return(NOT_ K);

indata = |magel nData(in);
outdata = | mageQut Dat a(out) ;
num = I mageS ze(in);

while (--nunm) *outdatat++ = *(indatat++) + 1,

return post_op(out);

Thefunctionspr e_op() and post _op() do the administration involved in making sure
that your functiong_add_one() worksonimages of type'g2D’. They will pop up error
messages if you try to use the function in ways you did not specify. If your operation could
not be performed ’in place’ (from an image to that same image), they would createfir e_op)
and destroy (post _op) appropriate intermediate images. The functionpost _op() aso
takes care of the automatic display of the result. These functions are described in the chapter
"Programming with Image".

Now you have made a function that can be put into SCIL_Image - but it will only add 1 to
Images of type’g2D’, which are integer-valued. If somewhere in other calculations you would
have made areal-valued image, you would not be able to add 1 to it using this function. On
the other hand, you would not want to have an *add 1’ -function for every possible image type
(you would have to be aware of what image type you would want to process before you could
choose the appropriate function!).

SCIL_Image has away to prevent this - you canoverloada command. This means that the
command itself decides what functionsto call, dependent on the image types you give as
arguments. We apply this to extend our example to treat real-valued images as well, in one
overloaded command add_one. For that, we need to define afunctionf _add_one(),
which adds 1 to afloat image. Itisvery similar tog_add_one() (see below in the box).

Getting started 331

SCIL_Image 1.4 — User Manual

We also define one main function, add_one() which will select either g_add_one() or

f _add_one(), depending on the type of the input imagei n. Its name must correspond to
the name of the command we are constructing (add_one). The overloading involves a
functionover | oad_f unc() which can perform that selection on the basis of data we have
given it. Change the file once more to correspond to the box below (the function
g_add_one() isunmodified, and not shown fully), and save it.

/* add_one.c 3rd : overloading the operation */ |
#i ncl ude "i nage. h" |
#include "iminfra. h" |
|

int (*func)(IMAGE *, | MAGE *); |
|

add_one (1 MAGE *in, | MAGE *out) |
{ |
func = overl oad func("add_one", in); |

if (!'func) return (NOT_OK); |
return (*func)(in,out); |

} |
f _add_one (IMAGE *in, | MAGE *out) |
{ |
float *indata, *outdata; |

| ong num |

|

if (!'pre_op(in,out, ADJUST, F 2D SPEC FLQAT 2D) |
return(NOT_(K); |

|

indata = |nmagel nData(in); |
outdata = | mageQut Dat a(out) ; |
num = I mageS ze(in); |

|

while (--nun) *outdata++ = *(indata++t) + 1.0; |

|

return(post_op(out)); |

} |
g_add_one (I MAGE *in, | NMAGE *out) |
{ |

SCIL_Image still needs to be told that the command nameadd_one has been overloaded to
floats and integers. To do so, make anew file’add_one.ovl’, in the directory
'scilimagel4\prog\overload' . The contents should be:

add one.ovl: overload file for add_one

#

TABLE g2d GREY_2D G 2D SPEC 2
add one g_add_one

#

TABLE f2d FLOAT 2D F_2D SPEC 2
add one f _add_one

#

3-32 Getting started

SCIL_Image 1.4 — User Manual

Such afileis called an overload file(its syntax is explained in the chapter "Programming with
Image"). You only need to make an overload file for commands that should be able to handle
various image types.

To make the command add_one usable under SCIL_Image, and bring it under the menu, we
make afilein’scilimageld\prog\comfiles . Thisfileis similar to the CDF file we saw in
Sample Session Three:

add_one. cdf: function description
#
FUNC add one
MENU Arithretic
ARGS
inage - A - - Input Inage
inage - B - - Qutput |Inmage

#

It determines the default values of the images, and helps to pop up the appropriate dialog
boxes.

We now have all ingredients to make anew version of SCIL_Image that contains our
add_one command. We still have to compile thefile’add_one.c’, and to make a new version
of SCIL_Image.

1) Open the Microsoft Developer Studio workspace " c:\scilimagel4\prog\scilimag.dsw"
(if not already open) and add the file add_one to the project "mylib" (right click
"mylib" and choose "Add files to project” and then select the file add_one.c from the
directory you put it in.)

2) Open defile"c:\scilimagel4\prog\comfiles.mak" (set the "Open as" to text in the
dialog box) and at the end of the COMFILES list add:

c:\scilimagel4\pr og\example\add_one.cdf

and save thefile. (fill in the appropriate path nameif you saved the file "add_one.cdf"
somewhere else).

3) Open defile"c:\scilimageld\prog\overload.mak” (set the "Open as” to text in the
dialog box) and at the end of the OVERLOAD list add:

c:\scilimagel4\pr og\example\add_one.ov!

and save thefile. (fill in the appropriate path name if you saved the file "add_one.ovl"
somewhere else).

Getting started 3-33

SCIL_Image 1.4 — User Manual

4) For both the "comfiles' and "overload" project, choose the "Build" command on the
context menu (when clicking the project with the right mouse-button).

5) Then rebuild SCIL_Image by choosing the "Build" command on the "scilimagel4"
project.

6) Start SCIL_Image again. In the "Arithmetic" menu you will find your command
"add_one".

Please note that just must build the " comfiles’ and " overload" projectsby hand first
because Developer Studio does not recompilethefiles” sysfunc.c* and " overload.c"
when necessary.

Totest it, do not read in an image, just choose your new command, either by typing or by
selecting it from the’ Arithmetic’ menu. After your command has been executed (thisis
almost immediately) you may check that it indeed added 1. Clicking with the cursor in image
window A showsthat it has value 0, and clicking in window B should show that it has value
1. Now convert image A into areal-valued image (by selecting ' Image:Conversion:convert’)
and repeat your command. Now it changes values of 0.0000 to 1.0000. Thus it works on real-
valued images as well.

Now that you know that the command works, it is time to add a description of it to the on-line
Help facility. You should do this by following the instructions on the Help page: ' User -
defined Help Pages'. It requires the editing, in Rich Text Format, of the file’user_def.rtf’,
located in the " help’ directory. Thisfile contains a sample manual page that you can use to
create your own manual pages. For thisyou need an editor that can read this format. After you
are done composing your Help page, according to the instructions, your editor window should
look similar to this:

3-34 Getting started

SCIL_Image 1.4 — User Manual

W Micresoff Word - user_def_rtf [_ (O]
B File Edit Yiew Inset Fomat Tools Table ‘window Help =8| =]
D|=d| SlR¥ (e & |m=@<] o] oo &EE=afe o =]
|Heading1 J |T|mesNewF|c:man J |24 J I_I_ Ul D‘l H |4,|V| I_—|—|§| | —|+;§
El t I "'-'3".4 . B.' 7 .S . "1':'."'”'. 12 :II

. ﬁ-S-K-+-add oned

SCIL MAME NAMEY|

Mormal add_one --—-add-1to-an-imagey

Marrmal 1]

SCIL SYNOPSI S¥YNOPSISY

ScilCourier #include-"user def.h"q

ScilCourier finclude-"image.h"q

Mormal 1]

ScilSyntas int-add one (IMAGEimage.h-*in, - INAGEimage.h- “out) 1

Maormal 1]

SCIL DESCRIP DESCRIPTIONY

Marmal Add-' 1" tothe-image-'in'-and-store-the-result-int-the-image-'out'

Marmal 1]

SCIL RETURM RETURN-VALUESY

Morrmal QOE-(Tr -+ ifsuccessfil]

Morral HOT OE-(MN-sifnot-successfuly

Marrmal 1]

SCIL AUTHOR AUTHORY

Mormal written-by- LT - Self-- 199702049

Marmal 1]

SCIL EMDREF q ;I
I.i'-.ll Foatnotes j M =
Footnote Text #add onel

Footnote Text $-add:oneﬂ

Footnate Text K-add_one;MY_FUNCTIONSﬂ

Footnote Tent T UISEE. FUNCTIONS 000029 -

EBEE]] ﬂJ
|Page 1 Sec 1 11 LAt Ln Cal 1 [REE [Rirk HE=T |ovE e A

Saveit, and start the "Help Workshop" from the "Microsoft Visual C++" environment. In the
Help Workshop open the file’ scilimag.hpj’ (from the help directory). To compile the help
file:

Select 'File:Compile

Compilation will take some time, the help compiler will minimize itself during compilation
and restore itself to normal view after compilation. It generates the new ' scilimag.hlp’, which
makes your Help page reachable from SCIL_Image like that of any other command:

Getting started 3-35

SCIL_Image 1.4 — User Manual

2 SCIL_Ilmage 1_4/Windows Manual |_ O] =]
File Edit Bookmark Options Help
Eurﬂenml Index I Hlach | Prrirt | £ | B I
add one
NAME i’
add one, - add 1 to an unage

S¥NOPSIS

#include "user def.h"
finclude "image.h™

int add one (IMAGE *in, THMAGE *out]

DESCRIPTION
Add 'l to the image 'in' and store the result mt the image 'out’.

RETURN VALUES
QE (1) if successfil
HOT OFE (0 fnot successfil

AUTHOR
written by ML Y. Self 19570204

=

Figure 3-17: Y our new manual page

We have used the example to show you that it is possible to embed your own function as a
command in SCIL_Image, rather than as an exact explanation of all stepsinvolved. We will
give that in Chapter 5. Y ou should remember these salient points:

* You can embed your own functionsin SCIL_Image in away that makes them
Indistinguishable from the standard functions - they are then indistinguishable from
the standard SCIL_Image commands. This means that you can make your own version
of SCIL_Image, completely tailored to your own application.

* Youshouldusepre_ op() andpost _op() inyourimage processing programs to
have the advantage of SCIL_Image’ s type checking, error handling and automatic
displaying of results.

* You can overload one command name to treat images of various types, using the
overload mechanism.

3-36 Getting started

SCIL_Image 1.4 — User Manual

This concludes the fifth session..

The Commands of the SCIL _Image M enus

In this section, we briefly describe the menusin the SCIL_Image menu bar. Thiswill give
you an overview of SCIL_Image's capabilities. We will specify the sections in which you can
find more detailed descriptions of the commands.

File
Hew C Pragran CTRL-M
Open C Program... CTRL-O
Open [mage...
Save f=
Save b,

Save Image Az

EiLir] =1
Frirt... CTRLP
Frinter Setup...

Frint Image Setup...

Exit SCIL

0 ChscilimagyPROGAWEAMPLE yrwfunc.c

Figure 3-18 : the File menu

This menu contains commands for file manipulation. Most commands are standard.
SCIL_Image also provides the’ Open Image’ command, to open any of the image files.

Edit

Wieder]

[Enif: [ETHC
Copy CTRL-C
Easte |

Eirdd. - [EH-E
Eitd &aar ETELLS
Heplage,., ENELH
G Ta.. CIHLE

Figure 3-19 : the Edit menu

Thisisthe standard editor menu. Y ou can use it to edit text in any text window, or to move
text between windows.

Getting started 3-37

SCIL_Image 1.4 — User Manual

SCIL

chain...
MAacra. .
load...
un
lit...
mare...

logan. .
logaff

T &
dyn_link. ..
dyn_unlink. ..

Figure 3-20 : the SCIL menu

The’SCIL’ menu contains commands necessary to the functioning of SCIL_Image asa
programming environment. These commands are described in detail in "The C Interpreter”
(chapter 4).

chain, macro, load, run are commands to manipulate interpreted programsin
SCIL_Image.

list, logon, logoff, rmvar are commands used for program development, to show and
record interpreted programsin SCIL_Image.

| mage

(]
Hiztogram
Generation
Manipulation
Eilter
Tranzfarm
Segmentation
Conversion
Single_Objects
Statistics
War_Objects
tMarphaology
Texture

T T W ¥ T ¥ ¥ ¥ ¥ ¥ ¥ F ¥

correert...

roi_define...
show_image_info...
zhow_func_overload...
copy_part_image. .
destroy_image...
eval .

COpY_in...
make_image...

all_im...

Figure 3-21 : the Image menu

3-38 Getting started

SCIL_Image 1.4 — User Manual

This menu contains the image processing commands, and is therefore the menu you will
probably use most. It contains many sub-menus.

| _O contains functions which read and write images from and to your disk.
Histogram has commands to manipulate image histograms.

Generation has commands to generate test images, with simple geometric and grey-
value patterns, to test your algorithms.

Manipulation contains operations that ' move pixels around’, such as reflections and
rotations of images.

Filter contains a standard library of filters, both linear (for instance, the uniform and
the laplacian filter) and non-linear (for instance, Roberts' gradient and the median
filter).

Transform has some transformations.
Segmentation contains various thresholding algorithms.
Conversion allows you to convert between different types of images.

Single_Objects allow you to reduce your processing to single objects in an image, for
instance to determine their convex hull, or to perform specific measurements.

Statistics has commands that compute some simple image statistics, such as mean
value, minimum and maximum.

Var_objects contains the manipulation of *var_objects’, which are non-image data
structures akin to arraysin C.

M or phology contains many operations from mathematical morphologsuch as
erosion, dilation, skeleton, and hit-or-miss transforms. Some frequently used
operations have received special attention in the implementation, including the
3x3 erosion and dilation. If you are a specialist in mathematical morphology, note
the options for special pointsin skeletons, and mathematical morphology with
arbitrary shaped elements.

Texture has commands that deal with texture (measurements).

The commands in the remainder of the’Image’ menu, can be split into two groups often
used in combination with image processing commands:

I mage creation commands are a group of commands that help you create and destroy
new images, and regions of interest in images.

Getting started 3-39

SCIL_Image 1.4 — User Manual

Variousimage utilities contains some commands that occur in other menus as well,
but are often used in combination with image processing commands. It also has
the important copy_im command to copy images.

Display

Mapping *
v auto_display

zet_clutb..
clut_by_name...
bin_dizp_colorz...
create_display. ..
natural_window_size...
zet_window_poz...
zet_window_zize...
zet_displap_slice. ..
nest_plane...
zet_dither_mode...
zet_display_mode. ..
zet_zigmoid_shape. .
zfp...
z_planes...
dir_rnasimn. ..
steren_view...
dizplay_image...
part_imaage_dizplay...

Figure 3-22 : the Display menu
This menu contains commands that manipulate the display of your images. The commands
can affect size, location, grey-values and colors of the images.

Options
dialog_options. ..
v alto_dizplay
bin_dizp_calars...

Figure 3-23 : the Options menu

This menu permits you to tailor the interaction of SCIL_Image (dialog boxes, display,
reaction on mouse-clicks in images, etc.) to your taste.

3-40 Getting started

SCIL_Image 1.4 — User Manual

Arithmetic

Int_based
Float_bazed
Comples_baszed
Calar_bazed
Log_bazed
Trigonometric
Exotic

T T ¥ T ¥ W

add_im...
zub_in...
mnul_im....
div_im...
increment_inn...
decrement_in. ..
negation_im...
zhift_im. ..
and_im...
or_in...
wor_im. .
nvert_im...
eval...

clip...

Figure 3-24 : the Arithmetic menu

This menu contains various commands to perform arithmetic operations on images. They are
divided into three groups:

Variable arithmetic operations (Int_based - Exotic) perform computations on
SCIL_Image variables.

Image arithmetic operations (add_im - clip) perform arithmetic computations on
image pixels, point-wise for the complete image (this allows you to divide one
image by another image, for instance)

Arbitrary evaluation consists of the very useful command eval, which evaluates C-
like expressions with images and image coordinates.

Itools
|Greghdap...
[£oomer CTRL-M
|Threzhold. ..

lens...
stoplens
cube_view. ..

Imeazure. .

Figure 3-25 : the Itools menu

This menu contains some interactive tools. We described them in "Session One: Viewing
I mages'

Getting started 341

SCIL_Image 1.4 — User Manual

The Properties of Text Windows

In the sample sessions, you have encountered various text windows and their properties. Here

ISasummary.

There are 3 types of text windowsin SCIL_Image. They are: the Worksheet, the History

window, and any number of RunEdit windows:

[=]

] 2
Al

4] 2

% RunE dit - [Untitled1]

] 2

The following key sequences can be given in any text window, after selecting acommand or a
number of commands. Their effect in all windows is the same.

Enter (on main keyboard) gives a new-line.

Enter (on numeric keypad) or Shift-Enter (on main keyboard) executes a selection, and
reports that execution in the Worksheet and the History window. If no command has
been selected, the line on which the cursor presently resides is executed.

Ctrl-Enter pops up adialog box for the selection. By clicking Help in that box, you

obtain on-line Help information.

Y ou will find these specia key sequences very convenient when developing your

applications.

3-42 Getting started

SCIL_Image 1.4 — User Manual

On-line manuals

The documentation of SCIL_Image 1.4 is supplied in Adobe PDF format. To read these
documents the Acrobat Reader (supplied with SCIL_Image) is needed. The "Help on
SCIL_Image" button from the Help menu produces a window as shown below.

Acrobat Reader - [scilimag.pdi] [-[O]x]

HB File Edit View Tools Window Help _|= 5'

[} Table of conter2] ﬂ
[> (1 Chapter1 oOutli
[» 1 Chapter 2 Setti
> 01 Chapter 3 Getti
I> [Chapter 4 The X
> 01 Chapter 5 Adva E‘I @
[> 01 Chapter 6 The X
[> 01 Chapter 7 Intro
[> (1 Chapter 8 Fubl
Eg 2::2:2: WEEIP;\?']E: University of Amsterdam TNO Institute of
B[Chapter 11 Bitr Faculty of E\'14_11hum:1{icx. Applied Physics
b [Chapter 12 Nes Computer Science, Physics
D) Chapter 13 cre and Astronomy

[Appendizes

[Referance man Kruislaan 403 P.0. Box 185

1098 5J Amsterdam, 2600 AD Delft, The Nethedands
The Netherlands Stieftjesweq 1
2628 CK Delft, The Netherands
SCIL_Image
version 1.4
A _»l_l A [YPagetof268 | @ 00% | F826x11.69in | 4| L_I

Figure 3-26: the acrobat reader

Navigating through the manual can be done in several ways, using the cursor-keys, the
scrollbars, the buttons in the toolbar or clicking the bookmarks in the left pane. Extended help
on using the reader is given in the Help menu of the reader itself.

Refer ence manual

The reference manual opens as shown below, at the index page.

Getting started 3-43

SCIL_Image 1.4 — User Manual

4B File Edt View Tools ‘Window Help NEET
[&) W] <] >] «)| O|oImE &l
[> [Reference Man\j- B

[Command synt.
<[Index SCIT._fmage 1.4 - Reference Manual

0=
g . Index

y_tespon:

TEC

Ox add_
(=) hd i &
Q| » 4| [0 Page 531 of 540

Figure 3-27: the reference manual index

o ook | Eezsxiienin |4 i ,

To find the reference page of afunction, search for the function in the Index and then click on
the page number behind it (within the red square). The reader then jumps to the page on
which that function is described. As shown below with ther eadfi | e() function.

Acrobat Reader - [scil_ref.pdf] M=E3

il File Edt Miew Tools ‘window Help =]
| | 1Wlalv]« | DIE[E &
I»[) Rafaranca Man:i’ SCH._Image 1,9 - Reference Manual 2|
[cammand synt.
— [Index readfile
0- NAME
OB readfile - read an image from file
Oa SYNOPSI!
bOc g
bOo IMAGE *readfilelchar *Filenam E timage. int xpos. int ypos)
OF
DESCRIPTION
DE
Read the image stored in file "Milename” and pat it in i
£ T
he "USE_NAMI (a NULL pointer} s specified as the ima
OH pusition “xpos”, "ypos”, with the same name 45 the file, If an image
Ol with that name, that image will be used. Several file formats are supporied (see
oJ below), each of which have an obligatory extension, I a flename is supplied with no
extension the function wilk append the obligatory extensions one at the time o find
DOk o gatory
the file.
oL
O M ICS format Twa files per image are present, the data-file with the extension “ids"
O and e header-file with the extension " fes”™
Oo FIFF format The read function is capable of reading TIFE-Files aceording 1o the |
D 6.0 specilications. The file must have an extension that starts with
Oa "1if". The extensions for finding a TIFF file are " tif" and " Gi1™
Or IPEG format The file must have the " jpe” or " jpeg” extension
Os
OoT TCL format - The file must have the ".dat™ extension
0w AIM format The data-files of the AIM format must have the "im” extension. Data-
0w filles for which no heade i i hd” is present, are

[= assumed 1o contain a 256

il_lnv _>|;| 4b| [YPages7aorsan | 0oes% | Ela26x1168in 4]
Figure 3-28: areference manual page

v value image

3-44 Getting started

Chapter 4 The C Interpreter

When you write programs in a high-level programming language
like C, you have to follow the sequence edit-compile-load-run.
With SCIL_Image, it is possible to just edit and run your program.
The part of SCIL_Image that makes this possible is called the C
interpreter. In this chapter we discuss the use of thisinterpreter for
developing software. Y ou can compile and load if you want to
make your programs run faster (consult "Advanced SCIL_Image"'
on page 5-1).

Read this chapter if:

Y ou have experience with the C programming language.

Y ou are experienced with the menu and command modes.

Y ou want information on the use of macros.

Y ou want to combine image processing commands with C
control statements.

Y ou want to devel op image processing programs.

Y ou need to know the limitations of SCIL_Image’s C language.

Do not read this chapter if:

you have no experience with SCIL_Image.

you have never programmed in C.

you only want to use SCIL_Image at the Menu Mode of
interaction.

SCIL_Image 1.4 — User Manual

SCIL Imageand C

After starting SCIL_Image, you can enter any SCIL_Image command or C statement into the
Worksheet. It will be interpretedimmediately after you hit the’Enter’ keylnterpretedmeans
that SCIL_Image:

* ldentifiesthe C-code that will execute your command
* Fillsin missing arguments with default values
» Executesthe C-code and displays the results

Thefirst two steps are called command expansioiihis feature of SCIL_Image means that
you do not need to use the exact name or arguments of the C-codes that do image processing.
For instance, you can just typereadf trui, without knowing that thisis actually the C-
statement readfile (" c:\scilimagel4\images\trui”, A, 300, 300);.

SCIL_Imageis also capable of interpreting CstatementsThis means that if you want to
execute acommand 10 times, you can typefor (i=0; i<10; i++) <command>; because
SCIL_Image understands the control flow of standard C. A sequence of commands to
SCIL_Image may therefore look very much like C-code. Y ou can collect such sequencesin
files, and execute them. Such files are called macros

SCIL_Image can also understand actual C-programs and run them without compiling. We call
these programs interpreted programs

In this chapter we explain these three ways in which SCIL_Image interprets C, aswell as
some basic commands that help you develop your programs.

However, awarning before you start:

SCIL_Image’s C language is close to Kernighan & Ritchie 1978 C1, but there are
some limitations (see "Features of SCIL_Image's C-interpretet’ on page 4-16).

1 Kernighan B. W., Ritchie D. M., The C Programming Language, PRENTICE-HALL, INC.,
Englewood Cliffs, New Yersey, ISBN 0-13-110163-3.

4-2 The C Interpreter

SCIL_Image 1.4 — User Manual

ANSI-C compatibility

Although the C language of SCIL_Image is not ANSI-C, we strongly recommend that

ANSI-C coding is used whenever compiled (not interpreted) code is added to

SCIL_Image. The function-calling mechanism of the C-interpreter has been changed
to the ANSI-C calling convention. Consequently, adding compiled K& R C-code, may

cause the arguments to be passed incorrectly to those functions.

The Direct Command Mode

Y ou arein the Direct Command Modehen you type commands into the Worksheet. Asyou

have seen in Sample Session Three (page 3-21), you can use the Worksheet to give
SCIL_Image commands like:

readf trui

(followed by hitting the’ Enter’ key on the numeric pad). Commands like these are expanded

internally to call the C-functionr eadf i | e() . Thiscommand has four arguments.

SCIL_Image fillsin the default values to make your commandr eadf trui into a proper

function call. Y ou can see what these default values are by typing

readf ?

or by popping up adialog box:
type’'readf’, select it by double-clicking, and hit ' Ctrl-Enter’

Thus the proper C-statement corresponding to ’readf trui’ is:
readfile(" trui" ,A,300,300);

All commandsin SCIL_Image have these three versions:
SCIL_Image menu selection select 'Image:1/O:readfile
SCIL_Image command readf trui
C function call readfile (" trui" ,A,300,300);

Y ou should bear in mind the differences between these terms. We call the last two

possihilities the Direct Command Moddecause you type them into the Worksheet.

The C Interpreter

SCIL_Image 1.4 — User Manual

Commandsn the Direct Command Mode are very much likelinesin a C program, both in
syntax and in meaning. Y ou can combine several commands on one line using the same rules
asin C. More specifically, the syntactic possibilities for commands given in the Direct
Command Mode are:

» Classes of commands

* Variable declarations:
int i;
» Statements:
for(i=0;i<3;i++) printf("%l\n", i);
* Fileinclusion directives:
#i ncl ude "i mage. h"
* Pre-processor defines:
#define max(a,b) (((a)>(b))?(a): (b))
» Typedefinitions:
typedef struct date_t {int nonth, year;} DATE;
DATE dat e;
date.nonth = 2; date.year = 1993;

e C-functions

In SCIL_Image, functions are invoked in the same manner asin C. The functions used
throughout this section are part of the standard C library. Y ou cannot define your own
functions in the Direct Command Mode (you would always have to define those using
an editor because a program is a named collection of commands). There are ways to
do thisin the other modes. Once you have defined your own functions, you can use
them in the Direct Command Mode if they are:

* macros(see"The Macro Mode" on page 4-5)

* loaded interpreted functiors UFOs(see "The Programming M ode:
Interpreted C-functions and UFOS" on page 4-7)

» compiled C functionfChapter 5)

» Putting commands together

4-4

More than one direct command may be entered on the same input line, if separated by
semicolons (;). For example:

readf trui; printf(" Theresheisagain '\n");
The first semicolon is thus a separator between direct commands, the second
semicolon has to be given since the second command is a C-function call, and is not
syntactically correct without it.

The C Interpreter

SCIL_Image 1.4 — User Manual

Using the Worksheet and the History window, you can work very flexiblein the Direct
Command Mode, as our ' Sample Session Three’ (page3-21) showed. Both the Worksheet and
the History window show previously entered commands. The differenceis that the History
window cannot be edited, it retains an exact account of what you have done. But the
Worksheet can be edited, which is convenient if you want to type a similar command to one
you did before. It uses the standard Windows editor, available under the Edit menu. Both
windows can be resized, moved and scrolled. We repeat the main possibilities of these
windows:

* If you want to execute more than one commamthe Worksheet or in the History
window, you select them by using the click-and-drag method until all desired
commands are highlighted; then execute them - hit the’ Enter’ key on the numeric
keypad, or * Shift-Enter’ on the keyboard..

* If youwant tore-execute a commajyybu can do this ssmply by moving the cursor to
that line in the Worksheet or History window, clicking and executing.

* You can aso edit a comman¢h the Worksheet (not in the History window) using the
normal method (mouse selection and re-typing), before you re-execute it. In the same
way, you can remove lines.

The above even applies to the RunEdit window: mouse selection and ' Enter’ key executes
your selection asif it were in the Direct Command Mode.

The Macro Mode

After you have worked in the Direct Command Mode for awhile, you will notice that some
command sequences have a tendency to re-occur in your work. Y ou can of course type them
in once and re-execute them using the Worksheet and/or History windows, but SCIL_Image
provides an easier way. Y ou can make afile that contains such a sequence of commands, and
execute the file asawhole. Such afile of direct commandsis called amacra

To make a macro, do the following:
1) Gointo the RunEditor, using’File:New C Program’ under the menu system

2) Typeinthe desired sequence, or copy it from the Worksheet or the History window
using the mouse-select and the commands in the ’ Edit’ menu.

The C Interpreter 4-5

SCIL_Image 1.4 — User Manual

3) Savethefile (using ’'File:Save') in one of the directories listed in the environment
variable MACRO (see Chapter 2), for example in’ c:\scilimagel4\demo\macro’. Asa
filename, use a name of your choice followed by the suffix *.mac’ (for macro).

4) Exit the RunEditor by clicking the close box of its window.
To run your macro file, use the macr o command, which has the following syntax:
macr o [-i] [-v] <macr ofile>
The macr o command executes the lines in the macro file as if they were typed in one by one.

The contents of macro files are restricted to lines with the syntax of the Direct Command
Mode. A macro fileis notafunction: it can have no arguments.

As an example, suppose it is frequently necessary to clear four standard images named A, B,
C, D. Instead of typing the command clear_im four times, a macro file can be created. Edit a
file (using ’File:New C Program’) to contain:

clear imA
clear imB
clear imC
clear imD

Savethefile (using 'File:Save') as’ cleanup.mac’ (recall that the suffix *.mac’ in the filenameis
meant to indicate a macro file). Now we have created a macro that clears al images. First we
read an image file into each image window.

readf trui a; copy_im ab; copy_im b c; copy imcd

Then we clear them, using our newly created macro:

macr o cleanup.mac

The macr o command has two optional arguments:
-i Eachlineis executed with user interaction
-v Eachlineis printed to the Worksheet window (' verbose')

When you use the -v option, please note that the individual commands from the macro appear
in the Worksheet, but that the History window only contains the macr o command.

4-6 The C Interpreter

SCIL_Image 1.4 — User Manual

The Programming Mode: Interpreted C-functions and
UFOs

To use SCIL_Image in theProgramming Modérather than the Direct Command Mode)
means that you use an editor to create or change a program, after which you load the program
into SCIL_Image and run it. This process may be repeated several times, just asin ordinary
programming. The basic development scheme s : edit-load-run-edit,- etc. The program may
consist of #i ncl udes, #def i nes, global variables and functions with local variables, just
asin standard C. Thisalows you to define C-programs for the SCIL_Image C-interpreter.
Thereis no need to compile them.

To make an interpreted(so non-compiled) C-program, do the following:

1) Createafileusing the editor. You may use SCIL_Image commands, but we advise
against this, since you would have to redo those commands if you were to decide later
that you wanted to make the functions in the program into compiled functions (see
"Advanced SCIL_Image" on page 5-1). Please note that almost all standard C syntax
Is permitted, the only exceptions can be found in "Features of SCIL_Image’'s C-
interpreter” on page 4-16.

2) Savethefilein adirectory listed in the environment variable MACRO (Chapter 2). You
should choose a name with the format ' <name>.c’, to distinguish the program from a
macro file.

3) Runthe program. There are three waysto run it:

e From the menu by:
select 'File:Run’
(only if your program hasamai n() !)
* Typeinthe Worksheet:
load <name>.c
run
* Typeinthe Worksheet:
chain <name.c>
These three commands load, run and chain are also available under the’ SCIL’ menu.

We demonstrate this by an example. Typeit and save it in afile which you name’simpprog.c’.

The C Interpreter 4-7

SCIL_Image 1.4 — User Manual

[* sinpprog.c */
#defi ne STR NGSI ZE 80

char string[STR NS ZE] ;
mai n()

int i =0;
for (;i<2;i++) {
printf("Enter a string :");
gets(string);
printf("The nunber of characters is %l\n",
charcount (string));

}

i nt charcount (s)
char *s;
{
int cnt = 0;
while (*s++ 1="\0") cnt++ return(cnt);

}

Now run it;

select 'FileRun’

Enter astring: WE NOW TYPE A STRING
The number of charactersis 20

Enter astring: THAT WASIT !

The number of charactersis 13

After aprogram isloaded, any of its functions may be called from the command line. For
example:

load ssimpprog.c
printf(" % d\n", charcount(" How many charactersam "));
24

However, during a SCIL_Image session, you may want to load and run a new program.This
will delete all definitions (made in your old program) of variables and functions from

SCIL_Image's working memofihe two commands that load a new program and cause this
loss of memory areload and chain. Sometimes you want to clear the working memory - the
command rmvar doesthis. But remember:

BEWARE OF rmvar, load, chain !

since they always clear SCIL_Image’ s memory.

4-8 The C Interpreter

SCIL_Image 1.4 — User Manual

This does not mean that you have to include al your functionsin every new program that you
write (since otherwise they might not be known), because SCIL_Image offers theUFO. This
means Undefined Function Obtaineand describes SCIL_Image' s capability to find non-
compiled user functions. The functions not defined in a program are automatically loaded into
SCIL_Image' s memory, provided that:

» Each undefined function is defined in afile with the same name followed by the suffix
.C.
» Eachfile can befound in the current directory or in one of the directoriesin the

environment variable MACRO.

Such afunction is retrieved automatically and executed. Like your program, the UFO will
stay in SCIL_Image' s memory until you give doad, rmvar, or chain command. When alist
command is given, both the text of the loaded program and the text of the UFOs are shown.

Program Development Commands

In this section, we give the commands which can be entered from the Direct Command Mode,
and which are used for program devel opment. Some of these commands have been discussed
before, others are new. Hereis a summary:

chain <file>[args] load and run program
list [start],[end] show program text

load [fil€] load program text

logon <file> connect logfile to session

logoff disconnect logfile

macr o [-i] [-v] <file> execute macro file

rmvar remove old variables and free allocated space
run [args| interpret loaded program (including mai n() !)

time<command> timeacommand
<pause/break key> interrupt program execution

? <pattern> list functions with names matching <pattern>
<command> ? prompt for parameters of command
<Ctrl-Enter> pop up dialog box of selected command
<Ctrl-H> pop up Help facility

The C Interpreter 4-9

SCIL_Image 1.4 — User Manual

chain <filename> [ar g9

The chain command loads the file and starts running it immediately. So instead of:
load example.c
run

you can just type:

chain example.c

Please note the difference between the chain command and the macr o command:

chain : loads file with afully correct C-syntax (a C-program)
macro: loads file that contains direct SCIL_Image commands (a macro)

The chain command is found in the SCIL menu as’ SCIL:chain’.

list [start],[end]
The text of the loaded program can be displayed withlist.

rmvar
#include"image.h"

list 5 Displaysline5 of program text
list 5,10 Listslinesfrom5to 10

list ,10 Listsfrom start to line 10

list 10, Listsfrom line 10 to theend

load <filename>

Theload command loads program text into SCIL_Image. The size of a program isonly
limited by the amount of RAM available. When no filename is entered, SCIL_Image will
prompt for one. The following command loads the file’demo.c’:

load " demo\meas.c”
Filenames are arbitrary, but it is advisable to use some sort of convention: here we always use
the suffix ’.c’ to indicate files containing commands. When loading a specific file the contents

of the previously loaded file are overwritten and the global variables are removed. Directly
after loading afile, the functions in the file are known to the C-interpreter. They can then be

4-10 The C Interpreter

SCIL_Image 1.4 — User Manual

used in the Direct Command Mode, provided that they do not use any of the global variables
in the file, since these will only be declared when the entire program is run.

logon <filename>
logoff

Thelogon command followed by afilename creates afile in which all direct commands given
during asession are stored. Later, thisfile can be used as a macro. In the following example,
thefilelast_session is opened and subsequent commands are stored in it. The logoff

command is used to discontinue command logging and close thefile.

logon last_session

printf(" Good night, Irene\n™);
Good night, Irene

logoff

macro last_session

Good night, Irene

If alogdfileis active, and another logon command isissued, the active logfileis closed, and
subsequent commands will be stored in the file specified in the most recent logon.

Why do you need logon/logoff if you already have a History window ? If you aways give
innocuous commands, there is no need: all commands you give are recorded faithfully in the
History window, and whenever you wish you can use an editor to extract the commands you
want to keep and store them in afile. However, should you give acommand that gets
SCIL_Image’stuck’ or makesit ’crash’, then you will have no such opportunity. In that case,
logon would have saved all you did in afile, so you could salvage what is valuable, or trace
your mistake. Therefore, if you are developing a complicated application, usinglogon might
be a safe precaution.

macr o [-i] [-v] <macrofile>

The macr o command executes the linesin amacro file asif they were typed in one by one.
Therefore the lines of macro files are restricted to commands you would give in the Direct
Command Mode.

The C Interpreter 4-11

SCIL_Image 1.4 — User Manual

-l With the -i option every lineis executed interactively: each individua command from
the macro file will appear on the screen, followed by the prompt [y/n/q]. Entering y or
pressing <return> will execute the command, entering n will skip the command and
g will exit the file and returns you to the SCIL_Image Direct Command Mode.

-v With the -v option, every line is written to the Worksheet window as it is executed.
The lines are not written to the History window - just the macr o command itself is.

Please note the difference between the macr o command and the chain command:

macro : loads file that contains direct SCIL_Image commands (a macro)
chain: loads file with afully correct C-syntax (a C-program)
rmvar

Thermvar command clears the C-interpreter’ s memory - it removes the old programs,
including al its functions, variables, structure descriptions, type definitions and pre-processor
defines. Note that variables, defines, and typedefs are al so removed whenever aload or chain
command is given.

rmvar
list

run [args|

The run command (optionally with arguments) is used to execute a previously loaded file.
Therun command first declares all global variables and then calls the function mai n() with
the specified arguments (if any).

time <command>

The time command records the time it takes to execute the specified command. Thisis quite
useful for benchmarking your commands. For example:

int t = 1000;

timewhile(--t);

time: 0.250

4-12 The C Interpreter

SCIL_Image 1.4 — User Manual

theinterrupt: Pause/Break
To interrupt a running program:
hit ' Pause/Break’
Thisindicatesto SCIL_Image that the execution of the current program should be stopped.

