SCIL_Image 1.4 — Reference Manual

X

1]

X

University of Amsterdam
Faculty of Mathematics,
Computer Science, Physics
and Astronomy

Kruislaan 403

1098 SJ Amsterdam,
The Netherlands

TPD

TNO Institute of
Applied Physics

P.O. Box 155
2600 AD Delft, The Netherlands
Stieltiesweg 1
2628 CK Delft, The Netherlands

SCIL _Image

version 1.4

Reference M anual

May, 1998

SCIL_Image 1.4 — Reference Manual

SCIL_Image 1.4 — Reference Manual

Copyrigtht notice

Copyright © 1992-1998 by University of Amsterdam, Faculty of Mathematics and Computer
Science, Amsterdam, The Netherlands and TNO Institute of Applied Physics, Delft, The
Netherlands. All rights reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or computer language,
in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or
otherwise, without the prior written permission of TNO Institute of Applied Physics, Delft,

The Netherlands.

Disclaimer

It is believed that the information in this publication is accurate as to the date of publication;
this information and the software package, which is described, are subject to change without
notice. Furthermore, University of Amsterdam, Faculty of Mathematics and Computer

Science and TNO Institute of Applied Physics make no representations or warranties as to the
accuracy or completeness of this publication, nor as to the accuracy or completeness of the
software-package it describes. All other warranties, express or implied, are hereby
disclaimed, specifically including, but not limited to, express or implied warranties of
merchantability or fitness for a particular purpose.

SCIL_Image 1.4 — Reference Manual

Reference Manual Pages

abort

NAME
abort - abort program abnormally

SYNOPSIS
voi d abort (void)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

abort() causes the program to terminate abnormally, asif by raise(SIGABRT).

RETURN VALUES
The function does not return;

SEE ALSO
exit _exit

SCIL_Image 1.4 — Reference Manual

abs

labs

NAME
abs, labs - integer absolute value

SYNOPSIS
int abs(int i)

l ong I abs(l ong n)

DESCRIPTION
These functions are interfaces to the standard C functions as implemented on the
current system. The functionality of these function are:

abs() returns the absolute value of its integer operand.
labs() returns the absolute value of its long operand

BUGS
Y ou get what the hardware gives on the smallest integer.

SEE ALSO
floor fabs

SCIL_Image 1.4 — Reference Manual

abs im
NAME
abs_im - absolute value or modulus of an image

SYNOPSIS
#i ncl ude "improto.h"

int abs_in(I| MAGE *in, | MAGE *out)

DESCRIPTION
Calculate the absolute value of each element of image "in" and store the result in the
corresponding element of image "out". If the image "in" is a complex image the
modulus will be calculated. In this case if image "out" is aso an complex image then
the result will be stored in the real part of each element of "out" and the imaginary part
will be cleared. If "out" is not a complex image then the result will be afloat image.

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
absd imeval

SCIL_Image 1.4 — Reference Manual

absd im
NAME
absd im - absolute difference of images

SYNOPSIS
#i ncl ude "i mproto.h"

int absd_i m I MAGE *inl, |MACGE *in2, |MACGE *out)

DESCRIPTION
Calculate the absolute value of the difference between each element of image "in1"
and the corresponding element of image "in2" and store the result in the
corresponding element of image "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
abs im eva

SCIL_Image 1.4 — Reference Manual

add_applic_exposure func
NAME
add_applic_exposure_func - add function to exposure list

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt add_applic_exposure_func(void (*func) (I MAGE *ip))

DESCRIPTION

This function adds the specified function "func" to the list of COMPILED functions
that are to be called when an exposure event occurs. The function that will be called
must have one parameter only, an IMAGE pointer:

voi d user_exposure(l MAGE *i mage)

The name "user_exposure" is an example only, any name may be used for such a
function.

NOTE

A new and better interface for application programs to show their interest in events
has become available by means of the functionsim_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure_func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO

applic_exposure applic_win_input add_applic_win_input_funcim_exposure func
im_input_func

SCIL_Image 1.4 — Reference Manual

add_applic_ win_input_func
NAME
add_applic_win_input_func - add function to window input list

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int add_applic_w n_input_func(void (*func) (I MAGE *, int, int, char,
int))

DESCRIPTION
This function adds the specified function "func" to the list of COMPILED functions
that are to be called when awindow input event occurs. The function that will be
called must have the following parameters:

voi d user_w n_input (I MAGE *i nage, int xpos, int ypos, char ch
i nt but)

"image" isthe pointer to the image in which the event occurred. "xpos' and "ypos' are
the position of the pointer in the image (not in the window). "ch" is the character of
the key that is pressed. "but" is the button that of the mouse that is pressed or released

The name "user_win_input" is an example only, any name may be used for such a
function.

NOTE
A new and better interface for application programs to show their interest in events
has become available by means of the functionsim_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure_func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO
applic_win_input applic_exposure add applic_exposure func point_im EventType
IsMouseDown KeyPressed MouseMove MousePress MouseRelease

10

SCIL_Image 1.4 — Reference Manual

add_complex
sub_complex
mul_complex

div_complex
NAME
add_complex, sub_complex, mul_complex, div_complex - complex arithmetic

SYNOPSIS
#i ncl ude "improto.h"

i nt add_conpl ex(I MAGE *in, double real part, double inmaginary part,
| MAGE *out)

i nt sub_conpl ex(I MAGE *in, double real part, double inmaginary part,
| MAGE *out)

int mul _conplex(lI MAGE *in, double real _part, double inmaginary_part,
| MAGE *out)

int div_conplex(lMAGE *in, double real part, double inmaginary_part,
| MAGE *out)

DESCRIPTION
Complex arithmetic. The operation is performed on image "in" and the result is stored
inimage "out". The complex value is specified by "real _part” and "imaginary_part".

add_complex() adds the complex value to each element of "in".
sub_complex() subtracts the complex value from each element of "in".
mul_complex() multiplies each element of "in" with the complex value.

div_complex() divides each element of "in" by the complex value. If divisions by zero
occur, an error will be generated.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
add_int sub_int mul_int div_int add float mul_float sub float div_float

11

SCIL_Image 1.4 — Reference Manual

add float

sub float

mul_float

div_float

NAME

add_float, sub_float, mul_float, div_float - floating point arithmetic

SYNOPSIS

#i ncl ude "i mproto.h"

i nt

i nt

i nt

i nt

add_fl oat (1 MAGE *i n,
sub_fl oat (I MAGE *i n,
mul _fl oat (I MAGE *in,

div_float(l MAGE *in,

DESCRIPTION

Floating point arithmetic. The operation is performed on image "in" and the result is

stored in image "out".

add_float() adds "constant" to each element of "in".

doubl e

doubl e

doubl e

doubl e

const ant,

const ant,

const ant,

const ant,

I MAGE

I MAGE

I MAGE

I MAGE

sub_float() subtracts "constant” from each element of "in".

mul_float() multiplies each element of "in" with "constant".

div_float() divides each element of "in" by "constant". If divisions by zero occur, an

error will be generated.

These functions have the extension " _float" because C does not allow different types
to be passed through the same parameter. The name " _float" has been used to indicate

afloating point value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
add_int sub_int mul_int div_int add complex sub_complex mul_complex

div_complex

*out)
*out)
*out)

*out)

12

SCIL_Image 1.4 — Reference Manual

add_im
sub im
mul_im
div_im
NAME
add_im, sub_im, mul_im, div_im - image arithmetic

SYNOPSIS
#i ncl ude "improto.h"

int add_i m(I| MAGE *inl, | MAGE *in2, | MAGE *out)
int sub_inm | MAGE *inl, |MAGE *in2, | MAGE *out)
int mul _im(I MAGE *inl, |MAGE *in2, | MAGE *out)
int div_inm | MAGE *inl, |MAGE *in2, | MAGE *out)

DESCRIPTION
add_im() adds each element of image "in1" to the corresponding element of image
"In2" and stores the result in image "out"

sub_im() subtracts each element of "in2" from the corresponding element of "inl1" and
stores the result in "out"

mul_im() multiplies each element of "in1" with the corresponding element of "in2"
and storesthe result in "out"

div_im() divides each element of image "in1" by the corresponding element of image
"In2" and stores the result in image "out". In the event that a pixel of "in2" isequal to
zero, the corresponding pixel in "out" will be set to the value of the corresponding
pixel of "inl".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)
When division by zero occur, div_im() returns an error-count (number of divisions by
Zero)

SEE ALSO
evd

13

SCIL_Image 1.4 — Reference Manual

add int

sub int

mul_int

div_int
NAME

add_int, sub_int, mul_int, div_int - integer arithmetic

SYNOPSIS
#i ncl ude "i mproto.h"

int add_int (I MAGE *in, int constant, |MAGE *out)
int sub_int(IMAGE *in, int constant, |MAGE *out)
int nul _int(IMAGE *in, int constant, |MAGE *out)

int div_int(IMAGE *in, int constant, |MAGE *out)

DESCRIPTION
Integer arithmetic. The operation is performed on image "in" and the result is stored in
image "out".

add_int() adds "constant" to each element of "in".
sub_int()subtracts "constant" from each element of "in".
mul_int()multiplies each element of "in" with "constant".

div_int divides each element of "in" by "constant". If divisions by zero occur, an error
will be generated.

These functions have the extension " _int" because C does not allow different typesto
be passed through the same parameter. The name"_int" has been used to indicate an
integer value.

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
add_im sub_im mul_im div_im eval

14

SCIL_Image 1.4 — Reference Manual

Addl magel nfo
Getl magel nfo

Removel magel nfo

NAME
Addimagelnfo - add auxiliary information to an image

Getlmagelnfo - retrieve pointer to auxiliary information of an image
Removelmagel nfo - remove auxiliary information from an image

SYNOPSIS
#include "im.infra.h"

i nt Addl magel nfo(l MAGE *im char *nane, void *info, void
(*dfunc) (void *))

void *Getl nmagel nfo(l MAGE *im char *nane)

i nt Renovel magel nfo(l MAGE *im char *nane)

DESCRIPTION
The Image Info mechanism allows for storage of auxiliary information with images.
The information is stored using a user supplied name that is used as its identification
from that moment on. The pointer to the information in combination with the
identification string is stored in alist that is attached to the IMAGE structure. At any
given time this pointer can be retrieved and the data viewed or processed.

Addimagelnfo() stores the pointer "info" with image "im" using the string "name" as
itsidentification. The function pointer "dfunc" can be used to automatically destroy
the information when the image is destroyed, NULL meaning no automatic
destruction. This function must have only one parameter, being a pointer to the
information.

Please note that only a pointer to the datais stored and NOT the dataitself, so be sure
that the data remains accessible as long as the pointer is kept with theimage. This
means that you can only use global data or dynamically allocated memory.

Getlmagelnfo() retrieves the pointer to the information "name" that is stored with
image "im".

Removelmagel nfo() removes the information "name" from image "im". If a
destruction function was specified for thisinformation, it is called with the pointer to
the information as its argument.

The Image infrastructure has no knowledge of the contents of the information,
meaning that the application (programmer) remains responsible for its integrity. The
mechanism only provides the service of keeping a pointer to the information with the

image(s).

15

SCIL_Image 1.4 — Reference Manual

RETURN VALUES
Addimagelnfo: IE_OK (1) on success or
IE_NOT_OK (0) when already present or no more memory
available.

Getlmagel nfo: a pointer to the information or NULL when not present

Removelmagelnfo: |E_OK (1) on success or
IE_NOT_OK (0) on failure to remove.

aim_readfile

NAME
aim_readfile - read an image from afilein AIM format

SYNOPSIS
#i ncl ude "improto.h"

| MAGE *ai mreadfile(char *filenanme, | MAGE *inmage, int Xpos, int ypos)

DESCRIPTION
Read the image stored in the AIM format file "filename" and put it in image "image”.
If "USE_NAME" (aNULL pointer) is specified as the image, anew image s created
at position "xpos’, "ypos"', with the same name as the file. If an image is already
present with that name, that image will be used.

The data-files of the AIM format must have the ".im" extension. Data-files for which
no header file with the extension ".hd" is present, are assumed to contain a 256 * 256
grey value image.

"filename" may be specified with or without the mandatory extension ".im", itis
appended when necessary.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL on failure

SEE ALSO
readfile ics readfile tiff_readfile tcl_readfile writefile

16

SCIL_Image 1.4 — Reference Manual

aio_label

NAME
aio_label - image labeling without building an object list

SYNOPSIS
#i ncl ude "im.aio. h"

int aio_label (I MAGE *in, |IMAGE *out, int connect)

DESCRIPTION
aio_label() labels the binary objectsin the binary image "in" and puts the result in the
labeled image "out". The connectivity “con" can either be 4 or 8.

The recursive labeling algorithm tries not to use the same label twice on a horizontal
scanline.

RETURN VALUES
The number of objects labeled on success.
Negative error status on failure (seeim_error.h).

SEE ALSO
list_|abel

17

SCIL_Image 1.4 — Reference Manual

all_im
NAME

all_im - perform an operation on all or a selection of images
SYNOPSIS

#i ncl ude "inmRscil.h"

void all _imchar *command, int type)
DESCRIPTION

The operation specified by "command" is performed on all existing images that are of
type "type". If the type of the imageis not relevant, "ALL" (=0) can be specified to
perform the operation on all images. In the parameter list of the operation the image
name must be replaced by the character "$" (see below). All occurrences of the "$"
character in the argument list of an operation will be replaced by the same image
name. This means that operations will be performed in place when specifying both

input and output image with the "$".

EXAMPLE
clearing all images:

all _im("clear_im$", ALL);
in place thresholding of all grey 2d images with threshold value 100:
all _inm("thresh $ $ 100", GREY_2D);

RETURN VALUES
None

18

SCIL_Image 1.4 — Reference Manual

anchor_skelet

NAME
anchor_skelet - anchor skeleton

SYNOPSIS
#i ncl ude "improto.h"

i nt anchor_skel et (1 MAGE *in, | MAGE *mask, | MAGE *out, int iter, int
endp, int bound)

DESCRIPTION
Change the objectsin the binary image "in" into anchor skeletons and store the result
into the binary image "out".

The anchor skeleton is a specia variant of skeletonization (see also "hild_skelet” for
"normal" skeletonization). During each thinning cycle the so-called anchor points are
forced to be skeleton pixels, even if they do not meet the conditions. These anchor
points are the object pixels of the mask image "mask™. The skeleton is "anchored"
through these points. If the anchor belongs to an object (or is connected with it) the
connectivity of the original skeleton points and the anchor points is maintained. In this
case the resulting skeleton will deviate from the medial axis of the object, in the
direction of the anchor points. The result of an anchor skeletonization is not readily
described. The command is recommended primarily for special applications, applied
by rather experienced users.

The thinning operation may be executed for only alimited number of cycles, as
specified by the parameter "iter". Full skeletonization results if the value O is specified
for this parameter. The operation then continues until no more pixels are deleted.

"endp" specifies that the endpixels of the skeleton must be preserved with each
thinning iteration (1 is preserve, 0 is do not preserve).

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
holt_skelet hild_skelet skelpoints

19

SCIL_Image 1.4 — Reference Manual

and_im
NAME
and_im - bitwise and of images

SYNOPSIS
#i ncl ude "i mproto.h"

int and_i m(I| MAGE *inl, | MAGE *in2, | MAGE *out)

DESCRIPTION
Perform a bitwise AND operation of each element of "in1" with the corresponding
element of "in2" and store the result in "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
or_im xor_im invert_im shift_im

angle

NAME
angle - obtain angle of object

SYNOPSIS
#include "imaio.h"

doubl e angl e(LI ST *Ii nk)

DESCRIPTION
AlO primitive to obtain value of an object feature

angle() returns the angle of the object pointed to by "link", if this feature has
previously been measured with either measure() or object_shape meas(). Theangleis
measured in radians relative to the X-axis

RETURN VALUES
angle of object in degrees on success.
0.0if link is not an object or if angle has not been measured.

SEE ALSO
measure object shape meas object_dens meas

20

SCIL_Image 1.4 — Reference Manual

angle detection

NAME
angle_detection - line angle detector

SYNOPSIS
#i ncl ude "improto.h"

int angl e_detection(l MAGE *in, | MAGE *out, double thres)

DESCRIPTION
Detection of anglesin skeleton segments. The binary image "in" is scanned for
individual skeleton segments. For each skeleton segment the end-points (say A and B)
are detected and a straight line AB is drawn. Then the point P on the skeleton segment
is detected with maximum distance to the line element AB and the angle between the
line elements AP and BP is calculated. If this angle exceeds a certain threshold value,
as specified by the parameter "thres" the point P is detected as an angle point and
becomes an object pixel in the binary image "out".

NOTE
This command is only meaningful if the image "in" is a skeleton image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

21

SCIL_Image 1.4 — Reference Manual

applic_exposure
NAME
applic_exposure - ask to be notified on an exposure event

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt applic_exposure(int send_events, int skip_when_busy)

DESCRIPTION
With this function an application can indicate that it is interested in exposure events of
image-windows. The user can specify a (list of) COMPILED function(s) that are to be
called whenever an exposure event comes along. A COMPILED function can be
added to the list with add_applic_exposure _func(). If thereisno list of COMPILED
functions an INTERPRETED function "handle_exposure()" will be called.
"skip_when_busy" determines whether handle_exposure() can be called again when it
has not finished the previous event yet.

NOTE
A new and better interface for application programs to show their interest in events
has become available by means of the functionsim_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure_func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO
add_applic_exposure _func applic_win_input add_applic_win_input_func

22

SCIL_Image 1.4 — Reference Manual

applic_win_input
NAME
applic_win_input - ask to be notified on an window input event

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int applic_win_input(int send_events, int skip_when_busy)

DESCRIPTION
With this function an application can indicate that it isinterested in input eventsin
windows. The user can specify a (list of) COMPILED function(s) that are to be called
whenever an input event comes along. A COMPILED function can be added to the list
with add_applic_win_input_func(). If thereisno list of COMPILED functions an
INTERPRETED function "handle_win_input()" will be called. "skip_when_busy"
determines whether handle_win_input can be called again when it has not finished the
previous event yet.

NOTE
A new and better interface for application programs to show their interest in events
has become available by means of the functionsim_exposure_func() and
im_input_func(). The support of the functions applic_exposure(),
add_applic_exposure _func(), applic_win_input() and add_applic_win_input_func() is
no longer guaranteed in future versions of SCIL_Image.

RETURN VALUES
None

SEE ALSO
add_applic_win_input_func add_applic_exposure_func applic_exposure

23

SCIL_Image 1.4 — Reference Manual

apply_spatial _bank
apply_frequency bank

bank_frequency response
NAME

apply_spatial_bank, apply_frequency bank, bank_frequency_response - perform filter
banks

SYNOPSIS
#i ncl ude "improto.h"

int apply_spatial _bank(lI MAGE *in, | MAGE *bank, | MAGE *out, int begin,
i nt end)

int apply_frequency_bank(l MAGE *in, |MAGE *bank, | MAGE *out, int
begin, int end)

i nt bank_frequency_response(l MAGE *bank, | MAGE *out, int begin, int
end)

DESCRIPTION
These functions apply a number of filters stored in the slices of the 3D "bank" image
to the 2D input image "in". The result of each filter is put into the corresponding slice
of the 3D image "out".

apply_spatial_bank() performs the filtering by convolution().

apply_frequency bank() performs the filtering by fast_hartley() or fast_fourier(),
dependent on the bank image type (FLOAT_3D/ COMPLEX_3D).

bank_frequency response() converts each spatia filter of the input bank to the
frequency domain.

"begin" and "end" specify the filters (slices) that are to be applied. "end" is-1 specifies
the filter at the highest Z-position of "bank".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
convolution fast_hartley fast fourier

24

SCIL_Image 1.4 — Reference Manual

arbit_dilation

NAME
arbit_dilation - dilation using an arbitrary shaped structuring element

SYNOPSIS
#i ncl ude "improto.h"

int arbit_dilation(l MAGE *in, | MAGE *out, | MAGE *se, int bound)

DESCRIPTION
Performs a dilation on image "in" using structuring element "se" and stores the result
inimage "out". The structuring element "se" isa grey value image, with odd sizesin
both directions, in which pixels encoded with a pixel value unequal to zero are part of
the structuring element. The origin of the structuring element is the central pixel of the
image. "bound" specifiesif the pixels outside the image should be interpreted as
foreground pixels ("bound" = 1) or as background pixels ("bound" = 0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion erosion3x3 dilation3x3

25

SCIL_Image 1.4 — Reference Manual

arbit_erosion

NAME
arbit_erosion - erosion using an arbitrary shaped structuring element

SYNOPSIS
#i ncl ude "i mproto.h"

int arbit_erosion(l MACE *in, |IMAGE *out, |MACE *se, int bound)

DESCRIPTION
Performs an erosion on image "in" using structuring element "se" and stores the result
inimage "out". The structuring element "se" isagrey value image, with odd sizesin
both directions, in which pixels encoded with a pixel value unequal to zero are part of
the structuring element. The origin of the structuring element is the central pixel of the
image. "bound" specifiesif the pixels outside the image should be interpreted as
foreground pixels ("bound" = 1) or as background pixels ("bound" = 0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_dilation erosion3x3

area

NAME
area - obtain area of object

SYNOPSIS
#include "im.aio.h"

l ong area(LI ST *Ilink)

DESCRIPTION
AlO primitive to obtain value of an object feature

area() returns the area of the object pointed to by "link". The area need not previously
be specified with the measuring routine since it is always avail able after labeling with
aio_label().

RETURN VALUES
area of the object in pixels on success
0if link is not an object

SEE ALSO
measure object shape meas object_dens meas

26

SCIL_Image 1.4 — Reference Manual

asctime
clock
ctime
difftime
gmtime
localtime
mktime
stritime

time

NAME
asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime, time - time
retrieval and conversion functions

SYNOPSI S
#i ncl ude "tinme. h"

char *asctinme(struct tm*tp)
| ong cl ock(voi d)
char *ctinme(tinme_t *tp)
double difftinme(tine_t tinme2, tine_t timel)
struct tm*gntime(tine_t *tp)
struct tm*localtinme(time_t *tp)
time_t nktinme(struct tm *tp)
size_t strftime(char *s, size_t smax, char *fnt, struct tm *tp)
time_t time(tine_t *tp)
DESCRIPTION

These functions are interfaces to the standard C functions as implemented on the
current system. The functionality of these function are:

asctime() converts the time in the structure "tp" into a string of the form:
Thu Jul 24 12:08:09 1997

clock() returns the processor time used by the program since the beginning of
execution, or -1 if unavailable. clock()/CLOCK_PER_SEC isatime in seconds.

ctime() converts the calendar time "tp" to local time; it is equivalent to:
asctime(localtinme(tp));

27

SCIL_Image 1.4 — Reference Manual

difftime() returns "time2" - "timel" expressed in seconds

gmtime() converts the calendar time "tp" into Coordinated Universal Time (UTC). It
returns NULL if UTC is not available.

localtime() convert the calendar time "tp" into local time.

mktime() converts the local time in the struct "tp" into calendar time in the same
representation used by time. The components will have values in the ranges shown.
mktime() returns the calendar time of -1 if it cannot be represented.

time() returns the current calendar time or -1 if the timeis not available.

stritime() formats the date and time information from "tp" into the string "'s" according
to the format string "fmt". The format string is analogous the printf() function.
Ordinary characters (including the '\0’) are copied into "'s'. Each %<character> is
replaced as described below, using values appropriate for the local environment. No
more than "smax" characters are placed into "s". strftime() returns the number of
characters, excluding the '\0’, or zero if more than "smax" characters were produced.

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation.
%d day of the month (01-31)

%H hour (24-hour clock) (00-23)

%l hour (12-hour clock) (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM
%S second (00-61)

%U week number of the year (Sunday as 1% day of week) (00-53)
%w weekday (0-6, Sunday is 0)

%W week number of the year (Monday as I™ day of week) (00-53)
%x local date representation

%X local time representation

%y year without century

%Y year with century

%Z timezone name, if any

%% %
STRUCTURES
struct tm{
int tmsec; seconds after the nminute (0, 61)
int tmmn; m nutes after the hour (0, 59)
int tm hour; hours since nidnight (0, 23)
i nt tm nday; day of the nonth (1, 31)
int tm.non; nont hs since January (0, 11)
int tmyear; years since 1900

28

SCIL_Image 1.4 — Reference Manual

int tmwday; days since Sunday (0, 6)
i nt tmyday; days since January 1 (0, 365)
int tmisdst; Dayl i ght Saving Time flag

b

tm_isdst is positive if Daylight Saving Timeisin effect, zero if not, and negative if
the information is not available.

RETURN VALUES
See the description of each of the functions above.

atexit

NAME
atexit - add program termination function

SYNOPSIS
#1 ncl ude <stdlib. h>

int atexit(void (*func)(void))

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

atexit() registers the function "func" to be called when the program terminates
normally; it returns non-zero if the registration cannot be made.

RETURN VALUES
0if successful
non-zero if the registration cannot be made.

SEE ALSO
exit _exit

29

SCIL_Image 1.4 — Reference Manual

atof
atoi
atol
strtod
strtol

strtoul

NAME
atof, atoi, atol, strtod, strtol, strtoul - convert ASCI| to numbers

SYNOPSIS
doubl e at of (char *nptr)

int atoi (char *nptr)

l ong atol (char *nptr)

doubl e strtod(char *s, char **endp)

long strtol (char *s, char **endp, int base)

unsi gned long strtoul (char *s, char **endp, int base)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

These functions convert a string pointed to by "nptr" to floating point, integer, and
long integer representation respectively. The first unrecognized character ends the
string.

atof () recognizes an optional string of tabs and spaces, then an optional sign, then a
string of digits optionally containing a decimal point, then an optional "e" or "E"
followed by an optionally signed integer.

atoi() and atol() recognize an optional string of tabs and spaces, then an optional sign,
then a string of digits.

strtod() converts the prefix of "s" to a double, ignoring leading white spaces. It stores
apointer to any unconverted suffix in "*endp" unless "endp" isNULL. If the answer
would overflow, HUGE_VAL is returned with the proper sign. If the answer would
underflow, zero isreturned. In either case "errno” is set to ERANGE.

30

SCIL_Image 1.4 — Reference Manual

strtol () converts the prefix of "s" to long, ignoring any leading white spaces. It stores a
pointer to any unconverted suffix in "*endp" unless "endp" isNULL. If "base" is
between 2 and 36, conversion is done assuming that the input is written in that base. If
baseis zero, the base is 8, 10, or 16; leading O implies octal and leading Ox or 0X
hexadecimal. Lettersin either case represent digits from 10 to base-1; aleading Ox or
OX is permitted in base 16. If the answer would overflow, LONG_MAX or

LONG_MIN isreturned, depending on the sign of the result, and errno is set to
ERANGE.

strtoul () behaves like strtol() except that the result is unsigned long and the return
value in case of overflow isULONG_MAX.

SEE ALSO
scanf

31

SCIL_Image 1.4 — Reference Manual

auto_display
don

doff

get_disp_mode
NAME
auto_display, don, doff, get_disp_mode - enabl e/disable automatic display of images

SYNOPSIS
#include "iminfra.h"

int auto_display(int node)
i nt don(void)

i nt doff(void)

i nt get_di sp_node(voi d)

DESCRIPTION

auto_display() turns on/off the automatic display of an image after each operation. If
"mode" is 1 the images are displayed immediately after an operation is performed.
"mode" is 0 disables displaying of images, even display_image() will not show the
image. Disabling the automatic display of imagesis most often used to hide
intermediate result of operations from the user’s view.

don() is equivaent to auto_display(1), doff() is equivalent to auto_display(0).
get_disp_mode() can be used to retrieve the current display mode.

NOTE

The display mode set by these functionsis a directive. It is up to the user-interface to
decide if the mode is honored.

RETURN VALUES

auto_display(), don() and doff() return the previous display mode. So if automatic
display was on, auto_display(0) would return 1.

get_disp_mode returns the current display mode, either O or 1.

32

SCIL_Image 1.4 — Reference Manual

auto_plane

NAME
auto_plane - enable/disable automatic display of next plane

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int auto_plane(int flag)

DESCRIPTION
auto_plane() enables/disables the default behavior upon pressing the right mouse
button inside an image window

When enabled, clicking the right mouse button inside an image that supports the
next_plane() function resultsin acall to that function. If the pointer is pressed in the
top of the window, the variable "num" (see next_plane()) getsavaue of "1", in the
middle avalue of "0", and in the bottom "-1".

RETURN VALUES
None

SEE ALSO
auto_point next_plane

33

SCIL_Image 1.4 — Reference Manual

auto_point

NAME
auto_point - enable/disable automatic information on image pointing

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int auto_point(int flag)

DESCRIPTION
auto_point() enables/disables the default behavior upon pressing the left mouse button
inside an in image window.

When auto_point is enabled, pressing the left mouse button inside an image-window
resultsin showing the X and Y position and the value of the pixel at that position. The
information is either displayed in a small floating window just below the mouse
cursor, or in asmall window just above the image.

The function call "point_im_display buf("", 1)" can be used to let the information be
printed in awindow just below the cursor. (Only practical with fast display systems).

The function call "point_im_display buf("", 0)" can be used to let the information be
printed in awindow just above the image (probably within the imagetitle). (Practical
on slower display systems).

It is recommended to disable the default behavior if AlO interactive object pointing is
used. See point_im() and point_object().

RETURN VALUES
None

SEE ALSO
auto_plane point_im_display _buf handle pim point_im point_object

34

SCIL_Image 1.4 — Reference Manual

average

NAME
average

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_average va

b to comp
NAME
b_to_comp - add buffered image to composite photo

SYNOPSIS
#i ncl ude "i mage. h"
#i ncl ude "silo. h"

int b to conp(COWPTR conptr, int sizex, int sizey, PIXEL *buf)

DESCRIPTION
comptr - Pointer to composite photo.
sizex - Part-image width.
sizey - Part-image height.
buf - Buffer containing the part-image.

Function to append a part-image from a buffer to the composite photo.

RETURN VALUES
The position where the part-image went to:
X-start-coordinate - function value modulo 2048.
y-start-coordinate - function value div 2048.

35

SCIL_Image 1.4 — Reference Manual

back project

NAME
back project - Convert positions to original coordinates

SYNOPSIS
#i ncl ude "grey_2dp. h"

i nt back_project (VAR OBJECT *input, VAR OBJECT *data, VAR OBJECT
*out put, int w dth)

DESCRIPTION
back project() converts coordinatesin the VAR_OBJECT "input" (1-dimensional),
which are results of maximum_cost_path(), into coordinatesin the original image
(the image that was input to command resample_perp()). The VAR_OBJECT "data’,
produced by resample perp(), is used for the backprojection. Thisvar_object contains
information about the way resample_perp() resampled the original image. The
resampled image isthe input to maximum_cost_path(). Its size in the first dimension
is specified in "width". It is needed for the conversion, because the positionsin
var_object "input" are relative to the left hand side of the resampled image.

The obtained original coordinates are stored in the 2-dimensional var_object
"output”, in the row corresponding to the element of "input".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_cost_path maximum_trace resample perp drawcurve

bangle

NAME
bangle

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See angle_detection

36

SCIL_Image 1.4 — Reference Manual

base name
dir_name

abs pathname

NAME
base_name, dir_name, abs_pathname - manipulate path-names

SYNOPSI S
#i ncl ude "support.h"

voi d base_nane(char *bname, const char *path)
voi d dir_name(char *dnane, const char *path)

voi d abs_pat hnane(char *path)

DESCRIPTION
base name() and dir_name() are used to isolate the file and directory part from a path-
name. base name() searches the given path-name "path" from the end for any directory
or drive separator. When it finds one, al text following that separator is assumed to be a
filename and is copied to the supplied buffer "bname". dir_name() also searches from
the end of "path” for adirectory or drive separator but on finding it, copiesthe part
before the separator to "dname". Both buffers "bname" and "dname" are assumed to be
of sufficient length to hold the returned name.

abs pathname() takes a (possibly relative) path-name "path” of afile and trandates that
name (in place) into afull path-name, starting from the root of the filing-system. The
length of the path-name (without the filename) should not exceed 256 bytes.