SCIL_Image will then return to the Direct Command Mode. The status bar indicator changes
from’Running’ to 'Ready’.

help facilities:
Ctrl-H <selection>Ctrl-Enter <command>"? ?<pattern>

In SCIL_Image, information on commands or functions can be obtained in various ways, and
to various extent:

Ctrl-H
pops up the on-line Help facility for SCIL_Image. Y ou can find help from the
'Contents' page, or by using the ' Search’ menu. An example of aElp pageis
that of copy_im’:

& 5CIL_Image 1.4 indows Manual M= E3
Fil= Edit Bookmark Options Help
Qontentsl lnde:-:l Blach | FErrint | £« | p |
copy im
NAME i’
COpY_im - COpy image

S¥YNOPSIS

#include "im proto.h”
int copy im (IMAGE #in, IMAGE *out)

DESCRIPTION
Copy image "m" to image "out”.

NOTE
For more powerful image arithmetic expressions (scaling, adding
offsets, etc.), use the function eval().

RETURN VALUES
TE OK (1) on success
Megative error status on falure (see un error.h)

SEE ALSCQ
copy part wnage

The C Interpreter 4-13

SCIL_Image 1.4 — User Manual

Theinformation isin aformat similar to that of a C-function on a UNIX system,
which israther self-explanatory even if you have not seen it before. The green
underlined terms provide links to other, related help pages. Sometimes you can obtain
a popup explanation of terms that are dashed-underlined.

Y ou can also add help pages about your own functionsnd add them to the standard
Help facility. You do this by the procedure given on the Help page ’ User-defined
commands'. They are then reachable in the same way as the functions we put in.

Ctrl-Enter on sdelection

From any text window, you can pop up adialog box of acommand by
selecting the command using the mouse (double-click on it)

pressing’Ctrl-Enter’

Once on the dialog box, selecting "Help’ will pop up the Help page for the command.
Thisisthe more direct way to get the above Help page.

<command> ?

prompts you for the parameters of a command, while offering the default values (do
not forget to put a space between the command name and the question mark!):

copy_im ?
Input Image <A|B|CID>[A]:
Output Image <A|B|ICID>[B] :

? <pattern>

4-14

list all commands with names matching <pattern>. The pattern may contain awild
card '*’, which can match any sequence of letters and/or symbols.

?s'p
FUNCTION(S) :
set_aio_disp
sfp
silo_to_comp
sleep
start_comp
strcasecmp
strcmp
strncasecmp
strncmp

The C Interpreter

SCIL_Image 1.4 — User Manual

The* ?<pattern>" help option also works on interpreted functions which you may have
loaded in macros, and gives some basic information For the interpreted program
'simpprog.c’ defined in The Programming Mode: Interpreted C-functionsand
UFOs"' on page 4-7, we have:

load ssimpprog.c

?char count

FUNCTION(S) :

charcount I nterpreted function. Return type : integer.

Errors, Warnings and Diagnostics

The SCIL_Image C interpreter will complain if the syntax of acommand is incorrect. The
diagnostics are intended to be self explanatory. For instance, forgetting a semicolon will
yield:

int i

int i--> syntax error

However, SCIL_Image always triesto interpret your statement if it is unambiguous, even if it
Is not syntactically correct. In this case, it actually declares the variablei, despite the incorrect
syntax. You can see this by trying it again, now with the semicolon:

inti;

inti; --> variable redeclaration

According to the 1978 Kernighan and Ritchie C standard (K&R C), C compilerswill not
generate an error or awarning if afunction declaration and a call to that function have a
different number of arguments. This can lead to bugs which are extremely difficult to find. To
avoid these problems, SCIL_Image checks on the number of argumentsin function
declarations and function calls, and generates an error message when they differ. Asan
example, the command strcmp - which callsthe function st r cnp() - expectstwo
arguments:

I = stremp(" Just one argument”);

i=strcmp(" Just one argument");--> more function arguments expected

| =stremp("Hereare", "three", " arguments');

i=strcmp(" Hereare", " three" " " arguments”);--> too many function arguments

The C Interpreter 4-15

SCIL_Image 1.4 — User Manual

A K&R C compiler would not have complained in this case. SCIL_Image thus checks syntax
more strictly than you may be used to.

When you explicitly test for errors (for instance in opening afile), it iscommon practicein C
programming to leave the program withexi t () upon an error. However, you should be
careful doing this, because it will actually quit SCIL_Imagerather than just the program,
which may not be what you want. The reason isthatexi t () isastandard C function, known
to SCIL_Image, which interpretsit as acommand to quit. Y ou will get the functionality of
exit() byusingreturn() inamain(),orbyusngS error(0).

Even when a program is syntactically correct, it may still contain a programming error, only
detectable on execution. Such program errors may originate from illegal memory references,
illegal instructions, or floating point exceptions, to name afew. If one of these errors occurs,
the SCIL_Image interpreter will attemptto stop execution, print the corresponding error
message and return to the Direct Command Mode. For example, if an attempt is made to
redirect aNULL valued pointer, execution of the followingfor loop will be stopped, enabling
the user to correct the mistake:

int *ptr;

for(1=0;1<100; i++) printf(" %d ", *ptr++ =1);

for(i=0;i<100; i++) printf(" %d ", *ptr++ =--> indirection of a NULL valued
pointer;

The other program errors generate similar error messages. However, if your error is

sufficiently severe, it may crash SCIL_Image. This will delete all changes you have not saved,
and destroy all unsaved imag&%u may even have to reboot. If you are working in

programs you do not trust, it is always wise to often ' Save' files and relevant images. Also, use

logon (see "Program Development Commands', page 4-9) to keep arecord of the commands

you gave.

Featuresof SCIL Image's C-inter preter

In SCIL_Image version 1.4, the C-interpreter does not have the full functionality of the
Kernighan and Ritchie 1978 C-language. A small number of topicsare missing, some of
which may become available in future versions of SCIL_Image. Furthermore a small number
of ANSI-C features have been added or are recognized (but further ignored) to improve
flexibility.

4-16 The C Interpreter

SCIL_Image 1.4 — User Manual

The main differences are:

ANSI-C calling convention, arguments are no longer promoted toint or double
before they are passed to a compiled function.

no initialization of arrays and structures

no goto statement and labels

no bitfields

octal hit pattern setting is only possible for single characters, not in strings

Nno comma operator is supported, except in afor-loop. (Asin: for(i=1, j=1; i < 2;
i++))

the ANSI-C preprocessor construction #if defined(.....) is supported.
the ANSI-C preprocessor keyword#pragmais recognized and completely ignored.
In the interpreter the preprocessor symbol INTERPRETED is defined.

The differences in scope rules are:

Extern only works for interpreted variables, compiled variables can only be referenced
by using the VAR keyword in the comfiles and rebuilding SCIL_Image (see"Making
a Command Description File (CDF)").

Static variables are NOT supported. In older versions of SCIL_Image (up to version
1.2) astatic variable was aglobal variable in the interpreter that could not be removed
during a SCIL_Image session. Now the keywordpermanentis available for thistype
of variables.

The ANSI-C keyword constis recognized but not implemented, the keyword is
ignored.

The C Interpreter 4-17

Chapter 5 Advanced SCIL Image

This chapter describes the advanced use of SCIL_Image. It shows
how to add new commands to the system and how to change the
user interface. This section is rather technical - more general topics
concerning SCIL_Image, such as the Direct Command Mode and
the Program Mode can be found in Chapter 4.

Read this chapter if:

* You want to add new commands to the system.

* You want to add help information to the on-line manual.
* You want to change the user interface.

Do not read this chapter if:
* You have not already read Chapters2 and 3 (and preferably also
4).

SCIL_Image 1.4 — User Manual

Adding New Functionsto SCIL Image

This SCIL_Image version contains many basic image processing programs. For your own
applications, you probably need special commands, which may or may not be composed
using those basic programs. Very likely, you will want to build up your own library of
programs that are useful for your applications. SCIL_Image alows you to do thisin two
ways. Oneisto extendSCIL_Image withinterpreted programss we discussed in Chapter 4.
The second isto create a completely new versiorwhich includes your own compiled
functions Y ou will be able to reach those functions from menus, or in the Direct Command
Mode - they have thus become actual SCIL_ImagecommandsAlso, you can use them as
building-blocks for more advanced functions.

There are three files which describe new functions or programsto SCIL_Image (apart from
your own files that define what they actually do). They are: ’ scilimagel4\comfile’,
'scilimageld\prog\sysfunc.c’ and ' scilimagel4\prog\overload.c’. Y ou may not need to generate
all threefiles, depending on what kind of functions you want to add.

» comfile
If you want to extend SCIL_Image with your owninterpreted programsall you need
to do is generate a new ’scilimagel4\comfile'. Thisfile will contain information on the
menus, functions, default values and dialog boxes for all commands in the standard
SCIL_Image version and for your interpreted additions. Y ou supply this information
through a Command Description Fil@CDF for short), recognizable by the suffix
".cdf’. (In'Session Three: Using the SCIL _Image Command Line Mode', page 3-
21, thisfile was called ’ personal .cdf’.) We give details of the CDF filein Making a
Command Description File (CDF)" on page 5-3.

* sysfunc.c
If you want to make a new version of SCIL_Image that contains your owncompiled
functionsas new commandsn SCIL_Image, you also have to make afile
*scilimagel4d\prog\sysfunc.c’, which contains references to all functions, including
your own. Thisfile is generated by ‘'mksysfnc’ (started by the nmake utility). You
have to compile and link it with SCIL_Image. Details are given"Creating a New
Compiled SCIL_Image Version" on page 5-16.

5-2 Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

* overload.c
If you want to make a command that accepts arguments of more than one type (for
Instance, image processing commands that work both on integer-valued and on float-
valued images), you have to make the file 'overload.c’ which contains this overload
information. Y ou do this using the program ' mkover|d’ (started by the make utility).
Y ou have to compile and link it with SCIL_Image Details are given "Creating a
New Compiled SCIL_Image Version" on page 5-16.

Thusif you want to add an interpretedprogram to SCIL_Image, you only need to generate
'comfile’. This requires the actions we specified in the sample session 'Session Four:
Programming in SCIL_Image' on page 3-26. The actions required to add a compiledfunction
to SCIL_Image require the use of a C-compiler. They are explained inCreating a New
Compiled SCIL_Image Version" on page 5-16.

Making a Command Description File (CDF)

One of the things you must do when adding new commands is create the Command
Description File. In this section we describe its syntax, and how you can express your
functional desiresin it. For easy reference, let us repeat the file ' myfunc.cdf’ from Chaptes:

$M/Menu $SA LI MAGE

FUNC nyf unc

MENU MyMenu ot i ons

CPTI ONS NOT_QQawP| LED

ARGS
filename - trui - * M File
inage - A- - M Inmage
odd - 127 1 255 Only odd val ues

Before we begin describing the syntax, we have awarning.

IMPORTANT: MAINTAIN BACKUPS !

Please take extreme care when you make changes to your CDF. If you make
a mistake in your CDF, this mistake propagates into the 'comfile’, and
SCIL_Image will not start at all. Be sure to keep a backup of the last working
version, so you can restore the old version if needed.

The following sections are written in aformal syntax to prevent ambiguities. The syntax of
the Command Description Fileis:

Advanced SCIL_Image 5-3

SCIL_Image 1.4 — User Manual

CDF ::= <CDF_entry>*

<CDF_entry> <comment entry>|
<menu entry>|
<translate entry>|
<variable entry>|

<command entry>

A CDF may consist of one or more CDF entries (the* means’one or more of the previous').
A CDF entry can either be acommenentry, or a menuentry, or atranslateentry, or a
variableentry, or acommancentry.

comment entry
A <comment entry> isindicated by a hash sign # at the beginning of aline:

<comment entry> = # <any text>

menu entry

The <menu entry> is used to specify the way the menu looks, and the placement of your
commands in it. The syntax of amenu entry is:

<menu entry> =
$<menu_name> [$<parent menu_name>]* [comment]

$<menu name>
A menu entry starts with a dollar sign ($) followed by the name of the new menu.

[$<parent menu>]*
Optionally, the new menu name is followed by alist of parent menus. A parent menu
isreferenced by adollar sign ($) followed by the name of the parent menu. The new
menu will be added as a child (sub-menu) to each of the parent menus. All parent
menus referred to in the description must have been specified before.

[comment]
Any text after the list of parents will be considered as a comment for your own use,
and will not be interpreted by the system.

5-4 Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

trandlate entry

the <trandlate entry> contains C-type definitions for the CDF types used in function
argument specifications. For each of the argument-types of commands described in the CDF
files, SCIL_Image needs to know the exact C-type to be able to call the function correctly.
The syntax for the type definition is:

<trandateentry> ::=
TRANSLATE cdf-type " C-type"

TRANLATE cdf-type" C-type"
A trandate entry starts with the key word TRANSLATE .

The cdf-typeis an argument-type (that is not also a C-type) used to describe the types
of the command parameters in the ARGS section of a<command entry>. A
complete listing can be found in "command entry" on page 5-6.

The" C-type" isthe basic C-type of the corresponding cdf-type. E.g. an "odd" is
represented in the interpreter asani nt , the TRANSLATE linein the CDF file
therefore reads:

TRANSLATE odd "int"

The trangdlate entry must be located in the CDF file before the cdf-type it describesis
actually used in the description of acommand..

variable entry

The <variable entry> contains global variable descriptions, one for each global compiled
variable. Such avariable description is used by SCIL _Image to access these varaibles from
within the interpreter. The syntax for avariable description is:

<variableentry> ::=

VAR name ["type"]

VAR name["type"]
A variable entry starts with the key word VAR followed by the name of the global
(compiled) variable.

Advanced SCIL_Image 5-5

SCIL_Image 1.4 — User Manual

Thetype of the variable may be specified (surrounded by string delimiters), but thisis
not required. If no type is specified the variable is assumed to be ani nt . Valid types
are the standard C types and pointers to them. Structures and unions must be
completely defined in thetype string. It is not possible to refer to defined structures
like FI LE or | MAGE.

command entry

The <command entry> contains command descriptions, one for each command. Such a
command description is used by SCIL_Image to build a dialog box for the command, and to
check arguments, defaults and the expansion of names. The syntax for a command
descriptionis:

<command entry> ::=
FUNC name ["type"] [aliag]
[MENU [$]menu]* [menu-options]
[MANUAL name]
[OPTIONS {NOT_COMPILED | NO_EXPAND}]
{ARGS [type* [, ...]]
<tab>[type vise default min max prompt]* }

FUNC name ["type"][alias] OBLIGATORY
A command entry starts with the key word FUNC followed by the nameof the
function that defines the command.

The type of the function may be specified (surrounded by double quotes), but thisis
not required. Valid types are the standard C-types and pointersto them. In
SCIL_Imageit isnot possible to refer to defined structureslike FI LE or | MAGE. If a
function returns a pointer to such astructure, char * or voi d* should befilled in.
If no return type is specified the command is assumed to return ani nt .

The alias field can be used if the name of the function, asit isused in SCIL_Image,
differs from the actual name of the compiled function. This feature should be used
rarely, if at al, sinceit isapotential source of confusion.

5-6 Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

If you wish amenu item containing blanks (such as’ Save As'), then you should
denotethisby an @ (here: ' FUNC Save@As'). The actual function name which will
be executed should then havean’_’ at the blank (in thisexample, * Save_As). (Of
course you could have had the same function called if you had specified the entry
"FUNC Save As, but then the menu would have shown the underscore, which is less
elegant.)

[MENU [$]menu* [menu-optiong] OPTIONAL
If the command is to appear under one or several menus it must be registered with
those menus. Thisis accomplished with the keyword M ENU followed by one or
more menu names. The menus must have been previously declared in the<menu
entry>. (The $ signs are optional and only for compatibility with older versions of
SCIL_Image.)

The menu-options keywords follow the menu names. They are used to influence the
layout of the menu and to change the behavior of the automatic generation of
dialog boxes. The menu-options keywords are:

MENUSEP
A separator lineis drawn directly beneath the item (in all the menus thisitem
IS present).

MENUKEY =key
key isasingle character that activates the item in the current menu. In the
menu the first key character of the item name is underlined.

SHORTCUT=key|[<modifier>Fnr]
key isasingle character that combined with the shortcut key activates an
item from anywhere in the menu-tree. [<modifier >Fnr] is afunction key
(with amodifier key (Shift, Ctrl or Alt) that activates an item from anywhere
in the menu-tree. nr isthe number of the function key. The shortcut-key is
displayed next to item in the menu. Since the shortcut keys activate an item
anywhere in the menu tree, they must be unique.

BOLD, ITALIC, UNDERLINE
These keyword change the text style of the menu item. These keyword may
not be implemented on al platforms.

NOPRINT
The command is not printed in the (dialog) history window.

TOGGLE

Advanced SCIL_Image 57

SCIL_Image 1.4 — User Manual

The argument of the command toggles between 0 and 1 and the command is
executed directly without generating a dialog-box. The start value depends
off the argument depends on the optional CHECK keyword following the
TOGGLE. Using this keyword on commands that have more than one
argument results undefined behavior.

CHECK
The command argument is on by default. Used for the TOGGLE keyword.
Using this keyword on commands that have more than one argument results
in undefined behavior.

DISABLE
The command is disabled in the menu, it can not be chosen.

DIRECT
The command is executed immediately. (No dialog box is generated. To
indicate this, no ellipses (...) are printed after the command name)

DIRECT...
The command is executed immediately. But because the command itself
generated some kind of dialog-box, the ellipses are printed after the
command name.

[MANUAL name] OPTIONAL
The text which describes a function's syntax and behavior is normally stored in a file
named after the function with the suffix .man’. If this is the cas®] tdUAL field
does not need to be specified. However, for a related group of functions, it can be
useful to group the explanations of those functions in one text file. Rather than
copying the file several times, tMeANUAL option can be used to identify the file
which contains the explanation for the group. The file must be in one of the
directories specified by the environmental varigd@e L _MAN.

On theM S-Windows platform, the manual pages of all functions are integrated in the
help-file of SCIL_Image, th®1ANUAL keyword therefore is not used on this
platform.

[OPTIONS{NOT_COMPILED |NO_EXPAND}] OPTIONAL
If the OPTIONS field is absent it is assumed that the described function has been
compiled. If the function has not been compiled, then the keyword
NOT_COMPILED must be chosen. SCIL_Image now knows that it should find the
function defining the command in a UFO file 'name.c' (where 'name' is the name of
the function, see "The Programming Mode: Interpreted C-functions and UFOs").

5-8 Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

Typically, SCIL_Image expands any command you may give it, which meansthat it
fillsin default values of the non-specified parameters. This may be undesirable, for
instance if the command can have a variable number of arguments. For such
commands, you should specify the option NO_EXPAND.

ARGS [ctype*],...]] OBLIGATORY

<tab>[type vis default min max prompt]*
The ARGS field followed by zero or more lines beginning with a<tab> character
indicates the beginning of the description of the function’s arguments. Thisfield is
obligatory.

If, and only if, OPTIONS NO_EXPAND is used (see above), then you need to
specify the argumentsby listing them in an ANSI-C prototype-style, e.g. for the
"printf" function:

ARGS char *, ... ("..." specifies a variable argument list)
In all other casesach argument must be described, as follows:

<tab> The argument list for a function continues until the first line which does not
start with a space or tab.<4ab> is often used to improve readability. Any line
starting with white space is assumed to contain an argument description.
Therefore you should not have any empty lines at the end of your CDF file.

type Thetype field specifies the argument type. The admissible types are in two
categoriesC variables and theSCIL_Image special types.

The C variables are:

int, uint

short, ushort

long, ulong

float, double

char, uchar
(uint stands founsigned int, but since only a single word can be used in the
CDF, it has to be abbreviatedsnort, ulong anduchar are similar.)

The SCIL special types are:

text pass argument unaltered

string text (surrounded by optional double quotes)
odd odd integer value only

even even integer value only

confirm Yes, No, 1,0

Advanced SCIL_Image 5-9

SCIL_Image 1.4 — User Manual

switch On, Off, 1,0

choice one choice out of alist of choices

toggle multiple choices out of alist of choices

filename ask for name of afile

filesave ask for file name by popping up savebox
A more detailed description of the SCIL special typesisgivenin"SCIL_Image
Specia Types', page 5-10.

vis Thisfield isreserved, preferably it should containaminus sign.

default Thisfield holds the default value of the argument. The default may be a
string or a SCIL variable (for a SCIL variable, the current value is substituted).
When a command is issued with too few arguments, defaults are used for the
missing parameters. The default values are a so presented in the dialog box.

min, max The interpretation of the min and max fields depends on the argument
type. For numerical types, the value of a given function argument is checked
against the legal value range specified in themin and max fields. If avalueis
outside the range SCIL_Image will complain with the message" out of range" .
The user will then be prompted to enter a value within the legal range. An
isolated minus sign may be entered in themin or max field - in that case
SCIL_Image does not check your entries. Many of the SCIL specia types use the
min and max fields for special purposes. Thisisdescribed inin "SCIL_Image
Specia Types', page 5-10.

prompt The prompt isused to label fields in the dialogue box: it is the text that will
specify what needs to be entered. It also appears on the screen if a question-mark
has been entered or if an invalid value has been entered (in that case it includes
the display of the default within brackets’[]’). If the user enters too few
parameters followed by a question-mark, the prompting will appear for each of
the missing parameters.

SCIL _Image Special Types

We saw in the previous section that there are some function types that are not part of standard
C, but particular to SCIL_Image. We discuss these now in detail, aswell astheir rolesin the
CDF. Some of the argument types make special use of themin and max fields, and others do
not use those fields at all. Whenever afield is not used, a minus sign should befilled in.

5-10 Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

text, string text differsfrom the typestring. A string is apiece of text, atext need not
be a piece of text, it may also contain SCIL variables or values. The min and max
fields are ignored for this argument type, and should contain aminus sign. An

example:
scil.cdf
#
FUNC tine sci | command
ARGS
text in di spl ay_i mage - - Comrand
#

confirm isused for variables that indicate a Y es’No choice. The min and max fields are
ignored. An example:

i nmage. cdf

#

FUNC set _di spl ay_node

MANUAL st _dnode

MENU D spl ay

ARGS
inage in A - - | mage
choice in - "NORVAL{0}| LI N_ STRETCH 4} | LOG_STRETCH 8}
confirmin Yes - - Qdobal for 3-D I mages

switch in Yes Yes No Direct display

switch can be used for arguments that can have two values (not necessarily Y es or No).
Internally, these values are represented as 1 and 0, but you may give them any name:
the min field containstext which is used as a symbol for ’1’, and thamax field
contains text which is used as a symbol for 0. An example:

i nmage. cdf

#

FUNC sobel _diff
MANUAL sobe_di f

MENU Fi |l ter

ARGS
inage in A - - I nput | mage
i nage out B - - Qut put | mage

swi tch con sum sgrt sum SumCR Sgrt of quad

choice isused for variables that select among a number of pre-defined choices. Each
choice can have an argument value which is passed to the function when the choiceis
selected. Often thisis an image identifier or an integer. The choices are listed,
separated by bars (|) inthemin field. The max field is empty and should therefore
contain aminus sign. An example:

Advanced SCIL_Image 5-11

SCIL_Image 1.4 — User Manual

imaio. cdf

#

FUNC ai o_| abel

MANUAL ai o | abl

MENU Singl e_Chj ects Conver si on

ARGS
inage in B - - I nput | mage
i nage out C - - Qut put | mage
choi ce con 8 "4 8" - Connectivity

A choice may have an alias associated with it. In thisway, SCIL_Image can prompt
you to select among meaningful terms rather than among integers. Suppose for
example, the valid choices for a particular argument are 1, 2, and 3, but that they
actually are choices of the X, Y or Z axis. Y ou can make this explicit by substituting
"1J2|3" in themin field with "X{1}|[Y{2}|Z{3}". In the dialog box, and at the
command line, you will be offered a choice among X, Y, and Z, rather than among 1,
2, and 3. An example:

inmage. cdf

#

FUNC cont our

MENU Speci al _Points

ARGS
inage in B - - I nput Binary | mage
i nage out B Qut put Binary | mage

switchin af 0 af Set Edge Pixels
choicein 8 "4 8" - Connectivity
choice in (hj ect "(pj ect {1} | Background{ 0}" - Make Contour of

(In this example, note that because there are only two valid choices, with values 1 and
0, aswitch could have been used rather than achoice, with the same flexibility in
defining the terms displayed in the dialog box. In this case, it is primarily a matter of
preference whether aswitch or achoiceis used as the argument type.)

toggle resembles the choice type in many ways. The difference between the two is that

5-12

with atoggle you may choose more than one selection from the given list, whereas
the choice type alows only one selection. The syntax for thetoggle typeis exactly the
same as the choice type. SCIL_Image performs alogical OR on the choices and calls
the function. Aswith choice, you can attach aliases for easier readability. An
example:

Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

imaio. cdf

#

FUNC neasure "void *"
MENU Singl e_(hj ect s

ARGS
inage in A - - Qey inage
inage in B - - B nary i nage
i nt con 0 0 262144 Gar bage | evel
confirm con No Interaction
toggl e con AREAIPERI AREA{lL}|PERI{2L}|OQ{4L}|BE
toggl e con AREA PER "AREA{ 1L} | PER {2L}| O 4L} | BEND{ 32768L} | XM N

8L} | XM 16L} | YM N 32L} | YMAX{ 64L} | WDTH 128L} | HEl GHIY{ 2561} | GRAVX{ 512L} | GRAVY{ 1
024L} | ANGLE{ 2048L}" - Shape

toggl e con CREYVAL GREYVAL{ 1L} | TRANSM S{2L} | aD{4L}" - Density
confirm con Yes Print results
fil esave con o Storeinfile

If you choose PERI and CR as choices for the shape argument, the appropriate
measure function is called with thevalue2 |4 = 6.

filename isused when the argument is the name of afile. For this argument type, the
min and max fields are used to supply the SCIL_Image file selector with necessary
information. The min field is used to specify a default directory. The max field may
contain several patternsto be matched in the file name. Y ou can use this, for instance,
to specify the suffixes of the filenames you want shown in the dialog box (like
"*.im" if you only want to see image files). Only the filesin the folder which match
the patternsin the max field will be offered for selection. An example:

i nmage. cdf
#
FUNC readfil e
MNU I/O
ARGS
filenane con "trui" "." "*jcs *.im*.dat *.tif*" Flename
i nrage out A - USE NAME{OL} | mage
int con 60 0 1000 X Position
int con 60 0 1000 Y Position

Advanced SCIL_Image 5-13

SCIL_Image 1.4 — User Manual

filesave isidentical to filename on X-window systems. On other platforms the filename
type may not always offer an editable text field to fill in anew namefor afile, whilea
filesave type will.

inmage. cdf

#

FUNCwitefile

MANUAL writefil

MNUI/OI_O

ARGS
i nage in A - - | mage
fil esave con "-" o Fi | enane
choi ce con ICSF "ICSH1}|TITFF H{2}| TOL_ K3} | JPEG H4}" - File

For mat

#

the typesimage, clut, v_object, histogram
In several examples, you have seen the type image used. Thisis actually not a new
type, but a different name for atype choice variable, with some additional properties.
In the next session, we describe these derived types, and show how you can construct
them yourself.

Very Advanced SCIL Image: New Types

Whenever SCIL_Image encounters a type which is unknown, it calls alist of functions that
try to interpret the type. Y ou can add functions to this list. This gives you the opportunity to
define types of your owif you need something beyond the special types provided with
SCIL_Image.

To add atype handling functiogou must use the standard function
set _extra_type_func().Thisfunctiontakes asits argument a pointer to a function.
int set_extra type func(int (*fun_ptr)())

The pointer isto afunction, e.g. my _t ype_func(), which contains the behavior of your
new type. The synopsis of thisfunction is:

int ny_type func(char *nare, char *type, char *deflt, char *mnstr, char
*rmaxstr, char *pronpt)

Internally, the first thing your function should do isto compare theinputt ype to the name
of the new type that it defines. If the given typeis not for your function you should return the
value 0. If the typeisfor your function, then you must change the given information into one
of the know types, and return the value 1.

5-14 Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

We wrote such afunction to implement the image type as a variation of the choice type. It
does the following:

1) Ifthet ype isnot imagethen O isreturned.

2) Thet ype ischanged to choice.

3) m nstr (whichisthe variable corresponding to the min field) is changed to hold a
list of all the available image names, with the image address as an dias. So if the
images’A’,'B’, and 'scratch’ are availablej nst r will be changed to
"A{ 234568} | B{ 236888} | scrat ch{ 238444} " (or something similar,
depending on the image pointers).

4) maxstr (whichisthe variable corresponding to the max field) may be used to pass
on extrainformation, such as a symbolic constant. Therefore, if themaxst r fieldis
not equal to the minus (-) sign, the information in the field is added to the list with
choicesinm nstr.

5) Thevaue 1 isreturned to indicate that our function has successfully transformed an
unknown type into aknown type, in this caseimage to choice.

Severa types have been added in thisway. These types are:

image

im_type

v_object

histogram

clut

presents alist with available images.

presents alist of image types (used for instance in the
'Image: Conversion:convert’ command).

presents alist with available ’var_objects (se€'Non image data
(var_objects)", page 6-24). The min field can be used to specify the
"var_object’ class. If thisfield is used only var_objects of the given class are
accepted. In the max field extra choices can be given.

presents alist with available " histogram’ objects (see'Histogram objects’
on page 6-26). Themin field is discarded; the max field can be used to
specify extra choices.

presents alist with available color lookup tables (see "Display lookup
table" on page 6-7).

Advanced SCIL_Image 5-15

SCIL_Image 1.4 — User Manual

Creating a New Compiled SCIL Image Version

The description of the CDF files permits you to add your own, non-compiled programs to
SCIL_Image, even making them accessible from the menu. However, they will still be
interpreted and are therefore slow and not fully accessible to other programs or functions (or
to other users!). Y ou may want to make a new version of SCIL_Image that contains functions
that are important to your applications in acompiledform.

Prepare (write, and possibly debug) the program(s) in C that you wishto install in
SCIL_Image. Let us use as an example a series of functions to generate various types of
random noise. This means that you have to prepare the following documents:

My src directory
noise.cdf your command description file (CDF)
noise.ovl your overload file
noise.h thisfile contains your constants
noise.c thisfile contains your functions

The rules for composing the 'noise.cdf’ file are given in Making a Command Description
File (CDF)", page 5-3. Therules for composing the ' noise.ovl’ file are given in Function
overloading”, page 9-27. The rules for composing 'noise.c’ and 'noise.h’ are just those of
standard C (see any C manual, but also beware of the slight deviations of SCIL_Image's C,
see "Features of SCIL_Image’s C-interpretet’, page 4-16). Y ou might want to study the
examplein "Making a New Compiled Version of SCIL_Imagé', page 3-30.

First an important note on compiled functionsin SCIL_Image.

IMPORTANT: Special include file for /0!

When adding compiled functions to SCIL_Image that use printf(), fprintf(),
putc() etc. to print text to the Worksheet or getchar(), scanf() etc. to read text
and characters from the keyboard, the include file "scil_io.h" must be included
in the source file.

Perform the following actions:

1) Open the Microsoft Developer Studio workspace " c:\scilimagel4\prog\scilimag.dsw"
(if not already open) and add the file add_one to the project "mylib" (right click
"mylib" and choose "Add files to project” and then select the file noise.c from the
directory you put it in.)

5-16 Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

2) Open defile"c:\scilimagel4\prog\comfiles.mak" (set the "Open as" to text in the
dialog box) and at the end of the COMFILES list add:

c:\scilimagel4\prog\My_src\noise.cdf
and save thefile. (fill in the appropriate path name if you saved the file "noise.cdf"
somewhere else).

3) Open defile"c:\scilimageld\prog\overload.mak” (set the "Open as” to text in the
dialog box) and at the end of the OVERLOAD list add:

c:\scilimagel4\prog\My_src\noise.ovl
and save thefile. (fill in the appropriate path name if you saved the file "noise.ovl"
somewhere else).

4) For both the "comfiles' and "overload" project, choose the "Build" command on the
context menu (when clicking the project with the right mouse-button).

5) Then rebuild SCIL_Image by choosing the "Build" command on the "scilimagel4”
project.
6) Start SCIL_Image again. It now contains your function as you defined it, available

under menus you specified in "noise.cdf".

Please note that just must build the " comfiles’ and " overload" projectsby hand first
because Developer Studio does not recompilethefiles” sysfunc.c* and " overload.c"
when necessary.

Adding On-line Manual Filesto SCIL Image

Every function added to SCIL_Image may have anon-line manual pagerhisisasectionin
the file’ scilimagel4\hel p\user_def.rtf’, which gives the basic text, and defines links and
keywords used to make it into a hypertext for the Help facility. Y ou can make such a page
yourself, and connect it to the standard SCIL_Image Help facility.

. You should do this by following the instructions on the Help page: ' User-defined Help
Pages'. It requires the editing, in Rich Text Format, of the file’user_def.rtf’, located in the
"help’ directory. Thisfile contains a sample manual page that you can use to create your own
manual pages. For this you need an editor that can read this format. After you are done

Advanced SCIL_Image 5-17

SCIL_Image 1.4 — User Manual

composing your Help page, according to the instructions, your editor window should look
similar to this:

W Microsoft Word - user_def_rtf _ O]
@ File Edit iew Table 'Window Help - |5’|5|

=@ Sla|¥ e & [B@[<f] ool ala-| &BE=efq [=

Inzert Faomat Toolz

IHeading1 j ITimes Mew Roman j |24 j I?IT 1] | gl H |4||"| %Elél%l EE'E: £§|*
E| L t-||1-|-|-|-1xl-2- R R R RN RN R D LR T I'Ijl
Heading 1 ﬁ'S'H'+'add Oneﬂ

SCIL MAME MNAMEY

Mormal add one -—add-1to-animagey

Marrmal 1]

SCIL 5YMOPSI SYNOPSISY

ScilCourer #include-"user def.h"q

ScilCourier #include- "image . h™q

Marrmal 1]

ScilSyntas int-add one (IMAGEimage.h-*in, - IMAGEimage.h- out)q

Marmal 11

SCIL DESCRIP DESCRIPTIONY

Mormal Add' T tothe-mage-'m"and-store-the-result-int-the-mage-'out' Y

Marrmal 11

SCIL RETURM RETURN VALITESY

Mormal OE-Tp - fsuccessful]

Mormal NoT OE-(D+ifnot-successfil]

Marmal ﬂ

SCIL AUTHOR AUTHORY

Mormal written-by-IL ¥ -Self- 195702049

Marmal 11

SCIL ENDREF q d
Ia'l'«ll Foathates j Clase | =
Footnote Test #-add oneﬂ

Footnote Test $-add:oneﬂ

Faotnote Test K-add_one;MY_PUNC'I‘IONSﬂ

Faotnate Test *UJSEE.__FUMNCTIONS: 000029 -

EEE | L
[Page 1 Sec 1 141 | & Ln Cal 1 [FEC MR (e R [Er 7

Saveit, and start the "Help Workshop" from the "Microsoft Visual C++" environment. In the
Help Workshop open the file’ scilimag.hpj’ (from the help directory). To compile the help

file

Select 'File:Compile

5-18

Advanced SCIL_Image

SCIL_Image 1.4 — User Manual

Compilation will take some time, the help compiler will minimize itself during compilation
and restore itself to normal view after compilation. It generates the new ' scilimag.hlp’, which
makes your Help page reachable from SCIL_Image like that of any other command:

2 SCIL_Ilmage 1_4/Windows Manual |_ O] =]
File Edit Bookmark Options Help
Eurﬂenml Index I Hlach | Prrirt | £ | B I
add one
NAME i’
add one, - add 1 to an unage

S¥NOPSIS

#include "user def.h"
finclude "image.h™

int add one (IMAGE *in, THMAGE *out]

DESCRIPTION
Add 'l to the image 'in' and store the result mt the image 'out’.

RETURN VALUES
QE (1) if successfil
HOT OFE (0 fnot successfil

AUTHOR
written by ML Y. Self 19570204

=

Asiscustomary in Windows' on-line help, the underlined colored terms represent links to
other help pages, or pop-up windows (when the underlining is dashed).

Advanced SCIL_Image 5-19

Chapter 6 Thelmage 2.1 library in
SCIL _Image

This chapter introduces some basic features of the Image 2.1
library as part of SCIL_Image.

Do not read this chapter if:

* You have not read "Getting started" (chapter 3). Specifically, it
is assumed you know how to handle the menu & dialogue boxes
and you know how to work with the command line editor.

Read this chapter if:

* You want to process images in Image.

* You want to know more about image types.

* You have basic knowledge of image processing.

Knowledge of the C language is not required for this chapter.

SCIL_Image 1.4 — User Manual

| ntr oduction

In chapter 1, it is explained that the image processing functions all reside in the Image library
which can be used independently from the SCIL_Image environment. In order to use Image
effectively for image processing, it is necessary to know something about its infrastructure.
This chapter describes the Image infrastructure and the SCIL _Image specific user interface on
Image. Any individual image processing commands that are mentioned are documented in the
reference manual (s)/help file.

One of the features of Image is the support of various image types. The image-types
implemented in this release are:

image type name in Image (in title bar)
grey-valued 2-d GREY_2D (g2d)
binary bitmapped 2-d BINARY _2D (b2d)
floating point 2-d FLOAT_2D (f2d)
complex 2-d COMPLEX_2D (c2d)
color 2-d COLOR 2D (col2d)
labeled 2-d LABEL_2D (12d)
grey-valued 3-d GREY_3D (g3d)
binary bitmapped 3-d BINARY _3D (b3d)
floating point 3-d FLOAT_3D (f3d)
complex 3-d COMPLEX_3D (c3d)
color 3-d COLOR 3D (col3d)
labeled 3-d LABEL 3D (13d)

Table 6-1: image types available in Image

In Image, the user does not need to know the type or dimensions of an image an operation
will result in. The package automatically sets the size and type of the output image based on
the operation and the type and size of the input image. This adjustment also occurs when the
output of an operation is directed to the input image.

At several pointsin the remainder of this chapter examples of commands are given. The user
is encouraged to read this chapter while running SCIL_Image and try the examples. All
examples are given as command lines. Most of them can also be issued using the menu, as
described in Chapter 3.

Please note that in some examples, not all parameters are specified in the text, but are set to
their default values by the command expander. The reader should refrain from specifying the
missing parameters, because the resulting image type and contents of an operation may be
assumed in subsequent examples

6-2 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

| mage infrastructure

Invalid operations

In the course of processing an image, various errors may occur. For instance, the specified
function arguments may be of the wrong type or out of range. A specified input image may be
of an inappropriate type for the operation, or may not even exist. When errors of this type
occur, SCIL_Image pops up an alert box to warn the user. Before continuing interactive work,
the user is required to respond by clicking the’ Continue' or *Stop’ button in the alert box. To
see how an alert box looks, type the following command lines:

readfiletrui
threshold A B
threshold B C

The second threshold command request the system to perform thethreshold operation on
the binary image B. Because thethreshold requires a grey valued input image, the system
pops up an aert box with the text:

NG

& SCIL_Image Ermar

Function: threghold
Meszage: Function iz not implemented for image tepe: BINARY 2D

Stop b are info

Figure 6-1: Alert box on incorrectimage operation

Thefirst line’ SCIL_Image Error" indicates that this error-message is generated by
SCIL_Image. The next line ' Function: threshold’ shows the name of the function that caused
the error and the line starting with "Message: " describes the error. At the bottom of the box
are three buttons. "[Dismiss]" removes the alert box and continues with the next statement (if
any) in an interpreted program. "[Stop]" aso removes the alert box and stops running the
interpreted program (if one was running). In this example, only on command was given, so
the difference between "Dismiss" and "Stop" in not noticeable. The "More info" button shows
anew alert box that displays a "stack-trace" of the location of the error. That info is generally
most of interest for those that write new image processing functions.

The Image 2.1 library in SCIL_Image 6-3

SCIL_Image 1.4 — User Manual

| mage display and window management

An important part of interactive image processing is the display of the image. Several
commands are available for this purpose, as can be seen in the ' Display’ menu.

Please note when reading this section the distinction between an image and a display window.
The dimensions of the image and the type of the data stored in the individual pixels depend
on how the image was declared, or, in some cases the operation of which it isthe output. The
display window is a separate entity acting as a viewport on the data (with an independent
Size).

Also note that SCIL_Image runs on severa operating systems. As a consequence the handling
of the image displays (windows) can be vary between the different systems. In the text ,these
differences are marked with: UNI X, Macintosh and M S-Windows. If you are in doubt about
whether a certain operationsis valid for the platform you are working on, please refer to the
(on-line) manual page of that operation. When the operation in NOT supported on all
systems, the PLATFORM section of the manual page will list the systems for which isvalid.

M ouse buttons

On most UNI X systems the mouse has 3 buttons which each have a meaning in SCIL_Image.
On the M acintosh however only, one button is available. To simulate the MIDDLE en
RIGHT mouse button on the Macintosh the mouse button must be used together with the
Option-key for the MIDDL E mouse button or the Command-key for the RIGHT mouse
button. Although in general M S-Windows is used in combination with a two-button mouse,
SCIL_Image for Windows supports all 3 buttons when using a three buttons mouse.

Thetitle bar of image windows

In the title bar of the display window, information is displayed about the image. First, the
name of the image is given. For instance, the names of the images supplied by SCIL_Image at
start up are A, B, C and D. Thisisfollowed by a code in parenthesis, representing the type of
the image (see Table 6-1 for the meaning of the code). Finally, the dimensions of the image
aregiven. For A, B, Cand D at startup, thisis 256 * 256, because each of the images contain
256 rows of 256 pixels.

For a 3D image, a number indicating the plane (or slice) currently displayed, is displayed in
parenthesis following the other information.
The left mouse button

If the left mouse button is pressed inside a display window, information is supplied about the
position and value of the pixel pointed at. On UNIX and M acintosh, a small window pops up

6-4 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

containing the information, on M S-Windows the information is maintained only in the status
bar. In GREY _2D images, the information is shown in the format:

(XXX, YYY) VWV
Where XXX isthe x-position, YY'Y the y-position, and VVV isthe value of the pixel at that

position. If the mouse button remains pressed and the pointer is moved around in the image,
the information in will updated accordingly.

The small information box can be positioned in the title bar permanently (not follow the
cursor) by use of the command:

point_im_display buf(0,0);

The default behavior can be restored again by:

point_im_display buf(0,1);

In the occasion that the window containing the information is unwanted:

auto_point No

If thiscommand is used, no window will pop up. To restore the data display:

auto_point Yes

Displaying theimage

At the completion of each operation on an image, the output image is displayed. If automatic
image display is unwanted, it can be disables with the command:

auto_display off

From then on, output images will not be displayed. For example:

copy imAC

Operations are considerably faster with the display off. To turn back on:

auto_display on
copy imCD

Theimage (in D) is now displayed, but image C is il invisible. To display image C:
display_image C

Both image C and image D are now visible in the display windows. Theset_display _mode
command enhances the visual contrast of an image, without modifying the image data. Try:

The Image 2.1 library in SCIL_Image 6-5

SCIL_Image 1.4 — User Manual

set_display modeC LIN_STRETCH

For some images the difference is marginal, asis seen in the displays of images A and C. The
pixelsinimage A already covered nearly the entire range of values that the display can
handle. So in this case there is little improvement in contrast.

Displaying 3D images

In SCIL_Image, 3D images are displayed one slice at the time. To see how thisworks, read in
a 3D image

readfile chromo3d C
To display adifferent dlice, there are three options. One isto click the right mouse button

(Macintosh : hold down the Command-key while pressing the mouse button) as described
below. Another isto use the command:

next_plane C Up

to display the slice below and

next_plane C Down

to show the one above. Finally the display slice can be set explicitly.
set_display _dliceC 8

Notein thetitle bar that slice number 8 is now displayed.

Theright mouse button

The right mouse button is currently only used for the manipulation of 3D image display. As
stated above, 3D images are displayed one dlice at the time. If the right mouse button is
pressed when the pointer is in the upper third of the display window, then the next dlice of the
image will be displayed. For instance, if slice 0 was displayed, slice 1 will be displayed after
pressing the right mouse button. If, when the pointer isin the middle third of the window the
right mouse is pressed, then the same slice will remain displayed. Finally if while the pointer
isin the bottom third of the display window the right mouse button is pressed, the previous
dlice will be displayed. For instance, if slice 5 was displayed, then slice 4 will be displayed
after pressing the right mouse button. This behavior can be disabled with:

auto_plane No

and enabled with:

auto_planeYes

6-6 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

Changing awindow’s size

In order to investigate particular image details, it may be useful to enlarge the window in
which an image is displayed. Likewise, to save display space, it can be beneficial to display
images in smaller windows. If awindow is resized using the tools provided with the window
system , SCIL_Image will scale the view of the image accordingly. The size of an image
display window can also be modified using SCIL_Image. Note that in both cases, the
dimensions of the underlying image are unchanged. Only the display is modified. The
command set_window_size is used to change the size of the image display window:

set_window_size A 512 512
To set the window back to the size of the image the same command can be used with the real
size of the image (shown in the title bar). However, the command:

natural_window_size A

sets the window to the size of the underlying image (in this case 256 by 256 pixels).

Changing a window’ s position

The window’ s position on the screen can be manipulated in the same way as the size of the
window. That is, either by dragging the window or by using the SCIL_Image command
set_window_pos can be issued. For example:

set_ window_posA 3000

Display lookup table

Often, it isuseful to modify the colors used for image display, without altering the datain the
image. The color lookup table mechanism enables users to select colors for image display.
Several standard color lookup tables are created when SCIL_Image isinitialized. These tables
can be attached to an image to set a group of colorsto befor displaying that image If no table
is attached explicitly to an image, anormal grey scale for grey, float and complex imagesis
used. Binary and |abeled images do not need alookup table, because the method for
displaying them cannot be modified. The available lookup tables at start up are:

The Image 2.1 library in SCIL_Image 6-7

SCIL_Image 1.4 — User Manual

name contents

EMPTY_LUT all entries black

BLUE LUT ablue scale

GREEN _LUT agreen scae

CYAN_LUT green and blue scale mixed
RED LUT ared scale

MAGENTA_LUT red and blue scale mixed
YELLOW LUT red and green scale mixed
GREY_LUT normal grey scale

LABEL_LUT scale that ssimulates label display
MULTI_LUT primary colors each in a specified bit

OVERLAY_LUT 1.8
FALSE COLOR LUT

specified bitplane red
false color table

Table 6-2: default color lookup tables

A lookup table can be attached to an image as follows:

set_clut A OVERLAY LUT 8

The lookup table’ OVERLAY_LUT_8' isfilled with agrey scale with lookup values ranging
from 0...255. For each value for which the binary representation has the 8th bit set, the
corresponding color isred Thisresultsin all values that are over 128 being displayed as red.
To get the grey scale back again :

set_clut A GREY_LUT

| mage management

Aside from manipulating the display of an image, it is sometimes necessary to create a new
image or change the image type. For instance, to create atest image on which to try out a
certain operation, the type and/or sizes of the image may have to be changed explicitly instead
of letting the infrastructure handle it.

We pause here to remind the reader of the difference between an image and a display
window. The datais stored in an image, which has a size and pixel value range depending on
the type and declaration. The display window is a completely separate entity acting as a
viewport on the data with an independent size.

Creating and destroying images

When starting SCIL_Image, four images are created. If more images are needed , they can be
easily created. To create a new image with the name’ fifth_image’, issue the command:

make_image fifth_image

6-8 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

An image name may be any set of ASCII characters, but may not contain white spaces. A new
image has popped up on the screen carrying the name 'fifth_image’, of type’g2d’ and with the
dimensions 256 by 256.This image can now be used for processing. For instance:

invert_im A fifth_image

Destroying an image is accomplished with:

destroy_imagefifth_image

Changing image sizes
Changing the size of the image will destroy its contents. To change the size of image A:

change image size A 128 128

Image A now has dimensions 128 by 128. Each pixel in A has been set to zero.

Changing image types
To change the type of image C:
set_im_typeC GREY_2D

Image Cisnow agrey valued 2d image. All pixelsin C have been set to zero.

Converting imagesinto other types

It is sometimes useful to modify the image type without losing the image data (as occurs with
set_im_type). The command convert is supplied specifically for this purpose

readfiletrui A
convert A B FLOAT_2D

The grey valued image datain image A has been converted to floating point datain image in
B. convert is capable of changing any type of image data into any other type. Apart from
convert there are a number of commands that also convert the type of the datain the image to
another type, all of which can be found in the’Image:Conversion’ menu.

When a 3D image is converted to a 2D image, each pixel in the 2D image will contain the
maximum value of the pixelsin the corresponding locationsin all slices. Thisresultsin a
specific 2D interpretation of a 3D image:

readfile chromo3d A
convert A B GREY_2D

The Image 2.1 library in SCIL_Image 6-9

SCIL_Image 1.4 — User Manual

Filling images

There are several waysto fill an image with data. For instance, a data file may be read from
disk. The most common way is to specify the image as the target for an operation. It is often
useful however, to set the image contents specifically. For instance:

set_int A 128
sets all pixels of image A to the value 128. many commands to fill an image can be found in

the ’Image:Generation’ menu, each of which generates atest image. For instance, to fill image
B with a chessboard pattern:

ti_block B 16 2550
The most powerful tool for image data manipulation is the command eval, an expression

evaluator that handles both GREY _2D and FLOAT _2D images. To fill animage with agrey
ramp issue the command:

eval " D=xx"

Thisis one of the ssmple things that can be done using eval. See "Expression evaluation on
images (eval)" on page 6-19 for a complete description of eval.

Region of interest (ROI) processing

To successfully extract the information sought in an image, it is often necessary to perform a
large number of operations. Because the time required to perform an operation depends
heavily on the size of the image, it is useful to restrict the area operated upon to the region
containing data which is of interest. If the region of interest (ROI) is significantly smaller than
the compl ete image, the execution time can drop dramatically. For example, if in an image of
256 * 256 (65536) the region of interest is 64 * 64 (4096) big, the number of pixelsto be
processed is afactor 4 * 4 (16) smaller. This means that the time required to perform an
operation will be reduced by afactor of (approximately) sixteen. In SCIL_Image, aROI in an
image can be defined by specifying the location of the top-left corner and the size. The ROI
then will be treated asif it were anormal image. For instance, the result of an operation on a
ROI will result in an image with the same size as the ROI. However the sizes of the ROI itself
CANNOT be adjusted if the ROI itself is specified as an output image. Consider the
following:

readfiletrui A
roi_defineroil A 305001281921
copy_imroilB

6-10 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

A region of interest has been defined that starts at x= 30, y = 50 with width=128 and
height=192. The command copy roil B copied the part of image A defined as’roil’ to image
B. Image B therefore is adjusted to match the dimensions of the ROI rather than those of
image A. Let us see what happens when 'roil’ is used as the output image for acommand. Try
the following:

threshold B roil

As aresult of thiscommand, the image-type of the ROl must be changed to binary. However,
the ROI is simply ageometrical part of image A, and therefore image A must be changed to a
binary image to store the result of the operation in the ROI. Only the ROI contains the result
of the operation, the rest of the imageis set to zero.

A ROI need not be rectangular, but may be arbitrary shaped (see the on-line manual of
roi_define).

| mage types

Grey valued images (GREY _2D & GREY _3D)

Data representation of grey valued images

Grey valued images consist of pixels, each of which contain an integer value (1,2, ..). These
pixels are represented in SCIL_Image by ain the C language defined datatype’ Pl XEL’ .
Thistypeisdefinedtobea’ short int’, which meansthat on most computers 16 bits (=
2 bytes) per pixel are used. Therefore the value ranges from -32768 to +32767 (atotal of
65536 values).

readfile house A

If the pixels are examined (with the use of the left mouse button) it can be seen that every
pixel has an integer value within the range [0,255]. This is because the camera this image was
made with only used 8 bits per pixel. Thistype of camerais very common, and therefore most
grey valued images encountered use only 8 bits per pixel. Why use 16 bits per pixel? There
are devices that create images with more than 8 bits per pixel. There are al'so many operations
on images with 8 bits per pixel which result in images than use more than 8 bits per pixel.

The Image 2.1 library in SCIL_Image 6-11

SCIL_Image 1.4 — User Manual

Usage of grey valued images

The grey valued image is the most common type used in image processing because its data
representation matches the computer’ s data representation. The computer can therefore access
the data quickly and easily. The amount of information that can be stored per pixel is
sufficient for the majority of purposes.

Examples of grey valued operations

It is frequently useful to enhance the contrast in a grey valued image. Weillustrate two
operations available in SCIL_Image for doing so:

readfile maan A
show_histogram A
contrast_stretch A B 298
show_histogram B
equalize A C
show_histogram C

The histograms for all three images were created in separate windows that are now position
on top of each other, move the them around so you can compare them. To remove these
histogram windows, UNI X: click the middle mouse button in the histogram window (M ac:
Option-Click, M S-Windows: click the close box).

It is also often necessary to reduce the noise in agrey valued image. Several types of filters
are available for this purpose:

readfile bnoise A
percentileAB 334
uniform A C

Binary bitmapped images (BINARY 2D & BINARY _3D)

Data representation of binary images

Each pixel in abinary images has value O or 1. One bit is therefore sufficient for the storage
of each pixel. In SCIL_Image we store eight binary pixelsin each byte so that a binary image
requires only afraction of the space occupied by agrey valued image. A border of long words
isreserved around each binary image to enable very fast morphological operations (for more
precise information see Chapter 11). The binary imagesin SCIL_Image are displayed in black
and red on a color screen and in black and white on a monochrome screen, where black is

6-12 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

used for pixels of value 0 and red (white) is used for pixels of value 1. To create a binary
imageinB :

readfile bnoise A
threshold A B 128

Inwindow B, ared & black image has appeared. Pointing in it (with the left mouse button
pressed) shows that all pixelsin theimage have value 1 or 0. The title bar of the display
window confirms that thisis a binary image (b2d). threshold mapped al pixelsin image A
with value lessthan 128to 'O’ pixelsin image B, and pixels that had a value of 128 or more to
"1’ pixels.

The colorsin which the binary images are displayed can be changed by using the
bin_disp_colors command:

bin_disp_colorsWHITE BLACK
display_image B

Usage of binary images

Because a binary image is made up of pixels, each of which isrestricted to one of two values,
the only information contained in a binary image is limited to which pixels are associated
with an object and which are associated with the background. Binary images therefore play an
important role in the investigation of object shape and form.

Examples of binary operations
Noise can be filtered from binary images as follows:

percentileBC 334

To extract object skeletonsin an image:

readfile cermet A
threshold A B 128
invert_ im B B
hild_skelet B C

Often, only objects with a pre-defined minimum size are of interest. Removing smaller object
can be accomplished as follows:

readfile cermet A
threshold A B 128
invert_ im B B

The Image 2.1 library in SCIL_Image 6-13

SCIL_Image 1.4 — User Manual

eroson3x3B C 8
propagation C B D 308

By eroding several times, no "seed’ isleft by small objects for theor opagation operation that
enlarges the eroded objects to their original sizes.

Floating point images (FLOAT_2D & FLOAT _3D)

Data representation of float images

Floating point images consist of pixels each of which can have any real value within precision
limitations. Each pixel isrepresented by the Ctype’ f | oat ’ . Though floating point images
can contain more information than grey valued images, they are far less common. Thisis
because computers used to work far more efficiently with integers, and because’ f | oat’
usually requires double the amount of space (32 bits per pixel). Try:

readfiletrui A
eval "B=0.005* A"

Image B has now become afloat image as is confirmed in itstitle bar. The image however, is
no longer visible due to the low values of the pixels. By pressing the left mouse button in
image B, the value of the pixels can be examined:

[(XXX, YYY] VV.VVV

Note that the value which pops up for each pixel isareal number rather than an integer.

Usage of float images

Floating point images are used in situations where accuracy is more important than speed, in
particular when there are many mathematical operations on an image.

Examples of operations on float images

The trigonometric functions in SCIL_Image all operate on and result in float images. The
following function calculates the sine for each point in image B:

sn_imBC

Theresult isalmost invisible because all pixels have alow value. In order to boost the
contrast of theimage all values can be multiplied with a certain factor. To estimate that factor
the maximum value that is present in image C has to be determined. This can be done by:

6-14 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

pix_maxval C
In the command window alineis printed that states:

maximum : 0.934

Now image C can be stretched by multiplying all values by 255 (to stay within the range
0..255):

eval " d=c*255"

Complex images (COMPLEX 2D & COMPLEX_3D)

Data representation of complex images

Each pixel in acomplex image is a complex number and therefore has areal and imaginary
part. In SCIL_Image, each of the partsis represented with the C type’ f | oat ’ . Try the
following:

readfiletrui A
eval "B=0.333* A"
complex imABC

Image C now contains a complex image, each pixel of which hasitsrea part from the
corresponding pixel inimage A, and itsimaginary part from the corresponding pixel in image
B. Examining the pixelsin image C (with the left mouse button) resultsin the following text:

" (XXX, YYY) Re: VV.VVV; Im: VV.VVV"

The first value after the parenthesisis the real part of the pixel and the second value isthe
imaginary part.

Usage of complex images

Thistype of image is specifically required for the Fast Fourier Transforms (FFT).

Examples of operations on complex images
To calculate the FFT:

fast_fourier C C Forward

Basic arithmetic operations such as adding and multiplying can be applied to complex
Images, or the real and imaginary parts can be examined and manipulated separately by

The Image 2.1 library in SCIL_Image 6-15

SCIL_Image 1.4 — User Manual

storing them in different images. They can then be rejoined in one image and further
mani pul ated:

real imCB

mul_float B 1.34 B
complex imBCD

fast fourier D D Reverse

Labeled images (LABEL_2D & LABEL_3D)

Data representation of labeled images

Like agrey valued image, alabeled image is made up of integers with the C defined datatype
" PI XEL’ . Theinterpretation of the valuesin alabeled image is however entirely different.

Usage of labeled images

The information in alabeled imageis similar to that in abinary image. The pixelsin the
image either belong to an object or to the background. In alabeled image, however, each
object in the image has its own number or 'label’ used to distinguish it from other object in the
image. The pixelsin an image which have been determined to be part of an object, and are
connected, are assigned a unique identifier. Each pixel in alabeled image has avalue
identifying it as a member of a set or object. Labeled images allow measurements such as size
and shape to be performed on the image objects.

Examples of operations on labeled images
A labeled image can be created by labeling a binary image:

readfile cermet A
threshold A B 128
invert_im B B
aio_label BC

Image C is now alabeled image (see the title bar). When alabeled image is displayed in
SCIL_Image, different objects are displayed using different colors. Since only eight colors are
used for displaying labeled images, the same color will be used more than once. However,
separate objects of the same color have a distinct object id (check with the left mouse button).
To show what kind of measurements can be performed on labeled images try the operation
measur e. The command has to be selected through the menu for clearness.

6-16 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

select 'Single_Objects.measur€
choose Interaction ’Yes
hit 'DO IT’

A new image, called 'labelled _image’ pops up in the middle of the screen which contains the
same data as image C. To see this remove the dial ogue box:

hit 'CANCEL"’

Press the left mouse button while pointing at an object in’labelled image’, several numbers
will be printed in the command window. These numbers are the result of several
measurements performed on the object. Stop the measurement by placing the pointer in the
display window or the command window and type:

<RETURN>

Color images (COLOR_2D & COLOR_3D)

In thisversion of SCIL_Image (version 14), color images can be represented by one of five
different color-models. The present models are RGB, (CIE) XY Z, (CIE) Lab, HSI and
CMYK.

Data representation of color images
The color models of color images are each represented in a different manner:

RGB : each pixel is made up of aRed, Green and Blue component, each component
(channel) occupies 1 byte in memory (C type : unsi gned char). Thethree
channels together with afourth (extraand empty) byte are stored in one C structure.

CIE XYZ : each pixel consist of threefloating point values, X, Y and Z, that are stored in
one C structure. Each channel occupies 4 bytes of memory (C type :f | oat).

CIE Lab : each pixel consist of threefloating point values, Lightness, a and b, that are
stored in one C structure. Each channel occupies 4 bytes of memory (C type:
fl oat).

HSI :each pixel consist of three floating point values, Hue, Saturation and | ntensity, that
are stored in one C structure. Each channel occupies 4 bytes of memory (C type:
fl oat).

CMYK : each pixel consist of four floating point values, Cyan, M agenta, Y ellow and K
(sometime also named Blackness), that are stored in one C structure. Each channel
occupies 4 bytes of memory (Ctype:f | oat).

The Image 2.1 library in SCIL_Image 6-17

SCIL_Image 1.4 — User Manual

Oneof thereasons for the existence of different color-models (we implemented only afew of
the many that are defined) is the suitability of each model for a specific task. The capability to
convert one model into another model is therefore essential. Try:

readfile flamingo A
convert cmodel ABHSI T

The color-model of a color imageis printed also in the title-bar of the display window. When
comparing image A and B, see that image A reads "col2d-RGB" (RGB model) while image B
reads "col2d-HSI" (HSI-model). Also the left mouse button positioned in image A and B will
display the difference between the images:

(XXX, YYY) R: redvalue G: greenvalue B: bluevalue

Compare thiswith the "same" image in B:

(XXX, YYY) H: h.hhhh S: sssss | i.iiii

When processing color-images, an often used method that produces good results is to process
each of the channel (or just 1 or 2) separately. To do so in SCIL_Image, the channels must be
stored in separate images and then processed using a grey-value operation (either in integer of
float). For instance reducing the intensity of theimage in B:

set_im_type C float_2d
copy_channel BC 20
eval " c=c*.5"

copy_im B D
copy_channel CD 02

Usage of color images

At first glance, it may seem that recording and processing color images is a nuisance as they
require a more sophisticated camera and a threefold amount of data. In many cases, however,
using a color image simplifies the image processing task. Rather than having only 256
different grey values at one’' s disposal for every pixel, the amount for a color image is much
larger, making it easier to group pixels on the basis of their pixel values only. Color data
processing with the color data structure, gives the user access to one multi-valued digital
color image, rather than keeping track of image data scattered over several single valued
images, one for each channel of the color-model

6-18 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

Expression evaluation on images (eval)

A number of timesin this chapter, the command eval has been used. Eval is an expression
evaluator for images. This means that an operation on an image can be given in the form of an
expression that is then executed on each pixel in the image. For instance:

eval " A=100"

sets al pixels of image A to the value 100. Let ustry an operation on areal image:

readfile house A
eval " B=A*2-80"

The value of each pixel in B is determined by multiplying the corresponding pixel in A by 2
and subtracting 80.

Eval can handle both GREY 2D, GREY 3D, FLOAT 3D and FLOAT_2D images. The type
of image the result is stored in depends on the expression, the command given above all result
in GREY _2D images but:

eval " C=123.45"

resultsin image C becoming a FLOAT _2D image. If the result of the expression is an integer
then the result will bea GREY _2D image (or GREY _3D if theimages used are 3D images),
likewise if the result is a floating point number then the image will be a FLOAT _2D image
(or FLOAT_3D).

The expression can be very complex because eval can handle all C-language operators as they
are listed here with their priority :

operator associativity priority

01 left HIGHEST
-1~ right

* | % left

+ - &+ &- left

>> << left

> < <= >= | eft

== I= left

& left

A left

| left

&& left

| left

?. right LOWEST

Table 6-3: operater priority in eval()

The Image 2.1 library in SCIL_Image 6-19

SCIL_Image 1.4 — User Manual

The’ &+ isamaximum operator and the’&-’ isaminimum operator. Operators on the same
line in the table have equal priority. Left-associativity means that if multiple operators of
equal priority are used without brackets then the leftmost has the highest priority.

The operators’[’ and ']’ can be used for neighborhood operations, which means that not only
one pixel can be referred to but also the pixels surrounding that pixel. For instance:

eval " B=A+A[-1,0]+A[0,-1]+A[1,0] +A[0,1]"

Adds the pixel and its four neighbors for each pixel in the image and stores the result in the
correct location in image B. In this expression’ A[-1,0]’ indicates the |eft-hand neighbor of the
pixel and’A[0,1] isthe pixel below. The first number isthe x distance from the pixel and the
second number isthey distance. When using offsets like thisin an expression, problems
occur at the borders of the image, because the pixels on the edge do not have a neighbor on
one or two sides. For this situation, the second parameter of eval (' border value') is used. If
"border value' equals -1 then the edge will work like a mirror when a pixel outside the image
is pointed to, a pixel within the image will be used. The following example should make this
clear.:

eval " D=A[-256,0]" -1
It should be clear that the offset is mirrored in the border of the image. If however ’ border

value' is specified to be any other number (say 5) then no mirroring will take place, but all
pixels addressed outside the image will have the specified value. To illustrate:

eval " C=A[-256,0]" 5
Aside from the use of operators listed in Table 6-3, eval can be used to evaluate a number of
mathematical functionsin the expression. For instance:

eval " C=sgrt(A)"
calculates the sguare root of every pixel inimage A and stores the result in image C.
Functions can be mixed freely with operators:

eval " D=sgrt(A*255)"
Theresult of the operation” sqrt’ isafloat so the resulting image will bea FLOAT_2D

image. If, however, aGREY 2D iswanted, the data can be converted by using the function
"irint’ intheexpression:

eval " D=irint(sgrt(a* 255))"

6-20 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

The following functions may be used witheval :

function description type of result
abs(x) absolute value of x float
acos(x) arc cosine of x float
asin(x) arc sine of x float
atan(x) arc tangent of x float
atan2(x,y) arc tangent of x/y float
cbrt(x) cubic root of x float
Cos(x) cosine of x float
exp(x) to the power of x float
hypot(x,y) square root of (x*x +y*y) float
irint(x) returns x as ainteger integer
log(x) natural logarithm of y float
log10(x) base logarithm of y float
log2(x) base logarithm of y float
max(X,y) maximum of x and y float
min(x,y) minimum of x and 'y float
pow(X,y) X to the power of y float
rnd() random number integer
sin(x) sine of x float
sgrt(x) sgquare root of x float
tan(x) tangent of X float

Table 6-4: functionsin eval()

In addition to the operators and the functions in eval, two keywords are available for speaa
use. Thewords'xx’,’yy’ and ' zeépresent a pixel’s position in an image, so to fill an image
with agrey ramp:

eval " C=yy"

The pixelsin image C now al have avalue equal to their y position in the image.

The last operator in the table is the query operator (' ?: *). This operator is used for testing
and taking different actions depending on the result of the test. To use the operator, three
different parts need to be specified. Thefirst part (before the question mark) must be the test,
the second part (after the question mark and before the semi colon) is the part that is executed
iIf the test is passed (true). The third part (after the semi-colon) is executed if the test failed.
This construction should be well known to C programmers.:

readfiletrui B

eval " C=xx<128?A:B"
Any of the three parts may be any expression accepted by eval, so statements of the following
sort are acceptable:

eval " D=xx<128?A[128,0]: 255-B"

The Image 2.1 library in SCIL_Image 6-21

SCIL_Image 1.4 — User Manual

Storing images on disk

The images used thus far were read from disk into memory using the command r eadfile.
Most images will have to be read from disk before they can be processed. Because there are
several waysto create an image, (cameras, microscopes etc.), the data format must be known
in order to read it. The dimensions and image type must also be known. For this reason
several 'standard’ image file-formats have been developed. Currently, SCIL_Image supports
the following file-formats for images:

ICSformat

TIFF format

JPEG format

TCL format

AIM format
Because al SCIL_Image image types (2-D and 3-D) can be stored using thel CS format, we

use this as our primary format. We recommend this format to store images produced using
SCIL_Image.

The ICSformat

With the ICS format image data is stored in two files. One file contains the actual data of the
image and has the extension '.ids’, The other file contains header information, such asimage
type and dimensions, and has the extension ".ics . This header fileisan ASCII file which can
be read and edited using standard tools. Aside from information about the type and
dimensions of an image, data regarding the resolution of the image, date of creation and other
pertinent details may be stored in the image header file. Seethe appendix "ICS file format"
for afull description of thisimage file-format.

The TIFF format

TIFF stands for Tag based Image File Format and is designed for the interchange of digital
image date. The format claims to be independent of any specific computer, operating system,
filing system, compiler etc. Because of this independence the file format iswidely spread. A
large number of specifics of an image can be stored in a TIFF file, all meant to enable an
exact reproduction of the image to be made in a different place than it was made. The exact
description of the format is not the goal of this manual and thus omitted. The recommended
extension for thisformat is.tif’, al extensions that start with these three characters are

6-22 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

accepted. SCIL_Image is able to read and write TIFF images that comply with the TIFF 6.0
specifications.

The JPEG format

The JPEG image file can be used for grey 2D and color 2D imagesin SCIL_Image. The JPEG

standard is designed as a compression standard for continuous-tone still images. The image

data is compressed “lossy” upon storage, meaning that no exact representation of the data can
be made when the data is retrieved from file again. The advantage of “lossy” compression is
the large compression ratio that can be achieved. The JPEG standard does include a method
for “lossless” compression but this is not (yet) available. The JPEG format supported by
SCIL_Image is actually the “JPEG File Interchange Format” (JPEG FIF also known as JFIF),
which is the standard JPEG format with a few additional requirements. This may cause some
JPEG files to be rejected by SCIL_Image but most JPEG files will be read. SCIL_Image
requires that JPEG files have th@g' extension.

The TCL format

The TCL(-Image) format is supported for historical reasons and can only be used for grey
valued 2-D images. One file is used per image containing both the image data and the header
information about the dimensions of the image. Comment can also be stored in this file. One
disadvantage of this format is that not all image types under SCIL_Image can be stored in this
file-format. Another is that the header information is not in ASCII and therefore cannot be
read or modified easily. Although the format does not have an obligatory extension after the
filename, SCIL_Image only accepts files that havedag extension, which is therefore the
recommended extension, for this format. We insist on this extension because we also support
other formats with other extensions.

The AIM format

The AIM format is also supported for historical reasons (we only support reading files in this
format, it cannot be written). This format consists of two files per image, a header-file and a
data-file. The header is not in ASCII, so it cannot be easily read or modified. The header-file
of this format has the extensiond' and the datafile the extensiam’. If the header file is

not present the dimensions 256 * 256 are assumed.

The Image 2.1 library in SCIL_Image 6-23

SCIL_Image 1.4 — User Manual

Non image data (var_objects)

Var_objectsin SCIL_Image are objects that are used to store non-image data. Severa
measurement functionsin SCIL_Image store their result in avar_object. In fact, avar_object
isequivalent to an array in C. It was introduced to prevent inexperienced users from having to
declare and address arrays. They are also convenient for performing checks on sizes and data-

types.

Behavior of var_objects

A var_object issimilar to an image in the sense that the size and type of avar_object are
automatically adjusted if an operation returns a specific type and size. A var_object can have
anumber of dimensions ranging from 0 to 5, so avariety of data can be stored in it, from a
scalar (O-dimensional) to a multidimensional array (maximum 5 dimensions). Further, a
dimension called the 'nr_channel’ (number of channels) is added for compatibility with
existing image types. Thisis useful for instance, for complex images, where each pixel has
two values associated with it. Which var_objects are shown in the dialogue box can be
controlled with a group name. Comments of arbitrary length can be attached to help the user
in remembering what is stored in the var_object. Also the objects can be saved to disk.

By default four var_objects are available for the user, called obj1, obj2, obj3 and obj4. An
unlimited number of extra var_objects may be created. Information about a var_object can be
obtained with the function:

show_var_object_info obj1

Thisfunction resultsin alist of information about the object, appearing in the command
window. For instance, the object’ s name, class, number of dimensions, sizes and pointer
values will be displayed.

6-24 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

Datatypes of var_objects

The basic standard C types may be stored in var_objects. Further, the SCIL_Image type
PIXEL (used in grey valued images) may be stored in avar_object. A complete list of al
typesis:

type-name description

PIXEL datatype of GREY images (16 bits)

char character (one byte)

short short integer (16 bits)*

int integer (32 bits)*

long long integer (32 bits)*

float floating point number (32 bits)

double double precision floating point number (64 bits)

Table 6-5: var_object data-types

* integersin C may have a different number of bits, depending on the system and
compiler used. The value used here is the number of bits used on most platforms.

Examplesusing var _objects

The var_objects are used in several different operationsin SCIL_Image. Below, we show
some examples

Example 1

A method to display a 3D imagein 2D isto display the maximum pixel value of the pixelsin
corresponding locations in the various dlices. In SCIL_Image, afunction is available that can
determine either the maximum value of the whole image or the maximum value along an
axis. The result of this can be printed on the command window or stored in avar_object:

readfile chromo3d A
pix_maxval A obj1 AxisZ
show_var_object_info obj1

The information printed in the command window states that the type of datais PIXEL, the
same type as the pixels of agrey valued image. Note that the var_object is 2 dimensional.
This data can be put in to an image with:

var_object_to imageobj1 B GREY_2D
In image B the result of the operation, a good 2D representation of the 3D image isvisible.
The reason why the result of pix_maxval is not stored in an image directly is that the result

can also be 1 dimensional or even 0 dimensional (a scalar), depending upon the dimensions of
the input image, and the parameters of pix_maxval.

The Image 2.1 library in SCIL_Image 6-25

SCIL_Image 1.4 — User Manual

Example 2

In the above example the result of taking the maximum of a 3D image was a 2D array of
pixels, made visible by putting the data in an image. The result of the same operation on a 2D
image isaset of 1 dimensional data. This data can be used as input in other operations:

readfile orka256 A
pix_maxval A obj2 Axis X
lookup A B obj2

Example 3
The result of measurements in certain images can also be stored in avar_object:

readfile cermet A
threshold A B
invert im BB

label B C

shape C obj1 00 obj2

The objects in image C have been measured. The number of each object is stored in
var_object obj1 and the area of that object is stored in the corresponding element of obj2.
These values can now be processed by other routines or be saved for later reference.

Storage of var _objectson disk

Like images var_objects can be stored on disk for later use. The format in which the datais
stored resembles the ICS format. Again two files are used to store the object and its ASCII
header. The data-file carries the extension ’vod’ (Var_Object Data) and the header-file the
extension ' voh’ (Var_Object Header). The header is ASCII to enable easy reading and the
comment attached to avar_object is also stored in that file.

Histogram objects

The histogram of an image (or apart of an image) can provide valuable information on the
image. The information can be used for contrast enhancement, segmentation, statistical
analysis and for normalization of the grey-tone deformations through the equalization
command. SCIL_Image stores the histograms it calculates in so-called histogram-objects. The
histogram-objects can be of any size and multi-dimensional (up to 5 dimensions). Stored in
the object is not only the histogram-data itself but also the number of bins, the width of a

6-26 The Image 2.1 library in SCIL_Image

SCIL_Image 1.4 — User Manual

single bin and the median value of the lowest bin and the highest bin (all this for each
dimension of the histogram).