RETURN VALUES
None

baskel

NAME
baskel

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See anchor_skelet

37

SCIL_Image 1.4 — Reference Manual

bcdist

NAME
bcdist

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See constr_distance

bclose

NAME
bclose

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See closing3x3

bcont

NAME
bcont

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See contour

bcount

NAME
bcount

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_count

38

SCIL_Image 1.4 — Reference Manual

bdila

NAME
bdila

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See dilation3x3

bdist
NAME
bdist

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See distance

bdskel

NAME
bdskel

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seedist_skelet

bedge
NAME
bedge

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See set_border

39

SCIL_Image 1.4 — Reference Manual

bend

NAME
bend - obtain bending energy of object

SYNOPSIS
#include "im.aio.h"

doubl e bend(LI ST *Ii nk)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

bend() returns the bending energy of the object pointed to by "link" if this has
previously been measured.

RETURN VALUES
bending energy of object on success
0.0if link is not an object or if bending energy has not been measured

SEE ALSO
measure object freeman _meas object_shape meas object_dens meas

40

SCIL_Image 1.4 — Reference Manual

benke

NAME
benke - texture segmentation filter search algorithm

SYNOPSIS
#i ncl ude "improto.h"

int benke(l MAGE *patl, | MAGE *pat2, | MAGE *out, int naxiter, double
gai n, doubl e convergence, int width, int height, int depth)

DESCRIPTION
Searches for a separation filter between the patterns "pat1l" and "pat2". The search is
finished when the energy ratio between "pat1" and "pat2” for an iteration differs no
more than "convergence”, or when "maxiter” iterations are performed. The
convergence speed can be optimized with the "gain” value. The dimensions of the
filter are given by "width", "height" and "depth". If one has trained the filter on "pat1"
and "pat2", segmentation on images consisting of background texture "pat1" and
object texture "pat2" can be obtained by applying convolution(), squaring the image
and applying a smoothing (e.g. gauss) to measure local energy.

LITERATURE
K.K. Benke and D.R. Skinner, A direct search algorithm for global optimisation of
multivariate functions, The Australian Computer Journal, vol. 23, no. 2, 1991, 73-85.

EXAMPLE
assunes two different texture in image A and B, and a conposite imge
inC
i nt S;
benke AB D25 1.6 0.0005 55 1
s = (int)pix_abs_sumD
convolution CD A O s
mul _imAAB
gauss B B 5.0 5.0

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
convolution pix_abs sum filter_energy ratio

41

SCIL_Image 1.4 — Reference Manual

beros

NAME
beros

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See erosion3x3

bin_disp _colors

NAME
bin_disp colors - choose colors for binary images display

SYNOPSIS
#i ncl ude "di sp_p. h"

int bin_disp_colors(int fg, int bg)
DESCRIPTION
bin_disp colors() setsthe fore- and background color used for displaying al binary

images. By default the binary images are displayed using BLACK as the background
and RED asthe foreground color.

Only the eight primary colors are allowed, they are:

BLACK (0)
RED (1)
GREEN 2)
YELLOW (3)
BLUE (4)
MAGENTA (5)
CYAN (6)
WHITE (7
RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

42

SCIL_Image 1.4 — Reference Manual

binary to grey
NAME
binary_to _grey - convert abinary image to agrey value image

SYNOPSIS
#i ncl ude "bi n_2dp. h"

int binary_to_grey(I MAGE *in, | MAGE *out, int val)

DESCRIPTION
The"in" image (abinary_2d image) is converted to the (grey_2d) "out" image. This
means that for each "1" pixel in the binary image the corresponding pixel in the grey
imageisset to "val".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
binary_to plane plane to binary set_im_type

binary to plane

NAME
binary_to_plane - put a binary image in a bitplane of agrey image

SYNOPSIS
#i ncl ude "bin_ 2dp. h"

int binary_to_plane(l MAGE *in, | MAGE *out, int plane)

DESCRIPTION
The"in" image (abinary_2d image) is put in the specified bitplane of the (grey_2d)
"out" image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
binary to grey plane to binary set im_type

43

SCIL_Image 1.4 — Reference Manual

bit_ok
NAME
bit_ok - check if avalueisabinary value

SYNOPSIS
#include "iminfra.h"

int bit_ok(int value)

DESCRIPTION
"Vaue' must be either a"0" or a"1", if thisis not the case, an error is generated and
the following message is added to the error-stack:

Bit value [<value>] can only be (0 or 1)
RETURN VALUES

IE_ OK (1) if thevalueisOor 1,

IE_NOT_OK (0) otherwise

SEE ALSO
range ok edge ok

blabel

NAME
blabel

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See |abel

blife

NAME
blife

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seelife

SCIL_Image 1.4 — Reference Manual

bline

NAME
bline

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL-image routines.

See draw_line

blow

NAME
blow - image blow-up

SYNOPSIS
#i ncl ude "improto.h"

int blow(lIMAGE *in, |MACE *out, int hfact, int vfact, int dfact, int
adj ust)

DESCRIPTION
Blow image "in" with a horizontal factor "hfact" avertical factor "vfact" and a depth
factor "dfact" (3d only), by repeating pixels and store the result in "out”. The sizes of
the output image "out" will be adjusted to fit the result only when the parameter
"adjust” istrue (non-zero).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fblow reduce

bmaj
NAME
bmagj

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See majority

45

SCIL_Image 1.4 — Reference Manual

bopen
NAME
bopen

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See opening3x3

box_dimension

NAME
box_dimension - texture measure, "fractal” dimension

SYNOPSIS
#i ncl ude "i mage. h"

doubl e box_di nensi on(I MAGE *input, | MACE *mask, int fsizemn, int
fsizestep, int fsizemax)

DESCRIPTION
Reduce the image "input” to smaller resolutions, the reduction factors "filtersize"
ranges from "fsizemin" to "fsizemax" in steps of "fsizestep”. In each reduction step, a
block of "filtersize"*"filtersize" is reduced to one pixel in an intermediate image, this
pixel is given avalue equal to the difference between the minimum and maximum in
the original block, divided by "filtersize".

For each resolution (step) the average of the intermediate image is calcul ated.

Finally, a Least Square Fit is done through the log(filtersize) log(average) plot. The
angle of the plot is the texture measure.

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, thisis 0.

SEE ALSO
gld_mean gld entropy gld contrast gld asymmetry
glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge average dist_average

46

SCIL_Image 1.4 — Reference Manual

bperc
NAME
bperc

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See percentile

bprop
NAME
bprop

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See propagation

bpsr
NAME
bpsr

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See psremoval

bremh

NAME
bremh

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See remove_holes

a7

SCIL_Image 1.4 — Reference Manual

bril

stop_bril

NAME
bril, stop_bril - interactive part image processing

DESCRIPTION
Thisisan old function name, please use the function lens() and stop_lens()

Seelens

bsearch

gsort

NAME
bsearch - binary search of asorted table

gsort - quick sort

SYNOPSIS
voi d *bsearch(voi d *key, void *base, size t n, size_ t size, int
(*cnp) (void *key, void *datum))

void gsort(void *base, size t n, size t size, int (*cnmp)(void *, void

*))

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunction is:

bsearch() searches "base[0]" ... "base[n]" for an item that matches "*key". The
function "cmp" must return negative if its first argument (the search key) is less than
its second (a table entry), zero if equal, and positive if greater. Items in the array
"base" must be in ascending order. bsearch() returns a pointer to a matching item, or
NULL if none exists.

gsort() sorts in ascending order "n" elements of an array "base[0]" ... "base[n]" of
objects of size "size". The comparison function cmp is as in bsearch().

RETURN VALUES
bsearch returns a pointer to a matching item, or NULL if none exists
gsort returns nothing

48

SCIL_Image 1.4 — Reference Manual

bskbp

NAME
bskbp

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See skelpoints

bskel

NAME
bskel

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See hild_skelet

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See skelpoints

bsklp

NAME
bsklp

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See skelpoints

49

SCIL_Image 1.4 — Reference Manual

bsngl
NAME
bsngl

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See single pixels

buf from_silo

NAME
buf_from_silo - retrieve silo image into buffer

SYNOPSIS
#i ncl ude "silo. h"

int buf_fromsilo(SILOPTR siloptr, int silo_key, PIXEL *buf)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in the silo.
buf - Buffer for the data

Copiesthe silo_key image from the image-silo to a buffer.

NOTE
Thisisthe genera silo output function. Other routines like part_from_silo and
im_from_silo are using thisroutine to access the silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (seeim_error.h)

SEE ALSO
part_from silo im_from_silo

50

SCIL_Image 1.4 — Reference Manual

buf to silo
NAME
buf_to silo - store buffered imagein image-silo

SYNOPSIS
#i ncl ude "image. h"
#i ncl ude "silo. h"

int buf to silo(SILOPTR siloptr, int silo_key, PIXEL *buf,

int sizey)

DESCRIPTION
siloptr - Pointer to theimage-silo.
slo_key - Numerical entry in the silo.
buf - Buffer from which the datais taken.
Sizex - Virtual width of the image data.
sizey - Virtual height of the image data.

Transfers the image data from a buffer to an image-silo.

NOTE

i nt sizex,

Thisisthe genera silo input function. Other routineslike part_to_siloandim to_silo

are using this routine to access the silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
part to silo im to_slo

51

SCIL_Image 1.4 — Reference Manual

calc_greyvalue

RGB_clear_extra

NAME
calc_greyvalue- calculate the grey valuein aRGB color image

RGB_clear_extra- clear the extrafield in aRGB color image

SYNOPSIS
#i ncl ude "col or _2dp. h"

i nt cal c_greyval ue(l MAGE *i mage)

int RGB clear_extra(l MAGE *i mage)

DESCRIPTION
calc_greyvalue() takes the image "image" and when it is an RGB image the grey-value
of each pixel is stored in the 4th byte of the RBG structure (the "extra" field). The
RGB structureis defined in "image.h ™.

The grey-value is calculated according to:

greyval = 0.587 * green + 0.114 * blue + 0.299 * red

RGB_clear_extra() clears the fourth channel in a RGB color image "image”, the
"extra" field of
all pixelsisset to 0.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
convert

52

SCIL_Image 1.4 — Reference Manual

calibrated_density

NAME
calibrated density - object size and calibrated density measurement

SYNOPSIS
#i ncl ude "improto.h"

int calibrated density(l MAGE *label _im |IMAGE *grey_im char *fnaneg,
i nt append, VAR _OBJECT *tabl e)

DESCRIPTION
Measure objectsin theimage "grey_im" using the labeled image "label_im" asan
object indicator and write these parameters in atable on the console or in atext file.

For each object present int the image "label_im", the corresponding object pixelsin
theimage "grey_im" are used for the measurement. The measured parameters are:

* the coordinates of the object’s center of gravity
* the total calibrated object density. This density measurement can be
influenced by the parameter "table":

- if "table" is specified, the original pixel values of "grey im" are used
asanindex in the FLOAT table "table". The value which isfound at
the corresponding position is added to the total density for the
corresponding object.

- if "table" is not specified (NO_TABLE) the original pixel valueis
added to the total density for the corresponding object.

* the object size in number of pixels
* the ratio of the object density and the object size (average pixel value within
the object).

The measured parameters are written to the text file "fname" if specified, or printed on
the controlling terminal ("fname” = NULL). If "append” is set (=1) then the generated
table will be appended to the text file "fname" (if specified and existing). If "fname"
aready exists and "append" is not set (=0) then the file "fname" will be overwritten.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
density label shape

53

SCIL_Image 1.4 — Reference Manual

NAME

canny

canny - Canny edge detector

SYNOPSIS

#i ncl ude "i mproto.h"

int canny(l MAGE *in, |MAGE *out, |MAGE *Lx, | MACGE *Ly, double signs,
doubl e acc, int fwi dth, int nonmax)

DESCRIPTION

Performs edge detection based on the Canny algorithm.

The output image contains the magnitude of the gradient vector. In case "Lx" and "Ly"
are valid images, the magnitude of the gradient in the X- and Y -direction are stored
there. "LX" isthe gradient in the X-direction, obtained by calling:

fuzzy_derivative(in, Lx, sigma, sigma, 1, 0, acc, acc, fwidth,
fwi dt h)

"Ly" isthe gradient in the Y-direction, obtained by calling:

fuzzy_derivative(in, Ly, sigma, sigma, 0, 1, acc, acc, fwidth,
fwi dt h)

Optionally the non-maximal valuesin the direction of the gradient in a 3x3
neighborhood are suppressed ("nonmax" is 1). When the suppression is on, the
corresponding pixelsin the"Lx" and "Ly" image are cleared.

Since the magnitude of the gradient vector in the output image "out" is based on "Lx"
and "Ly" the true sigma of the Gaussian applied to the input image is equal to sgrt(2)
timesthe given "sigma’.

LITERATURE

"A Computational Approach to Edge Detection”, Canny, J., IEEE PAMI, vol.8, no.6,
pages 679-698, November 1986

RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO

gauss fuzzy derivative prewitt_diff roberts diff sobel diff

SCIL_Image 1.4 — Reference Manual

cdens

NAME
cdens

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See calibrated density

chain

NAME
chain - load a C source code file and execute

SYNOPSIS

chain <fil enane>

DESCRIPTION
Thefile"filename" isloaded in the interpreter of SCIL and the execution is started at
the main() function. If no main() function isfound, an error message will be
generated.

EXAMPLE
[C1] chain denp.c

SEE ALSO
load run

55

SCIL_Image 1.4 — Reference Manual

chaincode to image
NAME
chaincode to_image - convert chain-code list into labeled image

SYNOPSIS
#i ncl ude "grey_2dp. h"

i nt chai ncode_t o_i mage(VAR _OBJECT *i nput, |MAGE *image)

DESCRIPTION
Thelist of chain-code object representations given in the VAR_OBJECT "input” is
converted into objectsin alabeled image, "image". Thelist is assumed to be
structured like the output of image to_chaincode(). Asthe original grey-values of the
objectsare not in the list, the objects are given a grey-value equal to their sequence
number in the list, starting with 1.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
image _to_chaincode chaincode to xy put_xy into_image

56

SCIL_Image 1.4 — Reference Manual

chaincode to xy

NAME
chaincode to xy - convert chain-codes into coordinates

SYNOPSIS
#i ncl ude "grey_2dp. h"

i nt chai ncode_t o_xy(VAR OBJECT *input, VAR OBJECT *output, int
of fset)

DESCRIPTION
The chain-code string in "input” is converted intoaVAR_OBJECT "output" with
(x,y)-coordinate pairs. A chain-code string is aone dimensional VAR_OBJECT,
containing:

the x-coordinate of the first pixel, the y-coordinate of the first pixel, the
number of chain-codes used for description of the curve, the chain-codes (see
image_to_chaincode())

Thisisthe representation of one curve as generated by image to_chaincode(). The
list generated by image to_chaincode() in its output variable "output™ describes a set
of objects, each constituted of one or more curves. To convert a curve which is part of
an object, "offset” must be point to that curve. "offset” is a number-offset, NOT a
object-offset, NOR a curve-offset.

The offset to the first curve in "input” is 2:

the first number (offset 0) isthe object count in "input" and the second
number (offset 1) isthe curve count of the first object, so "offset = 2" points to
the start of the representation of the first curve of the first object.

The offset for other objects and curves depends upon the length of the preceding
curves (number of freeman codes), the number of curvesin preceding objects and the
number of preceding objects.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
image to_chaincode chaincode to image put_xy_into_image

57

SCIL_Image 1.4 — Reference Manual

change image size
NAME
change image size - change the dimensions of an image

SYNOPSIS
#i ncl ude "i mproto.h"

int change_i mage_size(I MACE *im int width, int height, int depth)

DESCRIPTION
change image _size() changes the dimensions of theimage'im". The old image
content islost by this operation except when the image already is of the given sizes.
The new image has dimensions "width"*"height"* " depth”.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_im_type

58

SCIL_Image 1.4 — Reference Manual

channel_bi_threshold

NAME
channel_bi_threshold - multi-channel bi-level threshold operation

SYNOPSIS
#i ncl ude "improto.h"

i nt channel _bi _threshol d(I MAGE *in, | MAGE *out, double mnl, double
max1l, double m n2, double nax2, double m n3, double max3, double
m n4, doubl e nmax4)

DESCRIPTION
channel_bi_threshold() performs a bi-level threshold operation on al channels of a
multi-channel image "in" and stores the result in the binary image "out". For each of
the channels (maximum of 4 channels), the pixels are compared with the range for
that channel ("minl" .. "max1" for thefirst channel etc.). Only if the values for each of
the channels of a pixel are inside the range (threshold values included) for that
channel, the corresponding pixel in the output imageis set to "1" (foreground pixel).
Otherwise the pixel in the output image is set to "0" (background pixel).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
bi_threshold

59

SCIL_Image 1.4 — Reference Manual

chdir

NAME
chdir - change current working directory

PLATFORM
UNIX, MS-Windows.

SYNOPSIS
int chdir(char *dirnane)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

dirname is the address of the pathname of a directory, terminated by a null byte. chdir
causes this directory to become the current working directory.

RETURN VALUES
Zeroisreturned if the directory is changed; -1 isreturned if the given nameis not that
of adirectory or is not readable by the user.

SEE ALSO
cd

60

SCIL_Image 1.4 — Reference Manual

check image integrity
NAME
check_image_integrity - check images on their integrity

SYNOPSIS

#include "im.infra.h"

int check inmage_integrity(int print)

DESCRIPTION
check_image_integrity() checks all images on the integrity and repairs them if
necessary. When "print" is set (=1), the function prints what it is doing and the
irregularitisit finds. If "print” is not set (=0), the function keeps silent abouts its
actions.

The function checks if the input and output field of the IMAGE structure point to the
same image type descriptor. If these are different, it will remove the output type
descriptor and throw away the image that was linked to the output. Next the output is
connected to the same descriptor as the input.

Thisis meant for situations where an operation is aborted after acall to pre_op(). In
such a situation the newly created output image became invalid because the operation
was aborted. The image is restored to the state it was in before the operation began.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pre_op

61

SCIL_Image 1.4 — Reference Manual

check_status

NAME
check_status - produce an aert box with awarning

SYNOPSIS
#i ncl ude "inscil.h"

voi d check _status(int status, char *str)
DESCRIPTION

If "status" is unequal to zero, this routine produces an alert box in the middle of the
screen containing information about what error occurred. " Status” is an error code as
they are defined in theinclude file "im_error.h". For each of the defined values a
default message will be printed. Also the global string variable "ErName"will be
printed. "ErName" contains the name of the function, check_status() was called from
or isclosely related to. If the string "str" is not empty it will also be printed in the alert
box.

This alert box can only be removed by pressing either of the two buttonsin the bottom
of the box. The buttons have only a different result when an interpreted program or a
macro file is being executed.

[Continue] allowsthe interpreter to carry on with the remainder of the interpeted
program or macro file.

[Stop] tells the interpreter to stop executing the program or macro file.

After one of the two buttons has been pressed, a call to check_image integrity() is
automatically done.

NOTE
Thisfunction is only present for compatibility with older version of SCIL_Image. As
of SCIL_Image 1.4 amore flexible error-handling mechanism has been implemented.
Please refer to the "User’s Manual™ for more information. Further usage of
check_status() is strongly discouraged.

RETURN VALUES
None

SEE ALSO
check_image_integrity

62

SCIL_Image 1.4 — Reference Manual

clear_im

clear_part_image
NAME
clear_im, clear_part_image - clear image

SYNOPSIS
#i ncl ude "improto.h"

int clear_im | MAGE *out)

int clear_part_inmage(l MAGE *im int sx, int sy, int sz, int wdth,
int height, int depth)

DESCRIPTION
clear_im() clearstheimage "out" (set all pixelsto 0).

clear_part_image clears the part of theimage "im" with dimensions "width" * "height"
* "depth" starting at the position ("sx", "sy", "sz").

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_int

63

SCIL_Image 1.4 — Reference Manual

clear_var_object
NAME
clear_var_object - clear the contents of avar_object

SYNOPSIS
#i ncl ude "objectsp. h"

i nt clear_var_object (VAR OBJECT *object)

DESCRIPTION
Clear the contents of avar_object "object" by setting its entire piece of memory to 0,
thus effectively setting all elements of the var_object to 0. The type and sizes of the
object are not altered.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object

SCIL_Image 1.4 — Reference Manual

clearerr
feof

ferror

NAME
clearerr, feof, ferror - error functions

SYNOPSIS
void clearerr(FILE *strean)

int feof (FILE *stream

int ferror(FILE *strean

DESCRIPTION

Thisfunction is an interface to the standard C function as implemented on the current

system. The functionality of thisfunctionis:

clearerr() clears the end-of-file and error indicators for "stream".
feof() returns non zero if the end-of-file indicator for "stream" is set.
ferror() returns non-zero if the error indicator for "stream" is set.

RETURN VALUES
See description of functions

65

SCIL_Image 1.4 — Reference Manual

clip
NAME
clip - image clipping

SYNOPSIS
#i ncl ude "i mproto.h"

int clip(lMACE *in, |MAGE *out, int |owest, int highest)

DESCRIPTION
Clip the pixel values from image "in" between the values "lowest" and "highest”, i.e.
substitute pixel values less than "lowest" by value "lowest” and greater than "highest"
by value "highest", and store the result in image "out". All other pixel-values are
copied directly from "in" to "out"

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
threshold contrast_stretch equalize tri_state threshold zlookup

close

NAME
close - close afile

SYNOPSIS
int close(int fildes)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

Given afile descriptor such as returned from an open() or creat() call, close() closes
the associated file. A close() of al filesis automatic on exit, but since there is alimit
on the number of open files per process, close() is necessary for a program which
deals with many files.

RETURN VALUES
0 isreturned if afileis closed;
-1 isreturned for an unknown file descriptor.

SEE ALSO
creat open

66

SCIL_Image 1.4 — Reference Manual

close_comp

NAME
close_comp - close composite photo.

SYNOPSIS
#i ncl ude "silo.h"

voi d cl ose_conmp(COVWPTR conptr)

DESCRIPTION
comptr - Pointer to composite photo.

Function to close a composite photo and returns allocated space to the system.

RETURN VALUES
None

close silo

NAME
close slo- closeasilofile

SYNOPSIS
#i ncl ude "silo.h"

int close_silo(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to an image-silo.

Closes an image-silo and returns allocated space to the system.

RETURN VALUES
Always|E OK (1)

67

SCIL_Image 1.4 — Reference Manual

closing3x3

NAME
closing3x3 - close

SYNOPSIS
#i ncl ude "i mproto.h"

int closing3x3(I MAGE *in, | MAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs a closing from image "in" to image "out", which is performed by "iter"
dilations from "in" to "out" followed by "iter" erosions from "out" to "out". The
operation deletes holes and background parts having a width |ess than two times the
specified number of iterations "iter".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
opening3x3 erosion3x3 dilation3x3

clut_by name

NAME
clut_by name- get pointer of clut by its name

SYNOPSIS
#include "iminfra.h"

CLUT *clut_by name(char *nane, int case_sensitive)

DESCRIPTION
If the pointer to an clut is not at hand you obtain that pointer by use of this function.
"name" isthe name of the clut, "case _sensitive" specifies whether a distinction
between lower case and upper case characters should to be made. If zero then no
distinction is made.

RETURN VALUES
Pointer the clut on success or
NULL if clut "name" does not exist

SEE ALSO
create clut destroy clut set clut

68

SCIL_Image 1.4 — Reference Manual

clut_ok

is _clut
NAME
clut_ok - check if the supplied pointer isavalid clut pointer

is_clut - tell if the supplied pointer is a clut (no warning)

SYNOPSIS
#include "im.infra.h"

int clut_ok(CLUT *clut)

int is_clut(CLUT *clut)

DESCRIPTION
The pointer "clut” is checked if it pointsto avalid clut. The linked list in which all the
cluts are present is scanned for the occurrence of "clut”. If no clut exist with this
pointer, an error is generated and the following message is added to the error-stack:

Non existing clut pointer.

The function is_clut() performs the same check and has the same return values but
does not generate an error. The function is meant for testing purposes.

RETURN VALUES
IE_OK (1) if the pointer isavalid clut.
IE_NOT_OK (0) if the pointer is not an clut.

SEE ALSO
create clut destroy clut set clut

69

SCIL_Image 1.4 — Reference Manual

cmp_pixels

NAME
cmp_pixels - image comparison

SYNOPSIS
#i ncl ude "i mproto.h"

int cnp_pixel s(I MAGE *inl, | MAGE *in2, VAR OBJECT *first)

DESCRIPTION
Compareimage "inl" and "in2" pixel by pixel and record the number of different
pixels. The address of the first different pixel is stored in the object "first”.

RETURN VALUES
the number of different pixels

cnvo

NAME
cnvo

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See convolution

70

SCIL_Image 1.4 — Reference Manual

color_get model _size
color_set_color_model
prefered color_model

set_color_model

NAME
color_get model_size - get the size of one pixel of a color-model

color_set_color_model - set the color model of acolor image
prefered _color_model - indicate the prefered color-model for an image
set_color_model - set the color model of acolor image

SYNOPSIS
#i ncl ude "col or 2dp. h"

int color_get nodel size(int nodel)
int color_set_color_nodel (I MACE *im int inout, int nodel)
int prefered_col or_nodel (I MAGE *im int inout, int nodel)

int set_color_nodel (I MAGE *im int nodel)

DESCRIPTION
color_get model_size() returns the size of one pixel of the color-model "model™. The
sizeisreturned in the number of bytes for one pixel. For alist of the currently support
color-models see convert_cmodel().

color_set_color_model() changes the color-model model of image "im" to "model”,
the "inout" parameter specifies whether to change the in-descriptor image or the out-
descriptor image. The difference between the in and out-descriptor image is explained
int the "User’s manual™ in the chapter "Programming with Image”. "inout” = 0 means
the in-descriptor; "inout” = 1 means the out-descriptor.

prefered _color_model() is used to signal to the pre_op() function that the color-model
for the output (color)-image "im" in the following pre_op() call should be
(COMPARE mode) or should become (ADJUST mode) "model”. The "inout"
parameter is equal to the "inout" parameter of color_set_color_model(). At the
moment however, changing the input-descriptor is not supported by pre _op(), so it
should always be set to "1".

set_color_model() also changes the color-model of image "in" to "model”, but it
always changes the in-descriptor image. This function should therefore not be used on
acolor-image after acall to pre_op().

NOTE

71

SCIL_Image 1.4 — Reference Manual

Both set_color_model() and color_set_color_model() only change the color-model of
the image, the data of the image is lost. Except when the image was already off the
correct model.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
convert_cmodel pre_op

com_dialog

NAME
com_dialog - activate dialog box from a command string

SYNOPSIS
#i ncl ude "nd_gen. h"

voi d com di al og(char *string)

DESCRIPTION
char *string - complete or partial command string

com_dialog() can be used to activate a dialog box by giving a complete or partial
command through the parameter string. The command must be present in the
command description file of SCIL. It can be used to activate dialog boxes from within
compiled or interpreted functions and allows dialog boxes with default values other
than specified in the command description file.

NOTE
The dialog boxes of SCIL_Image are "modeless’, this means that the com_dialog()
function returns almost immediately and the program continues to run. The dialog box
itself stays on screen until it is removed by means of user-interaction.

EXAMPLE
com di al og("readf cernet");

RETURN VALUES
None

72

SCIL_Image 1.4 — Reference Manual

compact_silo
NAME
compact_silo - removes gaps from an image-silo

SYNOPSIS
#i ncl ude "silo.h"

voi d conpact _sil o(SI LOPTR siloptr)

DESCRIPTION
sloptr - Pointer to an image-silo.

Removes gaps from an image-silo. Gaps can occur when images are deleted from the
silo. Imagesin the sile are shifted towards the beginning of the silo to close all existing

gaps.

RETURN VALUES
None

complex_im

make _complex_im
NAME
complex_im, make_complex_im - convert two floating images into a complex image

SYNOPSIS
#i ncl ude "improto.h"

int conplex_inm | MAGE *inl, | MAGE *in2, | MAGE *out)

i nt make_conpl ex_i m | MAGE *inl, |MAGE *in2, |MAGE *out)

DESCRIPTION
Store the elements of image "in1" in the real part of the complex image "out", and the
elements of image "in2" in the imaginary parts of the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
real_im imaginary_im

73

SCIL_Image 1.4 — Reference Manual

complx

NAME
complx

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See complex_im

compute clut

NAME
compute_clut - map the colors of anew lookup table to the system’s

SYNOPSIS
#i ncl ude "di sp_p. h"

int conmpute_clut(CLUT *clut)

DESCRIPTION
When rgb triplets are supplied in aclut by the user, this routine will calculate which
entry in the system’ s table is the best fit for each triplet. The entry will be stored in the
array "table" of the CLUT structure "clut". These values then will be directly send to
the display of the image when the clut is attached to a display window of an image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create clut set_clut

74

SCIL_Image 1.4 — Reference Manual

con_ok

NAME
con_ok - check if the connectivity parameter is correct.

SYNOPSIS
#include "im.infra.h"

int con_ok(int con)

DESCRIPTION
Various operations have a connectivity parameter that must have either of the values 4
or 8. Thisfunctions checksif "con" isindeed one of the two. In case "con" is not the
correct value an error is generated and the following message is added to the error-
stack:

Connectivity [<con>] can only take values 4 or 8

The special connectivity of first 8 connected and then 4 connected or vice versa,
which is also used in image processing is checked with the function "con6_ok™.

RETURN VALUES
IE_OK (1) if "con" is4 or 8
IE_NOT_OK (0) if "con™ has any other value

SEE ALSO
con6_ok

75

SCIL_Image 1.4 — Reference Manual

con6_ok

NAME
con6_ok - check connectivity parameter on 4, 8, 48 or 84

SYNOPSIS
#include "iminfra.h"

int con6_ok(int con)

DESCRIPTION
Various operations have a connectivity parameter that must have one of the values 4,
8, 48 or 84. Thisfunction checksif “con" isindeed one of these. In case "con" is not
one of the valid values, an error is generated and the following message is added to
the error-stack:

Connectivity [<con>] can only take val ues 4,8, 48, 84
The connectivity of just 4 or 8 is checked with the function "con_ok".
RETURN VALUES
IE OK (1) if "con" is4, 8, 48 or 84
IE_NOT_OK (0) if "con" isany other value

SEE ALSO
con_ok

conjugate im
NAME
conjugate_im - the conjugate value of each image element

SYNOPSIS
#i ncl ude "i mproto.h"

int conjugate_i m(I MAGE *in, | MAGE *out)

DESCRIPTION
For each complex element at+bi of "in" compute the conjugate a-bi and store the result
in"out"

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

76

SCIL_Image 1.4 — Reference Manual

conjugate mul_im
NAME
conjugate_mul_im - complex conjugate multiplication

SYNOPSIS
#i ncl ude "improto.h"

int conjugate_mul _i m(I MAGE *inl, |MAGE *in2, |MAGE *out)

DESCRIPTION
For each complex element a+bi of "in1" and c+di of "in2", calculate the conjugate
multiplication (a-bi) * (c+di) and store the result in "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
conjugate_im mul_im

77

SCIL_Image 1.4 — Reference Manual

constr_distance

NAME
constr_distance - constrained distance transformation

SYNOPSIS
#i ncl ude "i mproto.h"

int constr_distance(l MAGE *in, | MAGE *constraint, |MAGE *out, int
hstep, int dstep int kstep, int b)

DESCRIPTION
Apply aconstrained distance transformation to the binary image "in" and store the
resulting distance values into the corresponding pixels of the grey valued image "out".
The constrained distance transform is a special variant of distance transformation (see
"distance"). To the transformation, conditions are added, as specified by means of the
grey valuesimage "constraint”. Non-zero points within the image "constrained" are
interpreted as preset values for the distance transform values of the corresponding
pixels, regardless of the result of the distance transform itself.
Distances between two points are locally increased by the preset pixels, if the preset
pixels are on the shortest path between the two points.
Thisisaway of introducing obstacles. an infinite preset value (in practice alarge
integer, say 32000) acts as an absol ute obstacle, and the nearest shortest path will be
searched.