The histogram can be made visible in separate window that can be resized and moved around
by the show_histogram command:

readfiletrui A
show_histogram A

The histogram objects in SCIL_Image behave very much like images. When you choose a
existing histogram-object to hold the histogram data of an image, the histogram object will
automatically be reconfigured. For instance, if we calculate the histogram of a color-image,
the histograms for the red, green and blue channel are shown separately:

readfile flamingo A
show_histogram A

The histogram of any image-type can be shown (except of complex images) in any number of
bins. Also, it is not necessary that all pixel valuesin the image are put in the histogram.
Consider this example: a floating-point image containing values of between -1.0 and 1.0 of
which only the data between 0.0 and 1.0 is shown in 100 bins:

convert A B float_2d
sn_imBB
show_histogram B 100 0.0 1.0

To inspect the contents of the histogram, alist of all values can be dumped to the terminal of
stored in an ASCI| file using thedump_histogram command:

dump_histogram histogram_of B - 10

The command show_histogram_info gives some additional information about the histogram
object, like number of bins, width of the bins and median value of the lowest and highest bin.

The Image 2.1 library in SCIL_Image 6-27

Chapter 7 Introduction to Image 2.1

This chapter introduces the Image library.

Read this chapter if:

* You want an overview on processing images with Image.

* You have basic knowledge of image processing. Knowledge of
the C language is not required for this chapter.

Image 2.1 Library — User manual

What isImage2.1

Image 2.1 is a portable image processing software library written in the programming
language ANSI C. It is currently available as a stand-alone C library on a variety of computer
platforms (UNIX, PC MS-Windows, Macintosh).

Key features of Image2.1 are:
» aflexibleimage infrastructure,
» support of alarge set of basic image types,
» anadvanced and extensive set of image processing functions,
» fast implementations,
e abstract error and 1/0 handling,
* publish and subscribe mechanism.

Theimage2.1 library is not a complete image processing development environment as it lacks
a"rea" user interface and viewing capabilities. The library was developed to provide a
framework for developing image processing software. The library does not contain system
specific routines, and as such it is easily portable to other platforms.

| mage infrastructure

The image library provides aframework to support a variety of image types. The
infrastructure maintains a strict separation of image operations by type. The infrastructure
provides a convenient and image type independent way to do image housekeeping. It deals
with input/output adjustment of image operations and manages region of interest definition in
images. The type mechanism simplifies the management of images and makes programming
with different types of images easy.

| mage types

Current supported image types are:
e Grey value 2D and 3D (16 bit/pixdl),
e Binary 2D and 3D in packed format (32 pixels per word),
* Floating point images (single precision) 2D and 3D,

e Complex images 2D and 3D,

7-2 Introduction to Image 2.1

Image 2.1 Library — User manual

» Label images 2D and 3D to facilitate object measurements,
e Full color images 2D and 3D (24 bits/pixel).

For image input and output the image library supports TIFF, JPEG, ICS, TCL and AIM
(input only) format.

Advanced and extensive set of image operations

Theimage library supports an extensive set of image operations. A large variety of filter and
Image manipulation routines are available. These include arithmetic operations, Fourier
transforms, geometrical routines, a versatile image expression evaluator and image
measurements.

Fast implementations

Special attention has been given to the implementation of fast algorithms and where possible
filters have been decomposed, based on linear separable kernels. Fast and memory efficient
mathematical morphology is available, comprising a complete implementation of
mathematical morphology using arbitrarily sized and shaped structuring elements.

Abstract error and 1/0 handling

One of the design constraints of the image library was to maintain a strict independence of the
user interface and platform. This guarantees the possibility to integrate the image processing
software with every conceivable user interface and allows to run on avariety of systems.
Therefore, there is no direct way to read from the input, or write to the output or error stream.
The image library provides an abstract error stack mechanism to facilitate the error reporting.
Also, aspecial function for text output is used throughout the image library. The textual
output can be intercepted in any user interface by setting up a special output handler.

Publish and subscribe mechanism

To safeguard a complete separation between the application code and the (graphical) user-
interface a publish and subscribe paradigm is used. Every object publishes important events
to itself. Other objects interested in changes of that particular object may subscribeto it. Asa
publishing object does not explicitly know its subscribers, the separation between core
application and user-interface is guaranteed. The advantage of publish and subscribe method
is the possibility to extend the existing system with new user-interface behavior without
having to change existing code. The image library has been implemented as a stand-alone
imaging library with publishing image objects. This provides the developer with powerful

Introduction to Image 2.1 7-3

Image 2.1 Library — User manual

tools to construct a user-interface for the entire image library or allows to realize an end-user
application without any modification to the image library.

The structure of this manual
In summary the remainder of this manual contains the following chapters:
» Chapter 7 gives aglobal introduction of the image library.

» Chapter 8 describes the publish and subscribe message passing mechanism and its use
in theimage library.
» Chapter 9 gives an in depth explanation of the image infrastructure and how to

program with the image library.

e Chapter 10 describes the AlO library, analysis of images and objects. A1O supports
facilities for particle measurement for shape and optical density such asin
microscopic images of cells.

* Chapter 11 presents methods for fast morphological binary image processing using
bitmapped representations of binary images.

* Chapter 12 explains how a new image type is created and integrated with the image
infrastructure.

» Chapter 13 demonstrates how to create a stand-alone application using the image
library by means of a sample application.

Theneed for Image2.1

Theimage library stems from the image processing environment SCIL-Image, whichisa
platform independent image processing system. SCIL-Image includes facilitieswhich lack in
theimage2.1 library such as the user interface, viewing capabilities and facilities for
interactive program building.

For many yearsit has been avalid approach to build applications within image processing

environments such as SCIL-Image, and, run these applications within this system.

Nowadays, we witness the trend in application development shifting from self contained
image processing environments towards integration with other applications. It becomes

increasingly popular to include the image processing software as a component into more
complex applications, or in other words as plug-ins into other applications. Furthermore,

7-4 Introduction to Image 2.1

Image 2.1 Library — User manual

creating end-user applications with its own user-interface and look-and-feel is essential for
many companies and institutes.

Therefore, there is aclear need for a stand alone image processing library. The library
provides a framework which makesit easy to develop image processing software. Asthe
library contains no system specific calls and maintains a strict abstraction in the user
interface, the library is platform independent and suitable to integrate into virtually every
application.

Structure of thelmagelibrary

In the Image library, it was decided to maintain a strict separation of image processing
functions by the type of image they work on. Associated with each image type are a number
of type dependent operations, such as image arithmetic, and image /O operations. The default
supported image types are:

image type name in Image
grey-valued 2-d GREY_2D
grey-valued 3-d GREY_3D
binary bitmapped 2-d BINARY_2D
binary bitmapped 3-d BINARY_3D
floating point 2-d FLOAT_2D
floating point 3-d FLOAT_3D
complex 2-d COMPLEX_2D
complex 3-d COMPLEX_3D
color 2-d COLOR 2D
color 3-d COLOR 3D
labeled 2-d LABEL_2D
labeled 3-d LABEL 3D

Table 7-1: image types available in Image

Writing your own image processing routines

Image provides aflexible object oriented image processing infrastructure. Image types are
divided into class and sub-class of objects. Function overloading supports class specific
operations. Through the Image infrastructure, a number of general purpose services are
provided which support image type specific operation development. The type and dimensions
of input images are checked. Output images are automatically converted to the correct type
and dimensions based on the operation and input image(s). Furthermore, the infrastructure
supports the processing of arbitrary shaped region of interest (ROI).

Introduction to Image 2.1 7-5

Image 2.1 Library — User manual

The chapter "Programming with Image' contains a detailed description of the infrastructure in
the Image library. It also explains how to write new image processing functions which make
use of the image data-structures of Image.

Custom I mage types

Another strong point of the Image library is the ability of adding new image types without any
changes to the infrastructure. By strict separation of the image types and the infrastructure not
having any knowledge of the details of the image types, a new image type can be added
without changes to infrastructure. The implementation of a new typeis achieved by supplying
ahandful of pre-defined functions to the infrastructure.

The chapter "New image types' suppliesin depth information about this feature. The topicis
discussed by means of an example on how to implement byte-images (8bit) in Image.

M easur ement of objects (AlO)

AlOisaframework for the Analysis of Images and Objects. It is designed to perform
measurements of (microscopical) objects, gathering resultsin linked lists. These results can
than be stored and used in databases (e.g. for statistical research). Objects are manipulated
either based on the measurements or by pointing in an image (when using a GUI). The object
data vector and the object image can be stored in afile and in an image silo respectively, for
later retrieval. The combination of AlO and Image provides a flexible environment for
(microscopical) image analysis, for both experimental use and application development.

In"Analysis of Images and Objects (A1O)", the capabilities of the AlO package under
Image are described.

Binary images

In the implementation of the binary image types, the data structures used for image
manipulation received careful attention, resulting in optimal performance for binary
operations. By packing the binary datain aword, we are able to process 32 pixelsin paralel.
An important set of mathematical morphology functions, including erosions, dilations, and
skeletons are implemented for arbitrary shaped structuring elements. The arbitrary shapes
make the mathematical morphology functions useful for a broad class of image processing
problems. To obtain optimal execution times, special implementations have been devel oped
for the common isotopic erosion and dilation. Binary image processing functions are
discussed in the chapter "Bitmapped binary images'.

7-6 Introduction to Image 2.1

Image 2.1 Library — User manual

Appendixes

The appendices of the manual contain additional information on Image.

Appendix: ICSfileformat description

The ICS format, used to store images on disk, is a proposed standard for the storage of image
data. Thisformat is described in detail in an article supplied in this appendix.

Introduction to Image 2.1 7-7

Chapter 8 Publish and Subscribe

This chapter is adescription of the "publish and subscribe"
message-passing mechanism and its use in the Image library.

Image 2.1 Library — User manual

Gener al aspects

Publish and subscribe is a generic message-passing mechanism in which an object broadcasts
messages about important events and changes regarding itself. Other (independent) objects
can receive these messages as a means of getting information about changes to the publisher.
The publishing objects do not know if and how many objects will actually get these messages
and how they react upon them. Objects that want to receive messages from a publisher must
subscribe to that particular object and messages will be sent to them only. Thisway handling
events generates little overhead.

The Image library uses this mechanism to create a complete separation between the image-
processing and the user-interface. Consequently, Image can be used with any user-interface
(or none at all).

A Graphical User Interface (GUI) can use this "publish and subscribe™ mechanism to create
all kind of independent interface objects that react only to the object(s) to which they have
subscribed. Adding new interface objects can then be done without the need to change the
source code of the existing objects. It can even be done without having access to this code.

For example: A graphical user interface (GUI) will contain an image-viewer-object that is

visualizing an image on the screen. When the image data changes and the image publishes

this message, the viewer is notified and may act by visualizing the changed data. Just as easy

a histogram-data-viewer can subscribe itself to the image and visualize the histogram of the

image. These viewers do not know of each other’s existence (and do not have to), just as the
image does not need to know that two viewers are displaying its data. In a later stage without
the image knowing it the viewers can "unsubscribe" themselves from the image and may
attach themselves to another image.

Object requirements

For an object to publish events and allow other objects to subscribe to it, it (the structure)
must contain a "void *publish;" field as its first member. The mechanism uses this field to
store information regarding the subscribers to the object. An object-structure should look like
this:
typedef struct ny_object {
voi d *publ i sh; /* publish field */

/* other fields */

8-2 Publish and Subscribe

Image 2.1 Library — User manual

The name for thisfield ("publish") is not mandatory, just recommended.

Subscribing and unsubscribing to objects

To receive the messages broadcasted by a publishing object the receiving object must
subscribe to that object. For that it must use the function spb_subscribe():

voi d spb_subscri be(void *object, void *ident, void
(*fun_ptr)(), void *client_data)

"object” is the publishing object.
"ident" is an identifier for the subscriber (typically a pointer to the subscriber).
“fun_ptr" isapointer to the function the subscriber uses to receive the messages.

"client_data’ is an optional pointer to data the subscriber wishes to receive whenever the
publisher broadcasts an event.

For a complete description of the function "fun_ptr" see "Receiving messages' on page 8-3.
After subscribing to an object, the subscriber will receive all messages send by the publisher
and may or may not react on each of the messages. After awhile the subscriber can decide
that it is no longer interested in the object and wishes to unsubscribe. For that it calls the
function spb_unsubscribe():

voi d spb_unsubscri be(void *object, void *ident, void (*fun_ptr)())
"object” isthe publishing object it is subscribed to.
"ident" is an identifier for the subscriber itself.
“fun_ptr" isa pointer to the function the subscriber used to receive the messages.

The subscriber then is disconnected from the object and it will no longer receive any
messages from the object. To uniquely identify itself to the mechanism, it must provide
exactly the same identifier and function pointer as when it subscribed itself to the object.

Recelving messages

The function the subscriber uses to receive the messages from a publisher must have the
following header:

void func(void *object, void *ident, int ness, void *data, void
*client_data)

"object" is the publishing object.

"ident" isan identifier for the subscriber.

Publish and Subscribe 8-3

Image 2.1 Library — User manual

"mess' isthe numeric ID of the message being published.
"data" is (a pointer to) the message specific data (if any).
"client_data’ is (a pointer to) the data specified when subscribing to this object.

It isthe responsibility of the subscriber to recognize the messages and act upon them
correctly. The subscriber must silently ignore unrecognized and uninteresting messages as
these may be of interest to other subscribers to this object.

Publishing messages

An object that wishes to publish messages (and meets the structure requirement as mentioned
in "Object requirements' on page 8-2) calls the function spb_publish():

spb_publ i sh(void *object, int message, void *data)

"object” isthe publishing object itself.
"message” isthe numeric event ID
"data" isapointer to the (optional) message specific data.

The type of the publisher (object) defines the messages published and the data accompanying
those messages. This means that different types of data can accompany the same message
when published by different object-types.

Processing messages

How to act when receiving a message is up to the subscriber. The "publish and subscribe"
mechanism does not impose any obligatory actions to certain messages except for the
"SPB_DESTROY" message as explained in "Messages' on page 8-5. However when
processing messages, please keep the following in mind:

» When a publishing object has more than one subscriber, it is undetermined in which
order these functions are called. The actual order may even change in future versions
without notice.

* The current implementationof the publishing mechanism has a " depth-first”
strategy. This means that new messages get priority. E.g.: Object B and object C are
subscribed to object A and A publishes a message. Object B receives this messages
and decides to publish an other message itself. This new message isfirst sent to the
subscribers of object B before the message of object A is sent to object C.

8-4 Publish and Subscribe

Image 2.1 Library — User manual

M essages

In the include file "spublish.h” we give several often occurring events pre-defined message-
IDs. Also anumber of structures are defined for passing message data, we encourage you to
use these whenever possible. Although we refer to most messages by name, you must
remember that all messages are numbers that must be unique for that event-message.

One message deserves specia attention, the SPB_DESTROY message. This message signals
the destruction of an object. Because the information regarding subscribers is stored within
the object itself (the publish field), the destroy message must be published before the object
is actually destroyed. Another good reason for publishing the destroy message beforehand is
the possibility that subscribers may still need to access the object.

Whenever a subscriber receives the SPB_DESTROY message, it knows that thisisthe final
message from that publisher. The subscriber can not prevent the destruction of the publishing
object. It must clean up everything that relates to that object and may even decide to destroy
itself. It is not necessary to unsubscribe from an object that is destroyed, the mechanism will
automatically unsubscribe all subscribers when an object publishes aSPB_DESTROY

message.
Finally, the message values 0 to 9999 as well as the message prefixesSPB_, IMP_and AF_
arereserved. If you wish to define additional messages for the use in an interface or
elsewhere, use values outside the above mentioned range and symbolic names that do not use
the above mentioned prefixes.

Publish and Subscribein the Imagelibrary

The Image library uses the publish and subscribe mechanism for several types of objects. The
Images, the histogram objects and the error-object all publish eventsthat happen. When you
wish to subscribe to image and other objects, a problem arises. To subscribe to an image, you
must have a pointer to that image. But when you write your source code, this pointer is not
yet present. Image solves this problem by supplying an administrative top-level image that is
permanently available. Thistop-level image publishes the creation of images.

Top-level publishes

As mentioned above, to obtain the pointers to images you wish to subscribe to, you must first
subscribe to the top-level image. Thistop-level imageiscalled "super _i ni' and isglobally
available as avoid pointer or viathe functionget _super _i () :

Publish and Subscribe 8-5

Image 2.1 Library — User manual

void *s im
S_im= get_super_in();
spb_subscribe(s im NJULL, funcnanme, NUL);

The pointer to this super_im can also be retrieved with theget _super _i m() function. In
the example above the function "funcname” receives a notification whenever new images are
created. The function receives asits third parameter amessage ID, in this case

SPB_| TEM ADD (see also "Receiving messages' on page 8-3). Its fourth parameter is adata
pointer, which is the pointer to the new image. The message IDs are defined in the include
file "spublish.h". Below acomplete overview is given of all current messages of "super_im".

SPB_| TEM _ADD is published when a new image has been created, the data of this
message is apointer (I MAGE *) to the newly created image.

SPB_| TEM DELETE is published when an image is about to be destroyed. The data
isapointer (I MAGE *) totheimage. When this message is published, nothing
can be done to stop the destruction of the image. The only reason this message is
published beforehand is to prevent invalid memory access by subscribers that still
reference the image because they do not yet know that the image no longer exists.

SPB_NEWYPE is published when the type of image changes. The datais a pointer
(I MAGE *) to the image that has changed. Regular images publish this message
during the call to the post_op() function. However, Region Of Interest (ROI)
images publish this message during the call to the pre_op() function.

SPB_RESI ZED s published when the sizes of image changes. The datais a pointer
(I MAGE *) to the image that has changed.

SPB_AUTO DI SPLAY is published when using the functionsdon() , dof f (),
aut o_di spl ay() . Thedataisapointer (i nt *) to aBoolean value that
states if the auto display modeison (1) or off (0). The auto display modeis
considered to be a hint to the GUI to not display the images when they change.
Thisfeature is used to hide intermediate results of complex image processing
operations.

| mage publishes

After obtaining the pointer to an image, an object that wishes to monitor the changes of that
image must subscribe to it using thespb_subscri be() function. The current messages
that are published by image objects are:

8-6 Publish and Subscribe

Image 2.1 Library — User manual

SPB_DESTROY is published when an image is about to be destroyed. This publishis
doneright after the SPB_| TEM DELETE message of the "super_im". It
describes the same event of the same image. It also is published prior to the actual
destruction of the image, which cannot be halted. The data with this messageis a
NULL pointer because the imageis identified already by the publishing object
(first parameter of the subscriber’s function).

SPB_CHANGED is published when the image data changed. The data with this
message is a pointer tepb AREA3D structure. This structure describes the

region that changed; the offset and the size. A NULL pointer is supplied when the
entire image changed. This happens with most image processing operations.

SPB_NEWSTATE is published when the Image Flags changed . The data is a pointer
to aspbNSTATE structure that contains both the old and the new value of the
Image Flags.

SPB_NEWCLUT is published when the color lookup table (CLUT) of the image
changed or was replaced by another. The data is a poGiteil *) to the
CLUT.

SPB_NEWYPE is published when the type of the image changed. The data is always

a NULL pointer. The new type can be retrieved from the image itself. This
publish is followed by &PB_CHANGED publish of this image because the

contents changed as well.

SPB_MOVED s published by a ROI only, it signals that its position inside the parent
changed. The data is a NULL pointer, the new location can be retrieved from the
image itself.

SPB_RESI ZEDis published when the sizes of the image changed. The data is a

NULL pointer, the new sizes of the image can be retrieved from the image itself.
This publish is followed by 8PB_CHANGED publish of this image because the

contents changed as well.

SPB_CREATE DI SPLAY is published as a request to the display-interface (if
present) to create a display window for this image. The datspbAREA3D
structure containing the desired location and sizes of the display-window.

Color-lookup table publishes

In Image 2.1 a color lookup table (CLUT) may be an integral part of an image. The definition
of the CLUTSs allows a display-interface to store some window-system dependent data in the
CLUT. To give a display interface the opportunity to react to changes to the CLUTSs, these

Publish and Subscribe 8-7

Image 2.1 Library — User manual

changes are published viaatop-level CLUT. Thistop-level CLUT iscalled "super _cl ut”
and is globally available as avoid pointer or viathe functionget _super _cl ut ().

void *s clut;
s_clut = get_super_clut();
spb_subscribe(s _clut, NALL, funcname, NJULL);

It currently publishes the following messages:

SPB_| TEM _ADD is published when a new clut object is created. The datais pointer
(CLUT *) to the new clut.

SPB_| TEM DELETE is published when anew clut object is created. The datais
pointer (CLUT *) to the clut. When this message is published, nothing can be
done to stop the destruction of the clut. The only reason this message is published
beforehand is to prevent invalid memory access by subscribers that still reference
the clut because they do not yet know that the clut no longer exists

SPB_CHANGED is published when the contents of a clut is changed. The datais a
pointer (CLUT *) to the clut. All functions that somehow change the contents of
aclut must publish this message.

Top-level Histogram publishes

Like the images, the histogram objects publish events to allow for aflexible way of handling
histograms. Similar to images, a"hook" is permanently present to provide away to detect the
creation of new histograms. This top-level histogramiscalled "super _hi st 0" andis
globally available as avoid pointer or viathe functionget _super _hi st o().

void *s_histo;
s_histo = get_super_histo();
spb_subscribe(s_histo, NJLL, funcname, NJULL);

The messages the top-level currently publishes are:

SPB_| TEM _ADD is published when a new histogram object is created. The datais
pointer (H STOGRAM *) to the new histogram.

SPB_| TEM DELETE is published when a histogram object is about to be destroyed.
The datais a pointer to the concerning histogram. This message is published just
before the actual destruction of the object. The destruction of the object can not
be stopped.

Histogram publishes

The histogram objects in Image publish the following messages:

8-8 Publish and Subscribe

Image 2.1 Library — User manual

SPB_DESTROY is published when the object is about to be destroyed. The data with
this message is always a NULL pointer.

SPB_CHANGED is published when the histogram data changed. The data with this
message isaNULL pointer.

Error stack publishes

In the Image library, an error-stack is present to log the location and messages of an error
occurring somewhere in the low-level of the image processing functions. When an error
occurs, the relevant functions handle it and all add their error values and messagesto this
stack. When all these functions have aborted, the error stack publishes aSPB_CHANGED
message to signal to the interface that an error has taken place. The stack is aglobal structure
calledi m error _st ack, apointer to it can be retrieved using the function

get _imerror_stack().Thetypeof thestructureis| M ERROR_STATUS that is
defined intheincludefile"i m err or . h". Please note that this variable is a structure and in
order to subscribe to it, you must use the address of this structure!

The correct subscribe call for the error-stack thereforeis:

#i ncl ude "spubl i sh. h"
#include "imerror.h"

| M ERRCR _STATUS *est ack;
estack = get _imerror_stack();

éiob_subscri be(estack, .. /* other paraneters */);

For further information regarding this error stack, please refer to the chapter "Programming
with Image".

Publish and Subscribe 8-9

Chapter 9 Programming with Image

This chapter describes how to write image processing functions for
usein Image

Do not read this chapter if:

* You areanovice user

* You want to use existing routines only

* You have no experience with programming in C

Read this chapter if:

* You are an experienced user

* You want to write your own image processing routines

* You want to know more about the image processing
infrastructure

Image 2.1 Library — User manual

Introduction to Image

This chapter is on devel oping image processing routines and incorporating them into an
image-processing application that uses the Image Library. A solid knowledge of the C
language is assumed. This chapter contains the information needed to add image processing
functionsto the library or to modify existing operations. For a developer, an important feature
of Image is the support of different image types. Knowledge of the infrastructure is therefore
essential for creating functions that make maximal use of the library. An overview is
presented in "Image infrastructure' on page 9-3.

A typical routine in the Image context reads as follows:

function headi ng(i nages [, paraneters])
decl aration of an inage data structure /* "The | MACE structure" */
calls to paraneter checking routines [* "Checki ng routines" */
call topreop (.) /* "Dynanmc adjustnent (Pre_op, Post_op)" */

. processing ... [* "Asinple exanple" */

. error handling ... /* "BEror handling and reporting" */
call to post_op(.) /* "Dynanmic adjustnent (Pre_op, Post_op)" */

functi on endi ng

The IMAGE data structure is discussed in "The IMAGE structure' on page 9-6. In "Dynamic
adjustment (Pre_op, Post_op)" on page 9-12 the (obligatory) pr e_op() and post_op()
routines are considered as well as the dynamic size and type adjustment facilities. An
example of an image processing function isfound in "A simple example" on page 9-19.
Routines for checking non-image parameters are described in "Checking routines’ on page 9-
23. "Error handling and reporting” on page 9-21 is devoted to error handling.

For textual output, a special function is defined, intended to replace the default pri nt f ()
andf printf () functions, thus enabling a User-interface to influence the presentation of all
text output. The section "Textual output” on page 9-26 discusses this subject.

The function overloading mechanism described in "Function overloading” on page 9-27 isa
useful tool for keeping functions simple which must implemented for multiple image types.
In "Data conversion (convert)" on page 9-32, the design of routines which involve a
conversion of theimage type is considered.

When dealing with numerical non-image data, the var_objects, described in "Var_objects’ on
page 9-37, can be useful. Using HISTOGRAM objects, which can hold multi-dimensional
and arbitrary length histograms is discussed in "Histogram objects’ on page 9-40.

9-2 Programming with Image

Image 2.1 Library — User manual

| mage infrastructure

The infrastructure is designed to be independent of specific image typesin order to provide a
consistent framework which can support a growing variety of image types. Image types can
be divided into classes and subclasses. For this purpose two labels are associated with each
image type. These labels can be found in the IMAGE-structure (see "The IMAGE structure'
pg. 9-6). Thefirst is called type ident (type identifier) and has a unique value for each image
type. The second is called type_spec (type specifier) and specifies the data representation and
layout of the image type. The number of classesis limited to 32. The number of subclassesis
unlimited. The image types, their type-idents and type-specs which are currently implemented
are

image type type ident value type spec value
grey valued 2-d GREY_2D (@) G_2D_SPEC Q)

binary 2-d BINARY _2D 2 B _2D_SPEC 2

floating point 2-d FLOAT_2D (3) F 2D _SPEC 4

complex 2-d COMPLEX_2D (4) C 2D _SPEC (8)

grey valued 3-d GREY_3D (5) G_3D_SPEC (16)

binary 3-d BINARY _3D (6) B_3D_SPEC (32)

floating point 3-d FLOAT_3D (7 F 3D_SPEC (64)

complex 3-d COMPLEX_3D (8) C _3D_SPEC (128)

color 2-d COLOR_2D 9) COLOR_2D_SPEC (256)

color_3d COLOR_3D (100 COLOR_3D_SPEC (512

labeled 2-d LABEL_2D (33) L_2D SPEC (G_2D_SPEC)
labeled 3-d LABEL 3D (3 L 3D SPEC (G_3D SPEC)

Table 9-1: present image types.

Each type ident has a unique value which is used to identify the image type. The label
type_spec, can be the same for more than one image type, asis the case for labeled and grey
valued images. They have the same type_spec because both the data representation and layout
are the same for both image types.

Functions which operate on images of type GREY _2D, are also capable of processingalso
those of type LABEL_2D. GREY_2D isaclassand LABEL_2D isasubclass of it. Due to the
interpretation of the data however, not al operations that are meaningful on aGREY _2D
image are valid on aLABEL_2D image and vice versa. For example, amedian-filter isa
useful operation to perform on agrey valued image for purposes of noise reduction, but
performing it on alabeled imageis of little value.

A table of available operations for each image type is maintained to keep track of which
operations are admissible for that type. The overloading mechanism is used to apply the
appropriate function based on the image type. Therefore, functions which perform type

Programming with Image 9-3

Image 2.1 Library — User manual

specific operations can be kept relatively simple since they need only consider the specific
characteristics of one image type. Also not having to change existing source code when
implementing an operation for another (new) image type, has considerable advantages. Thisis
explained in depth in "Function overloading”.

The Image types

In Image of each basic image type a2 dimensional and a 3 dimensional variant is present. For
each of these image types the pixels are stored consecutively in memory. First the pixel of the
first row, then the pixels of the second row etc. The 3D image types are laid out in memory
asaset of 2D images, first all the pixels of thefirst Z-dice, then all the pixels of the second
Z-dlice, etc.

Grey valued images

Grey valued images consist of pixels, each of which contain an integer value. These pixels are
represented in Image by ain the C language defined datatype’ Pl XEL’ . Thistypeis defined
tobea’ short int’, which meansthat, on most computers, 16 bits (= 2 bytes) per pixel
are used. Therefore the value ranges from -32768 to +32767 (atotal of 65536 values).

Binary bitmapped images

Each pixel in abinary images has value O or 1. One bit is therefore sufficient for the storage

of each pixel. In Image we store thirty-two binary pixelsin each 32bit integer (long word) so
that a binary image requires only a fraction of the space occupied by agrey valued image. A

border of long words is reserved around each binary image to enable very fast morphological
operations

Floating point images

Floating point images consist of pixels each of which can have any real value within precision
limitations. Each pixel isrepresented by the Ctype’ f | oat’ , which on most computers
occupies 32 bits. Though floating point images can contain more information than integer
valued images, they are far less common. Thisis because computersused to work far more
efficiently with integers, and because integer valued images require half the space (16 bits per
pixel) and most image acquisition happens in integer valued format.

9-4 Programming with Image

Image 2.1 Library — User manual

Complex images

Each pixel in acomplex image is a complex number and therefore has areal and imaginary
part. In Image, each of the partsis represented with the Ctype’ f | oat ' . Thistype of image
is specifically required for the Fast Fourier Transforms (FFT).

L abeled images

Like agrey valued image, alabeled image is made up of integers with the C defined datatype

" Pl XEL’ . Theinterpretation of the valuesin alabeled image is however entirely different.
Theinformation in alabeled image is similar to that in a binary image. The pixelsin the
image either belong to an object or to the background. In alabeled image, however, each
object in the image has its own number or ’label’, used to distinguish it from other objectsin
the image. The pixelsin an image which have been determined to be part of an object, and are
connected, are all assigned the same unique label. Each pixel in alabeled image has avalue
identifying it as a member of a set or object. Labeled images allow measurements such as size
and shape to be performed on the image objects.

Color Images

In Image color images can be represented by five different color-models. The present models
are RGB, (CIE) XYZ, (CIE) Lab, HSI and CMY K. The color models are each represented in
adifferent manner:

RGB : each pixel ismade up of aRed, Green and Blue component, each component
(channel) occupies 1 byte in memory (C type : unsi gned char). Thethree
channels together with afourth (extraand empty) byte are stored in one C structure.

CIE XYZ : each pixel consist of threefloating point values, X, Y and Z, that are stored in
one C structure. Each channel occupies 4 bytes of memory (C type:f | oat).

CIE Lab : each pixel consist of threefloating point values, Lightness, a and b, that are
stored in one C structure. Each channel occupies 4 bytes of memory (C type:
fl oat).

HSI :each pixel consist of three floating point values, Hue, Saturation and | ntensity, that
are stored in one C structure. Each channel occupies 4 bytes of memory (C type :
fl oat).

CMYK : each pixel consist of four floating point values, Cyan, M agenta, Y ellow and K
(sometime also named Blackness), that are stored in one C structure. Each channel
occupies 4 bytes of memory (C type:f | oat).

Programming with Image 9-5

Image 2.1 Library — User manual

Thel MAGE structure

All images are referenced through a pointer to an IMAGE structure regardless of the type of
the image. The actual data of an image in Image is stored in a contiguous piece of memory.
An image pointer is type omnipotent in the sense that the referenced image may change type
but the image pointer is retained. The IMAGE structure consists of two parts. The first part
contains information that is for all image types. One of its members points to the second part
which isimage type dependent. The second part is called theimage type descriptor

The general part of the IMAGE structure :

typedef struct image t {

void *publish; - Publishing hook

i nt type_i dent; - Type ldentifier

l ong type_spec; - Data structure specification

i nt | enx; - lmage Wdth

i nt | eny; - I mage Hei ght

i nt | enz; - I mage Depth

i nt slice; - Slice that is displayed (3-d only)
i nt o_l enx; - dd Inage Wdth

i nt o_l eny; - Add Inage Height

i nt o_| enz; - Add Inmage Depth

char inmage_name[| M _NAMELEN] ; - I mage Nane

char wi ndow_nane[| M_NAMELEN] ; - Display Wndow Name
void *clut; - Image col or | ookup table

void *graphics; - Image Graphics Specific Info
RO *roi; - Region of Interest Descriptor
void *in_descript; - I mage Type Descriptor (input)
void *out_descript; - Image Type Descriptor (output)
long flags; - I mage Fl ags

i nt op_cnt; - Operation Counter

void *image_info; - Image Info List

void *future4s, - Pointer for future use (do not use)
} | MAGE;

The members of the IMAGE structure can be referenced through macros for convenience.
These macros also reside in thefile'image.h’. They are:

| mageTypel dent (i p)
| mageTypeSpec(i p)
| mageW dt h(i p)

| mageHei ght (i p)

| mageDept h(i p)

I mageSlice(ip)

(ip)->type_ident
(ip)->type_spec
(ip)->lenx
(ip)->leny
(ip)->lenz
(ip)->slice

ad dl mageW dt h(i p)
d dl mageHei ght (i p)
a dl nageDept h(i p)
| mageNane(i p)

| mageDi spNane(i p)
| maged ut (i p)

| mageG aphi cs(ip)
I mageRA (i p)

I magel n(i p)

| mageCQut (i p)

I mageFl ags(i p)

| mageOpCount (i p)
I magel nfo(i p)

| mageSi ze(i p)

(ip)->0_lenx
(ip)->0_leny
(ip)->0_lenz

(i p)->i mage_nane
(i p)->w ndow_nane
(ip)->clut

(i p)->graphics
(ip)->ro
(ip)->in_descript
(i p)->out_descript
(ip)->flags
(ip)->op_cnt
(ip)->mge_info

I mageW dt h(i p) *1 mageHei ght (i p) *I mageDept h(i p)

Programming with Image

Image 2.1 Library — User manual

Thefirst two fields of any image type descriptor have a fixed meaning and are therefore

present in a separate structure that can be referred to:

typedef struct type fixed {

i nt type; - Type Identifier

void *data; - Pointer to start of Inmage Data
} | MAGE_TYPE FI XED,

The macros to access the fixed members of any image type descriptor:

| magel nType(ip) ((1MAGE_TYPE FI XED *) (i p)->in_descript)->type
| mgeQut Type(i p) ((1 MAGE_TYPE FI XED *) (i p)->out _descript)->type

| mgel nData(ip) ((IMAGE_TYPE FI XED *) (i p)->in_descript)->data
| mgeQut Data(i p) ((1MAGE_TYPE FI XED *) (i p)->out_descript)->data

The meaning of remaining fields of the type descriptor depends on the image type. An effort
has been made to keep them as similar possible to simplify the programming task. An
example of atype specific descriptor (alsointhefile’grey 2d.h’):

typedef struct grey 2d t {

i nt type - Type Identifier (TYPE_H XED)
short *data; - Pointer to Image Data (TYPE Fl XED
i nt | enx; - Image Wdth

i nt | eny; - I nage Hei ght

i nt pl ane; - Pl ane specifier

} GREY 2D | MoGE:

The other type descriptors can be found in the include files for the different image types (
'grey_3d.hv, "float_2d" etq.

In the general part of the IMAGE structure the members’in_descript’ and 'out_descript’ are
pointers to image type specific descriptors. The reason for using two type descriptorsis
discussed in "Dynamic adjustment (Pre_op, Post_op)" on page 9-12.

I mage Flags

Thef | ags field of the IMAGE structure is used to store some’ special treatment’ flags for
the image. Each flag occupies one bit of the 32 bit long word. Currently these flags are
defined:

READ_ONLY (bit O, integer value 1), image is read-only, the infrastructure
does not allow you to use the image as an output image The
image cannot be altered of size and/or type.

NOT_IN_DIALOG (bit 1, integer value 2), signals to the GUI that the image should
not be shown in dialog boxes.

NO_AUTO_POINT (bit 2, integer value 4), signalsto the GUI that when pointing in
the image viewer with the mouse, the pixel information should
not be shown.

Programming with Image 9-7

Image 2.1 Library — User manual

NO_AUTO DISPLAY (hit 3, integer value 8), signalsto the GUI that the image should
not automatically be displayed on changes to the image.
All other bitsin the field flags are currently not used but reserved for future use.

Region of interest data structure (rectangular)

When writing image processing routines in Image, the programmer does not have to deal with
regions of interest (ROI). The infrastructure deals with ROIs in such away that if aROI is
specified to be the input or output for an operation, it can be treated as a normal image by the
routine. A ROI isin fact asmall image that exists as a separate image only during operation.
The infrastructure also keeps track of possible conflict between the ROI and its parent. In the
event that the parent image changesin size and as aresult of that the ROI isno longer located
entirely inside the parent image, an error is generated at the moment the ROl isused in an
operation. And when the parent is destroyed, the ROI also gets destroyed.

A ROI in Image is defined by an norma IMAGE structure to which a small structureis
added. AnimageisaROlI if thefield 'roi’ in the IMAGE structure pointsto a ROI structure
(asdefined in theinclude file 'roi.h’):
typedef struct roi _t {
| MACE

*parent;
BOOL_NMASK *bool _nask;
i nt startx;
i nt starty;
i nt start z;

} RQ;

The information describing a ROI is scattered over several structures; an IMAGE structure, a
ROI structure and the structures which also are used with normal images. Looking at the ROI
structure, it can be seen that little additional information is needed to describe a rectangular or
cubic ROI. Just the image in which the ROI resides (* par ent) and the top left corner of the
ROI inthe parent image (st ar t x, st arty, st art z). All other informationisin the
IMAGE structure itself. The field BOOL_MASK is used for defining non rectangular ROIs and
isdiscussed in "Region of interest data structure (arbitrary shaped)" on page 9-9.