The way the distances between the pixels are defined is specified by the parameters
"hstep”, "dstep” and "kstep"”.For the description of these parameters and the "b"
parameter, see distance()

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
distance

78

SCIL_Image 1.4 — Reference Manual

contour

NAME
contour - contour detection

SYNOPSIS
#i ncl ude "improto.h"

int contour (I MAGE *in, | MAGE *out, int edge, int conn, int obj_bkg)

DESCRIPTION
Detects the object contoursin image "in" and stores the result in image "out". The
operation is executed by removing all the object pixels that do not belong to the outer
contour of the objects, while preserving the connectivity "con" between all the
resulting contour pixels of one object. "obj _bkg" specifies whether the contour of the
object is determined on or the contour of the background. When "edge” is set (=1), the
border around the images is set before the operation.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

contrast_stretch

NAME
contrast_stretch - contrast stretch

SYNOPSIS
#i ncl ude "improto.h"

int contrast_stretch(I MAGE *in, | MAGE *out, double I|perc, double
hperc)

DESCRIPTION
Linear contrast stretching based upon the histogram of the pixel valuesin theimage
"Iin". The histogram of pixel valuesinimage "in" is calculated. Then two pixel values
(lowval and highval) are assigned to the cumulative histogram percentiles "Iperc" and
"hperc". Now the pixelsin "in" arelinearly rescaled is such away that lowval
corresponds with the smallest (0) and highval with the largest possible value (255).
Theresult is stored in "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold equalize tri_state threshold lookup

79

SCIL_Image 1.4 — Reference Manual

convert

NAME
convert - convert an image into another image type

SYNOPSIS

#include "iminfra.h"
int convert (I MAGE *in, |MAGE *out, int out_type)

DESCRIPTION
Convert an image into another type. If "out_type" is not specified then the type of the
image "out" isthe type the data of image "in" is converted into. If "out_type" is
specified, image "out" will become of type "out_type" and again the datais converted
into that type. The available types (seeimage.h) are:

GREY 2D
BINARY 2D
FLOAT 2D
COMPLEX_2D
GREY_3D
BINARY 3D
FLOAT 3D
COMPLEX_3D
COLOR_2D
COLOR_3D
LABEL_2D
LABEL_3D

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

80

SCIL_Image 1.4 — Reference Manual

convert_cmodel

NAME
convert_cmodel - convert a color-image into another color-model

SYNOPSIS
#i ncl ude "col or 2dp. h"

int convert_cnodel (I MAGE *in, | MAGE *out, cnodel)

DESCRIPTION
convert_cmodel() converts the data of a color-image "im" into another color-model
"cmodel” inimage "out". The currently implemented color-models are (see also

image.h):
model model name in Image value
RGB RGB_T 1
CIEXYZ XYZ_T 2
CIE L*a*b* CIELAB_T 3
HSI HSI T 4
CMYK CMYK_T 5

Specifying 0 for the color-model, means taking the color-model of the output image
(if it isaready a color-image otherwise RGB_T istaken).

Currently the conversion of the color-models are implemented as:

RGB to XY Z:
| X| | mlm2m3]| | R]
| Y| =| 1 22 ne3 | | G|
| Zz| | m81 n82 B3 | | B |

for m11 .. m33 see set_matrix_type()

RGB to CMYK
C=1.0- R
M=1.0 - G
Y=1.0- B
K=mnmn C Y, K)
C=C- K
M= M- K
Y=Y- K
RGB to HSI:
Il =(R+G+B)/3.0
S=1.0- 3.0* minimuml R, G B)/(R+ G+ B)
if G> B
H = acos((0.5*(R-G+tR-B))/sqrt ((RO*(R O +(R-B)*(GB)))
el se
H= 2*Pl- acos((0.5*(R-GtR-B))/sqrt ((RO*(RG+(RB)*(GB)))
XYZ to L*a*b*:
L* = cbrt (116 * (Y/Yn))-16 for Y/ Yn > 0.008856
L* = 903.3 * (Y/Yn) for Y/ Yn <= 0.008856

81

SCIL_Image 1.4 — Reference Manual

a* = 500 * [F(X/ Xn)-F(Y/Yn)]

b* = 200 * [F(Y/Yn)-F(2Z/ zZn)]

for any the ratios of X/ Xn, Y/Yn, Z/Zn in a* and b* :

F(X/ Xn) = cbrt (X Xn) for X/ Xn > 0.008856

F(X/Xn) = 7.787 * (X/Xn) + 16/116 for X/ Xn <= 0.008856
RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO

color_set_color_model set_color_model

convolution

NAME

convolution - convolution

SYNOPSIS

#i ncl ude "i mproto.h"

int convolution(l MAGE *in, | MAGE *conv, |MAGE *out, int addval, int
di vval)

DESCRIPTION
Apply aone- or two-dimensional convolution filtering to image "in" and store the
result in image "out". The coefficients for the convolution should be specified by
image "conv". The dimensions of the convolution mask are given by the dimensions
of image "conv". Thismask is not necessarily square. Optionally the result may be
rescaled: the constant "addval” is added to the convolution result, after which it is
divided by "divval".

RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

82

SCIL_Image 1.4 — Reference Manual

cooccur

NAME
cooccur - calculate co-occurrence matrix

SYNOPSIS
#i ncl ude "improto.h"

i nt cooccur (I MAGE *in, |IMAGE *out, int xdist, int ydist)

DESCRIPTION
Calculates the co-occurrence matrix (second order statistics) of the input image on
distance "xdist" and "ydist", and stores the result in "out". The input image greylevel
range must be between 0 and 255.

LITERATURE
R.M. Haralick, K. Shanmugan and I. Dinstein, Textural features for image
classification, IEEE trans. SMC, vol. 3, 1973, 610-621.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

copy_channel

NAME
copy_channel - copy a channel from one image to another

SYNOPSIS
#include "im.infra.h"

i nt copy_channel (I MACE *in, | MACE *out, int inchan, int outchan)

DESCRIPTION
copy_channel() copies the image data from a channel from image "in" to achannel in
image "out". The numbers of the channels are specified by "inchan” for the input
image and "outchan” for the output image. Channels are numbered from 0 and all
image types have at |east one channel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
split_channels join_channels

83

SCIL_Image 1.4 — Reference Manual

copy_clut

NAME
copy_clut - copy the contest of a CLUT to another CLUT

SYNOPSIS
#include "iminfra.h"

CLUT *copy_cl ut (CLUT *source, CLUT *dest, char *nane)

DESCRIPTION
Copies the contents of the CLUT "source" to the CLUT "dest". If "dest" isaNULL
pointer, anew CLUT is created with the name "name".

RETURN VALUES
Pointer to the destination CLUT or
NULL if: -"source" isnot aCLUT
-"dest" isnot NULL and not aclut
-No memory available to create anew clut or invalid name given.
SEE ALSO
create clut
copy_im
NAME

copy_im - copy image

SYNOPSIS
#i ncl ude "improto.h"

int copy_i m I MAGE *in, | MAGE *out)

DESCRIPTION
Copy image "in" to image "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_part_image

SCIL_Image 1.4 — Reference Manual

copy_object
NAME
copy_object - copy object from source to destination image

SYNOPSIS
#i ncl ude "im.aio. h"

int copy_object(I MAGE *src_im |MAGE *dst_im LIST *Iink)

DESCRIPTION
src_im- Source image with labeled objects
dst im- Destination image
link - Link pointing to object

copy_object() copies the labeled object from the source image to the same coordinate
in the destination image.

EXAMPLE
To copy objects pointed at with the nouse to another inage:

#i ncl ude "image. h "
#i ncl ude "im.aio. h"
LI ST *I, *o;

readfil e("cernet", a, 0,0);
t hreshol d(a, b, 128);
i nvert _inm(b, b);
I =1list_label(b,c,8,0);
set _imtype(d, LABEL_2D);
while (o = point_object(c,!|))
{ copy_object(c,d,0); display_inmge(d); }
I =rmlist(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
g_copy_object g_copy_object to

85

SCIL_Image 1.4 — Reference Manual

copy_part_image

copy_masked part

NAME
copy_part_image - copy arectangular part of an image to another image

copy_masked part - copy an arbitrary shaped part of an image to another image

SYNOPSIS
#i ncl ude "improto.h"

int copy_part_inmage(l MAGE *in, |MAGE *out, int sx, int sy, int sz,
int width, int height, int depth, int dx, int dy, int dz)

i nt copy_masked _part (I MAGE *in, BOOL_MASK *nask, | MAGE *out, int sx,
int sy, int sz, int width, int height, int depth, int dx, int dy, int
dz, int clear)

DESCRIPTION
copy_part_image copies a part with dimensions "width" * "height" * "depth" from
source position ("sx","sy","sz") inimage "in" to the destination position
("dx","dy","dz") in image "out"

copy_masked part uses a Boolean mask "mask” to copy a part with dimensions
"width"*"height"*"depth" from source position ("sx","sy","sz") inimage "in" to the
destination position ("dx","dy","dz") in image "out". The bits which are set in the
mask indicate which pixels from the rectangle of the source image must be copied to
the destination image. The flag "clear” is added to indicate what to do with the pixels
in the rectangle of the destination that are not in the Boolean mask. If "clear" is set to
0, the pixels are left untouched, otherwise they are cleared.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_im warp_image

86

SCIL_Image 1.4 — Reference Manual

covariance

NAME
covariance - calculate the covariance between two images

SYNOPSIS
#i ncl ude "improto.h"

doubl e covariance(l MAGE *inl, | MAGE *in2)

DESCRIPTION

Calculate the covariance between the two images "inl" and "in2" and returns the

result. The covariance is defined as;
covar(a,b) = MEAN(inl*in2) - MEAN(inl)*MEAN(i n2)

RETURN VALUES
The covariance.

covmatrix

NAME
covmatrix - calculate covariance matrix of an image

SYNOPSIS
#i ncl ude "improto.h"

int covmatrix(lMAGE *in, VAR OBJECT *out, int width, int height)

DESCRIPTION
Calculate the covariance matrix of image "in" for window size "width" by
"height" and stores the result in var_object "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
eigenvectors eigenfilters

87

SCIL_Image 1.4 — Reference Manual

covplanematrix

NAME
covplanematrix - calculate covariance matrix of an image

SYNOPSIS
#i ncl ude "i mproto.h"

int covplanematrix(l MAGE *in, VAR OBJECT *out)

DESCRIPTION
Calculate the covariance matrix between the planes of 3D image "in" and stores the
result in var_object "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
im_eigenvectors im_principle_component covariance

cr

NAME
cr - obtain contour ratio of object

SYNOPSIS
#include "im.aio.h"

doubl e cr (LI ST *1i nk)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

cr() returns the contour ratio of the object pointed to by "link" if this has previously
been measured.

RETURN VALUES
contour ratio of object on succes
0.0if link is not an object or if contour ratio has not been measured

SEE ALSO
measure object shape meas object_dens meas

88

SCIL_Image 1.4 — Reference Manual

NAME

creat

creat - create anew file

SYNOPSIS

int creat(char *name, int node)

DESCRIPTION

Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

creat() creates anew file or prepares to rewrite an existing file called "name", given as
the address of a null-terminated string. If the file did not exigt, it is given mode
"mode", as modified by the process's mode mask (see umask(2)). Also see chmod(2)
for the construction of the mode argument.

If thefile did exist, its mode and owner remain unchanged but it is truncated to O
length.

Thefileis opened for writing only (not reading), and its file descriptor is returned.

The mode given is arbitrary; it needs not allow writing. This feature is used by
programs which deal with temporary files of fixed names. The creation is done with a
mode that forbids writing. Then if a second instance of the program attempts a creat,
an error is returned and the program knows that the name is unusable for the moment.

The system scheduling algorithm does not make this a true uninterruptible operation,
and arace condition may develop if creat is done at precisely the same time by two
different processes.

RETURN VALUES

-1 isreturned if:
aneeded directory is not searchable;
the file does not exist and the directory in which it isto be created is not
writable;
the file does exist and is unwritable;
thefileisadirectory;
there are already too many files open.

SEE ALSO

write close open

89

SCIL_Image 1.4 — Reference Manual

NAME

create clut

create clut - create a color lookup table

SYNOPSIS

#include "iminfra.h"

CLUT *create clut(int type

DESCRIPTION
Creates a color lookup table (clut) that can be attached to an image. "name" isthe
name that can be assigned to the table.

char *nane)

Inthearrays"r", "g" and "b" of aCLUT (see below), RGB triplets for 256 colors can
be specified. The "table" array is intended to be used by the user-interface to store the
colormap entry that best represents the RGB triplet. Image does not fill or interpret
these "table" valuesin any way.

The newly created table can be "prefilled" with values of often used lookup tables.
The "type" parameter specifies filling method, possible values are:

EMPTY _LUT.T
BLUE LUT_ T
GREEN LUT.T
CYAN LUT.T
RED LUT T
MAGENTA_LUT T
YELLOW LUT T
GREY LUT.T
LABEL_LUT T
MULTI_LUT T

OVERLAY LUT 1 T
OVERLAY LUT 2 T

OVERLAY LUT 8 T

r, g and b filled with nulls

b filled linear from O to 255

g filled linear from O to 255

b and g filled linear from O to 255

r filled linear from O to 255

r and b filled linear from O to 255

r and g filled linear from O to 255

r, g and b filled linear from O to 255
simulates the label display

the three primary colors are turned on for each entry
number that has a specified bit set (see set_rgb_bits())
entries that have bit 1 set are displayed in red

like previous but now bit 2

like previous but now bit 8

When aclut is created, it will be entered in alist for accounting. So always create a

clut using this routine.

STRUCTURES
A clut is defined by the follow ng structure:

typedef struct clut_t {

char

clut _nane[| M_NAMELEN] ;

unsi gned char r[256];
unsi gned char g[256];
unsi gned char b[256];

} CLUT,

90

unsi gned | ong tabl e[256] ;

SCIL_Image 1.4 — Reference Manual

RETURN VALUES

The pointer to the newly allocated clut structure on success.
NULL onfailure.

SEE ALSO
set_clut set rgb_bits destroy clut

create display
NAME
create_display - create a display window for an image without one

SYNOPSIS
#i ncl ude "di sp_p. h"

int create_display(IMAGE *im int xp, int yp, int xs, int ys)

DESCRIPTION
This functions creates a display window for image "im" at position "xp", "yp" with
sizes"xs', "ys'. Only if the image did not have a display window attached, a new
window will be made. Image that are created using create_image() do not have a

display attached and can be given one by this function.

Images created with the function make _image() already have a display window. The
result of create_image() followed by create display() isidentical to the result of
make_image().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
create_image make image

91

SCIL_Image 1.4 — Reference Manual

create histogram
destroy_histogram
histo _data

copy_histogram

NAME
create_histogram - create a histogram object

destroy_histogram - destroy a histogram object
histo_data - get the histogram data from an image
copy_histogram - copy the data of one histogram to another

SYNOPSIS
#include "iminfra.h"
#i ncl ude "i mproto.h"

H STOGRAM *creat e_hi st ogram(char *name, int chans, int dins, int
diml, int din2, int dinB, int dimd, int dinb)

i nt destroy_histogranm H STOGRAM * hi st 0)

H STOGRAM *hi st o_dat a(l MAGE *i nmage, HI STOGRAM *hi sto, int bins,
doubl e m nrange, doubl e maxrange)

Hl STOGRAM * copy_hi st ogr an{ H STOGRAM *sr chi st o, H STOGRAM *dest hi st 0)

DESCRIPTION
The histogram objects are capabl e of describing and containing multidimensional
histograms. Along with the actual histogram data, the median value of the lowest and
highest bin as well as the width of the bins can be stored. Thus fully describing the
histogram data.

create_histogram() creates an empty histogram object. The string "name” is the name
of the histogram by which it islisted in the dialog boxes. "chans", "dims" and "dim1"
to "dim5" determine the sizes of the histogram. "chans' being the number of channels,
"dims" the number of dimensions of the histogram and "dim1" to "dim5" the sizes of
each dimension.

destroy _histogram() destroys the histogram object pointed to by the pointer "histo".

92

SCIL_Image 1.4 — Reference Manual

histo_data() calculates the histogram of image "image" and stores it in the histogram
object "histo". If "histo" isNULL, anew histogram object is created with the name
"Histogram_of ..." (... being the name of the image). The number of bins used for the
histogram is determined by "bins'. "bins" is 0 means that the routine will choose a
value for the number of bins. For the integer based image types grey, binary and color,
this value will be equal to the range of the image data. For the floating point image
type float, it is set at 256. "minrange” and "maxrange” determine the range of the
image data to be put in the histogram. If "minrange” is equal to "maxrange”, the actual
range of the image data will be taken.

copy_histogram() copies the data of histogram "srchisto” to the histogram "desthisto”
thereby adjusting the sizes of "desthisto” to match those of "srchisto”.

EXAMPLE
hi sto_data A New 0 128.0 254.0

will calculate the histogram for the datain image "A" that lies between 128 and 254,
the histogram will be 127 bins (254-128 + 1) in the case of image "A" being an integer
typed image.

hi sto_data A "histol" 256 0.0 0.0

will calculate the histogram of all pixelsinimage"A" using 256 bins, the resulting
histogram is named "histol".

STRUCTURES
A histogram is defined by the following structure:

typedef struct histogramt {
voi d *publi sh;
unsi gned | ong *hdat a;
unsi gned int nr_chans;
unsi gned int nr_dins;
unsi gned int dinms[V_O MAX DIM;
char nane[| M_NAMELEN] ;
char *conmment;
doubl e | bi n_nmedi an[V_O MAX DI M ;
doubl e hbi n_nedi an[V_O MAX DI M ;
doubl e bin_width[V_.O MAX DIM
void *futl,;
voi d *fut2;
void *fut3;
voi d *fut4,;
} H STOGRAM

V_O_MAXDI Misdefined inimage.h (currently set at 5)
RETURN VALUES
create_histogram: pointer to the histogram or
NULL if creation failed.

destroy_histogram: IE_OK (1) on destruction or
I[E_NOT_OK (0) if the pointer was not a histogram.

93

SCIL_Image 1.4 — Reference Manual

SEE ALSO
histogram_to_image histogram to var_object image_to_histogram
histogram by name histogram ok is_histogram
histogram_comment dump_histogram list_histograms show_histogram_info

create image
NAME
create_image - create an image without a display window

SYNOPSIS
#i ncl ude "i mproto.h"

| MAGE *create_i mage(char *name, int type, int lenx, int leny, int
| enz)

DESCRIPTION
create_image() creates an image of the specified type, with the specified name and of
the specified dimensions. If "name" is equal to the name of an aready existing image,
that existing image is first destroyed.

RETURN VALUES
A pointer to the new image or
NULL on failure

SEE ALSO
destroy_image

94

SCIL_Image 1.4 — Reference Manual

create live window

create diff window

NAME
create live window - view/grab images from a framegrabber

create_diff _window - view/grab images from a framegrabber using a reference image

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "i mage. h"

void create_ |ive_w ndow | MAGE *i nage)

void create_diff_w ndow(| MAGE *i nage)

DESCRIPTION
create live window() (=LiveGrabber in the menu) is an interactive tools that allows
to view "live-video" from the framegrabber and grab images. If an image is grabbed, it
isstored in the image "image". The tool offers several buttons and dlider to control
zooming and panning and some grabber settings.

The create_diff window() isamost identical to the create live window() toal. It
additionally offers the possibility to first grab areference image and then view the
video from the grabber as the difference between the actual image and that reference
image.

RETURN VALUES
None

SEE ALSO
fg_grab image

create silo

NAME
create silo - create an image-silo

SYNOPSIS
#i ncl ude "silo.h"

SI LOPTR create_silo(char *sil onane)

DESCRIPTION
siloname - filename for the image-silo.

Creates afileto hold an image-silo. Itsreturn value is a handle that must be passed to all
silo-1/0 routines.

95

SCIL_Image 1.4 — Reference Manual

Atfer creating the silo, it writes"MAXRECORD" (see silo.h) empty entriesto thisfile
toinitidizethe silo. Finaly it calls open_silo() to open thisfile.

RETURN VALUES
Pointer to the newly created silo.
NULL if an error has occurred.

cst

NAME
cst

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See contrast_stretch

96

SCIL_Image 1.4 — Reference Manual

cube view
NAME

cube_view - interactive viewer on binary 3d images

SYNOPSIS

#i ncl ude "inscil.h"

int cube_view(l| MAGE *in,

i nteraction)

DESCRIPTION

| MAGE *out,

i nt plane,

int view,

i nt

Displays abinary 3D image in a pseudo-three-dimensional view on a bitplane using a
simple back-to-front algorithm using a 2D grey value image to approximate a voxel.

The imageisfilled with 15 pixels to approximate 1 voxel in this form:

Where u isthe upper side, f isthe front and sisthe right side of the voxel. parameters:

*in - binary 3D image
*out - output image
plane - plane number to view

view - viewing direction having value (1,2 or 3).

lisfront view looking in z direction at xy planes
2 isview on theright side of the imagein x direction at zy planes.

3isview to thetop side of theimage iny direction at Xz planes.
interaction - 1isyes, 0isno

if interaction isyes, one may step through the back-to-front display of the planes by
means of pointing in the upper/lower part of the image and pushing the right button,
or using the keyboard pressing "f" for forward of "b" for backward. Pressing return

ends the interaction mode.

The display rendering starts at the highest "plane" value and builds up with
back-to-front displaying of planes until the entered plane number to view.

RETURN VALUES
None

97

SCIL_Image 1.4 — Reference Manual

decrement_im

NAME
decrement_im - decrement image pixels

SYNOPSIS
#i ncl ude "i mproto.h"

int decrenent_i m(I MAGE *in, | MACGE *out)

DESCRIPTION
Decrement each element of image "in" and store the result in the corresponding
element of image "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
increment_im eval

98

SCIL_Image 1.4 — Reference Manual

default_images

NAME
default_images - make the four images A, B, C and D

SYNOPSIS
#i ncl ude "inscil.h"

voi d default _imges(int nunber)

DESCRIPTION
Theimages A, B, C and D, are created by thisfunction at start-up. Also the two
default var_objects "obj1" and "obj2" are created by this function. The function is
called from the initialization file "scilinit". The position of the four images can be
influenced by the set_start pos() (also in the scilinit file). set_start_pos() must be
called before the function "default_images".

The parameter "number” (max. valueis 4), specifies the number of images to create.

When the call to default_images() is removed from the "scilinit" file no images and
var_objects will be created at start-up.

This function must be called after "initimage"

RETURN VALUES
None

SEE ALSO
set_start_pos

99

SCIL_Image 1.4 — Reference Manual

defuz

bernsen_threshold

NAME
defuz - sharpening filter for grey value images using grey value morphology

bernsen_threshold - thresholding using grey value morphology

SYNOPSIS
#i ncl ude "improto.h"

int defuz(l MAGE *in, |IMACGE *out, int filt_x, int filt_y, double thr)

int bernsen_threshol d(I MACE *in, |IMAGE *out, int filt_x, int filt_y,
int max_diff)

DESCRIPTION
defuz() performs a sharpening operation on the grey value image "in" and stores the
result in the grey value image "out". The image is scanned with a moving window
with sizes "filt_x" and "filt_y". For each position, both minimum and maximum value
are determined. The values of the minimum, maximum and center pixel value are
denoted by MIN, MAX and C resp. The value of the last parameter "thr" is denoted by
THR. The new value of the center pixel is calculated as follows:

if(C<MN+THR* (MAX - MN))

C=MN
el se
C = MAX;

The last parameter THR indicates a bias towards either the local minimum or the local
maximum value. In case THR == 0.5 there is no bias towards a direction. This means
that if THR == 0.5 the center value is substituted by either min or max depending on
whichever of thetwo isclosest in value. If THR has value O the result isidentical to a
local maximum operation and if THR has value 1 the result is that of alocal minimum
filter. For non-linear sharpening the value of 0.5 is recommended for THR.

The bernsen_threshold() operation is comparable to defuz() without bias. However,
instead of replacing the value of the center pixel by the local minimum or maximum,
this pixel isassigned 0 or 1. The result of this operation will become very noisy in
areas where there is no distinct difference between minimum and maximum.
Therefore, with the last parameter "max_diff" the user can indicate the minimum
required difference between the local minimum and maximum. If the differenceis
less, the center pixel isassigned 1 by default.

LITERATURE
H.P. Kramer and J.B. Bruckner, Iterations of a non-linear transformation for
enhancement of digital images, Pattern Recognition, vol.7, 1975, 53-58

J. Bernsen, Dynamic thresholding of grey-level images, 8th IAPR International
Conference on Pattern Recognition (Paris), 1986, 1251-1255

100

SCIL_Image 1.4 — Reference Manual

RETURN VALUES
OK (1) on success
NOT_OK (0) on failure (seeim_error.h)

dens

NAME
dens

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See density

101

SCIL_Image 1.4 — Reference Manual

dens limits

NAME
dens limits- set the limits for optical densitometric measurement of AlO

SYNOPSIS
int dens_limts(int mninmm int nmaxi num double max_opt _dens)

DESCRIPTION
dens_limits() can be used to set three global definition used in object densitometric
measurement (object_dens meas()) of the AIO package. "minimum", "maximum" and
"max_opt_dens' are the variables that can be set. The relation between those variables
and densitometric measurement is explained below. Legal values for "minimum" and
"maximum” range from 0 to 32767, also "maximum™ must be greater than

"minimum". "max_opt_dens" can range from 0.0 to 4.5.

Transmission

Transmission (T) is defined as the proportion of incident light which passes through
absorbent material, usually expressed as a percentage.

where T isthe transmission, "l0" istheincident light and "1" isthe transmitted light,
see also figure. Sometimesiit is used as transmittance in which case it is represented as
afraction.

RN
| (transnmitted light)

| (incident light)

Light is absorbed progressively as it passes through a partly absorbent substance, if a
single thickness reduces light intensity to half its original value, a double thickness
will not absorb al light, but will reduce it to 25 percent.

Optical Density

Optical density (O.D.) is defined as the common base logarithm of the ratio of
incident to transmitted light:

OD = - loglO(Transnittance)

102

SCIL_Image 1.4 — Reference Manual

In theory the optical density ranges from O (at 100% transmission) until infinity (for
zero transmittance or completely opaque objects). In a practical setup infinity will not
be reached. The densitometric measurements require calibration that means two
intensity values (minimum, maximum) are mapped on the lower and upper limit of
the optical density according to atable. Asthe intensity ranges from "min_intensity”
to "max_intensity" the optical density is calculated according:

(I - mn_intensity) * (1.0 - 10.0) - MAXOD

(max_intensity - min_intensity)

Thisformulareaches MAXOD at | = min_intensity and equalsto zero if | =
max_intensity, it has a perfect logarithmic behavior. The default for MAXOD is 2.55,
which isasensible value for camera systems where adynamic range from 0to 255is
expected limiting the optical density inideal circumstancesto 2.40. In the case of
having 16 useful bits the upperlimit of optical density is4.5.

The minimum intensity value and the maximum intensity values may be used to
calibrate the measurements. For instance thisis useful to correct for glare or straylight
originating from the optical system.

LITERATURE
TV Microscopical Image Analysis for Accurate DNA Quantification in Pathology.
Ph.D. Thesis T.K. ten Kate

RETURN VALUES
IE_OK (1) on success
I[E_NOT_OK (0) when values are out of range

SEE ALSO
object_dens meas measure

103

SCIL_Image 1.4 — Reference Manual

density
NAME
density - object size and density measurement

SYNOPSIS
#i ncl ude "i mproto.h"

int density(l MAGE *l abel _im | MACE *grey_im char *fnane, int append)

DESCRIPTION
Measure objectsin theimage "grey_im" using the labeled image "label_im" asan
object indicator and write these parameters in atable on the console or in atext file.
For each object present int the image "label_im", the corresponding object pixelsin
the image "grey_im" are used for the measurement. The measured parameters are:
- the coordinates of the object’s center of gravity
- the total object density (the sum of the pixel values within the object)
- the object size in number of pixels
- ratio of the object density and the object size (average pixel value within the

object).

The measured parameters are written to the text file "fname" if specified, or printed on
the controlling terminal ("fname" = NULL). If "append” is set (=1) then the generated
table will be appended to the text file "fname" (if specified and existing). If "fname"
already exists and "append" is not set (=0) then the file "fname" will be overwritten.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
calibrated density label shape measure list_label aio |abel

104

SCIL_Image 1.4 — Reference Manual

destroy_clut

NAME
destroy_clut - destroy a color lookup table

SYNOPSIS
#include "im.infra.h"

int destroy_clut(CLUT *clut)

DESCRIPTION
The specified clut is thrown away after checking that it is not one of the standard cluts
that were defined at start up. These can not be thrown away by this function.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create clut

destroy_image
NAME
destroy_image - destroy an image

SYNOPSIS
#i ncl ude "improto.h"

i nt destroy_i mage(l| MAGE *in)

DESCRIPTION
Destroy_image destroys the specified image. Also the possibly connected display
window is destroyed

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create_image

105

SCIL_Image 1.4 — Reference Manual

destroy var_object

NAME
destroy var_object - destroy avar_object

SYNOPSIS
#i ncl ude "objectsp. h"

i nt destroy_var_object (VAR OBJECT *obj)

DESCRIPTION
"destroy_var_object" destroys the var_object specified by the pointer "obj".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object var_object by name show_var_object_info

106

SCIL_Image 1.4 — Reference Manual

dialog_options
NAME
dialog_options - change behaviour of the dialog generaor.

SYNOPSIS
#i ncl ude "nd_gen. h"

int dialog_options(int nfew, int nsome, int nmany, int nhuge, int
f feedb, int s feedb, int mfeedb, int h_ feedb, int g feedb, int
with_arrows, int with_range)

DESCRIPTION
dialog_options() can be used to change the form of the dialog box generated by the
dialog generator. "nfew", "nsome", "nmany" and "nhuge" define the limits of the
ranges for the representation of numbers and choices. The representation can be
modified by the other arguments. "f_feedb" specifies the representation of choices
when the number of choicesislessthan or equal to "nfew", "'s feedb" the range from
"nfew" up to "nsome", "m_feedb", the range from "nsome" up to "nmany"”, "h_feedb"
the range from "nmany" up to "nhuge" and "g_feedb" the range from "nhuge"
upwards.

"f _feedb" and"s feedb" can be one of MARKED (1), INVERTED (2) or CYCLE (3)
"m_feedb" can be either INVERTED (2) or CYCLE (3)

"h_feedb" can be oneof SLIDER (4), NUMBER (5) or TEXT (6)

"g_feedb" can be either NUMBER (5) or TEXT (6)

- MARKED is represented by buttons with the value (numeric or symbolic) next to
the button.

- INVERTED is represented by buttons with the value on the button and all buttons
are shown at the same time.

- CYCLE isrepresented by buttons with the value on the button, but the buttons are
shown one at the time.

- SLIDER is represented by a dlider bar.

- NUMBER is represented by a number.

- TEXT isrepresented by text.

The method for presenting and changing values in each of the ranges may differ
dlighty per windowing system. Some windowing systems offer other (more convenient
ways to represent a (range of) numbers/choices.

RETURN VALUES
None

107

SCIL_Image 1.4 — Reference Manual

dialog_stay up
NAME

dialog_stay up - remove the dialog box automatically
PLATFORM

Unix.
SYNOPSIS

#i ncl ude "nd_gen. h"

int dialog stay up(int flag)

DESCRIPTION
The dialog box that is popped up if amenu item is selected, remains on screen until it
isexplicitly removed using the CANCEL button. This function is a switch to set this
behaviour. If the dialog box is to be removed automatically, then "flag" must be "0"
(zero). "flag" set to "1" will result in the dialog box stay on the screen

RETURN VALUES
None

dialog wm

NAME
dialog_wm - prevent dialog box movement in X-windows

SYNOPSIS
#i ncl ude "nd_gen. h"

int dialog_wn(int number)

DESCRIPTION
Since some X window managers decorate windows with stuff like titlebars, thereby
displacing the dialog box each timeit is mapped to the screen, the dialog_ wm
function can be used to correct for this behaviour. "number" is the number of pixels
used for the correction of the vertical displacement

EXAMPLE
An example with the TWM window manager. To correct for the 20 pixel
displacement place the following in the scilinit file:

di al og_wn(20);

RETURN VALUES
None

108

SCIL_Image 1.4 — Reference Manual

different_ok

NAME
different_ok - check if two values differ from each other

SYNOPSIS
#include "im.infra.h"

int different_ok(int vall, int val2, char *text)

DESCRIPTION
Thevalues"vall" and "val2" are matched and if they are equal an error is generated
and the following message is added to the error-stack:

<text> [<val 2>, <val 2>] nust be different

RETURN VALUES
IE_OK (1) if the values differ
IE_NOT_OK (0) if the values are equal

109

SCIL_Image 1.4 — Reference Manual

dilation3x3

NAME
dilation3x3 - dilation

SYNOPSIS
#i ncl ude "i mproto.h"

int dilation3x3(I MAGE *in, |MAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs adilation ("expansion") on image "in" and stores the result in image "out".
For each pixel in"in" a 3* 3 neighborhood is scanned for non-object pixels (pixels
with value 0). If the central pixel isanon-object pixel and at least one of the pixelsin
the neighborhood is an object pixel, the central pixel becomes an object pixel (vaue
1).
The exact definition of the neighborhood depends upon the connectivity argument
"con". Connectivity can be 4 or 8 connected, but also 48 or 84 can be specified,
allowing for alternating connectivity on each iteration to approach a 6 connected
neighborhood. With the "bound" argument the pixels around the edge of the image are
either taken as 1 or O.

The effect of this operation is expansion of the objects with (an) extra contour(s). The
number of contours added depends upon "iter".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
erosion3x3 arbit_dilation arbit_erosion

110

SCIL_Image 1.4 — Reference Manual

dir_maximum
NAME
dir_maximum - view maximum pixel value along an axis

SYNOPSIS
#i ncl ude "improto.h"

int dir_maxi num(I| MAGE *in, | MAGE *out, int dir)

DESCRIPTION
dir_maximum() calcul ates the maximum pixel value on each scanline along an axis of
the 3D image "in" and stores these in the 2D image "out". The axis on which the
function operatesis determined by "dir" (X =1,Y =2,Z = 3).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sfp z_planes pix_maxval

111

SCIL_Image 1.4 — Reference Manual

disp circle
disp_draw_mode
disp_draw value
disp _oval

disp rect
disp_srect
disp_text

disp text font

disp_vector

NAME
disp circle- draw acircle

disp_draw_mode - set the drawing mode
disp_draw_value - set the drawing value
disp_ova - draw an oval

disp_rect - draw arectangle

disp_srect - draw afilled rectangle
disp_text - draw some text

disp_text font - set text font

disp_vector - draw aline

SYNOPSIS
#i ncl ude "di sp_p. h"

int disp_circle(IMAGE *Iim int x, int y, int r)
i nt di sp_draw _node(int node)
int disp_draw val ue(int val ue)

int disp_oval (IMAGE *im int x, int y, int xr,

int disp_rect(IMAGE *im int x, int y, int xsize,

int ysize)

int disp_srect(IMAGE *im int x, int y, int xsize,

int ysize)

int disp_text(IMAGE *im int x, int y, char *str)

112

SCIL_Image 1.4 — Reference Manual

int disp_text_font(char *font)

int disp_vector(IMAGE *im int x1, int yl, int x2, int y2)

DESCRIPTION
Graphical routines which effect the display of images only.

These routines can be used to draw graphical primitivesin the display window of an
image. Theimage itself is not altered by the drawing operation. The origin (0,0) of the
specified coordinate system is the upper left corner of the image. The positive x-axis
is going to the right and the positive y-axisis going down.

disp _circledrawsacircle of radius"r" at coordinates ("x","y") in the specified image.

disp_draw_mode sets the drawing mode:

1 is the copy-mode
2 is the or-mode
3 is the xor-mode.

disp_draw_value sets the color to be used when drawing.

disp_oval draws an oval with the specified radius in X-direction "rx" and radiusin Y -
direction "ry" at ("x","y") in the specified image.

disp _rect draws arectangle of "xsize"*"ysize" at ("x","y") in the specified image.

disp_srect draws afilled rectangle of "xsize"*"ysize" at ("x","y") in the specified
image.

disp _text drawsstring "str at ("x","y") in the specified image.

disp _text font determines which font is to be used when writing to the display of an
image with disp_text

disp_vector draws a straight line from ("x1","y1") to ("x2","y2") in the specified
image.

RETURN VALUES
IE_OK (1)

113

SCIL_Image 1.4 — Reference Manual

display image
NAME
display_image - display an image

SYNOPSIS
#i ncl ude "inscil.h"

int display_i mage(l MACE *im

DESCRIPTION
display_image() displays the specified image "im", provided the image has a display
window attached, and the display mode is on. The display mode can be
enabled/disabled with auto_display().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
part_image display make image destroy image auto_display set display _mode
set_display_dlice next_plane auto_plane

114

SCIL_Image 1.4 — Reference Manual

dist_average
NAME
dist_average - texture measure, average of distance transform

SYNOPSIS
#i ncl ude "improto.h"

doubl e di st _average(l MAGE *i nput, | MAGE *nask, double threshold, int
backgr ound)

DESCRIPTION
Threshold the image, do distance transform and average the image.

If "background” is nonzero, the thresholded image is inverted before doing the
distance transform.

The averaging of theimage is only done in the areas where the bit-image "mask" has
vaue 1.

RETURN VALUES
The texture value is returned. In case of error, thisisO.

SEE ALSO
box_dimension gld mean gld_entropy gld_contrast gld_asymmetry
glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge average dist_average

115

SCIL_Image 1.4 — Reference Manual

dist_skelet
NAME
dist_skelet - skeleton based on distance transform

SYNOPSIS
#i ncl ude "i mproto.h"

int dist_skelet(IMAGE *in, |MAGE *out, int angle, int hstep, int
dstep, int action)

DESCRIPTION
Calculate a skeleton from the distance transformed image "in" and store the resulting
skeleton in the binary image "out". The skeleton is defined as a set of connected, one
pixel thick arcs, lying midway between the object boundaries and being a topol ogical
retraction with the same connectivity as the original object. The skeleton represents
the morphologic ("shape™) features of the original object.

"angle" defines the sensitivity of the skeleton for small bulges in the object contour
causing the algorithm to create branches. It specifies the maximum angle for
circumscribing arcs of a bulge which will generate a branch in the skeleton. A small
value allows only sharp corners in the object’s contour to generate branches. A large
value specifies that even smooth corners may generate branches. "angle" is specified
in units of 45 degrees. "hstep” and "dstep™ are the step-sizes that were used to generate
the distance transformation image.

The parameter "action” defines how far the skeleton is processed. The value
"interact_points' (0) specifiesthat only the medial axisisto be calculated, this
skeleton may not be connected. The value "thick" (1) specifies that a connected
skeleton is to be generated from the medial axis, this skeleton can be more than one
pixel thick at places. The value "thinned" (2) also performs thinning of the completely
connected skeleton to a one pixel thick skeleton.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
distance holt_skelet hild_skelet

116

SCIL_Image 1.4 — Reference Manual

distance

NAME
distance - distance transformation

SYNOPSIS
#i ncl ude "improto.h"

int distance(l MAGE *in, | MAGE *out, int hstep, int dstep, int kstep,
i nt edge)

DESCRIPTION
Applies a distance transformation to the binary image "in" and stores the resulting
distance values in the corresponding pixels of the grey valued image "out". A distance
transformation replaces each pixel of an object with an estimate of its shortest
distance to the background (the distance to the nearest background pixel). The way the
distance between pixelsis defined is specified by "hstep”, "dstep” and "kstep”. "hstep”
defines the distance between two pixels that are horizontally or vertically connected.
"dstep” defines the distance between pixels that are diagonally connected. "kstep” is
the distance between two pixelsthat are a"knight’s move" apart. "edge" specifies if
the objects extends beyond the border of the image (On=1) or not (Off=0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dist_skelet

117

SCIL_Image 1.4 — Reference Manual

dither

NAME
dither - graphic dotting of agrey valued image

SYNOPSIS
#i ncl ude "i mproto.h"

int dither(I MAGE *in, | MAGE *out)

DESCRIPTION
Replace the pixelsin agrey _2d image "in" by ablack (0) and white (255) dot pattern,
with adensity equivalent to the original grey value and store the result in image "out".
The effect of this operation is a pseudo-grey value image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pseudo greduce

118

SCIL_Image 1.4 — Reference Manual

do alert
NAME

do_alert - system independent alert routine
SYNOPSIS

#i ncl ude "nd_gen. h"

int do_alert(char *strl, ...)
DESCRIPTION

do_alert isthe system independent aert routine of scil.

do_alert generates an aert box with messages and buttons. It forces the user to
respond by selecting one of the buttons, since all other program activity is stopped.

do_alert can be called with up to 15 strings of messages, each of which are printed on
aseparate line. Any message line may also contain newline’\n’ characters.

Thelast string argument to do_alert must be a button specification string of the form
"[BUTL]...[BUTN]". The maximum number of buttonsis 8.

do_alert returns with the selected button number. Buttons are numbered 1 .. 8.
NOTE

In the MS-Windows version a more versatile alert mechanism is provided through the
function typed_alert().

EXAMPLE
i nt choice
choice = do_alert("This is an alert\n\n WOAN n\n",

"Nice isn't it", "[Yes it is][No it is not]");
i f(choice == 1)

printf("l agree\n");
el se

printf("l don't think I like you very nmuch\n");

RETURN VALUES
The number of the selected button. Buttons are numbered 1 .. 8.

119

SCIL_Image 1.4 — Reference Manual

dots

NAME
dots

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See dither

draw line

NAME
draw_line - draw alinein aimage

SYNOPSIS
#i ncl ude "i mproto.h"

int draw_|ine(l MAGE *inmage, int x1, int yl, int x2, int y2, int
val ue)

DESCRIPTION
Draw a straight line segment of value "value" into the image "image" from the pixel
with coordinates "x1","y1" to the pixel with coordinates"x2","y2".

When drawing more than one line, it is recommended to turn of the automatic display
of the images (see auto_display()), draw the lines and turn on the display of the
images again and display the image to view the result.

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) on failure

120

SCIL_Image 1.4 — Reference Manual

drawcurve

NAME
drawcurve - draw a piece-wise linear curve

SYNOPSIS
#i ncl ude "grey_2dp. h"

int drawcurve(VAR _OBJECT *input, |MAGE *output, int value, int
snmooth, int circ)

DESCRIPTION
A piece-wise linear curve is drawn, based on the series of coordinate pairs specified
in the 2-dimensional var_object "input". Each row of "input" contains the coordinates
of one point. A number of adjacent points, specified by the value of "smooth", are
averaged and the mean value replaces the considered point. (That is, internally; the
data in"input" are not changed). The coordinates of the smoothed set are then
converted to the nearest integral pixel position and the points successively connected
by straight lines. The obtained curve isdrawn into the image "output” using "value"
as drawing value.

If "circ" isYes (1), the pixel corresponding with the last coordinate pair in "input" will
be connected to the pixel corresponding with the first coordinate pair in "input”. Also
for the smoothing operation these points are considered as adjacent.

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) on failure

SEE ALSO
maximum_trace maximum_cost_path resample perp back project

121

SCIL_Image 1.4 — Reference Manual

dump_var_object
NAME
dump_var_object - show all data of avar_object (in ASCII)

SYNOPSIS
#i ncl ude "objectsp. h"

int dunp_var_obj ect (VAR OBJECT *object, char *filenanme, int number)

DESCRIPTION
The data of var_object "object” is dumped in ASCII to either the terminal or afile. If a
name is specified for the file ("filename") then the data will be stored in afile, else, if
"filename" isaNULL pointer or an empty string, the data will be dumped on the
terminal. The last parameter "number" specifies the number of values that will be
printed on asingle line (default = 1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object read var_object write var_object

122

SCIL_Image 1.4 — Reference Manual

dyn_link

dyn_unlink
NAME
dyn_link - add a shared library at runtime

dyn_unlink - remove a shared library at runtime

PLATFORM
UNIX (Sun, SGI, HP)

SYNOPSIS
int dyn_link(char *library, int verbose)

int dyn_unlink(char *library, int verbose)

DESCRIPTION
dyn_link() adds the shared library file "library” runtime to SCIL_Image. This adds
functionality while the program is running. dyn_unlink() removes the library file
"library" again from the running program. If the "verbose" flag is on (1), the names of
the functions that are being linked/unlinked are listed. If "verbose" is off (0) nothing is
listed.

In SCIL_Image, the number of libraries that can be linked dynamically islimited to 20
and the maximum number of functions/variables that can be accessed from each
library is 128.

To link ashared library to SCIL_Image you must have two files with the same name
in one directory, the shared library itself (".s0" extension) and a Command
Description File (".cdf" extension). In the CDFfile the functionsin the library are
described in SCIL_Image format. (See chapters 3 & 5 of the User Manual). Without a
CDF-file, ashared library cannot be linked into SCIL_Image.

SCIL_Image will search for these filesfirst in the current directory and if it does not
find them there, it will search in the directories specified in the environment variable
SCIL_DYN.

Creating a shared library is dependent upon the platform and operating system used.
For a detailed description, read the manual pages of the C compiler (cc) and the linker
(Id) on your platform.

RETURN VALUES
OK (1) on success
NOT_OK (0) on failure

123

SCIL_Image 1.4 — Reference Manual

eccentr

NAME
eccentr - obtain eccentricity of object

SYNOPSIS
#include "im.aio.h"

doubl e eccentr (LI ST *1i nk)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

eccentr returns the eccentricity of the object pointed to by "link™ if this has previously
been measured.

RETURN VALUES
eccentricity of object on success
0.0if link is not an object or if eccentricity has not been measured

SEE ALSO
measure object shape meas object_dens meas

124

SCIL_Image 1.4 — Reference Manual

ecvt
fovt

govt

NAME
ecvt, fcvt, gevt - output conversion

SYNOPSIS
char *ecvt(double value, int ndigit, int *decpt, int *sign)

char *fcvt(double value, int ndigit, int *decpt, int *sign)

char *gcvt(double value, int ndigit, char *buf)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

ecvt() converts "value" to a null-terminated string of ndigit ASCII digits and returns a
pointer thereto. The position of the decimal point relative to the beginning of the
string is stored indirectly through "decpt” (negative means to the left of the returned
digits). If the sign of the result is negative, the word pointed to by "sign" is non-zero,
otherwise it is zero. The low-order digit is rounded.

fevt() isidentical to ecvt(), except that the correct digit has been rounded.

gevt() converts "value" to a null-terminated ASCII string in "buf" and returns a pointer
to "buf". It attempts to produce "ndigit" significant digitsin E format, ready for
printing. Trailing zeros may be suppressed.

SEE ALSO
printf

BUGS
The return values point to static data whose content is overwritten by each call.

125

SCIL_Image 1.4 — Reference Manual

edge average
NAME
edge_average - texture measure, how much edgeisin the image

SYNOPSIS
#i ncl ude "i mproto.h"

doubl e edge_average(l MAGE *input, |IMAGE *nask, int filtersize, int
usegr ad)

DESCRIPTION
Do alow-pass filter of theimage "input", using a "filtersize"*"filtersize" uniform filter
which is performed twice. Subtract that image from the original. In that image, the
zero crossings are detected.

If "usegrad" is nonzero, the "input” image isfiltered by a gradient filter, a'so using a
"filtersize" kernel. The average of the gradient values AT THE ZERO CROSSINGS is
the texture value.

If "usegrad" is zero, the number of skeleton segmentsin the zero crossingsimage is
counted. This number, divided by the number of pixelsin the zero crossing image, is
used as the texture value.

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, thisis 0.

SEE ALSO
box_dimension gld_mean gld_entropy gld_contrast gld asymmetry
glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge average dist_average
uniform zcross

126

SCIL_Image 1.4 — Reference Manual

edge object
NAME
edge _object - check whether object touches edge of image

SYNOPSIS
#i ncl ude "im.aio. h"

i nt edge_object (I MAGE *i mage, LIST *link)

DESCRIPTION
image - Pointer to image with objects
link - Link pointing to object

edge_object() determines whether the object "link" touches the edges of the image
"Image’.

RETURN VALUES
1 if the object touches the edge
0 if it does not touch the edge
Negative error status on failure (see im_error.h)

edge ok
NAME
edge ok - check if the edge bit parameter is correct

SYNOPSIS
#include "im.infra.h"

i nt edge_ok(int bound)

DESCRIPTION
A lot of operations for binary images have a parameter to specify whether to set the
border pixels or not, this function checksto seeif that parameter isin the correct
range of 0..1. If it isnot an error is generated and the following message is added to
the error-stack:

Edge bits parameter [<bound>] out of range (0..1).
RETURN VALUES
IE_OK (1) if "bound" is either "0" or "1"
I[E_NOT_OK (0) if "bound" is any other value

SEE ALSO
range ok

127

SCIL_Image 1.4 — Reference Manual

edge preserve
NAME
edge preserve - edge preserving smoothing (general)

SYNOPSIS
#i ncl ude "i mproto.h"

int edge_preserve(l MAGCE *inl, |MAGE *in2, |MAGE *out, int filtx, int
filty)

DESCRIPTION
Combine alow pass filtered image "inl1" with a variance filtered image "in2" to
perform an edge preserving smoothing and store the result in image "out".
A low pass filter replaces each pixel of itsinput image by some average of the pixel
values in a neighborhood. An exampleis the uniform filter.
A variance filter replaces each pixel of itsinput image by some estimate of the
variance of the pixel valuesin a neighborhood. For example, a minimum filter
subtracted from a maximum filter. To make sense, the low pass filtered image "inl"
and the variance filtered image "in2" should derive from the same original image. The
resulting image "out" is a smoothed, edges preserved, version of this original image.
The operation uses a window "filtx"*"filty". This same neighborhood should have
been used in the filters producing image "inl" and "in2".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
kuwahara

edgps
NAME
edgps

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See edge preserve

128

SCIL_Image 1.4 — Reference Manual

eigen_segmentation

NAME
eigen_segmentation - segments a textured image by eigenfilters

SYNOPSIS
#i ncl ude "improto.h"

i nt eigen_segnentation(l MAGE *in, |IMAGE *out, int size, int nr,
doubl e scal e)

DESCRIPTION
Performs a segmentation on a textured image by means of eigenfilters. The size of the
square eigenfilters are given by "size". After calculation of "size"*"size" number of
eigenfilters, the last "nr" ones are taken for convolution. Local energy calculation is
performed (squaring the image and gaussian smoothing with "scale") and a non-linear
transform is applied (In (1+x)). From the resulting feature set the largest principle
component is obtained by means of Karhunen-Loeve transform. The final result is
stored inimage "out".

LITERATURE
M. Unser and M. Eden, Nonlinear operators for improving texture segmentation based
on features extracted by spatial filtering, |EEE Transactions on Systems, Man, and
Cybernetics, vol. 20, 1990, 804-815.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
eigenfilters convolution mul_im vgauss In_im karhunen_loeve

129

SCIL_Image 1.4 — Reference Manual

eigenfilters

NAME
eigenfilters - calculate eigenfilters of an image

SYNOPSIS
#i ncl ude "i mproto.h"

int eigenfilters(IMAGE *in, | MAGE *out, int width, int height)

DESCRIPTION
Performs an eigenvector analysis on the covariance matrix of "in" and stores the
resulting vectorsin de (3D) image "out". The covariance matrix is calculated for
window size "width" by "height". One can segment a textured image by calculating
the eigenfilters and applying for each filter (2D-plane of "out") convolution() and
calculating the local energy (squaring the image and smoothing).

EXAMPLE
readf texttank
eigenfilters AB 3 3
apply_spatial _bank ABC1 -1
muil _imCCC
vgauss CC 5.0 5.0 1.0 .99 .99 .99 -1 -1 1
sgqgrt_imCC
kar hunen_loeve CD O O

LITERATURE
F. Ade, Characterization of textures by eigenfilters, Signal Processing, vol. 5, 1983,
451-457.

M. Unser, On the approximation of the discrete Karhunen-L oeve transform for
stationary processes, Signal Processing, vol. 7, 1984, 231-249.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
covmatrix eigen_segmentation

130

SCIL_Image 1.4 — Reference Manual

eigenvectors

NAME
eigenvectors - calculate the eigenvectors and eigenvalues of an object

SYNOPSIS
#i ncl ude "improto.h"

i nt eigenvectors(VAR OBJECT *obj, VAR OBJECT *vecs, VAR OBJECT *val s)

DESCRIPTION
Performs an eigenvector analysis on the two-dimensional input "obj" and returns the
eigenvectorsin "vecs' (2D) and the eigenvaluesin "val" (1D). If NULL isgiven for
"vecs' or "vas', the corresponding datais not stored.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
covmatrix covplanematrix

entropy_threshold

NAME
entropy_threshold - thresholding using the entropy method.

SYNOPSIS
#i ncl ude "improto.h"

int entropy_threshol d(1 MAGE *in, | MAGE *out, double fraction)

DESCRIPTION
Perform thresholding operation on the grey value image "in" and store the result in the
binary image "out". The threshold-level is determined by the entropy method. This
method is based upon an entropy measure in the grey level histogram of the image.
The algorithm divides the histogram into two parts, minimizing the interdependence
between the two parts, measured in terms of entropy.
The grey level that performs this division will be the threshold value.
As acondition, the user may specify the "fraction” of the image that minimally should
be assigned to be a foreground object. The algorithm then searches for the minimal
entropy within this constraint.

RETURN VALUES
The used threshold value.

SEE ALSO
threshold isodata threshold

131

SCIL_Image 1.4 — Reference Manual

eql
NAME
eql

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See equalize

equal_images
NAME
equal_images - test if contents of two imagesis equal

SYNOPSIS
#i ncl ude <i m proto. h>

int equal _i mages(I MAGE *indl, |MACE *inR)

DESCRIPTION
equal_images() testsif theimages"im1" and "im2" are the same, that is, if the type
and sizes of the images are same, and if so, if the contents of the imagesisequal. It
returns TRUE (1) if the images are equal and FALSE (0) if they are not.

RETURN VALUES
TRUE (1) if the image contentsis equal
FALSE (0) if theimage contentsis not equal
Negative error status on failure (see im_error.h)

132

SCIL_Image 1.4 — Reference Manual

equalize

NAME
equalize - histogram equalization

SYNOPSIS
#i ncl ude "improto.h"

int equalize(l MAGE *in, | MAGE *out)

DESCRIPTION
Change the values of the pixelsinimage "in" is such away that the histogram is
equalized, i.e. the histogram of "out" is as uniform (flat) as possible.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold contrast_stretch tri_state threshold lookup

equivalent_im
NAME
equivalent_im - pixel equivalence of images

SYNOPSIS
#i ncl ude "improto.h"

int equivalent_inmIMAGE *inl, | MAGE *in2, | MAGE *out)

DESCRIPTION
Set the value of apixel in "out" according to the equivalence of the corresponding
pixelsin"inl" and "in2".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval .

RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

133

SCIL_Image 1.4 — Reference Manual

eqv
NAME
eqv

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See equivalent_im

erosion3x3

NAME
erosion3x3 - erosion

SYNOPSIS
#i ncl ude "i mproto.h"

int erosion3x3(I MAGE *in, | MAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs an erosion ("shrinking") on the binary image "in" and stores the result in
"out". For each pixel in"in" a 3* 3 neighborhood is scanned for object pixels (pixels
with value 1). If the central pixel isan object pixel and at |east one of the pixelsin the
neighborhood is an non-object pixel, the central pixel is deleted as an object pixe (it
becomes a background pixel, value 0). The exact definition of the neighborhood
depends upon the connectivity argument "con".
Connectivity can be 4 or 8 connected, but also 48 or 84 can be specified, alowing for
alternating connectivity on each iteration to approach a 6 connected neighborhood.
With the "bound" argument the pixels around the edge of the image are either taken as
1lorO.

The effect of this operation is the deletion of the object contours. The number of
contours deleted depends upon "iter".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dilation3x3 arbit_erosion

134

SCIL_Image 1.4 — Reference Manual

err_report
NAME
err_report - report on last error in silo package

SYNOPSIS
#i ncl ude "silo.h"

void err_report(void)

DESCRIPTION
The silo package keepstrack of errorsin the variable"silo_err”. Thisfunction givesa
description of the last error that did occur. If no error has occurred, nothing will happen.

The error convention used in the silo packageis asfollows:
A positive (non zero) number is returned if no error occurred.

Zeroisreturned if apointer error has occurred.
A negative number is returned on all other errors.

RETURN VALUES
None

135

SCIL_Image 1.4 — Reference Manual

NAME

eval

eval - dynamic grey/float valued image expression evaluation

SYNOPSIS

#i ncl ude "i mproto.h"

i nt eval (char *expression, int border)

DESCRIPTION

The command eval () enables the user to do simple operations on images, using avery
intuitive syntax. The images may be either GREY 2D or FLOAT _2D or any
combination of these two types. The type of the resulting image is the type the right-
hand of the assignment evaluates to.

For example to add the images A and B pixel wise and store the result in C the
command:

eval "C=A+B"

isall it takes. Addition of imagesis not limited to two input images, the command:

eval "D=A+B+C'

can also be used. Images can even be used more than once in the same command:
eval "A=(B+C)*B"

The operandsin the eval() expression are not restricted to images, constants can also
be used. The next command shows how to calculate the non-linear Laplace of the
original image A.

grey_erosion AB5 5
grey _dilation AC5 5
eval "D=-B+2*A-C

Constants can be of type integer (octal, decimal or hexadecimal) or floating point.

Example: (examples are given in asimplified notation)

oct al eval a=021
deci mal eval a=17

hexadeci nal eval a=0x11
fl oating point eval a=17.0

eval a=1.7el

Although the calculations done with eval() are slower than using compiled routines
the advantages are obvious:
1) grey-valued intermediate results are calculated in 32 bit precision, only the
final result is converted to 16 bits, and
ii) the ssimple syntax makes it very easy to use.

136

SCIL_Image 1.4 — Reference Manual

Not only pixel wise expressions are supported in the eval () command, it isalso
possible to define neighborhood operations using image indexes. The indexes can also
be expressions. Expressions can be up to, plus or minus, the size of the image.

Example:
eval a=a[1+1, 1-1]
eval a=a[256, 0] (valid if x > 256)
eval a=a[0, - 256] (valid if y > 256)

The following command cal cul ates the Laplacian of image A and stores the result in
B:

eval "B=4* A- Al1,0] - AlO,1] - Al-1,0] - A[O,-1]"
When using this feature do not expect great speed. Just experiment with it.

The second feature of eval() which is of great use isthe availability of the x andy
coordinates of the pixel which is processed. The next command makes a grey value
ramp inimage A:

eval "A=xx"

Note that the x coordinate is known under the name xx. They coordinate is known
under the nameyy. To calculate an image A[X,y]=sgrt(x* x+y*y) use something like:

eval "A=sgrt((xx-128)*(xx-128) + (yy-128)*(yy-128))"

As can be seen from the previous example some mathematical functions are available
in the eval() command. The following functions can be used:

abs(), cbrt(), exp(), hypot(), log(), pow(), sqrt() and rnd()

The third most important feature in eval() is the use of conditional expressions. To
generate acircle with its center at position 128,128 and radius 100 use:

eval "A=(((xx-128)*(xx-128)+(yy-128)*(yy-128))>10000) ?255: 0"

Another example of the use of aconditional expression is given below where an
image is thresholded at alevel of 128:

eval "A= (B > 128) ? 255 : 0"

Also Boolean operators are allowed in the eval () command. To set asingle point in
the center of image A use:

eval "A = ((xx==128) &&(yy==128)) ? 255 : 0"

Parser

137

SCIL_Image 1.4 — Reference Manual

The parser accepts the operators listed below, they are standard C except for the "& +"
(max) and "&-" (min) operators. It uses the priorities and associativities as defined in
"The C programming language" by Kernighan and Ritchie(pages 214-215).

The associativity and precedence of the"&+" and "&-" operators are chosen to be
those of the"+" and "-", thisis an arbitrary choice, other choices may be "better".

OPERATORS ASSOCIATIVITY PRECEDENCE
01 left-associative HIGHEST
-1~ right_associative

* | % left associative

+ - &+ &- left associative

>> << left_associative

< > <= >= left_associative

== I= left associative

& left associative

A left associative

| left associative

&& left associative

| left associative

?: right_associative LOWEST

The "border" parameter in the eval() command determines the border handling when
doing indexed image access. For instance the command:

eval "B=A[-10,0]", O

tries to access pixels with x coordinate less than zero for xx<10. If "border" equals -1
the image is mirrored in its borders. This option is useful for linear filters. The second
option isto set border to avalue (any value but -1). Now pixels outside the actual
image are assumed to have the "border" value. This option is most often used in non-
linear filters.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

138

SCIL_Image 1.4 — Reference Manual

even_ok

NAME
even_ok - check if avalueisaeven integer value

SYNOPSIS
#include "im.infra.h"

int even_ok(int value, char *text)

DESCRIPTION
The parameter "value" is checked to seeif it isan even value. If it is not an even value
an error is generated and the following message is added to the error-stack:

<text> [<val ue>] shoul d be even

RETURN VALUES
IE_OK (1) if thevalueiseven
IE_NOT_OK (0) if the valueis odd

SEE ALSO
odd ok

139

SCIL_Image 1.4 — Reference Manual

EventType

NAME
EventType - obtain the type of an event

SYNOPSIS
#i ncl ude "di sp_p. h"

int Event Type(l M_EVENT event)

DESCRIPTION

EventType can be used to find out the type of an obtained "event". The type returns

the type of event as one of the symbolic values:

PRESS_EVENT
RELEASE_EVENT
MOVE_EVENT
KEYBOARD_EVENT

These symbolic values are defined in the include file "imwindow.h"

EventType can only be used after acall to the "point_im" routine which returns an

event as one of its arguments.