When a ROl is specified as the input or output image for an operation, the region is copied to
aseparate image by thepr e_op() function. After the operation, post _op() copiesthe
output result back into the parent image (see "Dynamic adjustment (Pre_op, Post_op)“on

page 9-12).

9-8 Programming with Image

Image 2.1 Library — User manual

Region of interest data structure (arbitrary shaped)

In addition to rectangular ROIs, support is provided for the creation of arbitrary shaped ROIs.
The BOOL_MASK field in the ROI structure is used to define the shape. The BOOL_ MASK
structure (see 'roi.h’) isdefined as:

typedef struct bool mask t {

BYTE *dat a;

i nt | enx;

i nt | eny;

i nt | enz;
} BOOL MASK;

Every time an arbitrary shaped ROI is used, the datain the ROI is copied to a separate image
(like rectangular ROIs) using a mask to distinguish the pixels that belong to the ROI from the
other pixels. Thismask is a Boolean mask which is similar to a binary image in the sense that
al elements have avalue of 0 or 1. A mask can be made by converting aBINARY _2D or
BINARY_3D image into aBOOL__MASK using the function get _bool _mask() . This
function returns a pointer to aBOOL_MASK that can then be passed the function

roi _define().

BOOL_MASK isaseparate typein Image for several reasons. First, binary images contain (a
lot of) data not needed for the mask. Furthermore it is necessary that the mask is present and
valid for aslong as the ROI exists. Using a binary image will cause problems whenever this
image s, unintentionally, used in another operation. The mask structure is unlikely to be used
accidentally in other operations.

It should be noted that when an arbitrary shaped ROI is used, the ROI-image is till
rectangular and the pixels in the ROI-image that where not under the mask, are set to 0. The
operation performed on the ROI, does not know whether it is an arbitrary shaped ROI or not
and thus will operate on al pixelsin the (rectangular) ROI-image. Especially histogram
operations and statistical analysis on these pixel values may unknowingly be influenced by
the O-pixels.

Operation Counter

Theop_cnt field of the IMAGE structure is a counter that isincremented each time the
image is used as an output image for an image-processing operation. At several placesin the
image-infrastructure, this operation counter is used to test the validity of image related data.
For instance the image-data of a ROI is copied only to the ROI-image if theop_cnt of the
parent image indicates that the data of the parent image has changed. Thepost _op()
function is responsible for incrementing the counters, so image processing functions that do
not use pre_op()/ post _op() ontheir output images can result in inconsistent ROI-data.

Programming with Image 9-9

Image 2.1 Library — User manual

| mage Info

Thei mage_i nf o pointer in the IMAGE structure can be used to store arbitrary, additional,
image-related data with an image. By storing the data with the image, it is not needed to keep
track of which data belongs to which image. A linked list of IMAGE_INFO structuresis
attached to the pointer. Each structure in the list points to user/application specific data. The
data stored with each element of the list is neither interpreted nor processed by Image in any
way. The user/application remains responsible for the contents of the data as well asthe
allocation of the memory (if needed). The infrastructure can destroy the data when the image
is destroyed when required. The functions Addl magel nf o(), Get | nagel nf o() and
Renovel magel nf o() must be used to add the data-pointer to and retrieve and remove the
data-pointer from the image. The IMAGE_INFO structure :

typedef struct image_ info {

char i nf onarre[| M NAMELEN ;
unsigned long info_size;
voi d *df unc) (voi d *);
voi d *infoptr;
} IMAGE I NFQ

i nfoname astring used to identify the data attached to this structure. The
maximum length of the stringisIM_NAMELEN (see’image.h’)
characters (trailing '\0" included). Image reserves all names that start
with 'Sl _’ for private usage.

i nf o_si ze size of the data attached, not yet used.

df unc pointer to a (user/application specific) function to destroy the data when
the image is destroyed. Thisfunction is called withi nf opt r asthe
parameter. When the data cannot be destroyed (global variable) or
should not be destroyed (shared with other images), aNULL pointer
should be specified.

i nfoptr pointer to the data. The data pointer to is not referenced of interpreted
by Image in any way. Any type of data can be stored.

Image uses this mechanism to store the actual range of image data. Whenever the range of the
image data needs to be calculated, theget _pi xel _range() functioniscalled, it checksif
the range datais still valid by comparing the recorded operation counter with the actual
operation counter of the image. When they are equal it is assumed that the minimum and
maximum value stored in the image-info are till valid for the image, and consequently these
values are returned instead of recal cul ating the image range again.

9-10 Programming with Image

Image 2.1 Library — User manual

Image Color Lookup Tables

Thecl ut field inthe IMAGE structure can be used to attach a color lookup table (CLUT) to
an image. Although most commonly used for influencing only the display of an image, some
Images (pal ette images) cannot be shown or interpreted without one. For now in Image the
color lookup tablesin Image are fixed length, RGB color model only:

typedef struct clut_t {
char clut _nane[| M_NAMELEN ;
unsi gned char r[256];
unsi gned char gl 256] ;
unsi gned char b[256] ;
unsi gned | ong t abl e[256] ;
} CLUT,
cl ut _name astring used to identify thislookup table. The maximum length of the
stringisIM_NAMELEN (see "image.h") characters (trailing '\O’

included).
r, g, b arrayscontaining the RGB triplets specifying the colors.

tabl e array that is reserved for use by the display interface attached. The
interface can use this array to map the RGB triplets of ther, gandb
array to the windowing system’s colormap. The Image library does
neither fill nor interpret the contents of this array in any way.

After initialization, the Image library supplies a number of "default” color lookup tables that
can attached to the images:

name contents

EMPTY_LUT all entries black

BLUE_LUT a blue scale

GREEN_LUT a green scale

CYAN_LUT green and blue scale mixed
RED_LUT ared scale

MAGENTA_LUT red and blue scale mixed
YELLOW_LUT red and green scale mixed
GREY_LUT normal grey scale

LABEL_LUT scale that simulates label display
MULTI_LUT primary colors each in a specified bit
OVERLAY LUT 1...8 specified bitplane red

FALSE COLOR LUT false color table

Table 9-2 : pre-defined color lookup tables.

Custom tables can be made by usingctheat e_cl ut () function, filling ther , g andb
table with desired values. After that, the display interface must be told that the contents of the
clut changed. This is done by publishin§RB_CHANGED message to the super clut object:

Programming with Image 9-11

Image 2.1 Library — User manual

voi d *scl ut;
CLUT *cl ut;

sclut = get_super_clut();
};* creating an filling the clut.. */

spb_publ i sh(super_clut, SPB CHANGED, clut);

Dynamic adjustment (Pre_op, Post_op)

Frequently, in the course of image processing, routines are called which produce an output
image of a different type or size than that of the destination image. In Image some tools are
provided to perform the appropriate type and size conversions. The same tools handle ROI
processing. By using them, the programmer is freed from converting images directly or from
having to be concerned with whether an input (or output) image is actually a ROI.

The functions provided for these purposes arethepr e_op() (pre-operation) and

post _op() (post-operation) functions. Each image processing operation created for Image
must call pr e_op() prior to performing any processing on theimages andpost _op()
when it is finished.

As an example, consider the threshold function which produces a binary image, and assume
that the destination image is the input image. Thepr e_op() function will handle the
creation of an intermediate data structure for output. If theimage is simply converted to
binary, then the grey value datawill be lost. Thepost _op() routine displays the resulting
image, and cleans up the intermediate data structures.

Though the conversion steps are admittedly simpler when operations are not performed in
place, the programmer is freed from being at al concerned with image conversions and image
display if thepr e_op() andpost _op() utilitiesare used. Further, keeping in style with
other functionsin Image, image processing functions should be designed so they can be
performed in place, asisthe case with all functions supported in the library.

In addition to handling image type and size conversions, these utilities also handle regions of
interest correctly. If aROI is handed to an image processing function rather than an image,
thepr e_op() function will make it possible for the function to treat is asif it were an
image. Thepost _op() function will then clean up the necessary intermediate data
structures.

In order to handle the conversions, the image type descriptorsin the IMAGE data structure
are used. Consider again the example of thresholding animage in place. Thepr e_op()

9-12 Programming with Image

Image 2.1 Library — User manual

routine creates a binary image and connects it to the output image descriptor

(out _descri pt).Whenthepost op() functioniscalled, it destroys the data pointed to
by the input image descriptor (i n_descr i pt) and the input image descriptor itself. It then
connects the output image descriptor to thei n_descri pt field of the IMAGE structure and
displays the new image data.

The situation pointed out above looks like this. Before the call to pr e_op() , theIMAGE
structure has one descriptor attached to bothi n_descri pt andout _descri pt:

IMAGE structure
t d ipt
in_descript . ype descriptor
out_descript type = GREY 2D
data pointer >
the grey image

Figure 9-1: IMAGE structure layout before pre_op().

Since the image had to change to type binary and yet remain grey value for input,pr e_op()
splitupthei n_descri pt andout _descri pt and attached different descriptors to them.
The image now holds both the grey origina and the binary destination:

IMAGE structure
type descriptor
- ; >
|n_descrlpt type= GREY_2D
out_descript i
data pointer >
the grey image

type descriptor

>
type = BINARY_2D
data pointer >

the binary image

Figure 9-2 : IMAGE structure layout after pre_op().

After the actual processing has been done, the grey image is no longer valid and is therefore
removed by post _op() , resulting in aconversion of theimagetype. post _op() freesthe
memory of the grey image, throws away the input descriptor and attachesi n_descri pt to
out _descri pt :

Programming with Image 9-13

Image 2.1 Library — User manual

IMAGE structure
type descriptor
in_descript > P P
out_descript type = BINARY_2D

data pointer >

the binary image

Figure 9-3 : IMAGE structure layout after post_op().

The fixed part of any type descriptor is necessary sinceit is possible for an IMAGE structure
to have type descriptors of different image types simultaneously. Because each descriptor
containsitstype, thepost _op() routine knows which descriptor needs to be destroyed
after the operation.

The fixed data pointer alows the user to use the same macro to find the start of the image
data regardless of image type.

Thepre op function

Thepre_op() function iscalled with the following arguments:
int pre_op(| MAGE *first, IMACE *second, int node, unsigned |ong first_spec,
int second_ident)

The first two parameters are pointers to the images to be manipulated by pre_op() .

The third parameter tellspr e_op() what to do. The mode be can either COMPARE or
ADJUST (ADJUST _NI P) which are defines from 'image.h’.

Thefirst spec argumenttellspre_op() therequired image class of the first image.
More than one class can be specified by applying the OR-operation (| Jon the type_specs of
the classes (see Table 9-1: present image types.

). Thisis useful when the same function can be applied to more than one image type. When
the type of theimagef i r st isnot important, the define WHATEVER can be used (all bits
Set).

The last parameter second _i dent specifies the intended type ident of the imagesecond.
Thisimage then will be converted to that type if ADJUST (ADJUST _NI P) is specified and
must be of that type if COVPARE is specified. This parameter may be specified as

OUT_AS | N, the meaning of which depends on the mode as explained below.

9-14 Programming with Image

Image 2.1 Library — User manual

COMPARE mode

When node is specified as COMPARE, pr e_op() determines whether two images are of the
same class and/or dimensions. It can also be used to check if oneimage is of a specific type.
For instance when adding two images it is essential that they are of the same type and sizes.
Thecall topre_op() tocheck thiswould be:

pre_op(inl, in2, COMPARE, G 2D SPEQ G 3D SPEC QUT_AS IN;

i n1 andi n2 arethetwo input images. The valid classes are both G_2D_SPEC and
G_3D_SPEC because the routine add_im can handle both 2d and 3d images. The last
parameter isOUT _AS | N because the second imagei n2 has to be of the same class as the
input imagei n1. Soin this case the allowed types of imagesare GREY 2D, LABEL 2D
(same class, see Table 9-1: present image types.

), GREY_3D and LABEL_3D. Thefunctionpr e_op() itsalf returns OK (1) if the images
are of the same class and have the same sizes. The fault status of pr e_op() isNOT_OK (0).

Becausepr e_op() handles ROI processing, all operations should call pre_op() because
the specified image can always be a ROI.

For example, the routine that writes an image to disk (writefile) has only one image as input
and can handle all types. Thecall topr e_op() thereforeis:
pre_op(image, inage, GOMPARE, WHATEVER QUT AS IN);

but could also be:
pre_op(image, inage, GOMPARE, | nageTypeSpec(i mage),
| mageTypel dent (i nage));
Both calls have the effect that all image types are accepted by pr e_op() . If theimageis
actually aROl, it will be written to disk asif it were anormal image.

In the case that an operation has two input images which may be of different types but must
be of the same sizes, the call topr e_op() would be:

pre_op(inl, in2, COWARE | nageTypeSpec(inl),
| mageTypel dent (i n2));

ADJUST(_NIP) mode

The ADJUST(_NI P) modeof pre_op() ismore complex than the COVPARE mode
because its behavior can be influenced by some global variables.

If pre_op() iscaled using ADJUST, the output image will be split up if the output image
has to change type or size asis explained above. When the output image is of the correct type
and size already, no new memory will be allocated and the input image descriptor and the

Programming with Image 9-15

Image 2.1 Library — User manual

output image descriptor remain the same. When an operation is performed in place (input
image is the same as the output image), the pixels will be replaced one by one as soon as each
of them is processed. No reference to an original pixel value can be made onceit is processed.
For most operations, thisis not a problem. Neighborhood operations, however, cannot be
performed in place. To allow the same image to be specified as both input and output for a
neighborhood operation, pr e_op() can be used with ADJUST_NI P (ADJUST Not In
Place). If ADJUST NI P isused, the output image will be split up if the input image and
output image are the same, even if no change of type or sizeisrequired. When thisoption is
used, the output image will always be a different piece of memory, and the neighborhood
operation can be performed with the same image as both input and output if necessary.

Output equal to input

The most common call to pre_op() isfor adjusting the output image to match the type and
sizes of the input image. For instance, in order to copy an image to another image, the output
must be of the same type and sizes. Thecall topr e_op() to achieve thiswould be:

pre op(in, out, ADJUST, G2D SPEQ G 3D SPEC QJT AS IN);
Inthiscal, first theimagei n ischecked if it iseither aGREY_2D or a GREY _3D image.

Then theimage out ischanged into the type and sizes of imagei n. If nothing went wrong,
pre_op() will return OK (=1) and processing of the data can commence.

Output of specific type

If the output must be a specific type, the last parameter is used to specify the type. To
threshold a GREY _2D image, the output image must be converted to BINARY _2D. To
accomplish this:

pre op(in, out, ADJUST, G 2D SPEC BINARY 2D);
Although the low-level routine (in this case) can handle both 2d and 3d, this call to
pre_op() canonly allow GREY _2D image for input. This is because the last parameter of

pre_op() canonly hold oneimagetype at atime. The callstopr e_op() for 2d and 3d
images must therefore be separate calls when the output image must be of a specific type.

Only output

Some operations only have an output image. It may be that the output image is required to be
of aspecific type. Thepr e_op() routine should then accept all types of image as input and
convert the output image to the desired type. Assume the output image should be of type

9-16 Programming with Image

Image 2.1 Library — User manual

GREY_2D, then either of the following calstopre_op() will achieve the desired
conversion.

pre op(out, out, ADIUST, WHATEVER GREY 2D);
pre_op(out, out, ADIUST, |nageTypeSpec(out), GREY 2D;

VWHATEVER stands for all possible type specsand | mageTypeSpec(out) isthe spec of
image out and istherefore always correct. Thepr e_op() calswill therefore accept every
type of image.

Type of input, sizes of output

In the above examplesusing pr e_op() in ADJUST mode, the output image inherits the
sizes of the image that is specified as the first argument. Thisis, however, not always desired,
in which case special measures have to be taken. For instance, if the output image must be of
the same type as the input image but keep its own sizes, the next two calls can be issued to
achieve this behavior:

pre_op(in, in, COWARE, G2D SPEC QUT_AS IN;
pre_op(out, out, ADIUST, |nageTypeSpec(out), |nageTypel dent(in));

Thefirst call checksif theinput imagei n is of the correct type, in this case GREY_2D. The
second call topre_op() convertsthe output image out to the type of the input imagei n
by specifyingl mageTypel dent (i n) asthetypeto which theimageout must be
converted. Because theimageout is specified as the first parameter, the sizes of out will be
used. Thisresultsin theimage out being converted to the type of imagei n with no change
insize.

Special sizes
When the required sizes of the output image differ from those of both the input and output
images, a special method is available to change the sizes. The functionset _cross_di m()

can be used to tell pre_op() that the next ADJUST action must use the supplied "special”
sizes. Thefollowing call to pr e_op() will set an image to a specific size:

#i ncl ude "i mage. h"
#include "iminfra. h"

set_cross_din{ 100, 50, 4);
pre_op(in, out, ADJUST, G 3D SPEC FLQAT 3D);

The output image in this case will be a floating point image with the dimensions x=100, y=50
and z=4.

Programming with Image 9-17

Image 2.1 Library — User manual

ROI and pre_op

In addition to image size and type adjustment, thepr e_op() and post _op() routines
together also handle region of interest processing.

When aROI is defined, anew IMAGE structure is reserved for it and processed as if it were
an image. The only difference isthat a ROI, does not have adisplay of its own. When a ROI
is specified asinput, pr e_op() will copy the datafrom the parent (in the region of interest)
to the ROI image. Thisway, the region of interest can be processed by low-level routinesin
the same fashion as other images. Note that with the introduction of the operation counter for
images (see "Operation Counter" on page 9-9), the data of the ROI is only copied when the
operation counter of the ROI-image islower than the one of the parent image (the operation
counter of a ROI can never exceed the counter of its parent). This prevents unnecessary
copying of the data.

Using the ROI as an output image is only possible if it does not have to change size, because
the ROI is nothing more than a part of another image. Its sizeis one of its primary attributes.
If acall topre_op() would resultin asize change for aROI, awarning will be issued, and
the operation will be aborted. A call topr e_op() resulting in atype change for aROIl isno
problem.

If aROI is specified as both the input and output of an operation, pr e_op() will copy the
data from the parent to the ROI image as described above and change the type of the ROI if
needed.

Multiple callsto pre _op

Asexplained above, after acall topre_op(), an IMAGE structure can
contain two different images. Thisisthe case until a call to post _op() is
made with theimage. Before that time, other callstopre_op() using
ADJUST in which the same image is specified as being an output image, will
fail. Thiscan happen if in the routine, a call to another image processing
routineis made after thepre_op() call, because, the other routineisalso
likely to call pre_op() . Thismust be prevented. Callsto other image
processing routines must be made BEFORE thepr e_op() function or
AFTER thepost _op() function.

9-18 Programming with Image

Image 2.1 Library — User manual

The post_op function

A call topost _op() isissued at the end of each operation for each image
that was specified as an output imagein acall topre_op() using
ADJUST(_NI P)

post _op() requiresone parameter:

int post_op(l MACE *i nage)

post _op() cleans up after the actual calculations of a routine have been done. The function
checksif the input and output descriptor of the specified image are different. If they are, it
throws away the image that is connected to the input descriptor.i n_descri pt will then be
set to the same descriptor asout _descr i pt, whichisthe result of the calculation. Finally
it will publish that the image is changed, which isasignal for a Graphical User Interfaceto
redisplay the image.

ROI and post_op

If the output of an operation isa ROl thenpre_op() hasalready checked whether the
result would fit in the ROI. post _op() then copies back the result to the parent image of
the ROI and publishes that both the ROI and the parent image changed. If the ROI isof a
different type than the parent, post _op() converts the parent to the same type as the ROI,
and thus destroys the previous contents of the parent. This is done because the parent was
implicitly specified as being the output image (by specifying the ROI as output).

A smple example

This section contains an example operation which cal cul ates the maximum value of pixels at
corresponding locations in two images and storesit in another image. The output image in the
exampleis, in this case, of the same type as the input images.

Please note that the example is restricted to implementing the maximum function for the
image types of GREY_2D and GREY _3D only. If aroutine should operate on more image
types, use of the function overloading facilities (page 9-27) is strongly recommended. The
maximum operation:

Programming with Image 9-19

Image 2.1 Library — User manual

#i ncl ude "i nmage. h" [* #1 */
int maxi nun{ | MACE *inl, |MACGE *in2, |MACE *out) 1* #2 *|
{

P XEL *srcl, *src2, *dest, naxi; /* #3 */

unsigned long npix;

if (!pre_op(inl, in2, COMPARE G 2D SPEQ G 3D SPEC OJTASII\D |
I'pre op(inl, out, ADJUST, G 2D SPEQ G 3D SPEC OJT > IN)
/* d/
return(NOT_CK) ;
srcl = Imagel nData(inl); /* address of first inage */ /[* #5 */
src2 = Inagel nbata(in2); /* address of second inage */
dest = ImageQut Data(out);/* address of output inage */
npi x = InageS ze(inl); /* nunber of pixels */ /* #6 */
while (--npix) { [* #7 *]
if (*srcl > *src2) /* which value is higher */
maxi = *srcl,;
el se
maxi = *src2
dest = maxi; / store biggest */ [* #8 */
Srcl++ /* go to next pixel */ [* #9 */
Src2++
dest ++;
}
return(post_op(out)); [* #10 */

Explanation of the function code:
#1) The necessary data structures and definitions are in the include file 'image.h’.

#2) The function takes three parameters which specify images, two of which are input
images and one of which is an output image.

#3) To accessthe datain the images, pointers are used. A counter (npi x) is declared to
control for the number of pixels processed.

#4) Since three images are involved in the operation, two callstopr e_op() haveto be
made. Thefirst oneisto seeif the two input images are of the same type and size. The
second oneisto adjust the type and size of the output image.

#5) The address of the first pixel of each of theimagesis acquired through a macro (see
"The IMAGE structur€'). The addresses for the data in the two input images are
accessed by the macro | magel nDat a and the address of the datain the output image
is accessed by the macro | mageQut Dat a. The reason why the output is accessed by
adifferent macro is described in "Dynamic adjustment (Pre_op, Post_op)".

#6) The number of pixelsin animage can also be calculated using amacro. | mageSi ze
multiplies the x, y and z dimensions of the image and returns the result.

9-20 Programming with Image

Image 2.1 Library — User manual

#7) The maximum is calculated for every pixel in theimages. A whi | e loop isused
which terminates when all pixelsin the image are processed. Within the loop, the
corresponding pixels of the two input images are compared and the one with the
highest value is stored in avariable.

#38) The maximum value of the two pixelsis stored at the corresponding location in the
output image.

#9) After apixel has been processed, each pointer to the dataisincreased by one to point
to the next pixel in the image. This continues until npi x pixels have been processed.

#10) After processing the data any temporary changes made by pre_op() should be cleaned
up and the it must be published that the image-data has changed (see ainterface can
display theimage). Thisis done by the call to post_op() with the imageout asthe
argument. This function must be called for any image which has been adjusted using
pre_op(). The value returned by post_op() is returned, so that the program that called
the maximum() function can determine whether it completed successfully.

Error handling and reporting

An error can occur in any operation at any time due to severa reasons. Once an error has
occurred, the function must try to correct the problem. If it is unable to do so, it must return
gracefully and signal its caller that an error occurred. It also must supply information about
the nature of the error. To determine the location of an error and its nature accurately, Image
supplies a mechanism to facilitate the error reporting.

L ocation of theerror

To trace the location of an error, each function in the Image library participates in a stack
mechanism that keeps track of the function that is being executed. For this purpose three
functions are available:

voi d i mbegi n_func(const char *nane)
void imend func(const char *nare)
int imreport_error(const char *nane, int val, const char *info)

Thefirst statement of afunctionisacall toi m begi n_func() withitsnameasthe
parameter. Just before the function exitsin a no-error condition, it callsi m end_f unc()
also with its name as the parameter. When no error occurs, the name-stack grows and shrinks
as functions are being executed and returned.

Programming with Image 9-21

Image 2.1 Library — User manual

If afunction detects an error situation, thisisreportedtoi m report _error () andan
error-status is returned to its caler. It specifiesits name, an error value and an optional
information string as the parameters. Once an error is reported, the name-stack is copied to
the error-stack and at that moment the exact location of the error is known. While all the
functionsin the stack handle the error and clean up, they store additional information in the
error-stack. Other functions than the onesin the error-stack-trace are not allowed to store
information in the error-stack, so only information regarding one error is stored. When all
functions have returned, the error-stack publishes that an error has occurred and the user-
interface can inform the user about the error if necessary.

Return values of functions

Functions written for use in Image should return a value based on their success or failure. The
value can be examined when the function returns and its caller can take various actions
depending upon the return value. Usually, if the function returns an OK status, the processing
should simply continue. If a problem occurred, the status should indicate which problem
arose. The program can either correct the error and continue or issue awarning and
discontinue processing.

The value indicating success in Imageis| E_OK which is defined as 1. Since various things
may go wrong, a failure status may be indicated by one of many values, so that the
programmer is able to indicate the cause of the error. In Image the failure statusl E_NOT_OK
(value’ Q') simply indicates that an error occurred but gives no information as to the cause. A
negative value is used to indicate the cause of the error. Those used in Image can be found in
the include file ‘im_error.h’.

In some cases the negative error status can be ambiguous, if for instance a function returns
some kind of measurement value, this value may well be negative even when no error has
occurred. Other functions may be defined as being ‘unsigned’ (always positive), or returning
a pointer. In these cases the caller can use the funetioget st at us() to inquire if the
called function exited with an error or with @K statusi m get st at us() will always

return the error-value of the function that was most recently called by the current function
provided that the function participates in the error-mechanism. When no error has been
reported] E_CK is returned.

Error handling

When detecting an error it is common practice to abort the normal processing of an operation
and report the error to the user. Because of the independence of any user-interface, functions
in Image have no means to visualize error-information. By using the error-mechanism

9-22 Programming with Image

Image 2.1 Library — User manual

functionsin Image supply the user-interface with as much information about the error as
possible.

When an error is detected it isreported to thei m report _error () function. This
initializes the error-stack (I M_ERROR_STATUS struct from im_error.h) by copying the
name-stack to it and setting the error value for each function in the stack tol E_NOT_OK (0).

The function that reports the error also supplies an error-value and a message, which are both
stored in the stack. The function then returns with an error-status and its caller further handles
the error-situation. Initsturn it will clean up and add its own error-status and message to the
error-stack withthei m report _error () function and also returns. In this manner all the
functionsin the error-stack handle the error and return.

Because the error-mechanism knows the exact location of the error, only the relevant
functions can add their error-values and messages to the stack. If during the clean-up phase of
afunction, another error occurs and a function that is not in the error-stack reports this, the
information regarding it will be ignored by the error-mechanism.

When the top-level function of the error-stack is reached, the error mechanism will publish
that an error occurred. For an application this means that two ways are available to detect the
occurrence of an error.

1. Checking the return value of the function it called from the Image library. Thiswill be
most common because the program can react to the error situation immediately when
it occurs an that may be necessary to control the correct execution of the program.

2. Subscribing to the error-stack is typically done by the user-interface because it enables
a uniform mechanism from a central location to visualize the occurrence of an error to
the user.

Checking routines

Image provides a number of routinesto check the values of non-IMAGE parameters. Each of
these functions checks whether a particular requirement is satisfied and, if not, reports this as
an error to the error-stack. If the requirement ismet, | E_OK (=1) is returned, otherwise

| E_NOT_COK (=0) isreturned. These functions can be used in ani f -statement to allow the
programmer to take appropriate action, or prevent further processing if the routine fails.

The number of check routinesistoo large to discuss each of them here. An example of how
they are used is shown below followed by alist of the routines provided. For afull description
of these functions, the reader is referred to the (on-line) reference manual.

Asan example, we consider afunctionmy_fi | t er () with the following header :

Programming with Image 9-23

Image 2.1 Library — User manual

int ny_filter(IMAGE *in, |MAGE *out, int size, int offset)

The function operates on images of type GREY_2D, si ze should be avaue between 3 and
12 and of f set may be any positive value. The function which check itsinput is as follows :
int ny_filter(IMAGE *in, |MAGE *out, int size, int offset)
{

i mbegi n_func("ny_filter");
if ('range ok(size, 3, 12, "Flter size") ||
I'positive ok(offset, "Cfset"))
return(imreport_error("ny filter", IE NOT_CK
“error in paraneters"));

if ('pre_op(in, out, ADJUST, G2D SPEC QJT_ASIN)
return(imreport_error("ny filter", IE NOT_CK NULL));

/* rest of function */

post _op(out);
imend_func("ny_filter");
return(l ECK);

}

It isasound practice to first check the validity of all the non-IMAGE parameters and when
these are all O.K. then call pre_op() . This prevents the need to undo the pr e_op()
action if one of the other tests fails. Please note that the error mechanism checks the integrity
of all images when an error has occurred.

In the example the first check is performed withr ange_ok() which checks whether the
Si ze parameter is between 3 and 12. If it isnot in the specified range e.g. when size = 21,
the following text islogged in the error-stack.:

Filter size[21] out of range (3..12).

The default error messageinr ange_ok() is prefixed with the supplied text string ("Filter
size"). If thecheck r ange_ok() succeeds, the check posi ti ve_ok() isissued. If this
check fails this text will be logged:

Offset [<value of offset>] must be positive.

pre_op() checkstheimages and adjusts the output image to match the input image (see
"The pre_op function” on page 9-14). If, for whatever reason, pr e_op() detects that
something iswrong, it will return with the value 0 and the operation will be stopped by the
return(imreport_error(...)) statement. If all checks are passed successfully, the
operation will perform its calculations, followed by acall topost _op() for theimage out.

Check functions

The available check functions are:
image_ok checksif the pointer supplied is a valid image pointer

9-24 Programming with Image

Image 2.1 Library — User manual

images ok

image _readwrite ok

checks if the two pointers supplied are valid images
checksif an imageiswritable, no read-only flag.

clut_ok checks if the pointer supplied isavalid color lookup table
pl_io_ok checks if the specified bitplanes are in the correct range
plane_ok checks if the planeisin the correct range

im_val_ok checks if value(s) is(are) smaller than the image size(s)
val _check checksif avalueissmaller than the image size

iter_ok checks if the number of iterationsis positive or zero
edge ok checks if the edge bit parameter is correct

con_ok checks if the connectivity parameter is correct
con6_ok checks connectivity parameter on 4, 8, 48 or 84

odd fsizes ok checksif filter sizes are odd and in the specified range
range ok checksisavalueisin the specified range

frange ok checksisafloat valueisin the specified range

odd ok checksif avalueisaodd integer value

even_ok checksif avalueisaeveninteger value

bit ok checksif avalueisabinary value

different_ok checksif two values differ from each other
positive_ok checks if aninteger value is positive

fpositive_ok checksif afloat valueis positive

greater0_ok checks if ainteger value is bigger than zero
fgreater0_ok checksif afloat value is bigger than zero

unequal0_ok checksto seeif an integer value is unequal to zero
funequal0_ok checksto seeif afloat value is unequal to zero

power of 2 ok

checksif avalueisapower of 2

Please refer to the (on-line) manual pages for a complete description of these functions.

Apart from these checking functions that generate an error, also some testing functions exist
that only return atrue/false value and not generate an error. These functions all start with the
"is " prefix, they are:
IS _image
is_clut

checks if the pointer supplied is a valid image pointer
checks if the pointer supplied is avalid color lookup table

Check _image integrity

Thefunctioncheck i mage_i ntegrity() checksall imagesfor irregularities. For
instance, if the input and output descriptor of an image are different, it will delete the image
connected to the output descriptor and reconnect out _descri pt to the same descriptor as
i n_descri pt (seeaso"Figure9-1" and "Figure 9-2"). Note that thisis exactly the
opposite of what post _op() does. Therefore this function should not be called before a call
topost _op(), unlesstheintention isto restore the state of affairs prior to the call to
pre_op() and exit the function immediately. The function heading is:

Programming with Image 9-25

Image 2.1 Library — User manual

voi d check image integrity(int print)

The argument of check i mage_i ntegrity() tellsthefunction to perform its work
silently (0) or print what it is doing (1). Thisfunction is called by the Image infrastructure just
before it publishes the occurrence of an error.

Textual output

Because the Image Library is designed to be independent of a user-interface, text-output
cannot be written to a" standard-output stream"” because that may not exist. Also the User-
interface might like to be in control of the representation of textual output. For these reasons,
Image functions should not use the standard printf(...) and fprintf(...) functions for
text-output to a"terminal” (the fprintf() may still be used for specific file output of
course).

The Image library contains a special function for text-output, theimage_output()
function. The prototype:
intimage_output(int stream, const char *forma, ...);

The syntax of the function and the parameter list islike the ANSI-C fprintf() function,
except that the "stream " parameter does NOT indicate a C-FILE streams. It merely defines
the type of the text and should be considered an aid for the user-interface to enableit to
present different kinds of text in different ways. The default behavior of image_output()

isto dump all text to stdout except for the IMO_ERROR stream which is dumped to
stderr

User interfaces can intercept the text by supplying a function (pointer) that conformsto the
following prototype.
void WINAPI 1 funcname(int stream, char *buffer);

Theimage_output() function convertsits variable argument list to a single text buffer
that is given to this function. To supply the function-pointer, use the function
#include "imtxtout.n"

im_set_output_handler(void (WINAPI *)(int, char *));

The defined types of text are (definition can be found in the include file ‘image.h’):

1 We use WINAPI on the MS-Windows platform to provide greater flexibility. On other
platforms WINAPI is an empty define (see the include file imtxtout.h)

9-26 Programming with Image

Image 2.1 Library — User manual

stream intended type of text

IMO_OUTPUT default text such as measurement results, progress information etc.

IMO_INSTRUCT ingtructions for the users, e.g. information on how to operate an
interactive routine.

IMO_WARNING warning messages

IMO ERROR error messages

Table 9-3: present output streams.

Please note that although we define different ‘streams’ of text-output, we do not impose any
behavior on these streams. It is up to the user-interface to present the text in a suitable layout.

Function overloading

Image uses the mechanism of function overloading for flexibility, maintainability and
simplicity. The mechanism works by having the top-level image-processing functions look at
the type of the image and calling a low-level functions that is tailored for that type of image.

Here we consider how that mechanism works and is implemented in Image. With use of the
function overloading mechanism, new image processing routines can be implemented for
several types of images or existing operations can be implemented for additional image types.

Threelayers

In order to make use of the function overloading the source code should be divided into three
layers:

1) generic function level
2) parameter checking and type and size adjustment
3) processing of the data

By splitting the processing of the image in layers 2 and 3, the actual processing function
(layer 3) can be used for more than one image type. If the image adjustments and parameter
checking (layer 2) differ per image type, this is especially useful.

Consider the functioadd_i n() as an example to describe the three lag&ld. i m()

adds the values at corresponding locations in two images and stores the result in another
image. The call tadd_i misadd_i n{ A, B, C) . A and B are the input images and the

result is stored in C. The images A and B are GREY_2D (in this example) and since C is an
output image, it is converted to GREY_2D withe op() as described in Section

"Dynamic adjustment (Pre_op, Post_op)" on page 9-12.

Programming with Image 9-27

Image 2.1 Library — User manual

Generic function layer

The function specified as the generic function is called by the user/application. It calls the
function-overloader to acquire the appropriate function for the image type, and then calls that
function with its arguments. For theadd_i n() operation, the generic functioniis:

/* necessary structures, defines and prototypes */
#incl ude <stdlib. h>

#i ncl ude "i nage. h"

#include "imerror. h"

#i ncl ude "generic. h"

#include "iminfra. h"

int add_inm{ | MAGE *inl, |MACE *in2, |NMACE *out)

{
int status;
int (*func) (I MAGE *, IMAGE *, IMACE *); /* pointer to function */
i mbegi n_func("add_i mY);
/* find function pointer for type of 'inl */
func = overl oad_func("add_im', inl);
/* if not present for this inmage type, report the error */
if (!func)
return(imreport_error("add_ini, IE NOTOVER,, ""));
status = (*func)(inl, in2, out); /* performoperation */
[* if error detected, exit function with error-value */
if (status<lE CK)
return(imreport_error("add_inY, status,""));
[* normal exit */
imend_func("add_im);
return(l EX);
}

Thefunctionover | oad_f unc() returnsapointer to the function that performs the add
operation for the type of thei n1 image. In the tables that contain the overloadable functions
for each image type, add_i misan entry and is accompanied by afunction-pointer to atype-
specific function. In the table for GREY _2D images this pointer points to the function
g_add() and, asaresult of that, this function will be called:

g_add(inl, in2, out);

Parameter checking and image adjustment

Thefunctiong_add() isthe second layer:

#i ncl ude "i nage. h"
#include "imerror.h"

int g add(| MAGE *inl, |MACGE *in2, |MACE *out)
{

i mbegin_func("g_add");

9-28 Programming with Image

Image 2.1 Library — User manual

if (!pre_op(inl,in2, COWARE G 2D SPEQG3D SPECAQUT_ASIN ||
I'pre_op(inl, out, ADJUST, GZDSPEQG 3D SPEC QUT_AS IN)
ret urn(|mreport _error("g_add", IEPRECP,""));

| _g add(inl, in2, out);
if ((status = post_op(out)) < IE X))
return(imreport_error("g add", status,""));

imend_func("g_add");
return(l EQK);
}

This second layer is used for image type and size adjustment as well as general parameter
checking. The functionspr e_op() and post _op() which test the input images and adjust
the output image are discussed in detail in "Dynamic adjustment (Pre_op, Post_op)". Here the
firstcall topre_op() comparestheimagesi n2 andi nl and produces awarning if either
the dimensions or the type differ. The second call topr e_op() will adjust theimage out to
be of the same dimensions and type asimage inl. If all checks and adjustments succeeded,
the low-level function that does the actual computing iscalled (I _g_add()). When

| _g_add() completesitstask, the result is displayed, with thepost _op() function.
Because add_im is a point operation, the same add routine (I _g_add()) can be used for
both two and three dimensional images. Because neighborhood operations are always
dimension dependent, different low level routines have to be created.