EXAMPLE
#i ncl ude "di sp_p. h"
#i ncl ude "i mpM ndow. h"
#i ncl ude "image. h"

I MAGE *ip;
i nt X, V;
i nt val ;

| M EVENT event;

while (point_im& p, &, &y, &event) !'="q) {
val = Event Type(event);
if (val == PRESS_EVENT) printf("Press\n");
if (val == RELEASE_EVENT) printf("Rel ease\n");
if (val == MOVE_EVENT) printf("Mve\n");
if (val == KEYBOARD_EVENT) printf("Key\n");

}

RETURN VALUES

The type of the event as defined in the include file "imwindow.h"
PRESS EVENT
RELEASE EVENT
MOVE_EVENT

KEYBOARD_EVENT

SEE ALSO

point_im MousePress MouseRelease MouseMove IsMouseDown KeyPressed

140

SCIL_Image 1.4 — Reference Manual

exit

_exit
NAME
exit, _exit - terminate process

SYNOPSI S
void exit(int status)

void _exit(int status)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

exit() isthe norma means of terminating a process. Exit closes al the process sfiles
and notifies the parent processif it is executing await. The low-order 8 bits of status
are available to the parent process.

This call can never return.

The C function exit may cause cleanup actions before the final "sys exit". The
function"_exit" circumvents all cleanup, and should be used to terminate a child
process after afork(2) to avoid flushing buffered output twice.

RETURN VALUES
The function does not return

141

SCIL_Image 1.4 — Reference Manual

exp
log
log10
pow

sort
NAME
exp, log, 10g10, pow, sgrt - exponential, logarithm, power, square root

SYNOPSIS

#i ncl ude <mat h. h>

doubl e exp(doubl e x)

doubl e | og(doubl e x)

doubl e | 0g1l0(doubl e x)

doubl e pow(doubl e x, double vy)

doubl e sqrt (doubl e x)

DESCRIPTION

These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

exp returns the natural exponent function of "x".
log returns the natural logarithm of "x".
log10 returns the base 10 logarithm.
pow returns"Xx"**"y" "x" to the"y" power.
sgrt returns the square root of "x".
RETURN VALUES

exp() and pow() return a huge value when the correct value would overflow; errno is
set to ERANGE.

pow() returns 0 and sets errno to EDOM when the second argument is negative and
nonintegral and when both arguments are 0.

log() returns O when "X" is zero or negative; errno is set to EDOM.

sgrt() returns O when "x" is negative; errno is set to EDOM.

SEE ALSO

142

SCIL_Image 1.4 — Reference Manual

hypot sinh

exp_im
NAME
exp_im - natural exponentiation

SYNOPSIS
#i ncl ude "improto.h"

int exp_im(I| MAGE *in, | MAGE *out)

DESCRIPTION
Raise the base "€" to the power of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
expl0_im In_im

143

SCIL_Image 1.4 — Reference Manual

expl0 im
NAME
expl0_im - 10 based exponentiation

SYNOPSIS
#i ncl ude "i mproto.h"

int explO_inm(I MAGE *in, | MACGE *out)

DESCRIPTION
Raise the base 10 to the power of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
exp_im In_im logl0_im

144

SCIL_Image 1.4 — Reference Manual

NAME

expand

expand - enable/disable command expanding

SYNOPSIS

expand <node>

DESCRIPTION

EXAM

The SCIL environment is provided with a command expander, which forms a
command layer on top of the C interpreter syntax.

In the command expander mode commands may be abbreviated, and need no C
punctuation. If arguments are missing defaults resident in a commando description file
will be inserted. All given arguments are checked for legitimate values.

With a question mark "?" as an argument a prompt range and default is generated.
"mode" is 1 enable the command expansion, "mode” is 0 disable it.

PLE

[C1] expand 1

[C2] readf ?
Filename [trui.im] :
Image <A B|C/D>[A]
[C3] expand O

[C4] readf ?
readf ?--> variable used but not declared
[C5]

145

SCIL_Image 1.4 — Reference Manual

fabs
floor
ceil
NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#i ncl ude <mat h. h>

doubl e fl oor(doubl e x)
doubl e cei |l (doubl e x)

doubl e fabs(doubl e x)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:
fabs() returns the absolute value |'x"|.
floor() returns the largest integer not greater than "x".

ceil() returns the smallest integer not less than "x".

SEE ALSO
abs

146

SCIL_Image 1.4 — Reference Manual

fast fourier

NAME
fast_fourier - Fast Fourier Transform

SYNOPSIS
#i ncl ude "improto.h"

int fast_fourier(lI MAGE *in, | MACE *out, int direction)

DESCRIPTION
Calculate the forward or reverse fourier transform of theimage "in" and store the
result in the image "out". The forward transform is performed if direction = 1, and the
reverse is performed if direction = 0. The algorithm is based upon the radix-2 fast
Fourier transform. The result is scaled with a factor 1/sqrt(M*N), sgrt being the square
root and M and N being the dimension of the operand in x- and y-direction. The
definition of the frequency domain representation corresponds with the so-called
"optical Fourier transform"”, which means that the frequency components range from -
fg/2 to +f5/2 and the zero frequency resides in the center of the image "out", fs being
the spatial sampling frequency in the corresponding direction. If the pixel coordinates
within the image where the frequency domain representation resides range from

i = 0to N-1 for the x-direction and
j =0to M-1 for the y-direction,

the pixel with coordinates (i,j) corresponds with the frequency components:

fx = (i - N/2) / (N * dx) and
fy = (j - N/i2) / (N * dy),

dx and dy being the sample intervalsin the x-and y-direction in the image where
gpatial domain representation resides.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fast_hartley

147

SCIL_Image 1.4 — Reference Manual

fast_hartley

NAME
fast_hartley - Fast Hartley Transform

SYNOPSIS
#i ncl ude "i mproto.h"

int fast_hartley(I MAGE *in, |MAGE *out, int norescaling)

DESCRIPTION
Calculate the Hartley transform of the image "in" and store the result in the image
"out". The Hartley transform is symmetric; the forward transform is the same as its
reverse. The algorithm is based upon the radix-2 fast Hartley transform. The result is
scaled with afactor 1/sqrt(M*N),M and N being the dimension of the operand in x-
and y-direction. If "norescaling” is True (1), no scaling is performed.

The definition of the frequency domain representation corresponds with the so-called
"optical Fourier transform”, which means that the frequency components range from
-fs/2 to +f9/2 and the zero frequency resides in the center of the image "out", fs being
the spatial sampling frequency in the corresponding direction. If the pixel coordinates
within the image where the frequency domain representation resides range from

i = 0to N-1for the x-direction and j = 0 to M-1 for the y-direction,
the pixel with coordinates (i,j) corresponds with the frequency components:
fx=(3-N/2)/(N* dx)andfy =(- N/2) / (N * dy),

dx and dy being the sample intervals in the x-and y-direction in the image where
gpatial domain representation resides.

LITERATURE
R.N. Bracewell, "Discrete Hartley Transform™, Optical Society of America,
pp.1832-1835, 1983.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fast_fourier

148

SCIL_Image 1.4 — Reference Manual

fblow

NAME
fblow - interpolating image blow-up

SYNOPSIS
#i ncl ude "improto.h"

int fblow(l MAGE *in, | MAGE *out, double hfact, double vfact, double
df act, int adjust)

DESCRIPTION
Blow image "in" with a horizontal factor "hfact", a vertical factor "vfact" and depth
factor "dfact" by linear interpolation and store the result in image "out". The sizes of
the output image "out" are not adjusted to fit the result, only when the parameter
"adjust” istrue (not zero), the sizes of "out™" will be adjusted.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
blow reduce

149

SCIL_Image 1.4 — Reference Manual

fclose

fflush

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#i ncl ude <stdi o. h>

int fclose(FILE *strean)

int fflush(FILE *strean)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

fclose() causes any buffers for the named "stream” to be emptied, and the file to be
closed. Buffers allocated by the standard input/output system are freed to be used with
another fopen.

fclose() is performed automatically upon calling exit(2).

fflush() causes any buffered data for the named output "stream” to be written to that
file. The stream remains open.

RETURN VALUES
These routines return EOF if stream is not associated with an output file, or if buffered
data cannot be transferred to that file.

SEE ALSO
close fopen setbuf

fft

NAME
fft

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seefast_fourier

150

SCIL_Image 1.4 — Reference Manual

fg_buffers

fogr_buffers

NAME
fg_buffers, fgr_buffers - get the number of available image buffers

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_buffers(void)

int WNAPI fgr_buffers(void)

DESCRIPTION
fg_buffers() returns the number of buffers of the grabber that can be used to grab
images to. Framegrabbers may be able to rearrange their available memory depending
on the size of the grab-region and the roi settings. So when changing the sizes of the
region with fg_setres() or fg_setroi(), the number of available image buffers may
change.

fogr_buffers(): see fg_buffers().

RETURN VALUES
the number of available image buffers.
O on failure

SEE ALSO
fg _grab

151

SCIL_Image 1.4 — Reference Manual

fg_channels

fgr_channels

NAME
fg_channels, fgr_channels - get the number of available channels

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_channel s(void)

int WNAPI fgr_channel s(void)

DESCRIPTION
fg_channels() returns the number of available video input channels. An RGB signal is
defined to be one channdl of type FG_TYPE_RGB.

fgr_channels() : see fg_channels().
RETURN VALUES
The number of available channels on success

O on failure

SEE ALSO
fg_type

152

SCIL_Image 1.4 — Reference Manual

fg close

fgr_close
NAME
fg _close, fgr_close - close the frame grabber

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_close(void)

int WNAPI fgr_cl ose(void)

DESCRIPTION

fg_close() closes the framegrabber and tries to unload the grabber DLL from memory

fgr_close() must close/reset the grabber. Most grabbers require some cleanup, freeing
of memory and releasing of the hardware to reset the grabber board to a state it can be

used by other application.

RETURN VALUES
1 on success
O on failure

SEE ALSO
fg load fg_init

153

SCIL_Image 1.4 — Reference Manual

fg_depth
fgr_depth
fg_maxdepth

fgr_maxdepth
NAME
fg_depth, fgr_depth - get the pixel depth of the grabber

fg_maxdepth, fgr_maxdepth - get the maximum pixel depth of the grabber

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg _depth(void)

int WNAPI fgr_depth(void)
int fg_maxdept h(voi d)

int WNAPI fgr_naxdept h(voi d)

DESCRIPTION
fg_depth() returns the actual pixel depth from the grabber.

fg_maxdepth() returns the maximum pixel depth the grabber can grab at. For full
color grabbers (RGB grabbers), the pixel depth for one color component is returned.

fgr_depth(): see fg_depth().
fgr_maxdepth(): see fg_maxdepth().

RETURN VALUES
fg_depth (fgr_depth) returns the actual pixel depth of the grabber
fg_maxdepth (fgr_maxdepth) returns the maximum pixel depth of the grabber.

SEE ALSO
fg_setdepth

154

SCIL_Image 1.4 — Reference Manual

fg_exec

fogr_exec
NAME
fg_exec, fgr_exec - execute grabber specific function

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_exec(const void *input, int ilength, void *output, int
ol engt h)

int WNAPI fgr_exec(const void *input, int ilength, void *output, int
ol engt h)

DESCRIPTION
fg_exec() isahook to call grabber specific functions. The contents and layout of the
parameters are undefined and | eft to the programmer of the DLL. Usage of this
function isinherently not portable between grabbers.

If any datais transported to or from the grabber to host memory, this must be
indicated by the "input" and "output” pointers and "ilength" and "olength" counts. The
return value must then be the amount of bytes transported to "output” (in a 16 bits
DLL thedatais buffered and "input" and "output” together may not exceed 64 KB).

for_exec(): seefg_exec().
RETURN VALUES

any value except 0 is considered a good-status.
O on failure

155

SCIL_Image 1.4 — Reference Manual

fg _gain
fgr_gain
fg_setgain

fgr_setgain
NAME
fg_gain, fgr_gain - retrieve the gain of the video signal

fg_setgain, fgr_setgain - set the gain of the video signal

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg gain(int *pgain)
int WNAPI fgr_gain(int *pgain)
int fg setgain(int gain)
int WNAPI fgr_setgain(int gain)

DESCRIPTION
fg_setgain() setsthe gain of the video signal before A/D conversion. The actual gain
valueto useis"gain"/256. So "gain" =256 means again of 1.0 for the grabber.
Input values will be converted to appropriate values for the grabber. Input values out
of range will be clipped to the maximum or minimum board setting.

fg_gain() retrieves the gain used for the video signal and stores it the integer pointed
to by "pgain”. The actual gain valueis"*pgain"/256.

fogr_setgain() : seefg_setgain().

fgr_gain(): seefg_gain().

RETURN VALUES
1 on success
O on failure

SEE ALSO
fg offset fg_setoffset

156

SCIL_Image 1.4 — Reference Manual

fg get datasize

fgr_get datasize
NAME
fg _get datasize, fgr_get datasize - get the size of one pixel in bits

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_get_datasize(void)

int WNAPI fgr_get_datasize(void)

DESCRIPTION
fg_get datasize() returns the number of bits that one pixel from the grabber occupies
in memory rounded to byte size. E.g. a 12 bits grey-value grabber returns 16 (two
bytes), afull color grabber with 8 bits per color and a pad-byte returns 32. If the
grabber supports grabbing at different depths, the datasize of the currently set depthis
returned.

fogr_get datasize(): seefg_get datasize()

RETURN VALUES
The memory requirement for one pixel of the grabber

SEE ALSO
fg_type fg_depth

157

SCIL_Image 1.4 — Reference Manual

fg get last _error

fgr_get last_error
NAME
fg_get last_error, fgr_get last error - get error message on last error

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

const char *fg get last_error(void)

int WNAPI fgr_get_last_error(char *storage)

DESCRIPTION
fg_get_last_error() returns a pointer to a static string buffer containing a message on
the last occurred error. The buffer is not overwritten until the next call to a
framegrabber function.

fgr_get_last_error() must store a string describing the last occurred error in the buffer
pointed to by "storage”. "storage" can contain a string of maximum 256 bytes
(including terminator). The DLL must store its error messages in such away that it
can at any time retrieve the string describing the last occurred error. It is
recommended for the DLL to declare a static buffer "static char
fgr_error_message[256]" and store the error message in that buffer. See also the
function fgr_set_error_message() in the include file "scilgrab.h". fgr_get last_error()

then only has to copy the local buffer to the "storage”.

RETURN VALUES
1 on success
O on failure

158

SCIL_Image 1.4 — Reference Manual

fg get rgb_order

fgr_get rgb_order
NAME
fg_get rgb order, fgr_get rgb_order - get the memory layout of a RGB triplet

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg get _rgb_order(void)
int WNAPI fgr_get rgb_order(void)

DESCRIPTION

fg_get rgb_order() returns the memory layout a RGB triplet of afull color
framegrabber. Possible values are

FG_ORDER RGB: the RGB values are stored contiguously in memory, no
padding.

FG_ORDER_RGBX,
FG_ORDER _XRGB: the RGB triplets are stored using an extra pad-byte
before or after the triplet.

FG_ORDER_BGRX,
FG_ORDER XBGR: the RGB triplets are stored in reverse order using an
extra pad-byte before or after the triplet.

fgr_get_rgb_order(): seefg_get_rgb_order().

NOTE
Currently, the SCIL_Image interactive grab-windows only support the native
SCIL_Image RGB triplet layout: FG_ ORDER_RGBX.

RETURN VALUES
The layout of the RGB triplets on success
O on failure

SEE ALSO
fg_get datasize

159

SCIL_Image 1.4 — Reference Manual

fg_getdata

fgr_getdata

NAME
fg_getdata, fgr_getdata - retrieve imagedata from the grabber

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_getdata(int franenunber, void *storage, int offsetx, int
of fsety, int incrx, int incry, int countx, int county, int type)

int WNAPI fgr_getdata(int framenunmber, void *storage, int offsetx,
int offsety, int incrx, int incry, int countx, int county, int type)

DESCRIPTION
fg_getdata() copies data from frame "framenumber” in the grabbers memory to host
memory pointed to by "pstorage”. Which pixels must be copied is described by the
offsets ("offsetx" , "offsety"), increments ("incrx", "incry") and counts ("countx",
"county"). The datawill be copied row by row, first the row with the lowest offset.
Positions in aframe are cal culated with respect to the upper-left corner of the roi and
the increments of theroi (see fg_setroi()) must be multiplied with the increments of

fg_getdata().

"type" indicates the type of datato be transferred, for alist of possible value see
fg_type(). The type must correspond with the type as previously set with fg_settype()
or be a"subtype" of that type. E.g. if thetypewasset to FG_TYPE _RGB, itisaso
allowed to request for FG_TYPE_GREY (grey value can be calculated from RGB) or
just one color component like FG_TY PE_RED. For grey value grabbers, only
FG_TYPE_GREY isalowed.

The depth of the transported data must be the same as set with fg_setdepth(). In the
destination buffer "pstorage”, the data must be aligned to byte-boundary. E.g. a 12 bits
grabber must convert its datato 16 bits data (see also fg_depth(), fg_setdepth() and
fg_get datasize()).
fogr_getdata(): see fg_getdata().
! grey value (intensity) = 0.299 * red + 0.587 * green + 0.114 * blue.

RETURN VALUES
The number of retrieved scanlines on success

O on failure

SEE ALSO
fg_grab image fg grab fg type fg_setroi

160

SCIL_Image 1.4 — Reference Manual

fg_grab
fgr_grab
fg_freeze

fogr_freeze
NAME
fg_grab, fgr_grab - start the grabber

fg_freeze, fgr_freeze - stop the grabber

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_grab(int firstchan, int firstbuf, int nchannels)
int WNAPI fgr_grab(int firstchan, int firstbuf, int nchannels)
int fg_freeze(void)

int WNAPI fgr_freeze(void)

DESCRIPTION
fg_grab() starts the grabber to grab continuously, grabbing "nchannels® input
channels (channel "firstchan", "firstchan" +1, ..) simultaneously. The result must be
stored in the framebuffers "firstbuf”, "firstbuf" + 1,.. Channel and buffer numbers start
from zero. Grabbing continues until the function fg_freeze() is called.

fgr_grab() : seefg_grab().
for_freeze() : seefg_freeze().

RETURN VALUES
1 on success
O on failure

SEE ALSO
fg _getdata fg_grab series fg_grab_next

161

SCIL_Image 1.4 — Reference Manual

fg_grab_image
NAME
fg_grab_image - grab an image from the framegrabber

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"
#i ncl ude "i mage. h"

int fg_grab_i mage(l MACE *out, int chan, int width, int height, int
slices, int hstep, int vstep, int tstep, int offx, int offy)

DESCRIPTION
fg_grab_image() grabs an image from the framegrabber and storesit in image "out".
The image is grabbed from the channel "chan™. "width" and "height" indicate the X
and Y size of the region to be grabbed. "dices’ isthe number of frames that should be
grabbed. If "width", "height" or "dlices" is set to O, the corresponding size of the
output image "out" is taken for that parameter. "hstep” and "vstep" can be used to skip
pixelsinthe X and Y direction. E.g. hstep = 1 means using al the pixels from the
grabber, hstep = 2 means using every second pixels from the grabber, etc. "tstep" can
be used to skip entire frames. "offx" and "offy" indicate the offset from the upper-Ieft
corner of the grabber-image.

RETURN VALUES
None

SEE ALSO
fg grab fg getdata

162

SCIL_Image 1.4 — Reference Manual

fg grab next

fgr_grab next
NAME
fg_grab next, fgr_grab next - grab next frame using current settings

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_grab_next(void)

int WNAPI fgr_grab_next (void)

DESCRIPTION
Some grabbers do not support continues grabbing, they can only grab one frame and
then must be given an new command to grab another frame. fg_grab_next() grabs a
frame using all the current settings.

fgr_grab_next() : seefg_grab_next().

NOTE
Framegrabbers that do support continues grabbing should not implement this function
inthe DLL.

RETURN VALUES
1 on success
O on failure

SEE ALSO
fg_getdata fg_grab

163

SCIL_Image 1.4 — Reference Manual

fg grab_series

fgr_grab series
NAME
fg _grab_series, fgr_grab_series - grab a series of images

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_grab_series(int startchannel, int startbuffer, int nchannels,
int nbuffers, int nskip)

int WNAPI fgr_grab_series(int startchan, int startbuf, int
nchannel s, int nbuffers, int nskip)

DESCRIPTION
fg_grab_series() grabs a number of images as fast as possible. The channels
"startchan", "startchan"+1, ... will be read "nbuf" times and put into "startbuf",
"startbuf"+1, "nskip" givesthe possibility to slow down the process. After grabbing
aframefor al channels, the function waits for "nskip" frames before grabbing again a
framefor all channels. Actually the function executes "nskip" dummy grabs.

Channels and buffers are numbered 0, 1, ...

Reading can be done in one of two modes:
- FG_GRAB_CHANNELS:
The frames are stored in the following order:
- al frames of channel "startchan”
- al frames of channel "startchan"+1

- FG_GRAB_FRAMES
The frames are stored in the order:
- the frames of channel "startchan", "startchan"+1, for time 1

- the frames of channel "startchan", "startchan"+1, for time 2

fgr_grab_series(): see fg_grab_series

RETURN VALUES
Either FG_GRAB_CHANNELS or FG_GRAB_FRAMES on success
0 on failure

SEE ALSO
fg_grab fg_getdata

164

SCIL_Image 1.4 — Reference Manual

fg_init

for_init
NAME
fg_init, fgr_init - loads the DLL and initialize the frame-grabber

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_init(const char *initfile)

int WNAPI fgr_init(const char *initfile)

DESCRIPTION
fg_init() triesto load the DLL specified with the fg_load() command and when
successful initializes the frame-grabber. "initfile" is the name of afilein which
grabber specific configurations are stored that may be needed by the frame-grabber. In
most cases this file will typically be a camera-configuration file. The layout and
contents of the file is defined by the creator of the DLL. If "initfile" == NULL (or an
empty string), the grabber will be initialized with default setting.

for_init(): seefgr_init().

RETURN VALUES
Version number of the framegrabber APl (SCIL_GRAB_VERSION from scilgrab.h)

SEE ALSO
fg load fg close

165

SCIL_Image 1.4 — Reference Manual

fg_load

NAME
fg_load - specify grabber DLL

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_l oad(const char *dl | nane)

DESCRIPTION
Specify the name of the framegrabber DLL that is to be used in all subsequent fg_....
functions.

NOTE
The framegrabber DLL is not actually loaded until the next call to a framegrabber
function (fg_.... function)

RETURN VALUES
Always 1

SEE ALSO
fg_close

166

SCIL_Image 1.4 — Reference Manual

fg_maxwidth
fgr_maxwidth
fg_maxheight

fgr_maxheight
NAME
fg_maxwidth, fgr_maxwidth - get the maximum allowed image width of the grabber

fg_maxheight, fgr_maxheight - get the maximum allowed image height of the
grabber

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_maxw dt h(voi d)

int WNAPI fgr_maxw dt h(voi d)
i nt fg_maxhei ght (voi d)

i nt WNAPI fgr_maxhei ght (voi d)

DESCRIPTION

fg_maxwidth() and fg_maxheight() return the maximum allowed image sizes (width
and height) of the grabber. The sizes of the images that can be grabbed usually depend
on the supplied video signal and/or the attached camera.

fgr_maxwidth() and fgr_maxheight(): see fg_maxwidth() and fg_maxheight()

RETURN VALUES

fg_maxwidth (fgr_maxwidth) returns the maximum allowed image width
fg_maxheight (fgr_maxheight) returns the maximum allowed image height

SEE ALSO
fg width fg_minwidth fg_height fg_minheight fg_setres

167

SCIL_Image 1.4 — Reference Manual

fg_minwidth
fgr_minwidth
fg_minheight

fgr_minheight
NAME
fg_minwidth, fgr_minwidth - get the minimum allowed image width of the grabber

fg_minheight, fgr_minheight - get the minimum allowed image height of the grabber

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_m nw dth(void)

int WNAPI fgr_ni nw dt h(voi d)
int fg_mi nheight(void)

int WNAPI fgr_nmninhei ght (void)

DESCRIPTION

fg_minwidth() and fg_minheight() return the minimum image sizes (width and height)
of the grabber. Often grabbers have a hardware related minimum size of the images
they can grab.

fgr_minwidth() and fgr_minheight(): see fg_minwidth() and fg_minheight()

RETURN VALUES

fg_minwidth (fgr_minwidth) returns the minimum allowed image width.
fg_minheight (fgr_minheight) returns the minimum allowed image height.

SEE ALSO
fg width fg_maxwidth fg_height fg_maxheight fg_setres

168

SCIL_Image 1.4 — Reference Manual

fg_offset
fogr_offset
fg_setoffset

for_setoffset
NAME
fg offset, fgr_offset - retrieve the offset of the video signal

fg_setoffset, fgr_setoffset - set the offset of the video signal

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg offset(int *poffset)
int WNAPI fgr_offset(int *poffset)
int fg_setoffset(int offset)

int WNAPI fgr_offset(int offset)

DESCRIPTION
fg_setoffset() setsthe offset of the video signal before A/D conversion. The offset
valueis specified in millivolts (mV). Input values out of range will be clipped to the
maximum or minimum board setting.

fg_offset() retrieves the offset used for the video signal and stores it the integer
pointed to by "poffset”. The offset value is given in millivolts (mV).

for_setoffset() : see fg_setoffset().

for_offset(): see fg_offset().
RETURN VALUES

1 on success

O on failure

SEE ALSO
fg gain fg_setgain

169

SCIL_Image 1.4 — Reference Manual

fg set input_lut

fogr_set input_lut
NAME
fg_set_input_lut, fgr_set input_lut - set input lookup table

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg set _input_lut(const void *ptable, int nelem

int WNAPI fgr_set_input_lut(const void *ptable, int nelem

DESCRIPTION
fg_set_input_lut() loads an input lookup table into the grabbers memory. "ptable”
points to an array of "nelem” pixel values. For 8-bits grabbers the input values must be
of type "unsigned char". For a grabber up to 16 bits (but over 8-bits), the elements
must be of type "unsigned short” etc. If "nelem” islessthe actual length of the input
lookup-table, remaining values must be set to zero

fogr_set input_lut(): seefg_set_input_lut().
RETURN VALUES

1 on success
O on failure

170

SCIL_Image 1.4 — Reference Manual

fg_setdepth

fogr_setdepth
NAME
fg_setdepth, fgr_setdepth - set the pixeldepth to a given value

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg setdepth(int depth)

int WNAPI fgr_setdepth(int depth)

DESCRIPTION
fg_setdepth() sets the pixeldepth of the grabber to "depth", if the grabber cannot grab
at the given depth, another depth (determined by the grabber) is used, whichisaso
returned. For full color grabbers, the depth of one color component is returned.

for_setdepth(): see fg_setdepth(). If the grabber hardware does not support the
requested depth, the depth must be set to a value the grabber can support and this
value must be returned.

RETURN VALUES
The new pixeldepth (may be different than the one supplied)

SEE ALSO
fg_depth fg_maxdepth

171

SCIL_Image 1.4 — Reference Manual

fg_setres

fogr_setres
NAME
fg_setres, fgr_setres - set the sizes of the image in the grabber

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_setres(int width, int height)

int WNAPI fgr_setres(int width, int height)

DESCRIPTION
fg_setres() setsthe sizes of the image to grab to "width" and "height". These sizes may
be rounded by the grabber to a higher value (not exceeding the maximum allowed
sizes) if the grabber hardware does not support the given sizes. This can be checked
with fg_width() and fg_height(), these should then return the sizes the grabber can
support.

for_setres(): see fg_setres(). If the grabber hardware does not support the given size,
the sizes must be converted to the nearest higher size the grabber can support, off
course never exceeding the maximum allowed sizes of the grabber.

RETURN VALUES
1 on success
O on failure

SEE ALSO
fg_setroi fg width fg_height fg_minwidth fg_maxwidth fg_minheight
fg_maxheight

172

SCIL_Image 1.4 — Reference Manual

fg_setroi

fgr_setroi
NAME
fg_setroi, fgr_setroi - set region of interest in the image

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_setroi(int ox, int oy, int ix, int iy, int cx, int cy)

int WNAPI fgr_setroi(int ox, int oy, int ix, int iy, int cx, int cy)

DESCRIPTION
fg_setroi() specifies within the sizes of the grabber image aroi (Region Of Interest) to
be used for data acquisition. Theroi start at position ("ox", "oy") from the upper-left
corner of theimage. "cx" and "cy" are the number of pixelsinthe X and Y directionin
the ROI and "ix" and "iy" are the incrementsii.e. the distance between two pixels of
the ROI in the imageitself. E.g. "ix" = 2 meansthat every second pixel in the X
direction of theimageis part of the ROI.

for_setroi(): see fg_setroi().
RETURN VALUES

1 on success
O on failure

SEE ALSO
fg_getdata fg_setres

173

SCIL_Image 1.4 — Reference Manual

fg_type
for_type
fg_settype

for_settype
NAME
fg_type, fgr_type - get the image type of the grabber

fg_settype, fgr_settype - set the image type of the grabber

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg type(int *ptype)
int WNAPI fgr_type(int *ptype)
int fg settype(int type)
int WNAPI fgr_settype(int type)

DESCRIPTION
The images type supported for grabbing are:

FG_TYPE _GREY: grab grey value images, only type a grey value grabber
can support.

FG TYPE RGB: grabfull color images, the default for a color grabber.

FG_TYPE_RED,

FG_TYPE_GREEN,

FG_TYPE BLUE: grabasinglecolor component from an RGB video
signal.

fg_type() retrieves the grab type the grabber is set at, the value is returned in the
integer pointed to by "ptype".

fg_settype() setsthe grab type of the grabber board to "type" -which must be on of the

above listed value-. If the grabber does not support the requested grab type, the
function sets the grab type to avalue it can support and returns that value.

for_type(): seefg_type()

for_settype(): see fg_settype()

174

SCIL_Image 1.4 — Reference Manual

RETURN VALUES
fg_settype (and fgr_settype) returns the grab type actually set or
O on failure

fg_type (and fgr_type) returns 1 on success and
O on failure

SEE ALSO
fg_getdata

175

SCIL_Image 1.4 — Reference Manual

fg_width
fgr_width
fg_height

fgr_height
NAME
fg_width, fgr_width - get the actual image width of the grabber

fg_height, fgr_height - get the actual image height of the grabber

PLATFORM
M S-Windows.

SYNOPSIS
#i ncl ude "scil grab. h"

int fg_w dth(void)

int WNAPI fgr_w dth(void)
int fg_height(void)

int WNAPI fgr_hei ght(void)

DESCRIPTION

fg_width() and fg_height() return the actual settings of the width and height of the

image in the grabber.

fgr_width() and fgr_height(): see fg_width() and fg_height().

RETURN VALUES
fg_width (fgr_width) returns the image width
fg_height (fgr_height) returns the image height

SEE ALSO
fg_setres fg_minwidth fg_maxwidth fg_minheight fg_maxheight

176

SCIL_Image 1.4 — Reference Manual

fgetpos

fsetpos

NAME
fgetpos, fsetpos - manipulate pointer position in a stream

SYNOPSIS
#1 ncl ude <stdi o. h>

int fgetpos(FILE *stream fpos_t *ptr)

int fsetpos(FILE *stream fpos_t *ptr)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

fgetpos() records the current position in "stream™ in "*ptr", for subsequent use by
fsetpos() . The type fpos_t is suitable for recording such values.

fsetpos() positions "stream™ at the position recorder by fgetpos() in "* ptr".

RETURN VALUES
fgetpos() and fsetpos() return non-zero on error.

SEE ALSO
ftell fseek

177

SCIL_Image 1.4 — Reference Manual

fgreaterO_ok

NAME
fgreaterO_ok - check if afloat value is bigger than zero

SYNOPSIS
#include "iminfra.h"

int fgreaterO_ok(double value, char *text)

DESCRIPTION
The floating point value "value" is checked to seeif it is greater than zero or not. If it
iSzero or negative an error is generated and the following message is added to the
error-stack:

<text> [<val ue>] nust be bigger than 0

NOTE
This function can only handle float values, to check on integer values, use the function
greater0_ok().
RETURN VALUES
IE_OK (1) if the value is bigger than zero
IE_NOT_OK (0) if it is zero or negative
SEE ALSO

greater0_ok fpositive ok

178

SCIL_Image 1.4 — Reference Manual

filter_energy ratio
NAME
filter_energy_ratio - calculates discriminative power of afilter

SYNOPSIS
#i ncl ude "improto.h"

doubl e filter_energy_ratio(l MAGE *inl, |MACE *in2, |IMACGE *filter)

DESCRIPTION
These functions calcul ate the energy ratio between the images "inl" and "in2" for
filter image "filter". Thisratio is a measure of the discriminative power of "filter"
between pattern "inl" and pattern "in2". It is assumed that the mean value of the filter
iszero. Theratio is calculated by taking the ratio of the variance between both images
after convolution by "filter". Theratio is corrected for the (maybe different) size of the
input images.

RETURN VALUES
The energy ratio

SEE ALSO
benke

flip
NAME
flip - rotate an image on X, Y or Z axis over 90, 180 or 270 degrees

SYNOPSIS
#i ncl ude "improto.h"

int flip(IMAGE *in, |IMACE *out, int axis, int angle)

DESCRIPTION
flip() rotates the image "in" over angle of 90, 180 or 270 degrees on either the X, Y or
Z axis of theimage. Theresult is stored in the image "out". Two dimensional images
can only be rotated on the Z axis. "axis" specifies the axis on which to rotate, X=1,
Y=2 and Z=3. The angle "angle" must be specified in degrees, so valid angles are 90,
180 and 270.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
rotate

179

SCIL_Image 1.4 — Reference Manual

fmod
frexp
|dexp

modf

NAME
fmod, frexp, ldexp, modf - manipulate part of floating point numbers

SYNOPSIS
#i ncl ude <nmmat h. h>

doubl e frnod(doubl e x, double vy)
doubl e frexp(double x, int *exp)
doubl e | dexp(doubl e x, int n)

doubl e nodf (doubl e x, double *ip)

DESCRIPTION

Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunction is:

fmod() returns the floating-point remainder of "x/y", with the same sign as"x". If "y"
IS zero, the result isimplementation dependent.

frexp() splits "x" into normalized fraction in the interval [1/2,1), which is returned,
and apower of 2, which isstored in "*exp". If "X" is zero, both parts of the result are
zero

[dexp() returns"x * 2** n"

modf() splits"x" into integral and fractional parts, each with the same sign as"x". It
storestheintegral part in "*ip", and returns the fractional part.

RETURN VALUES
see description of the functions

180

SCIL_Image 1.4 — Reference Manual

fopen
freopen

fdopen

NAME
fopen, freopen, fdopen - open a stream

SYNOPSI S
#i ncl ude <stdi o. h>

FI LE *fopen(char *filename, char *type)
FILE *freopen(char *fil ename, char *type, FILE *strean)

FI LE *fdopen(int fildes, char *type)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

fopen() opens the file named by "filename" and associates a stream with it. fopen()
returns a pointer to be used to identify the stream in subsequent operations.

"type" is a character string having one of the following values:

"r open for reading

"w" create for writing

"a' append: open for writing at end of file, or create for writing

In addition, each type may be followed by a"+" to have the file opened for reading
and writing.

"r+" positions the stream at the beginning of thefile,

"w+" creates or truncatesit,

"at" positionsit at the end.

Both reads and writes may be used on read/write streams, with the limitation that an
fseek(), rewind(), or reading an end-of-file must be used between aread and a write or
vice-versa

freopen() substitutes the named file in place of the open "stream™. It returns the
original value of "stream”. The original stream is closed.

freopen() istypically used to attach the preopened constant names, stdin, stdout,
stderr, to specified files.

fdopen() associates a stream with afile descriptor "fildes" obtained from open(),

dup(), creat(), or pipe(2). The "type" of the stream must agree with the mode of the
open file.

181

SCIL_Image 1.4 — Reference Manual

BUGS
fdopen() is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write
modes will probably treat the type asif the "+" was not present.

RETURN VALUES
fopen() and freopen() return the pointer NULL if filename cannot be accessed.

SEE ALSO
open fclose

fpositive ok
NAME
fpositive ok - check if afloat valueis positive

SYNOPSIS
#include "iminfra.h"

int fpositive_ok(double value, char *text)

DESCRIPTION
The float value "value" is checked to seeif it is not negative or not. If the valueis
negative an error is generated and the following message is added to the error-stack:

<text> [<val ue>] nust be positive

Zerois considered to be positive as well in this function, if acheck must be performed
on avalue that may not be zero then the function fgreater0_ok() can be used.

NOTE
This function can only handle floating point values, to check on integer values, use the
function fpositive_ok().

RETURN VALUES
IE_OK (1) if the value is positive (zero included)
IE_NOT_OK (0) if the value is negative

SEE ALSO
fgreater0_ok positive ok

182

SCIL_Image 1.4 — Reference Manual

fraction_im

NAME
fraction_im - take the fractional part of pixel values

SYNOPSIS
#i ncl ude "improto.h"

int fraction_im I MAGE *in, | MAGE *out)

DESCRIPTION
Take from each element of theimage "in" the fractional part and store the results into
the corresponding element of "out". The fractional part has the same sign as the
original value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
truncate_im nearest_int lowest_int

183

SCIL_Image 1.4 — Reference Manual

frange ok
NAME
frange ok - check isafloat value isin the specified range

SYNOPSIS

#include "iminfra.h"

int frange_ok(doubl e val ue, double vnin, double vmax, char *text)

DESCRIPTION
frange_ok() checksto seeif floating point "value" isin the range specified by "vmin"
and "vmax" (bordersincluded). If it is, atrue statusisreturned. If "value" is outside
the range an error is generated and the following message is added to the error-stack:

<text> [<val ue>] out of range (<vmi n>..<vmax>)

A lot of the checking routines use this function to do the actual checking and supply a
default message for that specific check.

NOTE
The function has exactly the same behavior as range_ok(), except that this function
handles only floating point values and range_ok() can only handle integer values.

RETURN VALUES
IE_OK (1) if the value isinside the range (borders included).
IE_NOT_OK (0) if the value is outside the range.

SEE ALSO
range ok fpositive ok fgreaterO ok funequalO_ok

184

SCIL_Image 1.4 — Reference Manual

fread

fwrite

NAME
fread, fwrite - buffered binary input/output

SYNOPSI S
#i ncl ude <stdi o. h>

int fread(void *ptr, int size, int nitens, FILE *strean
int fwite(void *ptr, int size, int nitens, FILE *stream

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

fread reads, into ablock beginning at "ptr", "nitems" of data of the type of "*ptr" from
the named input "stream™. It returns the number of items actually read.

If "stream" is stdin and the standard output is line buffered, then any partial output line
will be flushed before any call to read(2) to satisfy the fread.

Fwrite() writes at most "nitems” of data of the type of "*ptr" beginning at "ptr" to the
named output "stream”. It returns the number of items actually written.

RETURN VALUES
fread and fwrite return O upon end of file or error.

SEE ALSO
read write fopen getc putc gets puts printf scanf

185

SCIL_Image 1.4 — Reference Manual

fseek
ftell

rewind

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#i ncl ude <stdi o. h>

int fseek(FILE *stream |ong offset, int ptrnane)
long ftell (FILE *strean)

voi d rewi nd(FI LE *strean)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

fseek() sets the position of the next input or output operation on the "stream”. The new
position is at the signed distance "offset" bytes from the beginning, the current
position, or the end of the file, according to whether "ptrname" has the value 0, 1, or

2.

fseek() undoes any effects of ungetc.

ftell() returns the current value of the offset relative to the beginning of the file
associated with the named "stream". It is measured in bytes on UNIX; on some other
systems it is amagic cookie, and the only foolproof way to obtain an offset for fseek.
rewind(stream) is equivalent to fseek(stream, OL, 0).

RETURN VALUES
fseek() returns -1 for improper seeks.

SEE ALSO
Iseek fopen

186

SCIL_Image 1.4 — Reference Manual

funequal0_ok

NAME
funequal0_ok - check to seeif afloat value is unequal to zero

SYNOPSIS
#include "im.infra.h"

i nt funequal 0_ok(doubl e val ue, char *text)

DESCRIPTION
If the value "value" is not equal to zero, an error is generated and the following
message is added to the error-stack:

<text> [<val ue>] nust be unequal to 0O

NOTE

This functions can only check on floating point values, to check on integer values, use

the function unequal0_ok()

RETURN VALUES
IE_OK (1) if "value" isunequal to zero
NOT_OK (0) if it isequal to zero

SEE ALSO
fpositive ok fgreaterO ok unequalQ_ok

187

SCIL_Image 1.4 — Reference Manual

fuzzy derivative
vfuzzy derivative

fuz width

NAME
fuzzy derivative, vfuzzy derivative- filter to compute the fuzzy derivativesin high
precision

fuz_width - determine the width of the fuzzy filter kernel

SYNOPSIS
int fuzzy_derivative(l MAGE *in, | MAGE *out, double signax, double
sigmay, int derix, int deriy, double accx, double accy, int fw dthx,
int fw dthy)

int vfuzzy_derivative(l MACE *in, |IMAGE *out, double sigmax, double
si gmay, double signaz, int derix, int deriy, int deriz, double accx,
doubl e accy, double accz, int fwidthx, int fwidthy, int fw dthz)

int fuz_w dth(double sigma, int deri, double acc, int maxlen)

DESCRIPTION
fuzzy derivative() and vfuzzy derivative() compute the fuzzy derivatives of image
"in" and store the result in image "out". For accuracy reasons the filter is computed in
floating point so the output will be afloat image. vfuzzy derivative() isthe 3D
version of fuzzy derivative(), the only difference is the parameter list, whichis
extended with parameters for the Z-dimension ("sigmaz", "accz", "deriz" and
"fwidthz").

fuz_width() returns the width of the filter kernel given a specific "sigma’, order of
derivative "deri" and accuracy "acc".

The filter coefficients for the different order of derivatives are given by:
degree of derivative filter function

gauss(X,s) = 1/((sqrt(2* pi)* s)exp(-x** 2/2* s** 2),
(-x/9)* gauss (x,S)

(x**2/s**2 - 1)*gauss (X,9)
(-x**3/s** 4 + 3*x/s** 2)* gauss (X,9)

WNEFLO

where sisthe sigma.

The filter has parameter "sigmax”, "sigmay" and "sigmaz" governing the effective
width of the filter, where the minimum value of 1.0 corresponds to the size of one
pixel. The maximum value of sigma is 10.0. The parameter "derix", "deriy" and
"deriz" givethe order of the derivatives. They may have different values for each
dimension. For higher values of "sigma’, the image can safely be analyzed at a
reduced resol ution.

188

SCIL_Image 1.4 — Reference Manual

The actual width of the filter as the length of the set of filter coefficientsis governed
by the parameter "accx", "accy” and "accz". It indicates how close the filter set
resembles the Gauss function. 1n the implementation of the Gaussfilter, the left and
right tails are chopped off to keep afraction of "acc" of the total filter mass. The mass
fraction of 1-acc being chopped off is redistributed over the remaining coefficientsto
ensure proper values.

The filter outcome is normalized for constant images for no derivation (order 0),
linear ramps for derivatives of order 1, parabolas for order 2, and cubes for order 3.
Theimageis mirrored near the edges during the computation of the filter to prevent
strong edge effects.

Note carefully that parameter "acc”" determines the actual width of thefilter. For the
same value of "acc”, the parameter will cause different widths for different values of
"deri". This may cause undesired effectsin case a mixture of derivativesisused in
one formula. To that end, the parameters "fwidthx", "fwidthy" or "fwidthz" when
given a positive and odd value overrule the parameter "accx", "accy" or "accz". Then,
the actual filter width is the value of this parameter, regardless its accuracy. "fwidthx",
"fwidhty" or "fwidthz" may not be larger then the width, the height or the depth of the
image. When "fwidthx", "fwidthy" or "fwidthz" has the value of -1, the parameter
"acc" will function as described above.

fuz_width() returns width (or height) of the filter kernel that is used by
fuzzy derivative() and gauss(). "sigma’, "deri" and "acc" have the same meaning as
the corresponding arguments of fuzzy derivative().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
gauss vgauss

189

SCIL_Image 1.4 — Reference Manual

g_copy_object
NAME
g_copy_object - copy object grey source with object mask as reference

SYNOPSIS
#include "im.aio.h"

int g_copy_object(l MAGE *grey_src, |IMAGE *nmask_src, | MAGE *dst, LIST

*1 i nk)
DESCRIPTION
grey_src - Image with object grey sources
mask_src - Image with labeled objects
dst - Destination image
link - Link pointing to object

g_copy_object() copies the object grey value sources to the same coordinate in the
destination image, with help of alabeled mask image.

EXAMPLE
To copy the grey value objects not touching the edge to another
i mage:

#include "image.h "
#i nclude "im.aio.h"
LI ST *I, *o;

readfile("cernmet", a, 0,0);
t hreshol d(a, b, 128);

i nvert _inm(b, b);
| =1list_label(b,c,8,0);
FORALL(o, 1)

if (!edge_object(c, 0))
g_copy_object(a,c,d, 0);
di spl ay_i mage(d);
[=rmlist(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_object g_copy_object_to

190

SCIL_Image 1.4 — Reference Manual

g_copy_object_to
NAME

g_copy_object_to - copy object grey source with object mask as referenceto a
specified coordinate

SYNOPSIS
#i ncl ude "im.aio. h"

int g _copy_object to(l MAGE *grey src, | MAGE *mask_src, | MAGE *dst,
LIST *link, int x, int vy)

DESCRIPTION
grey_src - Image with object grey sources
mask_src - Image with labeled objects
dst - Destination image
link - Link pointing to object
X,y - Coordinate X, Y

g_copy_object _to() copies the object grey value sources to the specified coordinate in
the destination image, with help of alabeled mask image.

EXAMPLE
To copy the grey val ue objects not touching the edge to another inage
at coordi nate 0, O:

#i ncl ude "image. h "
#i ncl ude "im.aio. h"
LI ST *I, *o;

readfil e("cernet", a, 0,0);
t hreshol d(a, b, 128);

i nvert _in(b,b);
I =1list_label(b,c,8,0);
FORALL(o, |)

if (!edge_object(c, 0))
g_copy_object _to(a,c,d, 0,0,0);
di spl ay_i mage(d);
I =rmlist(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_object g_copy_object

191

SCIL_Image 1.4 — Reference Manual

gauss

vgauss

NAME
gauss, vgauss - gauss filter

SYNOPSIS
#i ncl ude "improto.h"

int gauss(I MAGE *in, | MAGE *out, double signmax, double sigmay, double
accx, double accy, int fwidthx, int fw dthy)

i nt vgauss(l MAGE *in, | MAGE *out, double signmax, double signmay,
doubl e si gnmaz, double accx, double accy, double accz, int fw dthx,
int fwidthy, int fw dthz)

DESCRIPTION
gauss() and vgauss() perform Gauss filtering on image "in", resulting in image "out".
The filter coefficient values are given by:

gauss(x,s) = 1/((sqrt(2*pi)*s)exp(-x**2/2*s**2)
where sisthe sigma

The filter has parameter "sigmax”, "sigmay" and "sigmaz" governing the effective
width of the filter, where the minimum value of 1.0 correspondsto the size of one

pixel. The maximum value of sigma is10.0. For higher values of sigma, the image
can safely be analyzed at a reduced resolution.

The actual width of the filter asthe length of the set of filter coefficientsis governed
by the parameter "accx", "accy" and "accz". It indicates how close the filter set
resembles the Gauss function. In the implementation of the Gauss filter, the left and
right tails are chopped off to keep afraction of "acc" of the total filter mass. The mass
fraction of 1-acc being chopped off is redistributed over the remaining coefficientsto

ensure proper values.

The filter outcome is normalized for constant images. Theimage is mirrored near the
edges during the computation of the filter to prevent strong edge effects.

Note carefully that parameter "acc" determines the actual width of thefilter. The
parameters "fwidthx", "fwidthy" or "fwidthz" when given a positive and odd value
overrule the parameter "accx", "accy" or "accz". Then, the actual filter width isthe
value of this parameter, regardless its accuracy. "fwidthx", "fwidthy" and "fwidhtz"
may not be larger than the width, the height and the depth of the image. When
"fwidthx", "fwidthy", "fwidthz" have the value of -1, the parameter "acc" will function
as described above.

vgauss() isthe 3D version of gauss(), the only difference is the parameter list, whichis
extended with parameters for the Z-dimension ("sigmaz", "accz" and "fwidthz").

RETURN VALUES

192

SCIL_Image 1.4 — Reference Manual

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fuzzy derivativevfuzzy derivative

gauss_deblur

NAME
gauss_deblur - gaussian deblurring enhancement

SYNOPSIS
#i ncl ude "improto.h"

i nt gauss_deblur (I MAGE *in, |MAGE *out, double signma, int order,
doubl e accuracy, double factor)

DESCRIPTION
Theimage "in" is deblurred by extrapolating the taylor expansion in the scale
direction. Differentiation up to order "order" is performed and a weighted sum (given
by the taylor_polynomial()) of all even derivativesis stored in theimage "out". The
fuzzy derivative() function is used for differentiation of the input image, with scale
parameter "sigma’. The extrapolation parameter "factor" determines the enhancement
factor; 0.5 agrees to the natural scale. The scale parameter used for extrapolation is -
"factor" * "sigma" ** 2; this resultsin extrapolation of scale linear with "factor".
Since blurring is a destructive (semi-group) operation, thisis only a enhancement
technigue; no new detail is created.

LITERATURE
L. Florack, The syntactical structure of scalar images, PhD Thesis, University of
Utrecht, The Netherlands, 1991.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
taylor_polynomial

193

SCIL_Image 1.4 — Reference Manual

gauss family

NAME
gauss _family - complete set of derived gaussians

SYNOPSIS
#i ncl ude "i mproto.h"

int gauss_famly(I MAGE *in, | MAGE *out, double sigma, int order,
doubl e accuracy, int zero, int even)

DESCRIPTION

Differentiate the input image" in" and store the result in each plane of the 3D-output
image "out". In the output image, first the highest y derivative is put, then incremently
the x derivatives. For each order, there are order+1 components. So the output result
will be such as:

{f}, {f/dy , f/dx}, {f/dydy, f/dydx, f/dxdx},
Differentiation is performed by means of derived gaussian filtering, for which the
scaleisgiven by "sigma'. If "zero" istrue, the zero-order (smoothed) isincluded in
the output. If "even" istrue, only even orders are included. Thisresult in:

{f}, {f/dydy, f/dxdx}, {f/dydydydy, f/dydydxdx, f/dxdxdxdx},
This expansion can be used for extrapolation of image scale.

LITERATURE
L. Florack, The syntactical structure of scalar images, PhD Thesis, University of
Utrecht, The Netherlands, 1991.

J.J. Koenderink and A.J. van Doorn, Receptive field families, Biological Cybernetics,
vol. 63, 1990, 291-297.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
gauss_deblur taylor_polynomial

194

SCIL_Image 1.4 — Reference Manual

geo_affine
geo_rotate

geo_warp
NAME
geo_affine, geo_rotate, geo_warp - geometric transformations

SYNOPSIS
#i ncl ude "improto.h"

int geo_affine(l MAGE *in, | MAGE *out, double A0, double Al, double
A2, double Bl, double B2, double B3, int nethod, int adapt, int
bor der)

int geo_rotate(l MAGE *in, | MAGE *out, double angle, int nmethod, int
adapt, int border)

int geo_warp(l MAGE *in, | MAGE *out)

DESCRIPTION
geo_affing() performs an affine geometric transformation on the image "in" and stores
the result in image "out".

The affine transformation maps the pixels at coordinates (x,y) in the input image to
the coordinates (x’,y’) in the output image as.

X’
y’

a0 + al*x + a2*y
b0 + bl*x + b2*y

We can write this in matrix notation as:

(x*) (a0) (al a2)(x)
(y') = (b0) + (bl b2)(y)

As any geometric operation, the affine transformation implemented in SCIL_Image
uses the backward transformation, i.e. calculating (x,y) given (X', y'):

(x) (A0) (AL A2)(x)
(y) =(B0) + (BL B2)(y")

Given the forward transformation, the backward transformation reads:

1 (a2b0- alb2) 1 (b2 -a2

(x) _ __) (x")
(y) = alb2 - a2bl (aObl-alb0) + alb2 - a2bl (-bl al)(y')

Comparing this with the definition of the backward transform gives the values for
"AO","Al1","A2","B0", "B1" and "B2".

If we choose al=b2=1 a2=b1=0 we obtain:

(xx) (a0) (1 0)(x) (a0 + x)
(y') =(b0) + (0 1)(y) = (b0 +y)

195

SCIL_Image 1.4 — Reference Manual

i.e. atrandation over the vector (a0,b0) from input to output image. A rotation around
the origin over adegreesis given by the rotation matrix:

(x") (a0) (cos a -sina)(x)
(y') =(b0) + (sina cos a)(y)

Note that thisis the forward transform; the backward transform equals the inverse
transform. The rotation around a point (Xa, ya) is obtained by first atranglation such
that (xa,ya) is moved to the origin, then followed by a rotation around the origin and
finally the result is transated back. Thus:

(x) (x - xa)
(y") =(y - ya)

(x"") (cos a -sin
(y"’) =(sina cos

Substitution then gives an expression for (x , Yy’ ") asfunction of (X, y). Thisis
the forward transform describing a rotation around the point (xa,ya) over a degrees.
Theinverse of an arbitrary affine transform has been calculated before and that gives
us the backward transform.

geo_rotate() and geo_warp() are two dedicated implementations of the geo_affine()
function.

geo_rotate() rotates the image "in" (or a part of it) over an arbitrary angle "angle"
around the center of the image and puts the result in image "out". The rotation angle
"angle" must be specified in degrees.

geo_warp() blows or reduces theimage "in" to fit in the image "out". It uses bilinear
interpolation for pixel calculation.

The "method" parameter specifies whether to use "bilinear interpolation”
(INTERPOLATE (=1)) or "nearest neighbor" (NEAREST (=2)) pixel calculation. The
size of the output image is determined by "adapt" and can be either of these values:

SIZE OF IN (1) output image same size as input image

SIZE_OF RESULT (2) output image large enough to contain the
entire rotated image (only valid for
geo_rotate()).

SIZE_OF _OUT (3) output image sizeremainsasit is, if thesizeis

smaller than the input, not all of theimage
will be visible in the output. Only a part
around the center of the image

"border" determines what to do with the border in the output; either leave it black
(EMPTY (=0)), or wrap the image (WRAP (=1))

196

SCIL_Image 1.4 — Reference Manual

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
rotate flip blow reduce warp_image fblow

get_bool mask
NAME
get_bool_mask - convert a binary image to a Boolean mask

SYNOPSIS
#include "im.infra.h"

BOOL_MASK *get bool _mask(| MAGE *im

DESCRIPTION
get_bool_mask() converts the specified binary image "im" into a Boolean mask. This
Boolean mask can be used in the roi_define function.

RETURN VALUES
A pointer to the Boolean mask on success
NULL onfailure

SEE ALSO
roi_define

197

SCIL_Image 1.4 — Reference Manual

get_display _mode
NAME
get_display_mode - retrieve the display mode of an image

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt get_display_node(l| MAGE *i nmage)

DESCRIPTION
get_display_mode() retrieves the display mode that is set for "image”. The meaning of
the values are defined in the include file "dmodes.h" Only the modes set with
set_display_mode() are returned.

RETURN VALUES
the display modeif it is set
0 if no display mode is set, a non existing image is specified,
aroi is specified or no display window is attached to the image.

SEE ALSO
set_display_mode show_dmode flags

get free entry
NAME
get_free entry - get freeentry in an image-silo

SYNOPSIS
#i ncl ude "silo. h"

int get_free_entry(SILOPTR siloptr)

DESCRIPTION
sloptr - Pointer to the image-silo.

Searches the silo-entry-list for afree entry.
RETURN VALUES

The silo-key of the free entry is returned.
Negative error statusif no free entry available (seeim_error.h)

198

SCIL_Image 1.4 — Reference Manual

get_image by name
NAME
get_image_by name - obtain image pointer belonging to name

SYNOPSIS
#include "im.infra.h"

| MAGE *get i mage_by nane(char *nane, int case_sensitive)

DESCRIPTION
get_image_by name() retrieves the pointer to the image whose name "name”. If
"case_sensitive" isnon-zero upper case and lower case characters are distinct,
otherwise no distinction between upper and lower case is made.

RETURN VALUES
NULL image "name" does not exist
a pointer to the image otherwise

SEE ALSO
create_image destroy_image roi_define

get_image window_info
NAME
get_image_window_info - get information to display in window title

SYNOPSIS
#i ncl ude "improto.h"

int get_imge_wi ndow_i nfo(l MAGE *im char *buf)

DESCRIPTION
get_image_window_info() puts a string in "buf"describing the type and sizes of image
"Im". Thisstring is used by the display interface andplaced in the title-bar of an
image-display behind the name of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

199

SCIL_Image 1.4 — Reference Manual

NAME

get_pixel
put_pixel

get_pixel, put_pixel - generic pixel value getting/putting

SYNOPSIS

Due to the variable number of arguments needed for different image types, the syntax
is not unique.

#i ncl ude "improto.h"

int get _pixel (IMAGE *im int x, int y, [int z,] [int/double *val1l,
D)

int put_pixel (IMAGE *im int x, int y, [int z,] int/double vall,
[int/double val2, ...])

DESCRIPTION

NOTE

get_pixel and put_pixel are generic functions for getting and putting pixel valuesin
images. At the moment GREY, LABEL, BINARY, FLOAT, COMPLEX and COLOR
images are supported.

The parameters between square brackets "[]" are dependent upon the image type.
The first three parameters are equal for all image types, "im" a pointer to the image
and the X- and Y -position "Xx", "y".

For all 3D images, the Z-position "z" must immediately follow the X- and Y -position
(for 2D "Z" may NOT be specified).

put_pixel() expects the pixel value(s) to be either an "int" or "double". "int" for the
integer based image-types: BINARY, GREY, LABEL and COLOR, "double" for the
floating-point based images-types FLOAT and COMPLEX. The number of valuesis
onefor BINARY, GREY, LABEL and FLOAT, two for COMPLEX and three for
COLOR.

get_pixel() returns the requested pixel value dependent upon the image type using
either of these two methods:

1) asitsreturn value (an "int") for BINARY, GREY and LABEL.

2) by means of (@) pointer(s) in its parameter list FLOAT, COLOR and
COMPLEX. For COLOR the number and type of the pointers depend on
the color-model, three "int" pointer for RGB, three "float" pointers for
XYZ, HSI anf Lab and four "float" pointers for CMYK. One "double"
pointer for FLOAT images and two "double" pointers for COMPLEX
images. NULL pointers are permitted to suppress the retrieval of unwanted
values.

200

SCIL_Image 1.4 — Reference Manual

If the number and type of the parameters are not correct for the image type, the result
is undefined.

EXAMPLE
To get the pixel value of position (95, 56) of a GREY 2D image:

int val;
val = get_pixel (im 95, 56);
printf("Gey value is : %\n", val);

To put the pixel value 1 to position (102, 54, 10) of aBINARY _3D image:

put pixel (im 102, 54, 10, 1);

To set pixel (34, 87) of aCOLOR_2D imageto (R,G,B) = (10,200,123):

put _pixel (im 34, 87, 10, 200, 123);

To retrieve the value of pixel (300, 0, 5) of aCOMPLEX 3D image:

doubl e real, imag;
get _pixel (im 300, O, 5, &real, & nag);
printf("Conplex value is : %, %\n", real, img);

RETURN VALUES
On success either the requested value or the return status IE_OK (1) (when the value
is returned through a pointer)
Onfailure [E_NOT_OK (0): -not implemented for image type
-position x, y [,z] is outside the image)

201

SCIL_Image 1.4 — Reference Manual

get_pixel_range
NAME
get_pixel _range - determine the range of pixel valuesin animage

SYNOPSIS
#i ncl ude "i mproto.h"

int get_pixel _range(l MAGE *i nage, double minval, double maxval)

DESCRIPTION
get_pixel _range() calculates the range of the pixel valuesin the image "image". If the
pointer to adouble "minval” is not NULL, the minimum value is stored in the space
pointed to by "minval”, the maximum value is stored in the space pointed to by
"maxval” (if not NULL).

Therangeisalso stored in aPIX_INFO structure, attached to the IMAGE structure of
image "image" (see Addimagelnfo()). In this structure, the range of the imageis stored
together with an "operation-counter”, a value that indicates for which values of the

image’ s "operationrcounter” the range was valid. The range information in stored with
the name"Sl_PixRange".

If get_pixel_range() finds valid range information for an image in the PIX_INFO
structure, these values are returned instead of calculating them from the image data.

STRUCTURES
typedef struct image_pix_info {
doubl e m nval ;
doubl e naxval ;
int range_op_cnt;
} PI X_I NFO

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
Addimagelnfo post_op

202

SCIL_Image 1.4 — Reference Manual

get pixel_size
NAME
get_pixel_size - return memory size of one pixel (in bits)

SYNOPSIS
#i ncl ude "improto.h"

int get_pixel _size(l MAGE *im

DESCRIPTION
get_pixel _size() returns the amount of memory that one pixel inimage "im" occupies.
Thissize is specified in bits.

RETURN VALUES
The number of bits per pixel on success.
Negative error status on failure (see im_error.h)

get_sizes
NAME
get_sizes- obtain sizes of animage in theimage-silo

SYNOPSIS
#i ncl ude "silo.h"

int get_sizes(SILOPTR siloptr, int silo_key, int *sizex, int *sizey)

DESCRIPTION
siloptr - Pointer to theimage-silo.
silo_key - Numerical entry label.
sizex - Variable to return the width of the entry.
sizey - Variableto return the height of the entry.

Finds out what the width and height are of a given entry. Returns these values in the
variables sizex and sizey.

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) if entry was empty

203

SCIL_Image 1.4 — Reference Manual

get_dlice

put_slice
NAME
get_dlice - copy a 2D-dlice from a 3D image

put_slice - copy a2D-diceinto a 3D image

SYNOPSIS
#i ncl ude "improto.h"

int get_slice(I MAGE *inBd, | MAGE *inRd, int orientation, int slice)

int put_slice(l MAGE *inRd, | MAGE *inBd, int orientation, int slice)

DESCRIPTION
get_dlice() copiesthe pixel values from the selected slice of the 3D image "im3d" to
the 2D image "im2d". The possible "orientation"s are : xy(0), xz(1) or yz(2). "im3d"
must be a 3D image, "im2d" is adjusted to the sizes of the dice that is copied. "dice"
must be in the range <0..(Ien-1)>, with len the total number of slicesin the 3D image
for the selected direction.

put_slice() copies the pixel values from the 2D image "im2d" to the selected slice of

the 3D image "im3d". The possible "orientation"s are : xy(0), xz(1) or yz(2). "im2d"
must be a 2D image, "im3d" is adjusted to 3D. "dlice" must be in the range <0..(len?-
1)>, with len? the total number of dlicesin the 3D image for the selected direction.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

204

SCIL_Image 1.4 — Reference Manual

get_super_im
get_super_clut

get_super_histo
NAME
get_super_im - retrieve pointer to super image object.

get_super_clut - retrieve pointer to super clut object.
get_super_histo - retrieve pointer to super histogram object.