Processing the data

Thefunction| _g_add() (low level grey value add) is the function which performs the

actual calculations on the image data:

#i ncl ude "i mage. h"
#include "imerror.h"

void | _g add(I MACE *inl, |IMACGE *in2, |MAGE *out)

{
regi ster Pl XEL *srcl, *src2, *dst;
register int npi x;
i mbegi n_func("l _g_add");
srcl = I magel nDat a(i nl); /* address of input data of 'inl */
src2 = I magel nDat a(i n2); /* address of input data of 'in2 */
dst = I mageQut Dat a(out) ; /* address of output data of 'out’ */
npi x = | nageS ze(inl); /* nunber of pixels in image 'inl */
while(--npix >=0)
*dst++ = *srcl++ + *src2++
imend_func("l _g_add");
return;
}

The type of datain grey valued imagesisPl XEL. The addresses of the datain the images and
the number of pixelsin the image are retrieved using macros that reside in the include-file

Programming with Image 9-29

Image 2.1 Library — User manual

"image.h". Since nothing can fail while when adding (all checking has been donein
g_add() and overflow isunlikely since each pixel is 16 bits) we do not return a status.

Image supplies several example filesto illustrate the mechanism of overloading. These files
can be found in the "src_exmp" directory. In that location directories are located for afew
image types. In each of these directories source files for the corresponding image types are
located. Inthe "grey_2d" directory, the files "arith.c" and "arithlow.c" contain the functions
g_add() andl _g_add() . Compare these functions with the functionsf _add() and

| _f _add() ("float_2d" directory) to see the difference in how grey valued images and
floating point images are handled. Further, several examples of generic level functions are
found in the "generic" directory.

Overload tables

Image determines which function it must call to perform a certain operation on an image type

by means of overload tables. The programmer specifies the type-specific functionsin aplain

text file, the ‘overload files’. These files can be recognized by the ‘.ovl' file-extension. At
compile-time a special utility programmkover|d) converts these overload files to a C-source
code file (overload.c) containing several arrays. This C-file is then compiled and linked with
the Image library.

The layout of the overload files is not very complicated and looks like this:

#

optional comment |ines describing the contents

#

Definition of the image type this table is for.
nessage-functions pair definition (see bel ow
nessage-functions pair definition
nessage-functions pair definition
nessage-functions pair definition

The rules defining this layout are:

» All lines that start with a pound sign (#) are comments. Empty lines are also regarded as
comment.

» The first non-comment line found in the file must be a table definition using the following
syntax:

TABLE <window name> <IM IDENT> <IM SPEC> <IM DIMENSIONS>

<window name> one of : g2d, g3d, f2d, f3d, b2d, b3d, c2d, c3d, col2d, col3d, I2d, 13d.
<IM IDENT> is the type identifier for this image type.

<IM SPEC> is the type specifier for the image type.

9-30 Programming with Image

Image 2.1 Library — User manual

<IM DIMENSIONS> is the number of dimensions the image type has.
The standard table for the GREY _2D image type is specified by:

TABLE g2d GREY. 2D G2D SPEC 2

» Thelinesin thefile following the line with the TABLE keyword are message-function
pairs. The first word on the line is the name of the operation (the generic function layer)
and the second word is the name of the function that performs that operation for the image
type involved. When 'overload.c’ is created the first word is converted to a string and the
second one into a function address. For theadd_im operation, the ’message-function’ pair
for imagetype GREY_2D is:

add_im g_add

» Every timethat the keyword TABLE is encountered in an overload file, a new table will be
created. Thisway, multiple tables can be specified in onefile.

* Whenthe’overload.c' is created it is not checked whether a name of an operation is already
inuse. If that happens the last occurrence of the name (and the corresponding function)
overrules the previous one(s).

Note that in the overload file for GREY _3D images, the message-function pair for the add _im
operation is the same as the one in the overload file for GREY _2D images. Thisis because
the g_add() function can be used for both GREY 2D and GREY _3D images.

Overruling the default implementation

It can occur that auser of Image is not satisfied with the implementation of an image
processing operation or simply wants to experiment with a different implementation. For
instance, if the default implementation of afilter for GREY_2D imagesis not suited for the
specific images used, the Image routine can be overruled by a different one. This can only be
doneif the new function is called with the same set of parameters as the old one, because the
generic level function is unchanged. If the parameters differ, a complete new function must be
implemented using a different name.

To overrule the Image implementation of a function, the ’message-function’ pair (rule) for the
new function must be located later than the rule for the default implementation or, off course,
replace the existing rule. This can be done by placing it later in the samefile as a pair with the
same message, or by placing it in anew file which islower in the list of overload files from
which’overload.c’ is created. The location of thislist depends on the platform you are using
Image on, it is either in the "makefile” (UNIX & PC) or inthefile"ovl_list" (Macintosh).

Programming with Image 9-31

Image 2.1 Library — User manual

Data conversion (convert)

Occasiondly, conversion of the image datais required, for example if an operation on grey
valued image data must be performed in floating point precision. A special mechanism is
supplied which enables one function to convert any type of image in Image into any other
type. Even if new image types are implemented, no altering of existing source codeis
necessary. Because the convert() command makes use of the function overloading
mechanism, users can overrule the method used to convert the image data.

Super type of animageline

Theroutineconvert () usesthe special image line type, called acommon_lingo store a
line of image data. By having aroutine for each image type that puts the data of an image line
in acommon_line structure, and a routine for each image type that reads aline from the
common_line structure, any type of image data can be converted to any other. The entire
image is converted by calling the former function with the input data, and the latter with the
output image data, for each line in the image.

The datain the common_line is stored either in long words or in doubles. The choice of
which, is determined by the routine that stores a line of the source image into the
common_line. The receiving routine of the destination image must therefore be able to read
the data from the long word format and from the double format. The receiving routine does
the actual conversion. To summarize, every image thus needs two routines for this
conversion:

* Oneto store the data of the image on aline by line basis into acommon_line structure
either in long words or in doubles .

* Oneto read the data from the common_line and store it in the output image. This
routine must be able to read the data in the common_line structure, which means that
it must be able to read both long words and doubles.

COMMON_LINE structure

The common_line structure (COMMON_LI NE) isdefined in the file’image.h’ like this:

#define QOMLONG -21
#define COCMDOBLE -22

typedef struct common_line_ t {

i nt type; /* type of data */

voi d *dat a; /* pointer to the data */

unsigned int x, vy, z; /* dimensions and position line */
unsigned int t; /* time position of the line */
unsigned int nr_channel; /* nunber of channels per pixel */
doubl e hint_mn; /* mninumval ue in data */

9-32 Programming with Image

Image 2.1 Library — User manual

doubl e hi nt _max; /* maxi numval ue in data */
unsigned int type ident; /* ident of data source */
unsi gned | ong t ype_spec; /* spec of data source */

} COMWMIN LI NE

e type identifiesthe C typein which the datais stored, COM_LONGis the long word
format and COM_DOUBLE is the double format.

e *dat a isapointer to the allocated memory used to store the line of data (see "Source
function specification” on page 9-33).

e X isthewidth of theimage

* y andz arethe position of the line stored in the data.

* t isthetime position of the line (not used in current image types).

 nr_channel isthe number of values used for one pixel. For example, grey value
Images are one channel images and complex images are two channel images.

* hint_m nandhi nt_max can be used to store the minimum and maximum value
of the’source’ image. Thisinformation can be useful, in deciding how to convert the
datain the receiving routine.

e type_ident andtype_ spec arethetype ident and type spec of the source
image.

When convert() is called the functions for writing to a common_line for the source image and
reading from a common_line for the destination image are overloaded. Each is called several
times until the image is completely converted. Each function must have a specific behavior to
guarantee the correct conversion of the data.

Sour ce function specification
The header of the source function is specified as follows:
int source function(| MACGE *inage, int n, COMMN LINE *comli ne)
* i mage istheinput image.
* nisnumber times the function has been called (when first called,n = 0).

« com.lineisapointer tothe COVMON_LI NE structure used in the convert
operation.

Programming with Image 9-33

Image 2.1 Library — User manual

The first time the source functioniscaled (n = 0), it must allocate memory to hold
aline of data from the source image and fill the structure COVMMON_LI NE to describe
the format of the data. To fill the structure, the functionset _conmon_1| i ne() can
be used (see on-line manual). The allocated memory is freed by the function
convert () when the conversion is completed.

Thefieldsy and z arefilled each time the source function is called with the position
of thelinein the source image. In a2 dimensional image,y =n. In 3D imagesy starts
from zero each time the z-position israised. z aso starts from zero and ends at the
value (depth -1).

Thefieldshi nt _m n and hi nt _max must be set to avalue, either the exact
minimum and maximum value in the image or a good estimate thereof. In the Image
implementation, these values are set to 0.0 and 255.0 for al non binary image. For
binary images, the values are set to 0.0 and 1.0.

Every time called, the source function fills the memory with the next x-line of the
source image.

The return value of the function is used to indicate whether more lines follow the
present line. If there are lines in the image that have not yet been transferred, the
function should return the value’ 1’ (or any other non-zero value). When the last lineis
processed, the function returnsthe value’ 0’ (zero).

The source of the default grey value function is listed below for reference :

9-34

int g_2d _conv_to _common(IMACE *im int n, COMMON LI NE *com i ne)
{

GREY 2D IMNE *g im

Pl XEL *pi X;

| ong *dat a;

register long npix;

i mbegi n_func("g_2d _conv_to_common");

g_im= (GREY_2D I MACE *) Imageln(im;
npi x = G ey2dl nageWdth(g_im;

if(n==0){ /* Frst tinme called */
data = (long *)mal | oc((size_t) npix * sizeof (long));
i f(!data)

return(imreport_error("g_2d _conv_t o_common",
|ENCMEM "no nenory allocated for data"));
set_common_line(comline, CMLONG data, 0,0,0,0,1,

0.0, 255.0);
}
data = coml i ne->dat a;
comline->x = npix;
comline->y = n;
comline->z = (;

pi x = Gey2dl mageData(g_im;
pi x += comline->y * npiXx;

Programming with Image

Image 2.1 Library — User manual

whil e(--npix >= 0)
*dat at+ = *pi x++,

if(n==Qey2dl nageHeight(g_im - 1){
i mend_func("g_2d conv_to_comon");
return(0);
/* 0 =stop, thisis the last line */

}

i mend_func("g_2d conv_to_comon");
return(1); /* 1 =nore lines are available */

Destination function specification

The header of the destination function is specified as follows:

int destination function(| MAGE *inage, int n, COMMON LI NE
*coml i ne;

* i mage isthe destination image.
* nisnumber of timesto the function has been called (when first called, n=0).

* com.|ineisapointer to the COVMON_LI NE structure used in the convert
operation.

» Thedestination function is called after each call to the source function and must read
the data from the common_line and put it in the image at the position specified by y
and z. If a3D imageis converted into a 2D image then the function may stop if thez
value is more than zero or take another appropriate action. In the default
implementation, for example, the values in other z positions than O are compared with
the values already stored in the 2D image and the maximum is taken as the value for
that pixel. This method provides a good 2D representation of most 3D images.

» Thedestination function must be able to read the data in the common_line regardless
of whether it isin long word format or in double format. The fieldshi nt _m n and
hi nt _max can be useful for the conversion.

» Thereturn value of the function should indicate if the function can handle more lines
of data. If more data can be processed, a non-zero value should be returned. If, for
some reason, the destination function cannot continue processing it should return a0
(zero) to stop the conversion.

The source of the default grey value function is listed below for reference :

int g 2d_conv_fromcomon(l MACE *im int n, COMMON LINE *coml i ne)
{

CREY_2D | MNAGE *g_im
doubl e *d_ptr;
| ong *| _ptr;

Programming with Image 9-35

Image 2.1 Library — User manual

Pl XEL *pi X;
i nt type;
regi ster |ong npi x;
register int chan_of fs;

i mbegi n_func("g_2d conv_from common");
g_im= (GREY_2D | NACE *) ImageQut(inj;
type = comline->type;

d_ptr com | i ne->dat a;
| _ptr = comline->dat a;

chan_offs = comline->nr_channel ;

npi x = G ey2dl nageWdth(g_i m;
pi X = Gey2dl nagebata(g_im);
pi x += comline->y * npix;

if(comline->z == 0){
if(type == GOMLONG){
while(--npix >= 0){
*pi x++ = *| _ptr;
| _ptr += chan_offs;

}

else if(type == GOM DOBLE) {
while(--npix >= 0){
*pi x++ = *d_ptr;
d_ptr += chan_offs;

el se {
if(type == GOMLONG){
while(--npix >= 0){
if(*pix <*l_ptr)
*pix = *| _ptr;
pi x++;, | _ptr += chan_offs;

}

}
else if(type == CCM DABLE){
while(--npix >= 0){
if(*pix <*d ptr)
*pix = *d_ptr;
pi x++, d_ptr += chan_offs;

}

if(comline->t >0){
imreport_error("g_2d conv_fromcomon", | E NOI_CK "");
return(0);
/* 0 =stop, can't handle this */

}

i mend _func("g_2d conv_from comon");
return(1); /* 1 = can handl e nore data */

9-36 Programming with Image

Image 2.1 Library — User manual

User specified conversion

The routines that perform the actual conversion of the data are overloaded for each image
type. In "Overruling the default implementation " on page 9-31, we explained that overloaded
functions can be overruled by the user. By overruling the type specific functions for the
convert operation, the user can implement different conversion methods for certain image
types. All that needs to be done is to write afunction that meets the specifications for the
source or destination function described above. The new function can overrule the default
function for convert by overloading the user’ s function for the messages conv_to_common()
(for the source function of an image type) or conv_from_common() (for the destination
function of an image type). In the standard overload files these messages and the default
functions can be found just below the obligated service functions.

Var_objects

Var_objectsin Image are used to store non-image data which is handled by the user. They
prevent the user from having to manage data arrays and addresses thereof in the interpreter or
dialogue boxes. To simplify the use of var_objects, they are handled like images. That is,
when results are stored in them, they can be adjusted dynamically to accommodate the data.
Because the var_objects can be used to store various types of data, a simple mechanismis
provided to determine which appear in a dialogue box. This enables the (application)
programmer to restrict the visible var_objects to those the user may need to manipulate.

Var_object structure

The structure that describes avar_object is found in the include file'image.h’ :
typedef struct var_object t {

i nt type; /* type of data in this object */
void *data; /* pointer to the data */

i nt nr_channel ; /* nunber of channels per el ement */
i nt di mensi ons; /* nunber of dinensions */

i nt dinsf] VOMXDMN; /* di mensi ons */

i nt Si ze; /* total nunber of elenents */

i nt bpel em /* bytes per elenment */

char obj ect_nane[| MNAMELEN; /* nane of the object */

char object class[| MNAMELEN; /* class of the object */

char *coment; /* pointer to possible comment */
} VAR (BIJECT;

Aswith the | MAGE structure, all members of this structure can be referenced with macros:

#defi ne V_O Type(op) (op)->type
#defi ne V_O Dat a(op) (op)->dat a
#defi ne V_O Chans(op) (op) ->nr _channel
#define V_O D ns(op) (op) - >di nensi ons

Programming with Image 9-37

Image 2.1 Library — User manual

#define V_O D n{op, dinension) ('op) - >di ns[di nensi on- 1]
#define V_O S ze(op) (op) ->si ze

#define V_O H enS ze(op) (op) - >bpel em

#defi ne V_O Narre(op) (op) - >obj ect _nane
#define V_O d ass(op) (op) - >obj ect _cl ass
#defi ne V_O Corment (op) (op) - >comment

/* for the total nunber of bytes in the object */
#define V_ O Llength(op) (V_O Chans(op)*V O S ze(op)*V_O H enS ze(op))

* type isthetype of the datathe var_object contains, it can have one of these values:
PIXEL_T,CHAR T, SHORT T, INT_T,LONG T, FLOAT T,DOUBLE T

» dat a isthe pointer to the memory that holds the data stored in the var_object.

 nr_channel isaspecia dimension, introduced to support data types with multiples
of data, such aslike complex values, more than one value is stored in each unit of the
object.

» di mensi ons isthe number of dimensionsin the var_object . It can range from 0 to
V_O MAX DI M whichis5 at present. Thisis equivalent to the number of dimensions
inan array. By using O dimensions, a scalar can be stored in avar_object.

« di s isan array that contains the length in each dimension in the var_object.

* si ze isthetota number of elementsin the var_object. It is the product of al the
valuesin di s array. The number of channelsis not included in the product.

* bpel emstandsfor bytes per element and contains the number of bytes used in each
element of the data. The number of channels per element is not included. If a
var_object, for instance, has four channels (nr _channel == 4) andthetypeis
char (1 byte) thenbpel emisalso 1.

* obj ect _nane isastring that contains the name of the var_object. Thisnameis
used in the dialogue boxes and in the command window. The maximum length of a
var_object nameisIM_NAMELEN (see "image.h") characters.

 obj ect _cl ass isthe object class of the var_object belongs to. In the comfile, this
name is specified in the minimum field. Only var_objects that have that namein the
obj ect _cl ass string will appear in the dialogue box.

« comment isapointer to astring of arbitrary length. This string can be used to store a
comment concerning the var_object. When the var_object is written to disk, the
comment is saved in the header file of the var_object.

The macros should be self-explanatory, but a note on the V_O_Length macro may bein
place. It isused to determine the size of the entire var_object in bytes. To be specific, itisthe
product of the fields nr_channel, size and bpelem.

9-38 Programming with Image

Image 2.1 Library — User manual

Programming with var _objects

The var_objects are designed to be an easy interface to C arrays for the user. Any operation
that deals with arrays of data that must be accessible to the user, should use var_objects. The
var_objects created are stored in alinked list. When programming a function, the var_objects
can be used like normal arrays once they have been created. Low-level functions however that
need arrays, may also use var_objects rather than arrays. The advantage is that their size and
type can be easily adjusted.

To dynamically adjust the type and the sizes of var_object, several functions are available:

var_object creates avar_object and returns the pointer

destroy var_object destroys avar_object

var_object_by name retrieves the pointer to avar_object through its name
set_var_object_type sets the type of avar_object to a specific type
set_var_object_size sets the dimensions of avar_object to specific values
set var_object_data sets both the type and the sizes of avar_object
set_var_object_class sets the class of avar_object
set_var_object_comment attaches comment to avar_object.

Several useful functions are available for inspecting and manipulating the var_object asa
whole:

list var_objects listsall var_objects that exist
show_var_object_info showsinformation on avar_object
dump_var_object dumps the contents to the terminal or afile
copy_var_object copies avar_object to another one
write_var_object saves avar_object to disk

read var_object reads avar_object from disk

These functions have a (on-line) manual page that contains information on them.

Checkson var_objects

Thefunctioni s_var _obj ect () can be used to determine the existence of avar_object. It
returnsthevalue’ 1’ if the var_object exists, and 'O’ otherwise. The function

var _obj ect ok() doesthe same, and pops up an alert box if the var_object does not
exist.

Conversion of var_objectstoimages and vice versa

Var_objects are implemented to simplify the management of non-image datafor the user. As
avar_object may contain data that could also be stored in an image, it might be useful to
process the dataiin avar_object with one of the image processing functions. To make this

Programming with Image 9-39

Image 2.1 Library — User manual

possible, conversion routines have been written to transfer the data from avar_object to an
image and vice versa. A routine is also provided to convert the datain avar_object to another
type. Theroutines are :

var_object_convert changes the data into another type
var_object to image transfersthe datato animage
image to var_object storesdatafrom animagein avar_object

A var_object is converted in the same way as an image. A common_lineis used to store one
line of data, which isthen read by the receiving object (see "Data conversion (convert)" on
page 9-32). In fact the destination functions that are used to transport the data between the
common_line and an image are the same functions that are used for image conversion. This
means that if the source or destination function for an image type is overruled by the user, the
conversion of var_objectsto or from imagesis also overruled.

The source and destination functions which handle the transport between var_objects and the
common_line however, cannot be overruled. The data contained in an image, regardless of its
size or type, aways fitsin avar_object without loss of information .

Histogram objects

The histogram data of images in Image are stored in histogram objects. These histogram
objects can be of any size and have up to 5 dimensions. For each dimension of the histogram,
the center pixel value of thefirst and the last cell are stored as well as the width of one cell.
Functions are available to create, destroy and resize the histogram objects.

Histogram structure

The definition of the HISTOGRAM structure, located in theinclude file'image.h’, is

typedef struct histogramt {
unsi gned | ong *hdat a;
unsi gned int nr_chans;
unsigned int nr_dins;
unsigned int dins[V.OMXDOM;

char narre[| M NAVELEN ;
char *coment ;
doubl e [bin_nmedian[V.OMX DM;
doubl e hbin_nedian[]V.O MX D M;
doubl e bmwdth[VOl\/AXDl\/],
voi d *futl, /* reserved */
voi d *fut2; /* for */
voi d *fut3; /* future */
voi d *fut4, /* use */

} H STGRAM

9-40 Programming with Image

Image 2.1 Library — User manual

For all used fieldsin the structure, a macro has been made for accessing the field.

H st ogr antat a(hp) (hp) - >hdat a

H st ogr anthans(hp) (hp) ->nr_chans

H st ogr anb ns(hp) (hp) ->nr_di ns

H st ogranbi n{hp, di nensi on) (‘hp) - >di ns[di mensi on- 1]

H st ogr anLBi nMedi an(hp, di nensi on) (hp) - >l bi n_nedi an[di nensi on- 1]
H st ogr antBi nMedi an(hp, di nensi on) (hp) - >hbi n_nedi an[di nensi on- 1]
H st ogranBi nWdt h(hp, dinension) (hp)->bi n_w dth[di nensi on- 1]

H st ogr aniNane(hp) (hp) - >nane

H st ogr anComment (hp) (hp) - >comrent

» hdat a isthe pointer to the actual histogram data. The type of the dataisunsi gned
| ong.

* nr_chans isthe number of 'channels’ of the histogram data. When the image dataiis
"multi-channel’ data, like RGB color-images, the histogram can be stored in three
channels to get an overview of how each of the three colors are distributed.

* nr_di ns isthe number of dimensions of the histogram. The histogram objects can
handleuptoV_O MAX_DIM (5) dimensions.

 di misanarray of V_O MAX _DIM (5)unsi gned i nt’sinwhich the dimensions
are stored.

* naneisaarray of IM_NAMELEN (80) char ’'sin which the name of the histogram
objectsis stored. This name is used by the dialog boxes to identify the histogram
objects.

« comment isapointer to astring of arbitrary length. A comment string of any length
can be attached to the structure using thehi st ogr am _comment () function. This
function allocates memory for the string and frees the memory of an previously added
comment string.

* | bi n_nedi an isadouble that describes the center pixel value of the lowest cell of
each dimension in the histogram, see example below.

* hbi n_nedi an isadouble that describes the center pixel value of the highest cell in
the histogram, see figure below.

* bin_w dt hisadoublethat describes the width of the cells of the histogram, see

figure below.
lowest bin highest bin
AN
/I l | U I |
LBinMedianValue "\ Binwidth HBinMediaﬁdue

Programming with Image 9-41

Image 2.1 Library — User manual

Thefields| bi n_nedi an, hbi n_medi an and bi n_wi dt h describe which pixel value of

the imageis stored in which cell of the histogram. The width of each cell, already calculated

and stored inthebi n_wi dt h array, can be calculated by the formula:
hbin_median—Ibin_median

bin_width = Soins—1

The center pixel value of each cell n of the histogram can be calculated through :

center _value, = Ibin_median + n[bin_ width

In which n isthe number of the cell (starting from 0). To determine in which cell certain
pixel value would be stored, the following formulas are used:
low_border = Ibin_median - 2n-Wdth
20
bin = pixelvalue — low_border
bin_width

For instance, the histogram of grey-valued integer image data ranging from O to 255 and
stored in a histogram of 256 cells would show the following values. Ibin_median is O (the
lowest value of the image data), hbin_median is 255 (the highest value of the image data)
and bin_width is 1 (each cell is exactly 1 pixel value wide).

Consider the histogram of floating-point data ranging from 0.0 to 1.0 and stored in 100 bins.
The Ibin_median is 0.0, the hbin_median 1.0 and the bin_width 1.0/99 = 0.0101. The center
pixel value of bin #62 would be 0.6262 (= 0.0 + 62 - 0.0101).

Thehi st o_dat a() function calculates the histograms of all image types in Image (except
for complex images). This function is capable of calculating the histogram of sub-ranges of
the image data. When such a histogram is calculated, the above formulas remain valid but
after the bin has been calculated, it must be checked if it is within a valid range (0 .. number
of bins).

Programming with histogram objects

Several functions are available to create, destroy and view the histogram objects. They are :

create_histogram creates an empty histogram object.
destroy_histogram destroys a histogram object.
histo_data gets the histogram data from an image.
dump_histogram show the histogram data in ASCII.

show_histogram_info show textual information of a histogram.

When using the histogram objects, you may need some additional functions for inspecting
and manipulating the histogram objects:

9-42 Programming with Image

Image 2.1 Library — User manual

histogram_comment attaches a comment string to a histogram object.
histogram_by name getsthe pointer to a histogram objects using its name.

is_histogram checksif apointer isavalid, existing histogram object and
returns true or false.

histogram_ok checksif apointer isavalid, existing histogram object and pops
an aert box if thisis not.

list_histograms lists all existing histogram objects

copy_histogram copies the data of one histogram to another

When it is necessary to copy the datain the histogram object to an image or var_object or
vice versa, these functions can be used.
histogram_to_image copies the histogram data to an image.
image _to_histogram copies image data to an histogram object.
histogram_to_var_object copiesthe histogram datato avar_object.
More detailed information on the functions listed above can be found in the reference pages
for these functions.

Programming with Image 9-43

Chapter 10 Analysis of Images and Objects
(AlO)

This chapter describes the library for Analysis of Images and
Objects (AlO). AlO isan infrastructure for interactive and
automatic object measurements. It provides mechanisms for object
selection, and for storage of objectsin image silos. The general
concept is discussed and examples of the use of AlO are presented.

Do not read this chapter:
» If you are abeginning user.
 If you have never programmed in C.

Y ou should read this chapter:

» If you are an experienced user with abasic knowledge of C
programming.

* If you want to perform object measurements.

Image 2.1 Library — User manual

| ntr oduction

AlO isaframework for the analysis of objectsinimages. It is especially suitable for
performing measurements on (microscopical) objects. Objects are manipulated either on the
basis of the measurements or by pointing at their images. The object data vector and the
object image can be stored in afile and in an image silo respectively, for later retrieval. The
combination of A1O and Image is aflexible environment for image analysis, and application
devel opment.

General Conceptsin Microscopical |mage Analysis

Most microscopical applications measure certain features of objects in images, and/or classify
objectsinto different categories and therefore adhere to this general scheme:

Acquisition -> Restoration -> Segmentation -> I dentification ->
Feature extraction -> (Selection -> Classification)

In anumber of steps, depending on the nature of the problem at hand, images are segmented
into a binary image with object pixels set to’1’ and background pixels set to ’0’. Component
labeling, that is assigning an identifying label to a set of connected pixels belonging to the
same object, resultsin an identified or labeled image. The labeled image is either used to
delineate shape features, or it is used as a mask while measuring grey value features of objects
in the original image. Because the same scheme is generally used in many different
applications, a flexible and generalized framework can improve application devel opment
substantially.

Strikingly enough, in many image processing systems, all measurements are applied to all the
objectsin the image and a specification of al requested features needs to be given prior to the
analysis. The measurements of all objects are then carried out in a single pass through the
image, and results are printed on the terminal or dumped to afile for further evaluation.

With this approach, it is cumbersome to access and use the measurement results in a program
to select or further manipulate objects. In addition, the single pass approach has a major
disadvantage when employing hierarchical classifiers, especially in time critical applications.
When the time needed for the measurement is a point of concern, it is better to apply a
hierarchical classifier which (depending on the state of a decision tree) sequentially decides
what feature of an object to measure next. We therefore decided to support the measurement
of individual objects rather than the measurement of all the objectsin the image.

10-2 Analysis of Images and Objects (AlO)

Image 2.1 Library — User manual

In addition to the single object measurement, the manner in which objects are stored is
important for microscopical image analysis applications. For instance, in automatic screening
for medical applications, requests to store images of measured or classified objects for later
ingpection by amedical expert are common. When building a classifier, stored object images
may be used to construct test and learn sets. How the images are stored plays arolein the
access times for these operations.

Another important consideration in microscopical image analysisisthe style of user
interaction. In many applications the capacity to interactively manipulate the objects, addsto
the usability and functionality of the application. It may be useful, for example, to point at an
object of special interest to initiate a measurement, or to correct for mis-classifications. We
therefore support both automatic and interactive microscopical image analysis.

Based on the preceding discussion, the AlO framework is designed to support microscopical
image analysis with a focus on objects, and attention to the storage method for images of
individual objects, and the human interface.

Components of the Al1O framework

The AlO package is completely based on linked list manipulations and computations on
individual objects. The framework consists of various parts, which we now consider briefly.

L abeling obj ects

During the image labeling process, a data structure is assigned to each image object to store
information and measurement results as they become available. To allow multiple objectsin
an image to be viewed as a unit, and to support image measurement, alinked list of objectsis
built with information regarding each object’ s dimensions and positions.

Measuring individual objects

For feature extraction, each object is passed to a measuring routine which calculates the
specified features, storing the result in afeature/value pair connected to the object data
structure. Measurements are carried out in sub-images, processing only pixelsin the rectangle
enclosing the object. The time needed for measurement is therefore decreased substantially.
Further, because the features need not be specified simultaneously, a pre-selection based on
simple operations can be made for object classification. The fact that features to be measured
need not be specified simultaneously is highly useful for purposes of object classification. A

Analysis of Images and Objects (AlO) 10-3

Image 2.1 Library — User manual

pre-sel ection can be made based on fast measurements. The time-consuming measurements
need only be applied to those objects which survived, lowering the classification costs.

Object manipulation

To manipulate the objects, basic utility functions are provided. They are removing an object
from an image, copying an object from one image into a randomly positioned window of
another. As objects are referred to through their associated data structure, measured results
can easily be accessed. A feature can be measured on every object by applying the
measurement to each of the objectsin thelist. A selection criteriamay be applied while
traversing the list.

| mage Silo

An image-silo package enables objects or group of objects to be stored in image silos, for
later retrieval and possibly further analysis. Furthermore, for presentation purposes, routines
are provided for laying out groups of objectsin the form of composite images.

Direct manipulation

Event driven interaction based on mouse and keyboard input is supported in AIOL. AIO
enables simple interactive selection of objects by scanning the object list and returning the
object at a given location. Direct manipulation and user interfaces for image object

mani pulation can be written based on it.

An Al O sample session

In anumber of examples some of the concepts of Al1O are demonstrated. Although thisthe
code fragments in this section can be used in a stand-alone program without image-display, it
is advised to execute this session in the SCIL_Image package as this shows the result of each
statement directly on the screen.

First an image must be obtained. In our example afileisread from disk, thresholded, and
inverted so that object pixels are set and background pixels are cleared :

readfile(cermet, A, O, 0); Obtain an image with objects
threshold(A, B, 128); Segment the image

INot present in the stand-alone Image Library (see "Interactive measurement” on page 10-6).

10-4 Analysis of Images and Objects (AlO)

Image 2.1 Library — User manual

invert_im(B, B); Object pixels set, background zero

Given a segmented image with objects and background the image must be labeled, returning a
list with objects. In order to use AlO, data structures must be defined, using the standard C
file inclusion mechanism :

#include"im_aio.h" AlQO data structure definitions
LIST *o_list, *object; Two list variables
o list =list_label(B, C, 8, 0); Label the image, return alist

Since the labeling process creates a list with initial information, including the area of the
objects, objects too small or too big to be of interest can be eliminated immediately. In our
example, objects touching the edge of image C are removed as well. Removal from thelistis
sufficient to never reference the objects again, but for clarity, we choose to erase the objects
from the image as well :
FORALL (object, o _list)
if (edge_object(C, abject) || ar ea(object)<20 || ar ea(obj ect)>400) {
hide_object(C, object); Erase object from image
rm_object(object); Mark object for removal from list

o list :}update(o list); Update the object list
Next the optical density of the remaining objects is measured :

FORALL (object, o _list) object_dens meas(A, C, object, OD);
To store the grey value image of the objectsin image A with amean optical density lower
than 50, an image silo must be created :

long silo;
silo = create silo("test.silo");
int object_number = 0;

FORALL (object, o _list)
if(od_mean(object) <50)

object_rect_to _silo(silo, object_number++, A, object);

close silo(silo);

Analysis of Images and Objects (AlO) 10-5

Image 2.1 Library — User manual

In the next example we show how objects stored in an image silo can be positioned in an
image:

silo = open_silo("test.silo");

int num;
num = get_free entry(silo); Get number of objectsin silo

for (object_number=0;0bject_number<num;object_number++)
part_from_silo(silo, object_ number, D, 40, 40);

Finally, we show how an image silo can be presented in the form of a composite image. Note
that, although not shown here, individual objects can be added to a composite image as well.

long comp;

clear_im(D);

comp = start_comp(D);
silo_to_comp(silo, comp, 1, 100);

Note that we have shown the examples as C-code fragments. In the SCIL_Image package
these fragments can be entered in the interpreter literally. When using Image without SCIL,
these fragments will have to be part of a complete C-program. AlO is not meant as a complete
measurement system. It simply provides useful primitives which can be used in C programs.

It should also be noted that more compl ete documentation of the individual functions can be
found in the on-line manuals.

| nter active measur ement

The point and click measurement of objectsin AlO is (of course) only possible when a user-
interface is present. In the SCIL_Image package, aroutine is supplied that returns the object
that the mouse is pointing at, thepoi nt _obj ect () function.

The following example shows how the results of the optical density measurement can be
obtained by pointing with the mouse at objectsin image C. It is assumed the first part of the
previous sample session (at least uptothel i st _| abel ()) command has been executed.:

while(object = point_object(c, o list))
printf(" sum = %f mean = %f stdev=%f\n",
od_sum(object), od_mean(object), od_stdev(object));

10-6 Analysis of Images and Objects (AlO)

Image 2.1 Library — User manual

| mplementation of the interaction part

The Image Library is designed to be independent of a user-interface, as a consequence the
point_object() is not a default part of the A1O package. It is however a standard function of
the SCIL_Image program. To allow for interactive measurement in other user-interfaces, the
implementation of thisfunction in the SCIL_Image package is supplied as an example. Please
note that the point_im() and MousePress() functions are not a part of Image library either.
Their functionality is discussed further down.

The point_object() function

The function isfairly straightforward, in a continuous loop the location of mouse-clicks are
received from thepoi nt _i m() function (#1) until akey is pressed (¢ unequal to zero). It
Is then checked if the mouse-click isindeed a mouse-down click in the correct image (#2).
The pixel value from that location in the imageisretrieved (#3) andf i nd_obj ect ()

trangd ates this into the handle to the corresponding object in the object-list (#4). Thishandleis
returned to the caller (#5) which can use it to measure the object using other A1O-functions.

#i ncl ude "inage. h"
#i nclude "imerror.h"
#i nclude "im.aio.h"

LI ST *poi nt _object (I MAGE *im LIST *|ink)

{
I M_EVENT but ;
i nt c, X, V;
| MAGE *ip;
Pl XEL pi x;
LI ST *| p;
LABEL_2D | MAGE *t np;
i m begi n_func("point_object");
while(1){
if(c =point_im &p, &, &, &ut)){ [* #1 */
i mend func("point_object");
return(NULL);
}
if(im!=1ip || !MusePress(but)) [* #2 *]
conti nue;
tnp = (LABEL_2D | MACE *) I nmageln(iny;
pi x = *(Label 2dl nageDat a(tnmp) + [* #3 */
(long) y * Label 2dl nrageW dt h(tnp) + X);
if (Ip=find_object(link, x, vy, pix)){ [* #4 *]
i mend func("point_object");
return(Ip); /* #5 */
}
}
}

When called the poi nt _i n() function, waits until a mouse-event in an image occurred or a
key on the keyboard was pressed. Its prototype:
int point_in{IMAGE **ip, int *x, int *y, |MEVENT *but);

Analysis of Images and Objects (AlO) 10-7

Image 2.1 Library — User manual

When it returns on a key-press of the key-board, it returns the character value of that key (the
valuesof i p, x,y and but are not valid then). When a mouse-event happens in an image,
the image, the location of the pointer in image-coordinates, and the mouse status/event are
returned through thei p, X,y and but parameters.

Thefunction MousePr ess() testsif the event is a mouse-down event, its prototype:
int MousePress(I M EVENT but);

It returns which of the mouse-buttons was pressed, testing for a non-zero value means that
pressing any mouse-button is accepted as valid input.

10-8 Analysis of Images and Objects (AlO)

Chapter 11 Bitmapped binary images

In this chapter we present methods for fast morphological binary
image processing using a bitmapped representation of binary
images instead of representing binary images as bitplanes (inserted
in grey value images). The bitmap data structure is a very efficient
representation, both in terms of memory requirements asin terms
of algorithmic efficiency as the CPU operates on 32 pixelsin
paralel. The algorithms described in this chapter are capable of
performing the basic morphological image transforms using
structuring elements of arbitrary size and shape. In order to speed
up morphological operations with respect to commonly used, large,
convex structuring elements, the logarithmic decomposition of
structuring elementsis used.