SYNOPSIS
#include "im.infra.h"

voi d *get super _imvoid)
voi d *get super_cl ut(void)
voi d *get super _hi sto(voi d)

DESCRIPTION
get_super_im() returns a pointer to the global super image object. Through this object
all creations and destructions of images are published.

get_super_clut() returns a pointer to the global super clut object. Through this object
al changesto cluts are published.

get_super_histo() returns a pointer to the global super histogram object. Through this
object al creations and destructions of histograms are published.

RETURN VALUES
A pointer to the requested object.

SEE ALSO
spb_publish spb_subscribe spb_unsubscribe

205

SCIL_Image 1.4 — Reference Manual

getc
getchar
fgetc

getw
NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSI S
#i ncl ude <stdi o. h>

int getc(FILE *stream
i nt getchar(void)
int fgetc(FlILE *stream

int getw(FILE *stream

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

getc() returns the next character from the named input stream.

getchar() isidentical to getc(stdin).

fgetc() behaves like getc(), but is a genuine function, not a macro.

getw() returns the next word from the named input stream. It returns the constant EOF
upon end of file or error, but since that is a good integer value, feof() and ferror()
should be used to check the success of getw(). getw() assumes no specia alignment in

thefile.

RETURN VALUES
These functions return the integer constant EOF at end of file or upon read error.

A stop with message, "Reading bad file", means an attempt has been made to read
from a stream that has not been opened for reading by fopen.

SEE ALSO
fopen putc gets scanf fread ungetc

206

SCIL_Image 1.4 — Reference Manual

GETENV

SETENV

NAME
GETENV, SETENV - retrieval and storage of environment variables

SYNOPSI S
#i ncl ude "support.h"

voi d SETENV(const char *string)

char *CETENV(const char *nane)

DESCRIPTION
SETENV () puts the variable specified in "string” into the environment of the program. If
the operating system also supports an environment, the variable is also put in the
system’s environment. The syntax of "string” is "variable=value”. If "string" is of the
form "variable' or "variable=" the variableis cleared (not destroyed). Spaces before of
after variable and value are stripped, however spaces within the value are kept. If the
equal sign =" isnot supplied, the first white space after variable is considered to be the
separator. If variable aready existsin the program’s environment the space of the
existing value is freed using freg().

GETENV () retrieves the value of the environment variable "name”. First the
environment of the program is searched and if "name" is not found, the operating
system’s environment is searched (if present). When neither the program’s nor the
system’s environment contain the variable, NULL isreturned

RETURN VALUES
SETENV () returns nothing.
GETENV () returns a pointer to the value of the variable or NULL if not found

207

SCIL_Image 1.4 — Reference Manual

getlogin
NAME
getlogin - get login name

PLATFORM
UNIX.

SYNOPSIS
char *getl ogi n(voi d)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

getlogin() returns a pointer to the login name as found in /etc/utmp. It may be used in
conjunction with getpwnam() to locate the correct password file entry when the same
userid is shared by several login names.

RETURN VALUES
Returns NULL (0) if name not found.

208

SCIL_Image 1.4 — Reference Manual

gets

fgets
NAME
gets, fgets - get a string from a stream

SYNOPSI S
#i ncl ude <stdi o. h>

char *gets(char *s)

char *fgets(char *s, int n, FILE *stream

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

gets() reads a string into "'s" from the standard input stream stdin. The string is
terminated by a newline character, which isreplaced in "s" by anull character. gets()
returns its argument.

fgets() reads n-1 characters, or up to a newline character, whichever comes first, from
the stream into the string "'s". The last character read into "s" is followed by anull
character. fgets() returnsits first argument.

RETURN VALUES
gets() and fgets() return the constant pointer NULL upon end of file or error.

SEE ALSO
puts getc scanf fread ferror

209

SCIL_Image 1.4 — Reference Manual

glc_entropy
glc_contrast

glc_asymmetry
NAME
glc_entropy - texture measure, co-occurence of grey-levels

glc_contrast - texture measure, co-occurence of grey-levels

glc_asymmetry - texture measure, co-occurence of grey-levels

SYNOPSIS
#i ncl ude "i mproto.h"

doubl e gl c_entropy(l MAGE *input, |MAGE *mask, int vectorx, int
vectory)

doubl e gl c_contrast (I MAGE *input, | MAGE *nmask, int vectorx, int
vectory)

doubl e gl c_asymmetry(I MAGE *input, | MACE *mask, int vectorx, int
vectory)

DESCRIPTION

The functions calculate a 2-dimensional histogram of the combinations of grey-values
of pixelsthat are the startpoint/endpoint of a vector with a specified
("vectorx","vectory") displacement.

The functions calcul ate:

glc_asymmetry Asymmetry of the histogram
Sum over g1,g2 of (p(g1,g2)**2)

glc_contrast Contrast of the histogram
Sum over g1,g2 of ((91-g2)**2)* p(91,92)

glc_entropy Entropy of the histogram
Sum over g1,g2 of p(gl,92)*log(p(g1,92))

Where gl and g2 are the grey-values at the start and end of the vector, and p(g1,92) is
the chance of this combination in the image.

The calculation of the texture is only done in the areas where the bit-image "mask"
has value 1.

RETURN VALUES
The texture value is returned. In case of error, thisis 0.

SEE ALSO
box_dimension gld_mean gld_entropy gld_contrast gld asymmetry

210

SCIL_Image 1.4 — Reference Manual

glr_nonuniformity glr_shortrunemphasis glr_longrunemphasis
glr_greynonuniformity glr_percentage edge average dist_average

211

SCIL_Image 1.4 — Reference Manual

gld_mean
gld_entropy
gld_contrast

gld_asymmetry

NAME
gld_mean - texture measure, difference of grey-levels

gld_entropy - texture measure, difference of grey-levels
gld_contrast - texture measure, difference of grey-levels
gld_asymmetry - texture measure, difference of grey-levels

SYNOPSIS
#i ncl ude "improto.h"

doubl e gl d_mean(1l MAGE *input, | MAGE *mask, int vectorx, int vectory)

doubl e gl d_entropy(l MAGE *input, |MAGE *mask, int vectorx, int
vectory)

doubl e gl d_contrast (I MAGE *input, | MAGE *nmask, int vectorx, int
vectory)

doubl e gl d_asymetry(I MAGE *input, | MACE *mask, int vectorx, int
vectory)

DESCRIPTION
The functions cal cul ate a histogram of the absolute differences of all combinations of
pixels that are the startpoint/endpoint of a vector with a specified
("vectorx","vectory") displacement.

The functions calcul ate:

gld_mean Mean of the histogram
Sum of i*p(i)

gld_entropy Entropy of the histogram
Sum of p(i)*log(p(i))

gld_contrast Contrast of the histogram

Sum of (i**2)*p(i)

gld_asymmetry Asymmetry of the histogram
Sum of (p(i)**2)

Where i isthe absolute difference, and p(i) is the chance of that absolute differencein
the image.

212

SCIL_Image 1.4 — Reference Manual

The calculation of the texture is only done in the areas where the bit-image "mask”
has value 1.

RETURN VALUES
The texture value is returned. In case of error, thisisO.

SEE ALSO
box_dimension glc_entropy glc_contrast glc_asymmetry glr_nonuniformity
glr_shortrunemphasis glr_longrunemphasis glr_greynonuniformity
glr_percentage edge average dist_average

213

SCIL_Image 1.4 — Reference Manual

glr_nonuniformity
glr_shortrunemphasis
glr_longrunemphasis
glr_greynonuniformity

olr_percentage
NAME
glr_nonuniformity - texture measure, run-length statistics

glr_shortrunemphasis - texture measure, run-length statistics
glr_longrunemphasis - texture measure, run-length statistics
glr_greynonuniformity - texture measure, run-length statistics
glr_percentage - texture measure, run-length statistics

SYNOPSIS
#i ncl ude "i mproto.h"

doubl e glr_nonuniformty(l MAGE *i nput, | MAGE *nmask)

doubl e gl r_shortrunenphasi s(1 MAGE *i nput, | MAGE *nask)

doubl e gl r_I ongrunenphasi s(1 MAGE *i nput, | MAGE *nmask)

doubl e gl r_greynonuni formty(lI MAGE *input, | MAGE *mask)

doubl e gl r_percentage(l MAGE *i nput, | MAGE *nmask)
DESCRIPTION

The functions cal cul ate a histogram of the grey-value/run-length

combinationsin the image.

The functions calcul ate:

glr_shortrunemphasis Run-length short run emphasis
Sum over i,j of p(i,))/(j**2)

glr_longrunemphasis Run-length long run emphasis
Sum over i,j of p(i,))*(j**2)

glr_greynonuniformity Run-length grey-level non-uniformity
Sgrt (Sum over i of ((Sum over j of p(i,j))**2))

glr_nonuniformity Run-length non-uniformity
Sgrt (Sum over j of ((Sum over i of p(i,j))**2))

glr_percentage Run-length percentage

214

SCIL_Image 1.4 — Reference Manual

100* (Number of runs/number of pixels)

Wherei isthe grey-level, j isthe run-length and p(i) is the chance of that combination
in the image.

The calculation of the texture is only done in the areas where the bit-image "mask”
has value 1.

RETURN VALUES
The texture value is returned. In case of error, thisisO.

SEE ALSO
box_dimension gld mean gld_entropy gld_contrast gld_asymmetry
glc_entropy glc_contrast glc_asymmetry edge average dist_average

gravx

NAME
gravx - obtain x coordinate of center of gravity of object

SYNOPSIS
#i ncl ude "im.aio. h"

doubl e gravx(LIST *Iink)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

gravx() returns the x coordinate of the center of gravity of the object pointed to by
"link" if this has previously been measured.

RETURN VALUES
x coordinate of center of gravity of object on success
0.0if link is not an object or if center of gravity has not been measured

SEE ALSO
measure object_shape meas object_dens meas

215

SCIL_Image 1.4 — Reference Manual

gravy
NAME
gravy - obtain y coordinate of center of gravity of object

SYNOPSIS
#include "im.aio.h"

doubl e gravy(LIST *Ilink)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

gravy() returnsthe y coordinate of the center of gravity of the object pointed to by
"link" if this has previously been measured.

RETURN VALUES
y coordinate of center of gravity of object
0.0if link is not an object or if center of gravity has not been measured

SEE ALSO
measure object shape meas object_dens meas

216

SCIL_Image 1.4 — Reference Manual

greaterO_ok

NAME
greaterO_ok - check if ainteger valueis greater than zero

SYNOPSIS
#include "im.infra.h"

int greaterO_ok(int value, char *text)

DESCRIPTION
The integer value "value" is checked to seeiif it is greater than zero or not. If itiszero
or negative an error is generated and the following message is added to the error-
stack:

<text> [<val ue>] nust be bigger than 0

NOTE
This function can only handle integer values, to check on float values, use the function
fgreater0_ok().

RETURN VALUES
IE_OK (1) if the value is bigger than zero
IE_NOT_OK (0) if it is zero or negative

SEE ALSO
fgreaterO_ok positive ok

217

SCIL_Image 1.4 — Reference Manual

greduce

NAME
greduce - grey value reduction of image

SYNOPSIS
#i ncl ude "i mproto.h"

int greduce(l MAGE *in, | MAGE *out, int nlev, int auto_contr)

DESCRIPTION
greduce() reduces the number of grey valuesinimage "in" to "nlev" levels and stores
the result in image "out". By default the range of the pixel valuesis assumed to be O -
255. Any values outside that range are clipped to 0 and 255. The "auto_contr"
parameter determines that the actual range of the pixel values should be calculated and
used instead of the O - 255 range.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dither pseudo

grey_dilation
NAME
grey_dilation - grey value dilation (local maximum)

SYNOPSIS
#i ncl ude "i mproto.h"

int grey_dilation(lMAGE *in, |IMAGE *out, int filtx, int filty, int
filtz)

DESCRIPTION
Non-linear local maximum filter.
Image "in" is scanned with a moving window with sizes "filtx" and "filty" and "filtz"
(for 3D images). For each window position the maximum of the pixel values within
the window is calculated. Thislocal maximum value is stored in the pixel inimage
"out" that corresponds with the central pixel within the window

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
grey_erosion

218

SCIL_Image 1.4 — Reference Manual

grey_erosion
NAME
grey_erosion - grey value erosion (local minimum)

SYNOPSIS
#i ncl ude "improto.h"

int grey_erosion(l MAGE *in, |IMAGE *out, int filtx, int filty, int
filtz)

DESCRIPTION
Non-linear local minimum filter.
Image "in" is scanned with a moving window with sizes "filtx" and "filty" and "filtz"
(for 3D images). For each window position the minimum of the pixel values within
the window is calculated. Thislocal minimum valueis stored in the pixel in image
"out" that corresponds with the central pixel within the window

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
grey_dilation

219

SCIL_Image 1.4 — Reference Manual

grey_mean
trans_mean

od _mean

NAME
grey_mean - mean of grey values of objects area

trans_mean - mean of transmission over objects area
od_mean - mean of optical density over objects area

SYNOPSIS
#include "im.aio.h"

doubl e grey_nean(LI ST *Iink)
doubl e trans_mean(LI ST *Ii nk)

doubl e od_rnean(LI ST *1i nk)

DESCRIPTION
link - Link pointing to the object

Al O primitives to obtain value of an object feature
grey_mean() returns the mean of the pixel values of the object pointed to by "link".

trans_mean() returns the mean of the pixel values of the object pointed to by "link"
according to atransmission pixel table.

od_mean() returns the mean of the pixel values of the object pointed to by "link"
according to a optical density pixel table

The features must have been measured beforehand with object_dens meas().
RETURN VALUES

Mean of all pixel values of object on success.
0.0if link is not an object or if mean value has not been measured

SEE ALSO
measure object_shape meas object_dens meas list_|abel

220

SCIL_Image 1.4 — Reference Manual

grey_morph_round
grey_morph_ellipse
grey_morph_hollow_ellipse
grey_morph_diamond
grey_morph_arbit

NAME

grey_morph_round, grey_morph_ellipse, grey_morph_hollow_éllipse,
grey_morph_diamond, grey_morph_arbit - grey valued morphology

SYNOPSIS

#i ncl ude "improto.h"

int grey_norph_round(l MAGE *in, |IMACGE *out, int fsize, int norm int
type)

int grey norph_ellipse(l MAGE *in, |IMAGE *out, int x_ axis, int y_axis,
doubl e orient, int norm int type)

int grey_norph_hollow ellipse(l MAGE *in, |MAGE *out, int x_axis, int
y_axis, double orient, int conn, int type)

int grey_norph_diamond(l1 MAGE *in, | MAGE *out, int fsize nw se, int
fsize _ne_sw, int type)

int grey_norph_arbit(IMAGE *in, |MAGE *filter, |MAGE *out, int norm
int type)

DESCRIPTION

These functions are morphol ogical operators with different shaped structuring
elements: circular, elliptic, hollow dliptic, diamond and arbitrary shaped.

Each of these functions can perform a dilation, an erosion, an opening or a closing on
GREY _2D images. The round, elliptic and hollow €lliptic also support a uniform and
akuwaharafilter. The arbitrary shaped supports the uniform filter too.

For FLOAT_2D images, the round, the elliptic and the hollow elliptic shapes support
dilation, erosion, opening, closing and uniform.

Kuwahara, diamond shaped and arbitrary shaped are not supported for FLOAT_2D.

For al functions theimage "in" is the input image and the image "out" is the output
image. "type" is the type of operator, being :

UNIF (1) uniform
DILA (2 dilation
EROS (3) erosion
CLOSE(4) closing
OPEN (5) opening

221

SCIL_Image 1.4 — Reference Manual

KUWA (6) kuwahara
If "norm" isset (1), the result of the uniform filter is normalized.

The size of the structuring element of the grey_morph_round() function is specified by
"fsize", the diameter of the circle.

The sizes of the dliptic structuring element of grey_morph_ellipse() and
grey_morph_hollow_ellipse() are given by "x_axis' and"y_axis', the axis of the
ellipse by an orientation "orient" of O degrees.

The sizes of the diamond shaped structuring element of grey_morph_diamond() are
specified by "fsize nw_se" and "fsize ne_sw".

For the arbitrary shaped structuring element, a separate image is needed in which the
structuring element is present. The sizes of this structuring element should be odd in
both dimensions.

The sizes of al the types of structuring elements should be odd.

LITERATURE
J. Serra, Image Analysis and Mathematical Morphology, Academic Press.

B.J.H. Verwer, L.J. van Vliet and P.W. Verbeek, Binary and Grey-value Skeletons
Metrics and Algorithms, International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 7(5), 1993.

R. v.d. Boomgaard, Mathematical Morphology: Extensions towards Computer Vision,
Ph.D.-thesis, University of Amsterdam, 1992.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
upper_gskeleton lower_gskeleton uniform_round kuwahara round

222

SCIL_Image 1.4 — Reference Manual

grey_stdev
trans stdev

od_stdev

NAME
grey_stdev - standard deviation of grey values of objects area

trans_stdev - standard deviation of transmission over objects area
od_stdev - standard deviation of optical density over objects area

SYNOPSIS

#i ncl ude "im.aio. h"
doubl e grey_stdev(LIST *link)
doubl e trans_stdev(LI ST *Iink)

doubl e od_stdev(LI ST *Iink)

DESCRIPTION
link - Link pointing to the object

Al O primitives to obtain value of an object feature

grey_stdev() returns the standard deviation of the pixel values of the object pointed to
by "link".

trans_stdev() returns the standard deviation of the pixel values of the object pointed to
by "link™" according to atransmission pixel table.

od_stdev() returns the standard deviation of the pixel values of the object pointed to
by "link" according to a optical density pixel table.

The features must have been measured beforehand with object_dens meas().

RETURN VALUES
Standard deviation of pixel values of object on success.
0.0if link is not an object or if standard deviation has not been measured

SEE ALSO
measure object_shape meas object_dens meas list_|abel

223

SCIL_Image 1.4 — Reference Manual

grey_sum
trans_sum

od sum

NAME
grey_sum - sum of grey values of objects area

trans_sum - sum of transmission over objects area
od_sum - sum of optical density over objects area

SYNOPSIS
#include "im.aio.h"

doubl e grey_sum(LI ST *Ii nk)
doubl e trans_sum(LI ST *1ink);

doubl e od_sun(LI ST *Ii nk)

DESCRIPTION
link - Link pointing to the object

Al O primitives to obtain value of an object feature
grey_sum() returns the sum of the pixel values of the object pointed to by "link".

trans_sum() returns the sum of the pixel values of the object pointed to by "link"
according to atransmission pixel table.

od_sum() returns the sum of the pixel values of the object pointed to by "link"
according to a optical density pixel table.

The features must have been measured beforehand with object_dens meas().

RETURN VALUES
Sum of al pixel values of object.
0.0if link is not an object or if sum of pixels has not been measured

SEE ALSO
measure object_shape meas object_dens meas list_|abel

224

SCIL_Image 1.4 — Reference Manual

handle pim

NAME
handle_pim - handle the point image display buffer

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int handle_pin(int activate)

DESCRIPTION
handle_pim() shows ("activate" = 1) or hides ("activate" = 0) the pim_window, the
window in which the pixel information is shown when clicking the left mouse button
in an image display window. For more information see point_im_display _buf() or the
demo "my_point.c" in the standard demo directory.

RETURN VALUES
None

SEE ALSO
point_im_display buf point im

225

SCIL_Image 1.4 — Reference Manual

have diff

NAME
have diff - Lee-Haralick-Verbeek edge detector

SYNOPSIS
#i ncl ude "i mproto.h"

int have_diff (I MAGE *in, |IMAGE *out, int node)

DESCRIPTION
Differential edge detection based upon local minimum and local maximum filters.
Within the moving window, with dimensions 3* 3, the minimum and the maximum
are calculated. For both these values the absolute differences with the central pixel in
the window are obtained.
The smaller of these differences becomes the output pixel value and is stored in the
corresponding pixel inimage "out".
Thisvalueis used as a sharp edge detector and is called the Lee-Haralick variant.
A variant of the algorithm modifies the final result in such away that the result is
multiplied by afactor -1 is the difference with the local minimum was chosen, thus
taking into account the original sign of the difference. This signed variant can be used
for edge sharpening and is called the Verbeek variant. If the output image of the
Verbeek variant is added to the original image, the result isto replace each pixel of the
original image by either the local minimum or the local maximum value (takenin a
3* 3 neighborhood), depending upon which value is closer to the original pixel value.
The result may be considered as a non-linear way of edge sharpening.
"mode" 1 Lee-Haralick variant

0 Verbeek variant.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

226

SCIL_Image 1.4 — Reference Manual

height
NAME
height - height of object

SYNOPSIS
#i ncl ude "im.aio. h"

i nt hei ght (LI ST *1ink)

DESCRIPTION
link - Link pointing to the object

AlO primitive to obtain value of an object feature
height() returns the height of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The height of the object in pixels on success
0if link is not an object

SEE ALSO
measure object_shape meas object_dens meas list_|abel

227

SCIL_Image 1.4 — Reference Manual

help

NAME
help, ? - get help information

SYNOPSIS
hel p <pattern>

? <pattern>

DESCRIPTION
The help command (or ?) supplies information on the specified topic <pattern>. If a
command or function name is specified, information on that command (function) is
given. If wildcards are present in <pattern>, all commands and/or variables that match
that pattern are listed. If a double question mark (??) is followed by a pattern than all
help files on all commands/functions that match that pattern are displayed.

HELP OPTIONS:
? Thisinformation
help This information
?command Information on SCIL command
Ppattern List of variables/functions matching pattern
?stremp Information about strcmp()
?count Information about globd variable "count”

Pattern may contain the wildcard "*" to match anything

EXAMPLE
[C1] ?s*p
sl eep
strcnp
strncnp
[C2]

228

SCIL_Image 1.4 — Reference Manual

hide _object

hide object at
NAME
hide_object - obscure labeled object

hide_object_at - obscure labeled object at specified position

SYNOPSIS

#i ncl ude "im.aio. h"
i nt hide_object (I MAGE *i nage, LIST *Iink)

i nt hide_object_at(I MAGE *inmage, LIST *link, int x, int y)

DESCRIPTION
image - Pointer to image with labeled objects
link - Link pointing to object
X,y - coordinate of top left of objects rectangle

hide_object() obscures the object in alabeled image by setting all its pixels at zero.

hide_object_at() obscures the object in alabeled image if the left top of the objects
surrounding rectangle is at position "x", "y".
NOTE
The object is not removed from the list. Y ou need to call rm_object() followed by
update() to remove an object from the list.

EXAMPLE
To hide objects touching the edge of an inmage:

#i ncl ude "image. h "
#i ncl ude "im.aio. h"
LI ST *I, *o;

readfil e("cernet", a, 0,0);

t hreshol d(a, b, 128);

i nvert _inm(b, b);

I =1list_label(b,c,8,0);

FORALL(o0,1) if(edge_object(c,0)) hide_object(c,0);
di spl ay_i mage(c);

I =rmlist(l);

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

229

SCIL_Image 1.4 — Reference Manual

hild_skelet

NAME
hild_skelet - skeletonization according to Hilditch

SYNOPSIS
#i ncl ude "i mproto.h"

int hild_skelet(IMAGE *in, |MAGE *out, int iter, int endp, int bound)

DESCRIPTION
Changes the objectsin image "in" into skeletons and stores the result in image "out".
The skeleton is defined as a set of connected, one pixel thick arcs, lying midway
between the object boundaries and being a topological retraction with the same
connectedness as the original object. The skeleton represents the morphologic
("shape™) features of the original object.

The thinning operation may be executed for only alimited number of cycles, as
specified by the parameter "iter". Full skeletonization results if the value specified for
this parameter is equal or larger than half the image-size.

"endp" specifies that the endpixels of the skeleton must be preserved with each
thinning iteration (1 is preserve, 0 isdo not preserve).

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
holt_skelet skelpoints

230

SCIL_Image 1.4 — Reference Manual

hist

NAME

hist - display the commands history

: - recall command

PLATFORM

UNIX.

SYNOPSIS

hist [start], [end]
: [nunber]

;[pattern]

DESCRIPTION

The history command "hist" shows previously given commands. The numbers "start™"
and "end" specify which ones should be listed. If no "number" is given, the last 20
commands are listed. If asingle "number” is specified, only that particular command
is shown. A range can be specified by supplying the begin and end separated by a
comma. If the argument before the comma is omitted, "start” is 1 (the first
commands). If the "number" after the commais omitted, "end" isthe last command.

Apart from recalling commands by their number, also a"pattern” can be used. This
"pattern” must be the start of the command line to recall. E.g. ":read" recalls the last
command that started with "read".

Typing acolon ":" followed by a command number or pattern recalls this command.
In case of a pattern only the last 20 commands are compared.

A recalled command is placed in the insert mode of the line editor.

EXAMPLE

hi st list the last 20 conmmands

hist 3 show conmand nunber 3

hi st 3, list command 3 up to |ast command
hist 30 list coomand 1 up to 30

hist 3,30 show command 3 up to 30

: <nunber > recal | command [C<nunber >]

:<pattern> recall last command starting with <pattern>
: recall last given command.

231

SCIL_Image 1.4 — Reference Manual

hist2d

NAME
hist2d - 2-dimensional image histogram calculation

SYNOPSIS
#i ncl ude "i mproto.h"

int hist2d(1 MAGE *inl, |MAGE *in2, |IMAGE *out, int clip)

DESCRIPTION
Calculate the histogram of co-incidences of grey valuesin theimage "inl" and "in2"
and store the resulting two-dimensional histogram in image "out". For each element of
the image "out" with indices | and J, the number of timesapixel in"inl1" has the value
| and its corresponding pixel in"in2" has the value Jis counted and stored as the new
pixel value in the output image "out". When "clip" is set (=1), pixel vauesin theinput
images "inl1" and "in2" that are either negative or greater than the size of the output
image, are truncated to zero or the appropriate image size of "out" respectively. If
"clip" isnot set (=0), pixel values outside the range from zero to the output image
Size, cause an error condition..

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
histdata

232

SCIL_Image 1.4 — Reference Manual

histdata

NAME
histdata - image histogram calculation

SYNOPSIS
#i ncl ude "improto.h"

int histdata(l MAGE *in, VAR OBJECT *dat a,

DESCRIPTION

int clip)

Calculates the grey level histogram of image "in" and stores the resulting histogramin

the var_object "data". For each pixel value in image "in" the number of pixelsis
counted in a corresponding element of array "data’, a so-called bin. "len" isthe

number of bins. When "clip" istrue (=1), pixel valuesin image "in" that are less than
zero or greater than "len™ are truncated to zero and "len" respectively. If "clip" isfalse

(=0), pixel values outside the range zero to "len" cause an error condition.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hist2d

histogram

NAME
histogram - plot histogram in display window

SYNOPSIS
#i ncl ude "inscil.h"

i nt histogran(! MAGE *in)

DESCRIPTION

Calculates the grey level histogram of image "in" and plots the resulting histogram.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
histdata hist2d plot_histogram

233

SCIL_Image 1.4 — Reference Manual

histogram_by name
histogram_ok

Is_histogram
NAME
histogram_by name - get the pointer to a histogram by its name

histogram_ok - check if pointer is ahistogram and pop aert if not
is_histogram - check if pointer is a histogram object

SYNOPSIS
#include "iminfra.h"

H STOGRAM *hi st ogram by _nane(char *nane, int case_check)

i nt hi stogram ok(H STOGRAM *hi st 0)

int is_histogram H STOGRAM *hi st 0)

DESCRIPTION
histogram_by name() retrieves the pointer to the histogram "name". "case_check”
specifies whether a distinction between lower case and upper case characters should to
be made. If zero then no distinction is made.

histogram_ok() and is_histogram() check the pointer "histo" to seeif it pointsto a
valid histogram. The linked list in which all the histograms are present is scanned for
the occurrence of "histo". If it isavalid histogram, atrue status (1) isreturned, else a
false status (0). Additionally, if it isnot avalid histogram pointer, histogram_ok()
generates an error and adds the following message to the error-stack:

Non exi sting histogram pointer.

SEE ALSO
create_histogram destroy_histogram histo_data copy_histogram
histogram to _image histogram to var_object image_to_histogram
histogram_comment dump_histogram list_histograms show_histogram_info

234

SCIL_Image 1.4 — Reference Manual

histogram_comment
dump_histogram
list_histograms

show_histogram _info
NAME
histogram_comment - attach a comment string to a histogram object

dump_histogram - show the histogram datain ASCI|
list_histograms - list all histograms
show_histogram_info - list information on a histogram

SYNOPSIS
#include "im.infra.h"

i nt hi stogram coment (H STOGRAM *hi sto, char *comment)
i nt dunp_hi st ogranm H STOGRAM *hi sto, char *file, int num
int list_histograns(void)

i nt show_hi st ogram i nf o(H STOGRAM * hi st 0)

DESCRIPTION
histogram_comment() adds a (null-terminated) string "comment" to the structure of
the histogram "histo". The string may be of any length aslong as it is null-terminated.
The function itself alocates memory for the string, so if adding comment to an
histogram while not using this function, be sure that the memory was allocated with
malloc() for other functions rely on it (they use freg()). Any previously attached
comment is removed before the comment is added.

dump_histogram() dump the data of histogram "histo" in ASCI|I to either the
controlling terminal or afile. If aname is specified for the file ("file") then the data
will be stored in afile, else the data will be dumped on the terminal. The last
parameter "num" specifies the number of values that will be printed on asingleline
(default = 1). If the datais dumped to an already existing file, the old file will be
overwritten without warning (provided the file permissions allow this).

list_histograms() displaysalist of all existing histogram on the controlling terminal.
show_histogram_info() displays information about a histogram object on the terminal.
The name, sizes, lowest and highest bin median values and the comment are shown on

the controlling terminal.

SEE ALSO
create_histogram destroy_histogram histo_data copy_histogram

235

SCIL_Image 1.4 — Reference Manual

histogram to _image histogram to var_object image_to_histogram
histogram by name histogram ok is_histogram

histogram_to_image
image _to_histogram

histogram_to var_object
NAME
histogram_to_image - copy the histogram data to an image

image_to_histogram - copy image data to an histogram
histogram to var_object - copy the histogram datato an var_object

SYNOPSIS
#include "iminfra.h"

i nt histogramto_image(H STOGRAM *hi sto, | MAGE *inage, int out_type)
int image_to_histogran(| MAGE *i mage, H STOGRAM *hi st 0)

int histogramto_var_object (H STOGRAM *hi sto, VAR OBJECT *object)

DESCRIPTION
histogram_to_image() copies the data of histogram "histo" to the image "image". The
image sizes are changed to match the sizes of the histogram. The image typeis not
changed.

image_to_histogram() copies the data of image "image" to the histogram object
"histo". The sizes of the histogram are changed to match those of the image.

histogram to var_object() copies the data of histogram "histo" to the var_object
"object". The sizes of the var_objects are changed to match those of the histogram.
Thetype of the var_object is changed to LONG_T.

SEE ALSO
create_histogram destroy_histogram histo_data copy_histogram
histogram by name histogram ok is_histogram
histogram_comment dump_histogram list_histograms show_histogram_info

236

SCIL_Image 1.4 — Reference Manual

hit_or_miss

NAME
hit_or_miss- "hit or miss' transform

SYNOPSIS
#i ncl ude "improto.h"

int hit_or_mss(IMAGE *in, | MAGE *out, | MAGE *se, int bound)

DESCRIPTION
Performs a"hit or miss" transform on image "in" using the "hit or miss* mask encoded

inimage "se" and stores the result in image "out". The "hit or miss transform™
calculates the intersection of the erosion of image "in" using structuring element S1
and the erosion of the complement (inverted image) of image "in" using structuring
element S2. The pixels belonging to S1 are encoded in image "se" with positive grey
values, those belonging to S2 are encoded with negative grey values.