Do not read this chapter:
* If you are a beginning user who just wants to use the binary or
morphology operations.

Y ou should read the chapter:

* If you areinterested in background information on
implementational aspects of mathematical morphol ogy
 If you want to know more about bitmapped binary images.

» If you are developing binary image operations.

Image 2.1 Library — User manual

| ntr oduction

Mathematical morphology as introduced by Serra[SERRA] is nowadays an important
component in almost any software package for image processing. For an introduction to
mathematical morphology we refer to tutorials [MARAGOS][HARALICK]. Morphological
image transforms are used in many divers application areas in image processing and computer
vision. Most morphological transforms are constructed by elementary morphol ogical
operations such as erosion, dilation and hit-or-miss transform. The speedup of the elementary
operations is therefore important in many applications.

Asatypical example consider the program to analyze drawings of electronic schemes, called
'schema’ located in the demo directory. In this program more than 50 times an elementary
morphological operation is used. Other examples show the same pattern.

In Image we provide a new algorithmic implementation of the basic binary morphological
operations on general purpose sequential computers which are between 10 to 50 faster than
exigting fast implementations ([VERWER], [GROEN]).

In contrast to the previous fast implementations, the provided algorithms do admit the use of
structuring elements of arbitrary shape (within a 65x65 neighborhood). Thisis based on our
belief that implementations of the basic morphological transforms should be valid for
arbitrary structuring elements without strong performance degradation, as non-circular
structuring elements prove to be very efficient in solving specific problems.

The speed of common implementations of morphological image transform in most cases, if
not all, islinear proportional to the number of pixelsin the structuring element. We use
logarithmic decomposition of structuring elements to efficiently process large, convex
structuring elements. Compared with the standard linear decomposition logarithmic
decomposition results in much faster algorithms.

Erosions, Dilations and L ogarithmic Decomposition

The basic image operations defined in mathematical morphology are the erosion and dilation.
Let A[k,I] beabinary image (for 0<=k<=K, O<=I<=L). By definition we say that a pixel (k,I)
isan object pixel if A[k,I]=1. If A[k,I]=0 the pixel (k,|) belongs to the background. A
structuring element is also a binary image (most often a small one). The erosion of the image
A with structuring element S resulting in the image B is the neighborhood operation defined
as.

11-2 Bitmapped binary images

Image 2.1 Library — User manual

B[k, = ANDS]j j]=1 Alk-i,I-] (1)

i.e. we take the logical AND of al the pixelsin the neighborhood of (k,l) as defined by the
structuring element S. The above definition states that a pixel (k,1) isan object pixel in the
erosion result only if al pixelsin the neighborhood defined by the structuring element S
centered at (k,l) are object pixelsin the original image A.

The dilation of the image A with structuring element Sis defined as:

B[k.] = ORgi j]=1 A[K-i,l-j])

i.e. instead of AND-ing all pixels, asisdonein the erosion, we take the logical OR of the
pixel values.

The computational complexity of the erosion and dilation is linear proportional to the number
of pixelsin the structuring element. For a square structuring element of NxN pixels the time
complexity thusis quadratic in N. For large N the decrease in speed therefore is dramatic.
Simple but often used structuring elements however can be decomposed into smaller ones,
and so the time complexity can be reduced. In this section we will only use the 4-connected
neighborhood. This structuring element will be denoted as D.

Toillustrate 3 different approaches to decompose convex structuring elements, consider the
decompositions of 8D. The well-known and often used, linear decomposition gives (the total
number of pixelsin the structuring el ementsis 40):

e M [[[He 04 [Oe 01 [0e OO0 [0 [de J
8D =Fee[J0FeeJ0F e J0ee[D@ee[J0e 0300 *[]
(e] [0) [0 00 [He OO0 [0e 07 [0e OO0 [e 00 [0]

Thusinstead of eroding/dilating with alarge (17x17) structuring element we can erode/dilate
8 times using a 3x3 structuring element. The linear decomposition using the extreme set E(D)
gives (total number of pixels considered is 33):

(2 M e 0 (e 0 [He 00 [P 00 [P OO [P 00 [0 0
8D =[$ e [0 O[O0 OO O[04 OO 3 O[O0 [O[O0 [$ e[
(e O [Fe M [P 00 [He OO [07 (e OO [He 00 [0

The logarithmic decomposition finally gives (total number of pixels considered is 17):

pooce 000
AEEENEEN
%D 0 UDooooooo
0 M [0+ ool Uhooooomo
8D =[3 ¢ [J0 3 O[]0 3 OO0 [3 DOOOOOR[]
(0 M [0 gmm% 0000000
e O hooooooo
00000000
EDDDD- AR

Bitmapped binary images 11-3

Image 2.1 Library — User manual

It can be proven that logarithmic decomposition can be used for all convex structuring
elements. For the 4-connected and 8-connected neighborhoods, logarithmic decomposition is
automatically taken care of in Image.

Algorithmic Implementation

Data Representation

In most modern general purpose computers the’Von Neuman' bottle-neck still exists. The
efficiency of low level image processing operations is bound by the speed at which the image
data can be transported between the memory and the CPU.

Traditionally in image processing binary images are stored as one bitplane in a NxM pixel
mapped grey value image. In a pixel mapped image the grey value of each pixel isstored in
one computer addressable memory word. A binary image, needs only one bit per pixel to
indicate whether that pixel is part of the object or whether it is a background pixel. To access
the value of one bit in a bitplane the CPU has to fetch all the bits of one pixel (typically 8 or
16). All irrelevant bits (7 out of 8, or 15 out of 16) have to be masked out. Using a 32 bit
computer just to fetch 1 relevant bit at atimeisa’bit’ overdone. A second disadvantage is that
even if only 1 binary image is needed still the memory for 8 or 16 bitplanes has to be
allocated.

In Image a bit mapped representation of binary imagesis used. Each 32 bit addressable word
contains the bit values of 32 horizontally consecutive pixels. A 32-bit computer is optimally
used in the sense that all 32 bits fetched in one memory cycle are relevant. Not only 32 pixels
in parallel are transported from and to memory, but also the operations are done on 32 pixels
in parallel. Furthermore there is no need to allocate more memory than is actually needed to
represent the binary image. Figure 11-1 visualizes the differences between a pixel mapped
and a bit mapped binary image.

11-4 Bitmapped binary images

Image 2.1 Library — User manual

BINARY IMAGE

L B

y
T g)
\ word containing
—>X \ 32 binary pixels

byte containing
one binary pixel

Figure 11-1 Pixelmapped versus Bitmapped Images

All the 32-pixel words are stored in alinear array in the computer memory. To facilitate the
development of efficient algorithms we have chosen not only to store the pixelsin the image
itself, but also a border around the actual image.

Figure 11-2 shows the linear array (depicted in atwo-dimensional layout). The numbersin the
words are the indices in the linear array. The border words depicted at the right of the image
also serve as 32-pixel border at the left of the actual image (word 17 is the right neighbor of
word 16 and the left neighbor of word 18). The word with index -1 is needed to store the
north-west neighboring pixel of the left most pixel in word 9.

Lz 1 [[s]
16 [[17]
[26 |
1 1]
2302 2303
LI TTTTTTT]
left bit right bit

Figure 11-2 Bitmapped |mage Representation

Only asmall part of a binary image of 256x256 pixelsis shown. The shaded words
are not part of the actual image but define a border around the image. The word with
index 19 is magnified to show the 32 pixels within one word

Any image representation has to deal with the fact that structuring elements positioned at the

edge only partly overlap with the image. In the algorithms, pixels not within the actual image
are set to either 1 or O depending on the operation.

Bitmapped binary images 11-5

Image 2.1 Library — User manual

Note however that the border around the actual image which is also stored in memory makes
"border checking" not necessary for structuring element pixels with coordinates (k,I)
satisfying: |k| <= 32 and |I| <= 1. In the algorithms described in this chapter we assume that [K|
<= 32 necessitating border checks only for those pixelsin a structuring element for which |I| >
1. This choiceis no essential restriction due to the chosen border and can be easily lifted at
the expense of extra border checks.

Although structuring elements are sets and could have been represented with bitmaps, we
have chosen another representation which can be more efficiently dealt with in the algorithms
described in the next subsection. Figure 11-3 depicts the data structure used to represent
arbitrary structuring elements. The "indicator" array F() is used to represent a hit-or-miss
mask (S,T) in one structure. By definition a pixel with index i iselement of Sif F(i)>0 and
element of T if F(i)<0. Theith element of a hit-or-miss mask is described with two
coordinates (X(i),Y(i)) and itsindicator F(i).

STRUCTURING ELEMENT
DESCRIPTOR

/ NOELS=5

X(i) ——*(o 10 |- o)

Y (i) ——»(o o|l1]o -1)
! M(l Al -1)

a b)

Figure 11-3 Hit-or-miss Mask Representation
In a. an example of asimple hit-or-mask (S,T) is shown with pixelsin S denoted as
"+1" and those in T as"-1". In b. the corresponding mask representation is shown.

| mplementation of the Pixelwise Logical Operations

The pixelwise logical operations of one ore two binary input images are the Boolean
equivalents of the union, intersection and complementation of sets. Using bitmapped binary
images these operations can be performed very fast, as 32 pixels are operated upon in parallel.

Algorithm 1 shows the pseudo code to perform the logical AND of two binary images (we
use the C-syntax to denote AND with’&’). Replacing’&’ with | (denoting the bitwise OR) in
algorithm 1 gives the set union.

Note that not only the image itself is processed, but aso the border. This small amount of
extrawork makes nested for-loops superfluous.

ALGORITHM 1 L ogical Operations
Shown is the pseudo-code to perform the logical AND of two
images (represented in bitmaps B and C) resulting in bitmap D.

11-6 Bitmapped binary images

Image 2.1 Library — User manual

FOR i=0 TO MaxIndex DO
DIi] = B[i] & C[i]
ENDDO

| mplementation of the M or phological Operations

Rather than operating on one central pixel in combination with neighboring pixels, the bitmap
organization of binary images allows us to operate on 32 central and 32 neighbor pixelsin
paralel. Thisis simplein case we operate on the central pixel and the pixel above, or below
because if A(i) isthe word containing 32 central pixels, A(i-LINEOFFSET) and
A(I+LINEOFFSET) contain the 32 pixels just above, respectively just below the central
pixels. However if we operate on a central pixel with the neighborsto the left, or to the right
It gets more complicated.

Again assume that A(i) contains the 32 central pixels then the pixelsjust to the left of these
central pixels are not in one word in the bitmap. The left neighbor of the leftmost pixel in A(i)
isintheword A(i-1). In order to represent all the 32 left neighboring pixels we introduce the
so called BARREL SHIFT function.

The function BARRELSHIFT(A i ,k,|,border) is given in pseudo code in algorithm 2. We use
the C-notation (<<, >>) to denote shifting of the bitsin an integer.

ALGORITHM 2 Barrelshift Function
Pseudo code for the Barrelshift function, where A is the bitmap,
I isthe bitmap index of the central pixels, (k,l) isthe pixel
position relative to these central pixels and border isthe word
returned when pixels outside the image are accessed.

BARRELSHIFT(A,I,Kk, I, border)

DO
j =i+1* LineOffset
IF (0<j< Maxindex)
Il The pixels are within the bitmap
IF (k=0)
/I No Barrelshifting needed
RETURN (A[j])
ELSE IF (k<0)
I/l we are looking for pixels to the left
/I of the central pixel
RETURN ((A[j] >>abs(k)) | (A[j-1] << (32+k))
ELSE
I/l we are looking for pixels to the right
/I of the central pixel
RETURN ((A[j] <<k)|(A[j+1] >> (32-k))
ELSE

I the pixels are outside the bitmap

Bitmapped binary images 11-7

Image 2.1 Library — User manual

RETURN (border)
ENDDO

The pseudo code for the erosion using an arbitrary structuring element is given in algorithm 3.
In the algorithms the border effects (when the structuring element is not entirely within the
image) are not accounted for. Replacing the logical AND (&) in algorithm 3 with alogical
OR (|) resultsin an algorithm for the dilation.

ALGORITHM 3 Erosion
The pseudo code for the erosion of an image in bitmap A
resulting in an image in bitmap B. The structuring element is
encoded in the arrays X,Y, and F.

EROSION(A,B, X,Y,F)
DO
i =LineOffset // index the first word in the actual image
FORy=0TO L-1DO /I L is the size of the image in y-direction
FOR x=0TO n/32 DO
result = BITWORDALL // all bits setto 1
FOR j=0TO Noels-1 DO
IF F[j]>0
result = result & BARRELSHIFT(A,i, X[j1,Y[j].1)
ENDDO
ENDDO
B[i] = result
=i+l // index the next word
ENDDO
=i+l I/ skip over the words in the border
ENDDO

Evaluation

In this section the performance of the proposed algorithms will be compared with the
performance of existing implementations. The new algorithms will be referred to as the
"BITMAP"-agorithms. They will be compared with two software implementations and with
a Special purpose Image Processing machine (KONTRON) which will be referred to as
"SIP".

All our BITMAP-agorithms are coded in portable C. Tests were performed using a SUN
SPARC station 1, except for the results obtained with the SIP. All the timing results are
obtained by averaging the results over at least 20 experiments.

Because some implementations of the morphological transforms are data dependent, we have
chosen a set of three test images. These are depicted in Figure 11-4.

11-8 Bitmapped binary images

Image 2.1 Library — User manual

Figure 11-4. Test Images

a) Trui (256x256) (top left)

b) Cermet (256x256) (top right)

¢) Musicscore (1024x244) (bottom)

Pixelwise L ogical Operations

The pixelwise logical operations on bitmapped images are much faster than the equivalents
working on pixel mapped images. Thisis due to the fact that instead of operating on one pixel
value at the time, we operate on 32 pixelsin parallel. There is aso no need to isolate the pixel
bit from the grey pixel value fetched from memory.

Table 11-1 shows the experimental results for a 256x256 binary image. The agorithm for the
pixel mapped images is denoted as "PIXELMAP'. The table also shows the results for the
SIP machine.

BITMAP PIXELMAP SIP

Operation (ms) (ms) (ms)
AND 2.0 87.3 93.0
OR 1.7 87.3 93.0
EXOR 17 115.0 91.0
INVERT 13 74.0 N.A.
COPY 1.3 74.3 46.0

Table 11-1 Pixelwise Logical Operations
Timing results for the AND, OR, EXOR, INVERT and COPY operations

Bitmapped binary images 11-9

Image 2.1 Library — User manual

Mor phological Transforms

The bitmapped implementations of the erosion are compared with two existing software
implementations and with the special purpose image processing machine (SIP). The most
simple method to implement erosions and dilations using structuring elements of size 3x3is
to use look-up tables. A table with 512 entries holds the results (for erosion, dilation, etc.) for
all possible configurations in a 3x3 neighborhood. Transforming the image thus boils down to
one table-look action per image pixel. This method will be denoted as the Straight Forward
Implementation (SFI).

We will also compare our algorithms with the queue based algorithms developed by Verwer
and VanVliet ((VERWER]). These algorithms will be referred to as the VVV-agorithms.
These algorithms process only those pixelsin the image which need to be processed. The first
iteration of erosions and dilations using the VVV algorithm is slow because the queue
containing the pixels to be processed needs to be build by scanning the entire image.
Subsequent iterations then are much faster (proportiona with the number of contour pixels).

Number of | BITMAP \A'AY, SFI SIP
Iterations (ms) (ms (ms) (ms)
ab| c al| b c a b ab C
1 6| 23| 175| 160| 639| 283 283 153 1216
2 11| 43| 187| 171| 723| 583 516 273 2416
4 15| 62| 206| 200| 851| 1150| 1133 491 4900
8 19| 82| 237| 255| 945| 2300| 2366 858 9850
16 24| 100| 269| 302| 1089| 4716| 4800| 1371| 20066
32 28| 121| 288| 305| 1303| 9600| 7000| 2155| 41616
64 36| 153 | 291| 305| 1414 | 9600| 6983| 3643| 86016
128 44| 187| 291 | 305| 1423 | 9750| 7050| 7178| 151066

Table 11-2: 4-Connected Dilation
Shown are the execution times (in ms) for the 4-connected dilation for the 3 different
original images (denoted as a,b and ¢, seeFigure 11-4).

Table 11-2 shows the experimental results for the 4-connected dilation for several values of n,
where n is the number of iterations For the BITMAP agorithms only the results using the
logarithmic decomposition are shown.

Discussion and Conclusions

In this chapter we presented new algorithms for binary morphological transforms based on a
bitmapped representation of binary images and the use of logarithmic decomposition of

11-10 Bitmapped binary images

Image 2.1 Library — User manual

structuring elements. The new algorithms prove to be on average one order of magnitude
faster than existing fast implementations.

The results presented in this chapter indicate that bitmapped representation of binary images
iswell-suited for morphological image processing, asit is very efficient both in terms of
memory requirements and in terms of algorithmic efficiency. Instead of the necessity to
alocate at least 8 binary images (when using the pixel mapped representation) only the bitsin
one binary image are stored. When working with very large images like those acquired with
page scanners, the reduced memory requirement is an important feature.

In order to deal with large structuring elements (obtained from auto-dilation of smaller
structuring elements) logarithmic decomposition proves to be a powerful tool.

Literature

[HARALICK] R.M. Haradlick, S.R. Sternberg, X. Zhuang, "Image Analysis using
Mathematical Morphology", IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAM -9, 532-550, July 1987

[MARAGOS] P. Maragos, "Tutorial on Advancesin Morphological Image Processing
and Analysis', Optical Engineering, 26, 7, 623-632, July 1987

[VERWER] B.JH.Verwer, L.J. VanVliet, "A Contour Processing Method for Fast
Binary Neighborhood Operations’, Pattern Recognition Letters, 7, 27-
36, 1988

[GROEN] F.C.A. Groen, N.J. Foster, "A Fast Algorithm for Cellular Logic
Operations on Sequential Machines', Pattern Recognition L etters, 1988

[SERRA] J. Serra, "Image Analysis and Mathematical Morphology”, Academic
Press, 1982

Bitmapped binary images 11-11

Chapter 12 New image types

This chapter describes how a user can create subtypes of existing
image types and how new image types can be implemented in
Image as if they were standard types.

Read this chapter :
 If you want to implement a new image type.
 If you want to know more about the image infrastructure.

Do not read this chapter :
 If you are not an experienced C-programmer.
* If you have not read "Programming with Image'.

Image 2.1 Library — User manual

| ntr oduction

The infrastructure of Image supports a strong separation of the image types for reasons of type
safety and extensibility. To enable the definition of new image types without having to
change the infrastructure, requires that no knowledge of image type details are incorporated in
the infrastructure. This means that all image type specific actions must be performed by
functions tailored for the image type. Calling the correct function for each image typeis
accomplished by means of function overloading.

When adding new image types to Image we distinguish two situations;

1) A new image type. The image type has a data representation different than that of
existing image types. In this case the steps outlined in "Implementing a new image
type" must be taken.

2) A subtype of an existing image type. The image type has the same data representation
as an already implemented image type but the datais to be interpreted according to the
application specific semantics. Therefore it will have a specific set of operations
associated with it. In this case the new image type can make use of functions of the
already implemented image types thereby reducing the number of new functions to be
written. The image types that make use of functions from another image type are
referred to as subtypes.

| mplementing a new image type

Implementing a new image type in Image means that you must supply a number of required
servicefunctions for the new image type, namely:

create image allocate the data space and fill in the type specific data
structures.

destroy_image free the data space and associated structures.

copy_part_image copy arectangular sub-image to another image.

copy_masked part copy a part masked by a Boolean mask to another image.

convert_to_common put the image datain a COMMON_LINE.

convert_from_common read image data from the COMMON_LINE.

pix_value str put single pixel datain astring

get_image window_info put info on image in astring for usein atitle bar

part_image display display arectangular part of the image

12-2 New image types

Image 2.1 Library — User manual

In this section we will explain the process of adding a new image type by implementing the
byte 2d image type, atwo dimensional image with 8 bit pixels.

The basic functions for the standard image types: GREY _2D, BINARY _2D and FLOAT_2D

are made availablein the "src_exmp" directory in the standard distribution . These functions

serve as a starting point to develop type specific service functions. In the ‘basic.c’ and
‘basiclow.c’ files in these directories the interface functions for these image types are
gathered. It is important to understand that the interface functions are accessed through the
overloading mechanism. Therefore, sometimes some extra parameters are in the function
argument list.

Please note that the last three functions are only required when implementing a new image
type in the complete SCIL_Image environment. These three functions are needed by the
display-interface of SCIL_Image, the Image library does not need them to support the image
types in stand-alone applications.

Defines and structures

In order for the infrastructure to recognize the new image tytpepa@ i dent and a

t ype_spec must be defined. Theype_spec is a humber that is unique for the data
representation of the image (it must be an unique bit in a 32 bit word compared with the other
image types). Theype i dent must be a unique number that identifies the image type. In

the header file 'image.h' the type_specs and type_idents of the standard image types are listed.
For the byte 2d image type we choose/pe spec of 1024 (10th bit set) and a

t ype_i dent of 11. Both of these values are currently unused in the standard set of image

types

A structure with image type specific information must be created. This structure will be
linked to thei n_descri pt andout _descri pt pointers of the MAGE structure. The

first two fields of this structurenust be an nt that contains theype_i dent of the image

type and a pointer to the image d&B¥TE *). The dimensions of the image must also be
stored in this structure. The byte image type does not need any additional information so the
structure is complete. It is advisable to define macros to access the individual fields of the
structure which can be used in the source code.

The defines, the structure and the macros are best put in a file which is named after the image
type, 'BYTE' is already defined in ‘image.h'. In this example we store them in the file
‘byte_2d.h":

#i fndef BYTE 2D H /* necessary to avoid nultiple definitions/
#define BYTE 2D H /* file inclusion */

#define BYTE_2D 11 /* unique val ue */
#define BYTE 2D SPEC 1024L /* unique bit field */

New image types 12-3

Image 2.1 Library — User manual

/* image type specific type descriptor */
typedef struct byte 2d t {

i nt type; /* mandatory field! */
BYTE *dat a; /* mandatory field! */
i nt | enx;
i nt | eny;

} BYTE_2D_| MAGE;

/* Macro’s to allow for access */

#def i ne Byt e2dl mageType(bp) (bp) ->type
#def i ne Byt e2dl mageDat a(bp) (bp) - >dat a
#defi ne Byt e2dl nageW dt h(bp) (bp) - >l enx
#defi ne Byt e2dl mageHei ght (bp) (bp) - >l eny

#endi f /* BYTE_2D H */

The prototypes of al the function for the image-type are kept in a separate include file
"byte_2dp.h". Its contentsislisted in the "Low Levels' paragraph on page 12-15.

Creation and destruction

The first two functions needed for a new image type are the create and destroy functions. The
infrastructure uses these functions to create this type of image and to dynamically adjust the
type of an existing image. Every image processing operation specifies the type and sizes of
the output image. These functions are called by the infrastructure to adjust the image to the
operation’s demands as required.

Thetask of the create-image function is to allocate a type descriptor (the type description
structure), the space needed for the image and to fill in the structure. A pointer to the newly
created type descriptor must be returned on success. When either of the two allocations fail,
the already allocated space (if any) must be freed and a NULL pointer must be returned.
Function overloading requires the function header to have the following form:

type_structure *type create(char *name, int type,
int lenx, int leny, int |lenz);

The create-image function for the byte 2d image type is defined as follows :

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude "i mage. h"
#include "imerror.h"
#include "im.infra.h"
#i ncl ude "inmypinf.h"
#i ncl ude "roi.h"

#i ncl ude "byte_2d. h"
#i ncl ude "byte_2dp. h"

BYTE 2D | MAGE *byte_2d create_i mage(char *nane, int type,
int lenx, int leny, int |enz)

BYTE_2D | MAGE *bp;

i mbegin func("byte 2d create_ i mage");

12-4 New image types

Image 2.1 Library — User manual

if ((bp = New(BYTE 2D | MAGE)) == NULL) {
imreport_error("byte 2d_create_i nage", | E_NOVEM
“couldn’t allocate BYTE 2D inmage");
return NULL;

}

if (lenz 1= 1) {
i mage_out put (I MO_OUTPUT,
"byte_2d _create_inmage: lenz % overruled, set at 1\n", lenz);
lenz = 1;

}

Byt e2dl mageType(bp)

Byt e2dl mageDat a(bp)
si zeof (BYTE)) ;

type;
(BYTE *) calloc(lenx * (long) leny * |enz,

if (! Byte2dl mageData(bp)) {
free(bp);
imreport_error("byte 2d_create_i mage", | E_NOVEM
"byte_2d_create_image unable to allocate image data");
return (NULL);

}
Byt e2dl mageW dt h(bp) = | enx;
Byt e2dl mageHei ght (bp) = | eny;

i mend func("byte_2d_create_i mage");
return (bp);

}
The diagram below shows what the function should create.
pointer BYTE 2D _IMAGE DATA SPACE
*Pp —— > type: BYTE 2D
*data : >
lenx : width
leny : height allocated space,

width * height bytes

The destroy-image function is responsible for freeing the space allocated by the create-image
function. In genera it will free the data space occupied by the image and then the type
description structure. The function has one argument, a pointer to a type descriptor, and no
return value. Its mandatory function header is:

voi d type_destroy(type_descriptor pointer)

The byte 2d destroy_image function: .
voi d byte_2d_destroy_i mage(BYTE 2D | MAGE *bp)

{
i m begi n_func("byte_2d_destroy_i nage");
if (bp) {
i f (Byte2dl mageDat a(bp))
free(Byt e2dl mageDat a(bp)) ;
free(bp);
i mend func("byte 2d destroy_i mage");
return;
}

New image types 12-5

Image 2.1 Library — User manual

Copying a part of theimage

Regions Of Interest (ROI) are handled entirely by the infrastructure. An image processing
operation does not have to perform any special action to process aregion of interest aslong as
itcalspre_op() beforeit startsto process the data. The infrastructure (pre_op())
copies the data from the parent of the ROI into a separate image. The ROI image can then be
processed by the operation. Finally, if the output imageisaso aROI,post _op() copiesthe
data from that ROI image back into its parent.

For copying the image data from the parent to the ROI and back to the parent the functions
copy_part _image() andcopy_masked part () areused. Thefirst onefor
rectangular ROIs and the latter for arbitrarily shaped ROIs. The infrastructure uses the create
and destroy functions to allocate the necessary data space and then the copy functions to put
the datain.

Thecopy_part i mage() function issupplied with the position of the rectangle, the sizes
and the destination position which are all already checked for validity on ahigher level. As
the function is also called from other functions, it must include callsto pr e_op() to check
and adjust the images it receives. The input image must be COMPAREd with itself and the
output image must be ADJUSTed to match the input image. As the output image was
ADJUSTed with pre_op() , it must also be givento post _op() The function must return
OK (1) if it was successful and NOT_OK (0) otherwise. Its function heading and the callsto
pre_op() andpost _op() are:

int type copy part_inage(l MMGE *in, | NMACE *out,

int sx, int sy, int sz

int wdth, int height, int depth;
int dx, int dy, int dz;

if(!pre_op(in, in, GOMPARE, type_spec, |mageTypeldent(in)) ||
I'pre_op(out, out, ADJUST, |nageTypeSpec(out),
| mageTypel dent (in)))
return(NOIT_K);

/* the actual copying */

return(post_op(out));

}

For the byte 2d image type the implementation of the routine uses two lower level routines

(I _byte read part _image() andl _byte wite part _inmage() see"Low
Levels' on page 12-15) that copy the image data to and from an newly allocated piece of
memory. Although thisis not obligatory, these lower level routines can be useful for other
routines that also might want to copy a part of an image (these low-levels are listed at the end
of this section).

int byte _2d _copy_part _image(l MACE *in, | MAGE *out,
int sx, int sy, int sz,

12-6 New image types

Image 2.1 Library — User manual

int width, int height, int depth,
int dx, int dy, int dz)

{
BYTE *ptr;
int status;
i m begi n_func("byte_2d_copy_part_i mage");
if(!pre_op(in, in, COMPARE, BYTE 2D SPEC , | nageTypeldent(in)) ||
!'pre_op(out, out, ADJUST, |nageTypeSpec(out), | mageTypeldent(in)))
return(imreport_error("byte_2d_copy_part_i nage",
| E_PRE_CP,""));
if (!'(ptr =1 _byte read_part_image(l magel nData(in), sx, sy, sz,
wi dth, height, 1, ImageWdth(in), |mageHeight(in),
I mageDept h(in)))) {
return(imreport_error("byte_2d_copy_part_i nage", | E_NOVEM
"Unable to allocate part inmage buffer"));
}
| _byte wite_part_inmge(l nageCut Data(out), ptr, dx, dy, dz,
wi dt h, height, 1, |ImageWdth(out),
| mgeHei ght (out), | nmageDepth(out));
free(ptr);
if((status = post_op(out)) !'= IE OK)
return(imreport_error("byte_2d _copy_part_i mage", status,""));
i mend_func("byte_2d_copy_part _i mage");
return (1E.OK);
}

Thecopy_nasked part () isresponsiblefor copying arbitrarily shaped Regions Of
Interest from and to the parent. To accomplish this, the function is supplied with two more
parametersthanthecopy _part i nage() function.

The second parameter of the function is a Boolean mask. The bits which are set in the mask
indicate which pixels from the rectangle of the ROI in the parent must be copied to the ROI

image. An extra flagc| ear ’ is added to indicate what to do with the pixels in the rectangle
of the ROI that are not in the Boolean mask. This flag is used &yop() and

post _op() when copying the ROI data from the parent to the ROl image and back to the
parent pre_op() calls the function witlc'l ear ' set (unequal to zero) to ensure that the
pixels in theROI image that are not covered by the Boolean mask are clgaoed. op()

calls the function withc'l ear ' equal to zero to ensure that the pixels inp#rent that are

not covered by the Boolean mask keep their value.

The parameter list and the callspioe_op() must be :

I nt type_copy_nasked part (1 MACE *in, BOOL_NASK *nask, | MACE *out
int sx, int sy, int sz,
int wdth, int height, int depth,
int dx, int dy, int dz, int clear)

if('pre_op(in, in, COWARE type_spec, |nageTypeldent(in)) ||
I'pre_op(out, out, ADJUST, |nageTypeSpec(out),
| mageTypel dent (i n)))
return(NOT_ K);

New image types 12-7

Image 2.1 Library — User manual

/* the actual copying */

return(post_op(out));

}

The byte 2d copy_masked part function:

int byte 2d_copy_masked_part (I MAGE *in, BOOL_MASK *mask, | MAGE *out,
int sx, int sy, int sz, int width, int height, int depth,
int dx, int dy, int dz, int clear)

{
BYTE *ptr;
int status;
i mbegin_func("byte_2d_copy_nasked _part");
i f(!'pre_op(in,in, COWPARE, BYTE 2D SPEC, | nrageTypeldent(in)) ||
Ipre_op(out, OUT, ADIJUST, |mageTypeSpec(out), | nmageTypeldent(in)))
return(imreport_error("byte_2d copy nasked part", IE PRE OP,""));
if (!'(ptr =1 _byte read_masked part (I magel nData(in), mask,
SX, Sy, sz, width, height, 1, InmageWdth(in),
| mageHei ght (i n), I mageDepth(in)))) {
return(imreport_error("byte 2d copy_nasked part", |E_NOVEM
"Unable to allocate part inmage buffer"));
}
| _byte wite_nasked_part(|mageQutData(out), ptr, mask, dx, dy, dz,
wi dt h, hei ght, 1, | mageW dt h(out),
| mageHei ght (out), | mrageDept h(in), cl ear);
free(ptr);
if ((status = post_op(out))<lIE OK)
return(imreport_error("byte_2d copy nasked part", status,""));
i mend func("byte 2d copy_masked part");
return(l E_CK) ;
}

Displaying the image

To view the image on the monitor in the SCIL_Image package afunction must be
implemented to display the image. The function must meet the following requirements:

* It must be ableto display an arbitrary rectangular part of the image (needed for ROI
display). The parameters of the function specify the image, the origin and the sizes of
this rectangle.

* It must write the datato a swap area of the IMAGE structure. This swap area (used
for handling expose events) is allocated by the infrastructure when make imageis
called, apointer toitislocated in thevi ewport structure that is attached to the
| MAGE structure.

12-8 New image types

Image 2.1 Library — User manual

e It must be able to handle any window size both the x and y dimensions may differ
from the image dimensions. When the window is resized, the infrastructure will free
the swap area and allocate a new one to match the size of the window.

e It must cal thefunction PWW i t e() to actually display the rectangle written into the
swap space.
The display routines of the standard image typesin SCIL_Image handle :

* Intensity scaling, which can be set to different modes as specified in the
set _di spl ay_node() function. The scaling mode of an imageis stored in the
node_f | ags field of the VI EWPORT structure. Its value is defined in the ’ dmodes.h’
header file.

» Various monitors, namely 1 bit monochrome, 8 bit color and 24 bit full color monitors
(Macintosh: only 8 bit color is supported).

» Color lookup tables (CLUT) which can be attached to an image. The
set _dither _node() function can be used to improve the quality of the display of
colors on a 8 bit monitor. The dither-mode flag is a'so a member of the
node_f | ags field of the VI EWPORT structure.

The function header of the display function must be :

int type part _image display(im sx,sy,sz, wdth, height, depth)
INAGE *im
i nt SX, Sy, sz, width, height, depth;

The byte 2d example, for sake of simplicity, isonly capable of size-scaling and color lookup
tables and does not consider the automatic display enhancements attached to the image. For a
compl ete description one should refer to the display sources as provided with the standard
distribution. It is also assumed that the standard configuration is an 8bit screen, for 1bit and

24bit monitors again the reader is referred to the source examples.

#i ncl ude <stdi o. h>

#i ncl ude <string. h>
#i ncl ude <stdlib. h>
#i ncl ude "inage. h"

#i nclude "imerror.h"
#i nclude "im.infra.h"
#i ncl ude "portab. h"
#i ncl ude "dnodes. h"
#i ncl ude "disp_imh"
#i ncl ude "byte_2d. h"

#i f def MACI NTOSH

#i ncl ude <Pal ettes. h>

#i ncl ude "Macvi ewport. h"
#i ncl ude "di sp_nmac. h"
#el se

#i ncl ude "xvi ewprt.h"

#i ncl ude "di sp_x. h"
#endi f

New image types 12-9

Image 2.1 Library — User manual

extern CLUT **standard_cl uts;

int byte 2d part_image_display(im sx, sy, sz, width, height, depth)
| MAGE *im
i nt sX, Sy, sz, width, height, depth;

{
i mbegin_func("byte_2d_part_i mage_di spl ay");
if (!'lmageVport(in) {
i mend func("byte_2d _part_image_di spl ay");
return(l E_OK);
}
if (!lmageDisplut(im || 'is_clut(lmageDisplut(im)) /* if no clut */
| mageDi spClut (i) = standard_cl uts[GREY_LUT_T];
| _byte_2d_disp_8bit(im InmageVport(im, sx, sy, w dth, height);
i mbegin_func("byte_2d_part_i mage_di spl ay");
return (OK);
}

/* 8 bit display_routine, only scaling, no dithering */
int | _byte 2d _disp_8bit(im vport, sx, sy, w dth, height)
I MAGE *im

VI EWPORT *vport;

i nt sX, sy, width, height;
{
short di spw, di sph;
unsi gned char *swap;
i nt part_sx, part_sy, part_w dth, part_height;
short Xsi ze, ysize;
short *xtab, *ytab

unsi gned | ong dt ab[256] ;
BYTE_2D | MAGE *ip;

regi ster BYTE *pi X;

regi ster short *Xt;

regi ster BYTE *vdi

regi ster int i

regi ster int i

regi ster BYTE t mp;

i mbegin_ func("l _byte 2d disp_8bit");
/* sizes of the viewport */

di spw = Vi ewport Wdt h(vport);

di sph = Vi ewport Hei ght (vport);

/* get the pointer to the swap area */
swap = (unsigned char *) ViewportSwap(vport);

/* the sizes of the inmage */

ip = (BYTE_2D | MAGE *) | mageQut (i m;
xsi ze = Byte2dl mageW dt h(i p);

ysi ze Byt e2dl mageHei ght (i p);

/* copy the display values fromthe color |ookup table */
for(i=0; i<256; i++)
dtab[i] = Viewportd ut(vport)->table[i];

/* allocate space for the size stretch tables */
xtab = (short *) calloc(dispw, sizeof(short));
ytab = (short *) calloc(di sph, sizeof(short));
if (!(xtab && ytab))

fatal _err("l _byte 2d disp 8bit");

[* fill the size stretch tables */

12-10 New image types

Image 2.1 Library — User manual

ski p_tab(xtab, xsize, dispw;
ski p_tab(ytab, ysize, disph);

/* get the destination position of the pixels to be displayed */
part _sx = ((doubl e)sx/xsize) * dispw,

part_sy = ((doubl e)sy/ysize) * disph;

part_wi dth = ((doubl e)(w dth)/xsize) * dispw + 0.5;
part _hei ght = ((doubl e)(height)/ysize) * disph + 0.5;

/[* point to the first destination position */
swap = swap + part_sy * dispw + part_sx;

for (i = 0; i < part_height; i++) {
pi x (BYTE *) Byt e2dl nmageData(ip) + (xsize * ytab[part_sy+i]);
vdi swap;
swap += di spw,
xt = &xtab[part_sx];
j = part_wi dth;
while(--j >=0) {
tnp = *(pix + (*xt++));
*vdi ++ = (BYTE)dt ab[tnp];

}

free(xtab);

free(ytab);

PMmVite(vport, part_sx, part_sy, part_wi dth, part_height);
i mend func("l_byte_2d_disp_8bit");

return(1E.OK);

I mage type infor mation

In the SCIL_Image environment, the information supplied to the user in the title bar of an
image window and the information in the floating window when the left mouse button is
pressed in an image (auto_point information), is supplied by two small functions. In the title
bar, the name of the image, its type and the sizes of the image are generally displayed. The
auto point information supplies the user with coordinates and the value of the pixels he points
to with the mouse.

The auto point information is stored and returned in a string format. The global string

pi Xx_val _buf isallocated by the infrastructure to store the string. The pointer to

pi Xx_val _buf should be the return value of the function if all is OK. Otherwise NULL
should be returned. The function header must be :

char *type pix value str(IMAGE *image, int x , int y, int z)

The byte 2d auto point information is supplied by this function :
char *byte_2d_pix_value_str(IMAGE *ip, int x, int y, int z)
{

BYTE_2D_| MAGE *bp;

i mbegin_func("byte_2d_pi x_value_str");

if ('range_ok(x, 0, ImageWdth(ip), "X coordinate") ||
Irange_ok(y, 0, InmageHeight(ip), "Y coordinate"))

New image types 12-11

Image 2.1 Library — User manual

imreport_error("byte_2d_pix_value_str",| E_ QUTRA, "");
return (NULL);

bp = (BYTE_2D_| MAGE *) | magel n(ip);
sprintf(pix_val_buf, "93d", *(Byte2dl mageData(bp) +
(long) y * Byte2dl mageWdth(bp) + x));

i mend func(""byte 2d_pix_value_str");

return(pix_val _buf);
}
The information to be displayed in the title bar of the window is supplied by afunction that
prints the type of the image and its sizesin an supplied string. The name of theimage is

inserted by the infrastructure itself. The function header:

voi d type _get i mage w ndow i nfo(| MACE *i mage, char *buf)

The byte 2d version :

void byte 2d _get _image wi ndow info(| MAGE *im char *buf)
{
i mbegin_func("g_2d_get i nage_wi ndow_i nfo");
sprintf(buf, "(byte2D) %*%d ", | mageWdth(im, | mgeHeight(in));

i mend_func("g_2d_get i mage_w ndow_ i nfo");
return;

Conversion to other imagetypes

By implementing two functions per image type, one to put the datain an intermediate data
space and one to retrieve the data from that space the data of any image type can be converted
into any other image type. The intermediate data space is described by a COMMON_LINE
structure and can hold one line of image data (multi-channel is possible). This datais stored
in either long integer format or in double precision floating point. The functions that puts the
datain the COMMON_LINE (conv_t o_common()) determines which dataformat is
chosen, allocates the necessary data space and fillsthe COMMON_LINE structure to describe
the data. The function of the receiving image type (conv_f rom conmon()) must be
prepared to handle both the integer and the floating point data. These functions are repeatedly
called by theconvert () function until al linesin the image are converted one by one. See
"Data conversion (convert)" in chapter "Programming with Image' for more information.

The function conv_to_common should return OK (1) aslong as not all lines have been
written to the COMMON_LINE and NOT_OK (0) when it has written the last line. Its
header:
voi d type _conv_to_common(l MACE *im int n,
COMWON LI NE *comline)

Our byte 2d version :

12-12 New image types

Image 2.1 Library — User manual

int byte_2d_conv_to_conmmon(| MAGE *im int n, COWON_LINE *comline)

BYTE 2D I MAGE *g_im

BYTE *pi x;
| ong *dat a;
regi ster long npi x;

i m begin_func("byte_2d_conv_t o_conmon");

g_im= (BYTE_2D_| MACE *) I mageln(in);
npi x = Byte2dl mageWdth(g_in);

if(n==20){ /[* First time called */
data = (long *) malloc((size_t) npix * sizeof(long));
i f(!data)

return(imreport_error("byte_2d _conv_t o_conmon", | E_NOVEM
"no nmenory allocated for data"));
set _comon_line(comline, COM LON\G, data, 0,0, 0, 0,1,0.0, 255.0);

}

data = comli ne->data;
comline->x = npix;
comline->y = n;
comline->z = 0;

pi x = Byte2dl mageData(g_in;
pi x += com.line->y * npix;

while(--npix >= 0)
*dat at+ = *pix++

if(n == Byte2dl mageHeight(g_inm - 1) {
i mend_func("byte_2d_conv_to_comon");
return(0); /* 0 = stop, this is the last line */

}

i mend_func("byte_2d_conv_t o_conmon");
return(1); /* 1 = nore lines are available */

}

The function conv_from_common should return OK (1) aslong asit can store the datait is

offered. If it can not store the data, it should return NOT_OK (0) which will stop the
conversion. Its header :

int type conv_fromcommon(lI MACGE *im int n,
COMWN LI NE *com | i ne)

For the byte 2d image type this function does the trick :

int byte_2d_conv_fromconmmon(IMAGE *im int n, COMON_LINE *com.|ine)

{
BYTE 2D I MAGE *g_im

doubl e *d_ptr;

| ong *| _ptr;
BYTE *pi x;

i nt type;

regi ster long npi x;

regi ster int chan_of f s;

i m begin_func("byte_2d_conv_from comon");

g_im= (BYTE_2D | MAGE *) | nmageQut (in);

New image types

12-13

Image 2.1 Library — User manual

type = comline->type;
d_ptr com | i ne->dat a;
| _ptr com | i ne->dat a;

chan_offs = com.|ine->nr_channel;

npi x = Byte2dl mageWdth(g_in);
pi x = Byte2dl nageData(g_im);
pi x += com.line->y * npix;

if(comline->z == 0){
if(type == COM LONG){
while(--npix >= 0){
*pi x++ = *| _ptr;
| _ptr += chan_offs;

}

}
else if(type == COM DOUBLE) {
while(--npix >= 0){
*pix++ = *d_ptr;
d_ptr += chan_offs;

}

}
else if(type == COM LONG) {
while(--npix >= 0){
if(*pix < *l_ptr)
*pix = *| _ptr;
pi x++; | _ptr += chan_offs;

}

}
el se if(type == COM DOUBLE){
while(--npix >= 0){
if(*pix < *d_ptr)
*pix = *d_ptr;
pi x++; d_ptr += chan_offs;

}

if(comline->t >0) {
imreport_error("byte_2d _conv_from comon", | E NOT_OK, "");
return(0); /* 0 = stop, can’t handle this */

imend _func("byte _2d_conv_from comon");
return(1); /* 1 = can handle nore data */

The overload table

When all the basic functions have been created, an overload file must be created to tell the
infrastructure which function to call for which basic service. "Overload tables' in the section
"Programming with Image" describes the overloading mechanism and the format of the
overload table. The sourcefile’overload.c’ is generated from the overload tables as described
in that section.

When thefile’overload.c’ iscompiled, thet ype i dent andt ype_ spec of al valid
image types must be known. The header file 'image.h’ isincluded in’overload.c’ to provide

12-14 New image types

Image 2.1 Library — User manual

these definitions for the standard image types. The preprocessor directives’#include’' and
"#define' present in an overload file will be copied to the file’overload.c’. By including the
header file with these definitions in the overload file, the new image types are made known to
the overload mechanism.

For the byte 2d image type construct afile’byte_2d.ovl’ with this contents (note the include
directive#i ncl ude "byte_2d. h"):

#

#

BYTE 2D OVERLOAD TABLE

#

#i ncl ude "byte_2d. h"

#

TABLE byt e2d BYTE_2D BYTE_2D_SPEC 2

#

Basic functions for the byte 2d image type

#
create_i mage byte 2d_create_i nage
destroy_i mage byt e 2d_destroy_i mage
copy_part _i mage byte 2d_copy_part _i nage
copy_nasked_part byt e _2d_copy_nasked_part
conv_t o_conmon byte_2d_conv_t o_conmmon
conv_from comon byte_2d_conv_from comon
pi x_val ue_str byte 2d_pi x_val ue_str
get _i mage_wi ndow_i nfo byt e 2d_get _i nage_wi ndow_i nfo
part _i mage_di spl ay byte 2d_part _i mage_di spl ay

#

Next, the basic functions as described here together with the low-level functions listed at the
end of this chapter must be compiled and added to Image.

Low Levels

The prototypes of all the functions are located in a separate include file "byte _2dp.h"

#i f ndef BYTE 2DP_H /* necessary to avoid nultiple definitions */
#define BYTE 2DP_H /* file inclusion */

#i ncl ude "inmage. h"
#i ncl ude "byte_2d. h"
#i ncl ude "roi.h"

/* prototypes of the basic functions */

#if defined(__STDC) || !'defined(| NTERPRETED)

BYTE 2D | MAGE *byte 2d create_inage(char *, int, int, int, int);

voi d byte 2d destroy_ i mage(BYTE 2D | MAGE *);

int byte 2d copy_part_inmage(l MAGE *, IMACGE *, int, int, int, int, int, int,
int, int, int);

int byte 2d copy_masked part (I MAGE *, BOOL_MASK *, IMAGE *, int, int, int,
int, int, int, int, int, int, int);

char *byte 2d pix _value str(IMAGE *, int, int, int);

voi d byte 2d _get i nmage_wi ndow i nfo(l MAGE *, char []);

int byte 2d conv_to_conmmon(I MAGE *, int, COVMON LINE *);

int byte 2d conv_fromcomon(| MAGE *, int, COWON LINE *);

BYTE *| _byte read_part_i mage(BYTE *, int, int, int, int, int, int, int,
int, int);

void | _byte wite part_inmage(BYTE *, BYTE *, int, int, int, int, int, int,
int, int, int);

New image types 12-15

Image 2.1 Library — User manual

BYTE *| _byte_read_nasked_part (BYTE *, BOOL_MASK *, int, int, int, int, int,
int, int, int, int);

void | _byte wite_masked_part(BYTE *, BYTE *,BOOL_MASK *, int, int, int,
int, int, int, int, int, int, int);

#endi f

#endi f /* BYTE_2DP_H */

The following is a source code listing of the low-level functions used in the sample code in

this section .

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude "i mage. h"
#include "imerror.h"
#include "im.infra.h"
#i ncl ude "roi.h"

#i ncl ude "byte_ 2d. h"
#i ncl ude "byte_2dp. h"

BYTE *| _byte read part_i mage(BYTE *ip, int sx, int sy, int sz,
int width, int height, int depth,
int sw, int sh, int sd)

{
BYTE *sp, *dp, *ptr;
i nt Y, Z;
i mbegin func("l _byte read part _inage");
if (!(ptr = (BYTE *) malloc ((size_t)((long) width * height *
depth * sizeof (BYTE))))) {
imreport_error("l _byte read part_inmage", |E_NOVEM
"couldn’t allocate nmenory for buffer");
return(NULL);
}
for (z=0 ; z<depth; z++) {
for (y=0 ; y<height ; y++) {
sp = ip + ((z+sz) * sw* sh) + ((sy+ty) * sw) + sx;
dp = ptr + (z*width*height) + (y*w dth);
mencpy(dp, sp, width * sizeof (BYTE))
}
imend func("l _byte read part_inmage");
return(ptr);
}

void | _byte wite part_inmage(BYTE *ip, BYTE *data,
int dx, int dy, int dz,
int width, int height, int depth,
int dw, int dh, int dd)

BYTE *dp, *sp
i nt Yy, Z;

i mbegin func("l _byte wite part_inmage");

for (z=0 ; z<depth; z++) {
for (y=0 ; y<height ; y++)
dp =ip + ((z+dz) * dw* dh) + ((dy+y) * dw) + dx;
sp = data + (z*width*height) + (y*w dth);
mencpy(dp, sp, width * sizeof (BYTE))

12-16 New image types

Image 2.1 Library — User manual

i mend func("l _byte wite_part_i mage");
return;

}

BYTE *| _byte_read_masked_part (BYTE *i p, BOO._MASK *mask,
int sx, int sy, int sz,
int width, int height, int depth,
int sw, int sh, int sd)

{
BYTE *sp, *dp, *ptr;
regi ster int X, VY, Z;
BYTE *np, byte_nask;
i nt line_offset;
i mbegin_func("l_byte read_nmasked_part");
line_offset = ((width - 1) / 8) + 1;
if (!(ptr = (BYTE *) calloc ((size_t) sizeof (BYTE),
(size_t) width * height * depth))) {
imreport_error("l_byte read _masked_part", |E_NOVEM
"couldn’t allocate nmenory for buffer");
return(NULL);
}
dp = ptr;
for (z=0 ; z<depth; z++) {
for (y=0 ; y<height ; y++)
sp =ip + ((z+tsz) * sw* sh) + ((sy+y) * sw) + sXx;
np = Bool MaskDat a(mask) + z*height*line_offset +
y * line_offset;
byt e _nmask = 0x80;
for (x=0 ; x<width ; x++) {
if (*nmp & byte_nmask)
*dp++ = *sp++;
el se {
dp++;
sp++;
}
if (!(byte_mask >>= 1)) {
np++;
byt e_mask = 0x80;
}
}
}
i mend_func("l _byte_read_nasked_part");
return(ptr);
}

void | _byte wite_masked part (BYTE *ip, BYTE *data, BOOL_MASK *nask,
int dx, int dy, int dz,
int wwdth, int height, int depth,
int dw, int dh, int dd, int clear)

BYTE *dp, *sp;

BYTE *mp, byte_mask;

i nt X, V¥, z, line_offset;

i mbegin func("l _byte wite nasked part");
line offset = ((width - 1) / 8) + 1;

sp = data;

for (z=0 ; z<depth; z++) {
for (y=0 ; y<height ; y++) {

New image types 12-17

Image 2.1 Library — User manual

dp = ip + ((z+dz) * dw'dh) + ((dy+y) * dw) + dx;

= Bool MaskDat a(mask) + z*hei ght*line_of fset +
y * line_of fset;

sk = 0x80

for (x=0 ; x<width ; x++) {
if (*mp & byte nask)

*dp++ = *sp++,;

el se {

if (clear)
*dp++ = 0;

el se dp++;

Sp++;

%f ('(byte_nmask >>= 1)) {

np++;
byte_nmask = 0x80;

}
}
}
imend_func("l _byte wite_rmasked_part");
return;

Testing theimagetype

If the above steps have been followed correctly, a new version of Image has been compiled
and linked which includes the byte 2d image type. The following sample code can be used to
test the new image type. Please note that thisis only a code-fragment, not a complete

program, it expects that the Image library is has been initialized.

#i ncl ude "i mage. h"
#include "imerror.h"
#include "im.infra.h"
#i ncl ude "roi.h"

#i ncl ude "byte_2d. h"

I MAGE *ima, *imb, *imc, *imd;
| MAGE *roi 1;
BOOL_MASK *bm

/
create two grey images, read a file fromdisk, convert it to and
then fromthe new type and save it to a file again to be able to
conpare it with the original inmage data

* %k % X X %

FUNCTI ONS USED: create_image, conv_to_conmmon, conv_from common
*/

ima = create_image("A", GREY 2D, 256, 256,1);

readfil e("orka256",ima, 0,0);

imb = create_inmage("B", GREY 2D, 256, 256,1);

convert(ima, imb, BYTE 2D);

convert(imb, ima, CGREY_2D);

witefile(ima,"resultl", I1CS F);

/
create i mage of new type, copy a part of the previously used
imges to it. To check the result, convert it back to grey, and
save it to disk.

L I T

FUNCTI ONS USED: create_inmage, copy_part_inmage, conv_to_conmon

12-18 New image types

Image 2.1 Library — User manual

imc = create_i mage("C', BYTE 2D, 256, 256, 1);
copy_part_inmage(imb, imc, 64, 64, 0, 128, 128, 1, 0,0,0);
convert(imec, ima, GREY_2D);

witefile(ima, "result2", I1CS_F);

/*

* create a Bool ean nask froma grey_2d inmage, convert the grey
* image to the new type. Define a roi in the new type with a

* Bool ean nask, and convert that the date fromthat RO to a
* different inmage type.

*

* FUNCTI ONS USED: create_inage, conv_from comon, destroy_i mge,
* copy_masked_part

*/

readfile("trui", ima, 0,0);

threshol d(ima, imb, 128);

bm = get _bool _mask(i m Db);

convert(ima, imc, BYTE 2D);

imd = create_i mage("D', BYTE 2D, 256, 256, 1);

roil = roi_define("roil", imc, 0,0,0, 256, 256, 1, bn);
convert(roil, imd, FLOAT 2D);
witefile(imd,"result3",1CS_F);

We have described a very limited implementation of the byte image type. To do something
useful with the new image type, additional image processing operations should be added in a
similar way.

Defining an image subtype

Image subtypes can be implemented for a number of reasons. The differencein the
interpretation of the image datais one reason, but sub-typing can also be used as an
organizational tool. It is possible to design a set of operations that is targeted to a specific
processing domain such as, microscopical images. By limiting the operations that can be
performed on specific images, their specialized nature can be emphasized and the user can be
aided in processing them.

The implementation of an image subtype is similar to that of a new image main type
described in the previous section. Some definitions need to be made and the service functions
must be made available. The difference liesin the fact that an image subtype can make use of
functions aready implemented for another image type. In this section, we describe how to
implement an image subtype. The standard Image Library image-type LABEL_2D isa
subtype of the GREY _2D image type and will therefore be used as an example.

First some rules and guide-lines:

New image types 12-19

Image 2.1 Library — User manual

1) The sub-type must have an uniquet ype_i dent . Thevaue of thet ype_i dent s
of the standard image types are listed in the header file'image.h’. The values 1 to 32
are reserved for main types and should not be used for a subtypes. See the difference
between LABEL 2D and GREY _2D, GREY _2D being amain typeisin therange 1
to 32 and the subtype LABEL_2D is 33.

2) Thetype_spec of the subtype must have the same value asthet ype_spec of the
main type. A new define is recommended for readability of the source code. In
'image.h’ the ype_spec L_2D SPEC (of the label_2d image type) is defined to be
equal to G_2D SPEC (thet ype_spec of grey_2d).

3) Inorder to make use of the functions of the main type, the type descriptor should be
the same as that of the main type. The subtype can then use the functions from the
existing image type. In the header file'label _2d.h’ the type descriptor
LABEL_2D IMAGE is defined as the type descriptor GREY_2D IMAGE. A new
name and new macros are defined to be used in the source code for this subtype.

4) |If additional fieldsin the type descriptor are necessary, copy the structure of the main
type and add the extrafields at the end. It should be realized that the functions that are
inherited from the main type do not know about these fields and therefore do not
initialize them or operate on them in any way. In most cases, this requires that the
service functions will have to be re-implemented for the subtype. The service
functions are described in "Implementing a new image type'.

The defines of thet ype_i dent , thet ype_spec, the type descriptor and the macrosto
access the fields of the descriptor should be put in a separate header file named after the
image type. In the case of the label _2d subtype the definition of thet ype_i dent and the
t ype_spec islocated in’image.n’ and not in’label_2d.h’.

Aswith anew image type, an overload file must be created to tell the infrastructure which
functionsto call for thisimage type. Looking at the overload file of the label _2d image type,

we can see that most of the service functions are inherited from the grey 2d image main type:
LABEL 2D OVERLOAD TABLE

#

NOTE LABEL 2D I NHERI TS MOSTLY FROM GREY_2D

#

TABLE | 2d LABEL_2D L_2D SPEC 2

#

Basic functions for each i mage type

#
create_i mage g_2d_create_i nage
destroy_i mage g_2d_destroy_i mage
copy_part _i mage g_copy_part _i nage
copy_masked_part g_copy_nasked_part
conv_t o_common g_2d_conv_t o_comon
conv_from comon g_2d_conv_from comon

12-20 New image types

Image 2.1 Library — User manual

part i mage_di spl ay | _2d_part _image_di spl ay
pi x_val ue_str g_2d_pi x_val ue_str
get i mage_wi ndow_ info | _2d _get_inmage_w ndow_ i nfo

#

As with implementing a new image type, the last three functions from the list above are only
required when defining an image subtype in the complete SCIL _Image environment.

The dedicated service functions and the overload file must be added to Image as described in
previous sections. The image subtype is then implemented and can be used. Further image
processing operations can be added either by inheritance from the main type or by adding a
new operation. Inheriting an operation from the main type is done by copying the entry in the
overload table from the main type to the overload table of the subtype.

New image types 12-21

Chapter 13 Creating an Image Application

This chapter discusses the topic of creating a stand-alone
application using the Image library.

Read this chapter if :
* you want to build an application with the Image Library

Image 2.1 Library — User manual

| ntr oduction

The Image Library can be used to build your own image-processing application. The library
can best be regarded as an application without a front-end. Whenever afunctioniscalled in
the library, the behavior and state of entire library may be affected by it. To use the Image
library, only one (obligatory) step has to be taken. That is:

* Initialization of the library before any image processing function is called. See
"Initialization" on page 13-2.

Once this requirement is satisfied, the conditions are set for proper execution of the image
processing functions of the Image library. When coding an application, several topics may
need additional attention:

» What to do when an error occursin the Image library and how to retrieve
information about the error situation. See "Error handling” on page 13-2.

* How to redirect text output from the library to the desired location. See "Text
output handling" on page 13-3.

I nitialization

Before any image processing function can be called, the library must beinitialized. The
function that performs all the necessary actionsisi ni ti mage() . Its prototype:
void initimge(void);

Although for a complete application additional steps are necessary to get automatic
notification of al kinds of "events" such as errors, creation of images, changes to images etc.
thei ni ti mage() function issufficient to get the Image library running correctly.

Error handling

In the event of an error occurring in the application (due to whatever reason), the program
must detect the situation and handle it appropriately. Either by trying to correct to problem or
quitting the application. For correct assessment of the situation, sufficient information is
required. Asdiscussed in "Error handling and reporting” on page 9-21, the Image library
logs the location and nature of an error occurring in the library in detail. After a processing-

13-2 Creating an Image Application

Image 2.1 Library — User manual

function has handled an error by cleaning up and returning with a fault status, the application
can then review the information.

Text output handling

The default behavior of the Image library isto show all text output through thest dout and
st der r streams. An application can overrule this by supplying afunction pointer to which
the text must be redirected, see "Textual output™ on page 9-26.

Color Lookup tables.

A principal feature of the user interface of an image processing application is the display of
the images. Often color lookup tables are used to influence the representation of the images
on the screen, either to enhance the contrast or highlight specific featuresin the image.
Because the Image Library already supplies color lookup tables, it is a good idea for the
display interface to also make use of these tablesinstead of defining a new set.

The Image Library defines that when the contents of a clut is changed by an operation, this
must be published through the super _cl ut object. The display interface is then able to
react to the changed CLUT providing it subscribed to thesuper _cl ut object. For
additional information on cluts, see "Image Color Lookup Tables' on page 9-11.

Sample code

The Image library is accompanied by a sample program to show some of the important issues
involved in using the library. In the listing below we have numbered these issues and they are
discussed in more detail.

The actual image-processing doneis limited, an image is read, thresholded, labeled and some
features of all the objects in the image are measured and printed.

1. The pointer to the top-level image is retrieved, this object publishes the creation and
destruction of images as discussed in "Publish and Subscribe in the Image library" on page
8-5.

2. The pointer to the error-stack is retrieved. This stack can be used to get detailed
information on an error occurring in the library. More information on the error-stack can
be found in "Error handling and reporting" on page 9-21.

Creating an Image Application 13-3

Image 2.1 Library — User manual

3. Toredirect text-output, a function can be registered. Details of which can be found in
"Textual output” on page 9-26. The function itself analysesthest r eamparameter and if
itisagpecia stream, it prints a header above the text indicating which stream.

4. Thei m_handl e_error () function is subscribed to the error-stack. When an error
occurs and the library returns, this function is automatically called and prints a stack-trace
of the location of the error.

5. Thehandl e_super _i () function is subscribed to the top-level image. When an
image is created, this function prints a message that a new image is created and then
subscribesthe handl e_i mages() tothenew image. handl e_i mages() initsturn
will print out information about the publishes that come from these images.

6. i ni timage() initializesall the necessary internal tables of the library. It isvery
important that the initialization is done otherwise most image-processing functions will
not operate at all.

7. Finaly theimage processing itself, in this sample we choose to leave out checking the
return-values of each function except for theinitial reading of an image. In areal
application, additional statements are needed to check that each operation performed its

task correctly and if not, take appropriate action.

#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude "support.h"
#i ncl ude "spublish. h"
#i ncl ude "image. h"
#include "imerror. h"
#i ncl ude "generic.h"
#include "iminfra. h"
#i ncl ude "inmonly. h"
#i ncl ude "intxtout.h"
#i ncl ude "imaio. h"

static char errbuf[2048]; /* local buffer for printing etc. */
| M_ERROR_STATUS *err _st ack;

voi d *super_i mage = NULL;

int main(int argc, char *argv[])

IMAGE *im *iml, *ing;

LI ST *I, *o;

OBJECT *obj;

/* get the gl obal objects to subscribe to */

super _i nage = get_super_im); [* #1 */
err_stack = get_imerror_stack(); [* #2 */

/* set our own text-output handler */
i m set_output_handl er(my_output_func); [* #3 */

/* subscribe to the error-stack */
spb_subscri be(err_stack, NULL, imhandle_error, OL); [* #4 */

/* subscribe to i mage-class (super_im */

13-4 Creating an Image Application

Image 2.1 Library — User manual

spb_subscri be(super_image, NULL, handle_super_im OL); [* #5 */

/* initialize the inmage library */

initimge(); I* #6 */

im= readfile("cernmet", NULL, O, O);

if ('im) { I* #7 */
i mage_out put (1 MO_OQUTPUT, "Can not find imge, exiting!!\n");
return(0);

}

im = create_i mage("inl", BINARY_2D, 256, 256, 1);
threshol d(i m i ni, 128);

invert_in(iml,inm),;

eval ("cermet =255-cernet", 0);

i = create_i mage("inR", GREY_2D, 256, 256, 1);
| =1list_label (int,in2, 8, 20);

For Al l El ements(o, 1) {
obj = (OBJECT *)Info(o0);
i mage_out put (I MO_OQUTPUT, "Label: 9%illd,", obj->label);
obj ect _shape_neas(inm2, o, AREA| PERI|CR);
i mage_out put (I MO_OQUTPUT, " Area: %ld, Peri: %g, C: 9%8g\n",
area(o), peri(o), cr(o));

}
return (IE.OK);

/*

* This function retreives the information fromthe error-stack
* and puts it in a textbuffer.

*/

void nmy_dunp_err_stack(l M ERROR_STATUS *inmerr, char *errbuf)

{

int i;
char *ptr, *fptr;
char *ep
sprintf(errbuf,
"I mage error stack-trace\ n=============—==—==—==—====\n\n");
ep = errbuf + strlen(errbuf);
for(i=1;, i<=imerr->edepth; i++) { /* for each | evel */
/* pointer to nessage */
ptr = inmerr->mstack + inmerr->nmoffs[i-1];
/* pointer to funcnane */
fptr = inmerr->fstack. names + inerr->fstack.noffs[i-1];

/* print funcname and error-status */
sprintf(ep, "% : [%];", fptr, imerr->sstack[i-1]);
ep = errbuf + strlen(errbuf);

/* if error nessage, print it */
if (ptr && (*ptr)) {
sprintf(ep, "\"%\"",ptr);
ep = errbuf + strlen(errbuf);

/* if recursive, print recusion depth */
if (imerr->fstack.rcount[i-1] > 1)
sprintf(ep, " ; rec_depth = %\ n",
i merr->fstack.rcount[i-1]);
el se
sprintf(ep, "\n");
ep = errbuf + strlen(errbuf);

Creating an Image Application 13-5

Image 2.1 Library — User manual

}
return;
}
/*
* Function: imhandle_error
*
* This function is called when an error has occured and has been handl ed
*

by the inmage library. In the main loop it is subscribed to the error

* stack.

*/

void i mhandle_error (1l M ERROR STATUS *imerror, void *dumry, int ness, int
*data, int *cl)

{
| M_ERROR_STATUS i nerr;
imerr = *imerror;
ny_dunp_err_stack(& merr, errbuf); /[* print the info to a buffer */
i mage_out put (I MO_ERROR, errbuf); /* print the buffer */
return;
}
/*

* This function handles the text-output fromthe image_out put function.
*/
void WNAPI ny_output _func(int stream char *text)
{
switch (stream) {

case | MO _| NSTRUCT:
printf("My Image Instruction:\n----------------- \n");
printf(text);
br eak;

case | MO WARNI NG
printf("M | mage Warni ng: \ n==============\n");
printf(text);
br eak;

case | MO _ERROR
printf("My I mage Error:\n==============\n");
fprintf(stderr, text);
br eak;

case | MO _QUTPUT:
defaul t:
printf(text);
br eak;

return;

}

/*
* This function is subscribed to each new i mage by handl e_super i m)
* and prints information about publishes fromthis image.
*/
voi d handl e_i mages(void *image, void *id, int nmess, void *data, void *cl)

SpPbAREA3D *im area,

i mage_out put (1 MO_QUTPUT, "I mage Handl er : nessage = %, data = %\ n",
nmess, data);
if (is_imge(inmage))
i mage_out put (I MO_QUTPUT, "I magepointer to %\ n",
| mgeNanme((| MAGE*) i mage)) ;

switch (nmess) {
case SPB_CHANGED :
if (imarea = data) {
i mage_out put (I MO_QUTPUT,

13-6 Creating an Image Application

Image 2.1 Library — User manual

"Rect angl e changed: % % % % % %\ n",

imarea ->x, imarea ->y,

imarea ->z,

imarea ->wi dth, imarea ->height,

i marea ->depth);

}
br eak;
def aul t
br eak;
}
}
/*

* This function detects if new i nages have been nade and
* subscribes the handl e_i mages function to each new i mage

*/

voi d handl e_super_in(void *sup_im void *id, int mess,

void *data, void *cl)

oL);

{
i mage_out put (I MO_OQUTPUT, "Super |nage : nessage = %, data = %\ n"
nmess, data);
if (is_image(data)) {
i mage_out put (I MO_OQUTPUT, "Data is |magepointer to %\n",
| mageNane((1 MAGE*) data)) ;
}
switch (nmess)
case SPB | TEM ADD :
/* subscribe to each new i mage */
spb_subscri be(data, NULL, handl e_i nages,
br eak;
case SPB | TEM DELETE :
/* unsubscribe frominmges that are destroyed */
spb_unsubscri be(data, NULL, handl e_i mages);
br eak;
def aul t
br eak;
}
}

Creating an Image Application

13-7

Image 2.1 Library — User manual

8 Creating an Image Application

	Table of Contents
	Chapter 1 Outlines of SCIL_Image
	The four layers of SCIL_Image
	Using the system at the application level
	Using the system as an interactive user
	Using shorthand typing for application development
	Control statements
	Programming an image processing function
	Making your own library
	Building applications

	SCIL and the Image library
	On reading this manual
	Summary of the Chapters

	Why SCIL_Image ?
	A multi-level interactive processing environment
	SCIL: Library handler
	SCIL: C-interpreter
	SCIL: Command expander
	SCIL: Menu and dialog generator
	The Image libraries
	Image infrastructure
	Binary mathematical morphology
	Numerical analysis of objects in images.

	Chapter 2 Setting up SCIL_Image
	Setting Up: Step by Step
	The SCIL_Image Folder
	Your SCIL_Image Environment

	Chapter 3 Getting started
	Before you begin
	The Five Modes of Interaction with SCIL_Image
	Session One: Viewing Images
	Session Two: Using the SCIL_Image Menu System
	Session Three: Using the SCIL_Image Command Line Mode
	Session Four: Programming in SCIL_Image
	Making a New Compiled Version of SCIL_Image
	The Commands of the SCIL_Image Menus
	File
	Edit
	SCIL
	Image
	Display
	Options
	Arithmetic
	Itools

	The Properties of Text Windows
	On-line manuals
	Reference manual

	Chapter 4 The C Interpreter
	SCIL_Image and C
	ANSI-C compatibility

	The Direct Command Mode
	The Macro Mode
	The Programming Mode: Interpreted C-functions and UFOs
	Program Development Commands
	chain <filename> [args]
	list [start],[end]
	load <filename>
	logon <filename> logoff
	macro [-i] [-v] <macrofile>
	rmvar
	run [args]
	time <command>
	the interrupt: Pause/Break
	help facilities:
	Ctrl-H <selection>Ctrl-Enter <command> ? ? <pattern>

	Errors, Warnings and Diagnostics
	Features of SCIL_Image s C-interpreter

	Chapter 5 Advanced SCIL_Image
	Adding New Functions to SCIL_Image
	Making a Command Description File (CDF)
	comment entry
	menu entry
	translate entry
	variable entry
	command entry

	SCIL_Image Special Types
	Very Advanced SCIL_Image: New Types
	Creating a New Compiled SCIL_Image Version
	Adding On-line Manual Files to SCIL_Image

	Chapter 6 The Image 2.1 library in SCIL_Image
	Introduction
	Image infrastructure
	Invalid operations
	Image display and window management
	Mouse buttons
	The title bar of image windows
	The left mouse button
	Displaying the image
	Displaying 3D images
	The right mouse button
	Changing a window s size
	Changing a window s position
	Display lookup table

	Image management
	Creating and destroying images
	Changing image sizes
	Changing image types
	Converting images into other types
	Filling images

	Region of interest (ROI) processing

	Image types
	Grey valued images (GREY_2D & GREY_3D)
	Data representation of grey valued images
	Usage of grey valued images
	Examples of grey valued operations

	Binary bitmapped images (BINARY_2D & BINARY_3D)
	Data representation of binary images
	Usage of binary images
	Examples of binary operations

	Floating point images (FLOAT_2D & FLOAT_3D)
	Data representation of float images
	Usage of float images
	Examples of operations on float images

	Complex images (COMPLEX_2D & COMPLEX_3D)
	Data representation of complex images
	Usage of complex images
	Examples of operations on complex images

	Labeled images (LABEL_2D & LABEL_3D)
	Data representation of labeled images
	Usage of labeled images
	Examples of operations on labeled images

	Color images (COLOR_2D & COLOR_3D)
	Data representation of color images
	Usage of color images

	Expression evaluation on images (eval)
	Storing images on disk
	The ICS format
	The TIFF format
	The JPEG format
	The TCL format
	The AIM format

	Non image data (var_objects)
	Behavior of var_objects
	Datatypes of var_objects
	Examples using var_objects
	Example 1
	Example 2
	Example 3

	Storage of var_objects on disk

	Histogram objects

	Chapter 7 Introduction to Image 2.1
	What is Image2.1
	Image infrastructure
	Image types
	Advanced and extensive set of image operations
	Fast implementations
	Abstract error and I/O handling
	Publish and subscribe mechanism
	The structure of this manual

	The need for Image2.1
	Structure of the Image library
	Writing your own image processing routines
	Custom Image types
	Measurement of objects (AIO)
	Binary images

	Appendixes
	Appendix: ICS file format description

	Chapter 8 Publish and Subscribe
	General aspects
	Object requirements
	Subscribing and unsubscribing to objects
	Receiving messages
	Publishing messages
	Processing messages
	Messages

	Publish and Subscribe in the Image library
	Top-level publishes
	Image publishes
	Color-lookup table publishes
	Top-level Histogram publishes
	Histogram publishes
	Error stack publishes

	Chapter 9 Programming with Image
	Introduction to Image
	The Image types
	Grey valued images
	Binary bitmapped images
	Floating point images
	Complex images
	Labeled images
	Color Images

	The IMAGE structure
	Image Flags
	Region of interest data structure (rectangular)
	Region of interest data structure (arbitrary shaped)
	Operation Counter
	Image Info
	Image Color Lookup Tables

	Dynamic adjustment (Pre_op, Post_op)
	The pre_op function
	COMPARE mode
	ADJUST(_NIP) mode
	Output equal to input
	Output of specific type
	Only output
	Type of input, sizes of output
	Special sizes
	ROI and pre_op
	Multiple calls to pre_op

	The post_op function
	ROI and post_op

	A simple example
	Explanation of the function code:

	Error handling and reporting
	Location of the error
	Return values of functions
	Error handling

	Checking routines
	Check functions
	Check_image_integrity

	Textual output
	Function overloading
	Three layers
	Generic function layer
	Parameter checking and image adjustment
	Processing the data

	Overload tables
	Overruling the default implementation

	Data conversion (convert)
	Super type of an image line
	COMMON_LINE structure

	Source function specification
	Destination function specification
	User specified conversion

	Var_objects
	Var_object structure
	Programming with var_objects
	Checks on var_objects

	Conversion of var_objects to images and vice versa
	Histogram structure
	Programming with histogram objects

	Chapter 10 Analysis of Images and Objects (AIO)
	General Concepts in Microscopical Image Analysis
	Components of the AIO framework
	Labeling objects
	Measuring individual objects
	Object manipulation
	Image Silo
	Direct manipulation

	An AIO sample session
	Interactive measurement
	Implementation of the interaction part
	The point_object() function

	Chapter 11 Bitmapped binary images
	Erosions, Dilations and Logarithmic Decomposition
	Algorithmic Implementation
	Data Representation
	Implementation of the Pixelwise Logical Operations
	Implementation of the Morphological Operations

	Evaluation
	Pixelwise Logical Operations
	Morphological Transforms

	Discussion and Conclusions
	Literature

	Chapter 12 New image types
	Implementing a new image type
	Defines and structures
	Creation and destruction
	Copying a part of the image
	Displaying the image
	Image type information
	Conversion to other image types
	The overload table
	Low Levels
	Testing the image type

	Defining an image subtype

	Chapter 13 Creating an Image Application
	Initialization
	Error handling
	Text output handling
	Color Lookup tables.
	Sample code

	Appendix
	Reference Manual