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion arbit_dilation real_time_recognizer t morphology

237

SCIL_Image 1.4 — Reference Manual

holt_skelet

NAME
holt_skelet - skeleton according to Holt, Stewart, Clint & Perrott

SYNOPSIS
#i ncl ude "i mproto.h"

int holt_skelet (I MAGE *in, |MAGE *out, int iter, int bound)

DESCRIPTION
Changes the objectsin image "in" into skeletons and stores the result in image "out".
The skeleton is defined as a set of connected, one pixel thick arcs, lying midway
between the object boundaries and being a topological retraction with the same
connectedness as the original object. The skeleton represents the morphologic
("shape™) features of the original object.

The thinning operation may be executed for only alimited number of cycles, as
specified by the parameter "iter". Full skeletonization results if the value specified for
this parameter is equal or larger than half the image-size.

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hild_skelet skelpoints

238

SCIL_Image 1.4 — Reference Manual

homomor phic

NAME
homomorphic - contrast enhancement filter

SYNOPSIS
#i ncl ude "improto.h"

i nt hononor phic(I MAGE *in | MAGE *, out, double |ow anplitude, double
filt_size)

DESCRIPTION
This FFT based function can only be used on 2D images of which sizes are a power of
two. The filter is based on the idea that the image is the result of multiplication of an
illumination function with a"scene" function. The illumination function is assumed to
be composed of low frequency components only. The aim of the filter isto remove the
contribution of the illumination function to the image by executing the following

steps.

1) Take logarithm of image "in". The result isthe SUM of an illumination and a scene
component.

2) Apply ahigh passfilter. Thefilter sizeis controlled through "filt_size"; the
attenuation of the lower frequency components by "low_amplitude”.

3) Reverse of 1) and store the result in the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_contrast

239

SCIL_Image 1.4 — Reference Manual

hull

NAME
hull - object convex hull detection

SYNOPSIS
#i ncl ude "i mproto.h"

int hull (1 MAGE *in, | MAGE *out)

DESCRIPTION
Calculate the convex hull of each object in the labeled image "in" and store the result
inimage "out". For each object in "in", all combinations of two contour points are
connected by a straight line. If abackground pixel isfound on such aline, it is added
to the original object. This operation closes all holes in an object. The contour of an
object is also smoothed, asall gapsin it are filled.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
label objectsize rhull small_object removal

240

SCIL_Image 1.4 — Reference Manual

hypot

cabs

NAME
hypot, cabs - Euclidean distance

SYNOPSIS
#i ncl ude <nmat h. h>

doubl e hypot (doubl e x, double y)

doubl e cabs(struct { double x, y;}z)

DESCRIPTION
These functions are interface functions to the C functions as implemented on the
current operating system. The functionality of these functionsis:

hypot() and cabs() return
sArt("x"EIX" 4 My"Ety"),
taking precautions against unwarranted overflows.

SEE ALSO
exp sort

241

SCIL_Image 1.4 — Reference Manual

| benke

NAME
Ibenke - interactive search for texture segmentation filter

SYNOPSI S
#i ncl ude "itools.h"

int | benke(l MAGE *filter, | MAGE *out, double gain, double
convergence, double sigma, int width, int height)

DESCRIPTION
Ibenke() asks the user to draw arectangle in the object and in the background textured
regions, and tries to find a (sub-)optimal separation filter. The convergence speed is
determined by "gain". The search is finished when the energy difference between the
two texturesis less than "convergence" compared to the previous iteration. If
"convergence” is greater than one, it will be converted to the number of iterations to
perform. After training, the input image is segmented by applying convolution(),
sguaring the image and applying a Gaussian filtering with spatial extend given by
"sigma’. This gives ameasure of local energy. The filter dimensions are given by
"width" and "height".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
benke convolution mul_im gauss

242

SCIL_Image 1.4 — Reference Manual

ics readfile

NAME
ics _readfile - read an image from afilein ICS format

SYNOPSIS
#i ncl ude "improto.h"

| MAGE *ics_readfile(char *filename, | MAGE *inmage, |ICS *ics_header,
i nt xpos, int ypos)

DESCRIPTION
Read the image "filename" stored in ICS-format into the image "image". "filename"
may be specified with or without the file extensions ".ics'/".ids". If "USE_NAME" (a
NULL pointer) is specified as the image, anew image is created at position "Xpos",
"ypos', with the same name as thefile. If an image is already present with that name,
that image will be used.

Information about the image is stored in the ICS structure "ics_header”. If aNULL
pointer is passed for "ics_header, the header informatin is not returned to the calling
program.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL onfailure

SEE ALSO
readfile tiff_readfile tcl_readfile aim_readfile writefile ics writefile

243

SCIL_Image 1.4 — Reference Manual

ics writefile
NAME
ics writefile - write an image to afilein ICS format

SYNOPSIS
#i ncl ude "i mproto.h"

int ics_witefile(lMACE *i mage, char *filename, |ICS *ics_header)

DESCRIPTION
Stores the image "image" into the file "filename" according to the ICS-format. If a
NULL pointer issupplied for "ics_header", oneis created internally inics writefile()
and filled with appropriate default values.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
writefile tiff_writefile tcl_writefile readfile ics _readfile

ifft
NAME
ifft

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seefast_fourier

244

SCIL_Image 1.4 — Reference Manual

|GreyMap
NAME
|GreyMap - Interactive grey lookup table editor

SYNOPSI S
#i ncl ude "itools. h"

void | GeyMap(| MAGE *i nmage)

DESCRIPTION
IGreyMap() interactively changes the grey lookup table of the image "image". By
dragging the knots that are on the red line, the shape of the lookup table can be
changed.

The number of knots used to define the curve can be changed from 2 to 12. The
leftmost knot as well as the rightmost knot cannot be dragged from the sides. Knots
can be added and removed using the right mouse button (<command> key together
with the mouse button on the Mac). To add a knot press the button at the location the
new knot isto be positioned. To remove an existing knot press the right mouse button
on the knot to be removed.

In the editor window several buttons are available for changing the behavior of the

editor:
"LINE" Connect the knots using straight lines.
"SPLINE" Connect the knots using splines.
"UPDATE" Update the image "image" continuously, default is that "image"
is updated only if the mouse button is rel eased.
"BRIGHTER" Move all knots upwards
"DIMMER" Move all knots downwards
"SHARPER" Enhance the contrast in the table.
"DULLER" Remove contrast.
"LINEAR" Reset the editor to alinear curve.
"OK" Exit the editor and attach the new lookup table to "image".
"CANCEL" Exit the editor, discarding the new lookup table
"HELP" Short on-line help.
RETURN VALUES
None
SEE ALSO
I Threshold

245

SCIL_Image 1.4 — Reference Manual

im_begin_func
im_end _func
im_report_error
im_get_status

im_debug_stack

NAME
im_begin_func - push a function name on the error-stack

im_end_func - pop afunction name from the error-stack
im_report_error - report an error occurrence to the error-stack
im_get_status - retrieve error status from error-stack
im_debug_stack - report inconsistent usage of error-stack

SYNOPSIS

#include "imerror.h "
voi d i mbegi n_func(const char *fnamne)
voi d i mend_func(const char *fnane)

int imreport_error(const char *fnane, int status, const char
*nmessage)

int imaget_status(void)

void i mdebug stack(int flag)

DESCRIPTION
fname name of the C-function
status error value identifying the error
message string with additional information
flag enable/disable run-time checking of error-stack inconsistencies

Error reporting mechanism for image processing routines. The function
im_begin_func() is put at the beginning of each C-function and im_end_func() is put
at every exit of that C-function. These two function keep a function-stack up-to-date
with the exact location the program is at.

246

SCIL_Image 1.4 — Reference Manual

When an error is detected by a C-function, it should try to handle and correct it. If it
can not correct the error, it must report this error to the error-stack. First it must clean
up and then report the error using theim_report_error() function. This report must
specify the function name "fname”, the error-value "status" and an (optional) message
string "message” in which additional textual information can be put. Additionally the
function should return the error-value to the higher-level function. im_report_error()
also callsim_end func(), so in case of an error callingim_end_func() is superfluous
(but not an error).

im_report_error() also returnsits "status" argument so it can be used directly in a
"return” statement (see EXAMPLE).

After an error is detected and reported, the error-stack isinitialized with the location
of the error (the current contents of the function-stack and the error-value and message
of the function that reported the error. Only higher-level functions that are on this
error-stack can put their error-values and -messages on this stack while handling the
error from the lower-level function. The error-stack can hold only one error and its
location. When during the handling of this error another error occurs in a different
location, this last error isignored by the error-stack.

im_get_status() retrieves the error-status of the function that is just below the current
function on the error-stack. It should be used when the lower-level function can not
return a error-value through its return-value (e.g. the return-type isafloat or a
pointer). When no error has been been reported yet or when im_get_status() is called
from afunction that is not in the "frozen" error-stack, it always returns 1 (no error).

When all higher-level functions have handled the error and reported the error-values
and messages to the error-stack, the error is published by the global error-object
"Im_error_stack”. The User Interface then gets notified of the fact that an error has
occurred and can present that information to the user/programmer.

im_debug_stack() enables/disables the run-time consistency checking of the function-
and error-stack. "flag" is 1 enables and "flag" is O disables the checking. Empty
function-names, typing errors, forgotten im_end_func() calls all will lead to a corrupt
error-stack. When the checking is enabled, thiswill be reported as soon asit is
detected. It is recommended to use this checking only when testing your new code
because the amount of output can be extensive.

Theinclude file"im_error.h" contains a number of pre-defined error values that are
used by Image.

EXAMPLE
Exanpl e of a function that can not allocate a tenporary buffer due to
i nsufficient menory:

#i ncl ude <stdlib. h>
#i ncl ude "image. h "
#include "imerror.h "

int ny_function(| MACE *in, | MAGE *out)
{

247

SCIL_Image 1.4 — Reference Manual

int *ptr, size;

i m begin_func("nmy_function");

size = ...

if (!(ptr = malloc(size)))
return imreport_error("ny_function", |E_NOVEM
“"No nenory for table");

f?ée(ptr);
i mend_func("ny_function");
return | E XK

}

RETURN VALUES
im_report_error() returnsits second ("status") argument.
im_get_status() returns the error status of the function that is one level down on the
error-stack (if an error has previously been reported).

SEE ALSO
im_debug_stack im_get func_stack_copy im_clear_errors im_clear_func_stack
show_func_stack show_error_stack

im_from_silo
NAME
im_from_silo - transfer image from silo to destination image

SYNOPSIS
#i ncl ude "i mage. h"
#i nclude "silo.h"

int imfromsilo(SILOPTR siloptr, int silo_key, | MAGE *dstinage)

DESCRIPTION
siloptr - Pointer to an image-silo.
silo_key - Numerical entry silo_key.
dstimage - Image pointer

Copiestheimage at position "silo_key" from the silo "siloptr" to the image "dstimage”.
The sizes of theimage "dstimage" are set to the sizes of theimage from the silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (seeim_error.h)

248

SCIL_Image 1.4 — Reference Manual

im_input_func
del_im_input_func
Im_exposure_func

del_im_exposure func

NAME
im_input_func, del_im_input_func, im_exposure func, del_im_exposure_func -
functions for image event handling

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int iminput_func(void (*fp)(IMAGE *, int, int, int, IMEVENT), int
handl e_err)

int del _iminput_func(void (*fp)(IMAGE *, int, int, int, | MEVENT))
int i mexposure_func(void (*fp)(I MAGE *), int handle_err)

i nt del _i mexposure_func(void (*fp) (I MAGE *))

DESCRIPTION
These functions can be used to indicate that a program is interested in exposure- and
input-events for images.

im_input_func() can be used to specify afunction that isto be called when input
events for an image occurs. "fp" is a pointer to the function to be called. If
"handle_err" is set (1), the specified function is removed from the list when an error
occurs (and the program is interrupted).

The function to handle the input events must have the following syntax:

void func(lI MAGE *inptr, int x, int y, int ch, I MEVENT but)

i mptr; /* image in which the event occurs */
X, VY; /* position of the pointer */

ch; /* key pressed (if any) */

but; /* button state */

im_exposure_func() can be used to specify afunction that isto be called when
exposure events for the images occur. "fp" is a pointer to the function to be called. If
"handle_err" is set (1), the specified function is removed from the list when an error
occurs (and the program is interrupted).

The function to handle the exposure event must have the following syntax:

voi d func(l MAGE *inptr)

249

SCIL_Image 1.4 — Reference Manual

i mptr; /* image in which the exposure event occurred */

del_im_input_func() deletes the specified function "func" from the list of functions
that are called on input events.

del_im_exposure func() deletes the specified function "func" from the list of
functions that are called on exposure events.

NOTE
These functions form a new interface to the eventsin images for application
programs. The old interface which consisted of the functions
add_applic_exposure _func(), add applic win_input_func() and the mandatory names
for interpreted event handling functions handle_exposure() and handle_win_input()
have become obsolete. The support of those function is no longer guaranteed in future
versions of SCIL_Image.

RETURN VALUES
IE_OK (1)

250

SCIL_Image 1.4 — Reference Manual

Im_set_output_handler
NAME
im_set_output_handler - intercept textual output.

SYNOPSI S
#i ncl ude "i nt xt out. h"

I M OHFUNC i m set _out put _handl er (1 M_OHFUNC funcptr)

DESCRIPTION
im_set_output_handler() registers afunction that is used to handle all textual output
that has been "printed” using the image_output() function. An application that uses the
Image library may have its own way of presenting textual data and therefore wishesto
overrule the default way, im_set_output_handler enables this. "functptr* must be a
pointer to afunction that has the following function header:

void WNAPI funcname(int stream char *buffer)

"stream” is the type of the text as defined with image_output().
"buffer" is atext-buffer containing the text to be shown.

im_set_output_handler() returns the previous output handler so an application is
capable of overruling and restoring other handlers.

NOTE
We use WINAPI on the MS-Windows platform to provide greater flexibility. On other
platforms WINAPI is an empty define (see the include file imtxtout.h)

RETURN VALUES
im_set_output_handler() returns the previous output handler.

SEE ALSO
image_output

251

SCIL_Image 1.4 — Reference Manual

im_to_silo
NAME
im_to_silo - add existing image to an image-silo

SYNOPSIS
#i ncl ude "i mage. h"
#i nclude "silo.h"

int imto_silo(SILOPTR siloptr, int silo_key, |IMAGE *inmage)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in silo.
image - Pointer to image.

Transfers theimage "image" to the image-silo "siloptr" at position "silo_key".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (seeim_error.h)

252

SCIL_Image 1.4 — Reference Manual

im_val ok
NAME

im_val_ok - check if value(s) is(are) smaller than the image size(s)
SYNOPSIS

#i nclude i m.infra.h"

int imval_ok(IMAGE *image, int al [, int vl, int a2, int v2, ...])
DESCRIPTION

The function performs a series of checks on the values "v1", "v2", ... (depending on
the amount specified) to seeif they are smaller than or equal to the image size(s). A
variable number of argument pairs "axX-vX" (up to 8 pairs) can be checked. Each
value "vX" is checked if it is positive and smaller than or equal to the image
dimension specified by "aX". Each pair of arguments is checked by calling the
function val_check(). Each argument "aX" can have one of the following values:

WIDTH (1) check if the corresponding value "vX" is smaller than or equal to the
image width.

HEIGHT (2) check if the corresponding value "vX" is smaller than or equal to the
image height.

DEPTH (3) check if the corresponding value "vX" is smaller than or equal to the
image depth.

END (-1) if lessthan 8 pairs of arguments are supplied, the first not used
argument "axX" must be END to stop checking.

RETURN VALUES
IE_OK (1) if al the values are positive and smaller than the image size(s) specified
IE_NOT_OK (0) if one of the value is bigger than an image size.

SEE ALSO
val_check

253

SCIL_Image 1.4 — Reference Manual

im1ps
Im2ps
Im3ps

im4ps
NAME
imlps - print one image in postscript

im2ps - print two images
im3ps - print three images
imdps - print four images

SYNOPSIS
#i ncl ude "improto.h"

voi d imlps(I MAGE *im char *title, double xsize, double ysize, int
fntsize, int border, char *fil enane)

voi d i n2ps(I MAGE *iml, char *titlel, |IMAGE *inR, char *title2, double
xsi ze, double ysize, int fntsize, int border, char *fil enane)

voi d i nBps(I MAGE *iml, char *titlel, IMAGE *inR, char *title2, |MAGE
*im3, char *title3, double xsize, double ysize, int fntsize, int
border, char *fil ename)

voi d i mips(I MAGE *iml, char *titlel, IMAGE *inR, char *title2, |MAGE
*InB, char *title3, IMACE *imd, char *title4, double xsize, double
ysi ze, int fntsize, int border, char *fil enane)

DESCRIPTION
The functions im1ps(), im2ps(), im3ps() and im4ps() output one or more imagesin a
postscript file. The size of the image can be specified (in centimeters) by "xsize" and
"ysize", thetitle of the image by "titl€" together with the font-size "fntsize" in which it
isprinted (in points). If "border" is set (1), arectangle is drawn around the image. The
output is stored in the file "filename".
im1ps() plots one image centered on the page.

im2ps() plots two images aligned vertically (the images are numbered from top to
bottom).

im3ps() plots three images aligned vertically.

im4ps() plots 4 images in a 2x2 matrix. The images are numbered as:
12
3 4

254

SCIL_Image 1.4 — Reference Manual

SEE ALSO
ps_head ps image ps tail

Image_ok
NAME
image ok - check if the supplied pointer isavalid image pointer

SYNOPSIS
#include "im.infra.h"

int image_ok(l MAGE *i mage)

DESCRIPTION
The pointer "image" is checked if it pointsto avalid image. The linked list in which
all the images are present is scanned for the occurrence of "image”. If no image exist
with this pointer, an error is generated and the following message is added to the
error-stack:

Non existing image pointer.

The function is_image() performs the same check and has the same return values but
does not put an alert box on the screen.

RETURN VALUES
IE_OK (1) if the pointer isavalid image.
IE_NOT_OK (0) if the pointer is not an image.

SEE ALSO
images ok is_image

255

SCIL_Image 1.4 — Reference Manual

image_output
NAME
image_output - show formatted output

SYNOPSIS
#i nclude "image.h "
#include "iminfra.h"

void i nage_output(int stream const char *format, ...)

DESCRIPTION
To enable the image processing routines to be used under any user-interface, all
textual messages from these functions must be visualized by the user-interface, not by
the image processing. Therefore printf() and other standard output functions should
not be used. Theimage output() function is used in the image processing functions to
channel al the textual information to the user-interface. image_output() is called
almost the same way as printf() except that a parameter "stream” has been inserted to
identify the type of information. At present, the following types have been defined:

IMO_OUTPUT: ordinary-output (e.g.) measurement results
IMO_INSTRUCT: instruction messages

IMO_WARING: warning messages

IMO_ERROR: error-messages

How these different streams are shown to the user, is entirely up to the user-interface
e.g. in SCIL_Image the error stream is visualized by means of aalert_box showing the
message. Execution is resumed after the alert_box has been removed by the user.

RETURN VALUES
im_set_output_handler

256

SCIL_Image 1.4 — Reference Manual

Image_readwrite ok
NAME
image _readwrite ok - check if an imageiswriteble

SYNOPSIS
#include "im.infra.h"

int inmage_readwite_ok(l MAGE *i nage)

DESCRIPTION
The pointer "image" is checked if it does not have the READ _ONLY flag set. If the
image is read-only, an error is generated and the following message is added to the
error-stack:

[llegal output image: <imagename> (read only)
RETURN VALUES

IE_OK (1) on success
IE_NOT_OK (0) when the image is read-only

Image_text
NAME
image_text - generate text within an image

SYNOPSIS
#i ncl ude "improto.h"

int imge_text (I MAGE *out, int x, int y, int val, int boxval, int
zoom char *str)

DESCRIPTION
Write the text string specified by "str" into the image "out", starting at relative
position (x,y). Theintensity of the charactersis specified by "val", the background
intensity is"boxval". "zoom" specifies the zoom factor.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

257

SCIL_Image 1.4 — Reference Manual

image _to_chaincode

NAME

image_to_chaincode - convert labeled skeleton into chain-code list

SYNOPSIS

#i ncl ude "grey_2dp. h"

int image_to_chai ncode(l MAGE *i nage, VAR OBJECT *out put)

DESCRIPTION
The labeled image "image" is scanned for objects, which should be 8-connected
skeletons, and a Freeman chain-code description of the objectsis stored into the
1-dimensional VAR_OBJECT "output" of type SHORT _T.

Freeman chain-codes

Freeman chain-codes describe an 8-connected curve in the following way. The
coordinates of the first point of the curve are stored. Then for all points of the curve,
the direction to the next point is stored (Freeman code). In arectangular grid, an
8-connected curve can only step in 8 different directions, so the directions are coded

as:

258

ahw
o *N
~Nor

In thisway, an 8-connected curve can be represented by:

the x-coordinate of the first point,
the y-coordinate of the first point,
the number of Freeman codes, N,
N Freeman codes.

If the curveisclosed, N is equal to the number of pixels on the curve: the last
chain-code points to the first point. If the curveis open, N equals the number
of points minus one, as there is no successor to the last point.

Each object in "image" is parsed into a set of curve segments, connecting two
endpoints or branch-points or being a closed loop. Each curve segment is then
represented by a starting point and a set of chain-codes.

The representations of the objects are stored into "output™ in the following
order:

the number of objects stored,

the representation of the first object,
the representation of the second object,

The representation of each object is asfollows:

SCIL_Image 1.4 — Reference Manual

the number of curvesin the object,
the representation of the first curve,
the representation of the second curve,

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
chaincode to _image chaincode to xy put _xy into_image

Image_to_var_object
NAME
image to var_object - convert an image into avar_object

SYNOPSIS
#i ncl ude "objectsp. h"

int inmage_to _var_object (I MAGE *i mage, VAR OBJECT *object, int
type_of object)

DESCRIPTION
Convert the image "image" into athe var_object "object”. "type of object” specifies
the type that the object will become. If "type _of object” is zero, then the type of the
object itself will be taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object var_object_convert var_object_to image

259

SCIL_Image 1.4 — Reference Manual

I mageM otionEvents

NAME
ImageM otionEvents - enable/disable motion events for an image

PLATFORM
UNIX.

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt | mageMoti onEvents(| MAGE *inage, int node)

DESCRIPTION
An interactive application must react to al events generated by the windowing system
in order to perform itstasks. However not all events that can be generated by a
windowing system are of interest to certain applications. One of these eventsisthe
ButtonMotionEvent generated by the X-windows system. The number of this type of
event can be quite large, decreasing the performance of the application and creating
undesired delayed feedback effects. ImageM otionEvents() enables the programmer to
turn of this event for the window attached to "image". To turn off these events,
"mode" must be set to No (0). The events are turned back on again by mode Yes (1).

Any application that turns off these events, should turn them back on again before the
application ends.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
im_input_func del_im_input_func im_exposure func del_im_exposure func
set_image _interaction handle_events point_im poll_mouse

260

SCIL_Image 1.4 — Reference Manual

images ok
NAME
images_ok - check if the two pointers supplied are valid images

SYNOPSIS

#include "im.infra.h"

int images_ok(lI MAGE *imagel, | MAGE *inage2)

DESCRIPTION
The pointers "imagel" and "image2" are checked if they point to valid images. The
linked list in which all the images are present is scanned for the occurrence of
"Imagel” and "image2". If not both pointers are valid images, an error is generated
and the following message is added to the error-stack:

Non existing image pointer.
RETURN VALUES

IE_OK (1) if both pointers are valid images
Negative error status on failure (see im_error.h)

SEE ALSO
image ok is image

imaginary_im
NAME
imaginary_im - get the imaginary part of an complex image

SYNOPSIS
#i ncl ude "improto.h"

int imaginary_inm(lI MAGE *in, | MAGE *out)

DESCRIPTION
Take the imaginary part of each element of the image "in" (a complex image) and
store the results in theimage "out”. If "out" isa complex image then the result will be
stored in the real part of each element of "out" and the imaginary part will be cleared.
If "out" is not acomplex image the result will be afloat image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
real_im complex_im

261

SCIL_Image 1.4 — Reference Manual

| measure

NAME
Imeasure - I nteractive object measurements

SYNOPSIS
#i ncl ude "i maio. h"

LI ST *I measure(l MAGE *grey, | MAGE *binary, int garb, unsigned |ong
shape, unsigned long dens, int print_it, char *file)

DESCRIPTION
grey - Grey value image containing original object
binary - Binary image containing mask of the objects
garb - Object garbage level
print_it - Print results
shape, dens - Bitmaps with feature specification
file - Store resultsin file

Imeasure() is the interactive measurement routine of the A1O package.

The function list_label() is used to label the objects in the binary image using 8
connectivity and a garbage level "garb". Then the functions object_shape meas() and
object_dens meas() are used to measure the shape and densitometry features specified
in the "shape" and "dens" bitmaps. The results of the measurements are shown on your
terminal/worksheet if "print_it" is 1. If afilename other than "-" isgivenin "file" the
results are stored in that file.

RETURN VALUES
A list with object information is returned on success
NULL on failure.

SEE ALSO
measure object shape measobject dens measlist_label

262

SCIL_Image 1.4 — Reference Manual

increment_im
NAME
increment_im - increment

SYNOPSIS
#i ncl ude "improto.h"

int increment _in(lI MAGE *in, | MAGE *out)

DESCRIPTION
Increment each element of "in" and store the result in the corresponding element of

out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
decrement_im eval

263

SCIL_Image 1.4 — Reference Manual

init_func_overload

NAME
init_func_overload - initialize the function overload tables

SYNOPSIS
#include "iminfra.h"

int init_func_overl oad(void)

DESCRIPTION
init_func_overload() initializes the function overload tables used by the function
overload mechanism of Image. If init_func_overload() is not done the overload
mechanism will not work.

NOTE
Thisroutine isintended for system administrational use only.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
show_func_overload overloadable func

init_scil_image
NAME
init_scil_image - perform necessary initialization of the SCIL_Image package

SYNOPSIS
void init_scil _imge(void)
DESCRIPTION

init_scil_image() performs the necessary initialization for the correct operation of the
SCIL_Image environment.. It must be present in the "scilinit" executed before any
image-processing operation is performed.

RETURN VALUES
None

SEE ALSO
default_images

264

SCIL_Image 1.4 — Reference Manual

init_silo
NAME
init_silo - initialize image-silo package

SYNOPSIS
void init_silo(void)

DESCRIPTION
Initializes the silo-package. The silo_err variable is defined here. An array of binary
masks used to maintain an entry list isfilled here.

RETURN VALUES
None

initimage
NAME
initimage - initialize the image processing package

SYNOPSIS
#include "im.infra.h"

int initimge(void)

DESCRIPTION
initimage() performs necessary initialization for correct operation of the image
infrastructure. It must be called before any image-processing operation is executed.

RETURN VALUES
None

interpret
NAME
interpret - interpret a command

SYNOPSIS
void interpret(char *str)

DESCRIPTION
interpret() sends the given string "str" to the SCIL command interpreter. The string is
then interpreted asiif it was typed at the keyboard.

RETURN VALUES
None

265

SCIL_Image 1.4 — Reference Manual

intlow

NAME
intlow

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See lowest_int

invert_im
NAME
invert_im - bitwise inversion of image pixels

SYNOPSIS
#i ncl ude "i mproto.h"

int invert_im I MAGE *in, |MAGE *out)

DESCRIPTION
Perform a bitwise invert operation of each element of "in" and store the result in "out”

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im or_im xor_im shift_im

266

SCIL_Image 1.4 — Reference Manual

Irectangle

NAME
Irectangle - interactive box selection

SYNOPSI S
#i ncl ude "itools. h"

int Irectangl e(I MAGE **im char *nmess, int *x, int *y, int *z, int
*w, int *h, int *d)

DESCRIPTION
Irectangle() enables the user to select arectangular region in an image. First the user is
shown the string "mess' as a message to start dragging; if "mess’ isNULL or an
empty string, no message is shown. After the user has drawn arectanglein "im", and
(for 3D) extended the Z dlice, the coordinates of the rectangle are returned in "x", "y"
and "Zz", and the sizes of the rectanglein "w","h" and "d". If "im" or "*im" isNULL,
every image may be pointed in; in that case the image in which the rectangle is drawn
isreturned in "*im". The user may interrupt pointing by pressing a key, which will be
returned. The visual feedback given during selection is removed at the end of
selection.

RETURN VALUES
Thekey pressed or 0

SEE ALSO
point_im

267

SCIL_Image 1.4 — Reference Manual

IS image
NAME
is_image - tell if the supplied pointer is aimage (no warning)

SYNOPSIS
#include "iminfra.h"

int is_inmge(l MACE *i mage)

DESCRIPTION
The pointer "image" is checked against the linked list of existing imagesand if itisa
valid image atrue status is returned. If it is not an image then just afalse status is
returned, no error is generated. This function and the function image_ok() perform the
same check and have the same return status, except that image ok() does generate an
error if the pointer isnot an image.

The function is meant for situations that a pointer can point to several different
structure (or to nothing at all) and the software has to find out where it is pointing at.

RETURN VALUES
TRUE (1) if the pointer "image" isavalid image.
FALSE (0) if not.

SEE ALSO
image ok images ok

268

SCIL_Image 1.4 — Reference Manual

IS var_object
NAME
is var_object - tell if the pointer isavar_object (no warning)

SYNOPSIS
#i ncl ude "objectsp. h"

int is_var_object (VAR OBJECT *var_object)

DESCRIPTION
The pointer "var_object” is checked against the linked list of existing var_objects and
if itisavalid var_object atrue statusis returned. If it isnot an var_object then just a
false status is returned, no warning is displayed on the screen. This function and the
function var_object_ok() perform the same check and have the same return status,
except that var_object_ok() does put a warning on the screen.

The function is meant for situations that a pointer can point to several different
structure (or to nothing at all) and the software has to find out where it is pointing at.

RETURN VALUES
TRUE (1) if the pointer "var_object” isavalid var_object.
FALSE (0) if not.

SEE ALSO
var_object ok var_object

269

SCIL_Image 1.4 — Reference Manual

isalnum
isalpha
|SasCl
iscntrl
isdigit
isgraph
islower
isprint
ispunct
Isspace
isupper
isxdigit
NAME
isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,

isupper, isxdigit - character classification

SYNOPSIS
#i ncl ude <ctype. h>

int isalnum(int c)
i nt isalpha(int c)
int isascii(int c)
int iscntrl(int c)
int isdigit(int c)
int isgraph(int c)
int islower(int c)
int isprint(int c)
int ispunct(int c)
int isspace(int c)
int isupper(int c)

int isxdigit(int c)

270

SCIL_Image 1.4 — Reference Manual

DESCRIPTION
These functions are interfaces function to the standard C macros as implemented on
thecurrent system. The functionality of these macrosis:

These macros classify ASCII-coded integer values by table lookup. Each is a predicate
returning nonzero for true, zero for false. Isascii is defined on all integer values; the
rest are defined only where isascii is true and on the single non-ASCII value EOF (see

stdio.h).
isalnum c isan aphanumeric character
isalpha cisaletter
isascii cisan ASCII character, code less than 0200
iscntrl cisadelete character (0177) or ordinary control character (Iessthan
040).
isdigit cisadigit
isgraph cisaprinting character except space
islower cisalower case letter
isprint cisaprinting character, code 040 (space) through 0176 (tilde)
ispunct c isapunctuation character (neither control nor alphanumeric)
isspace c isaspace, tab, carriage return, newline, or formfeed
isupper cisan upper case letter
isxdigit cisahexadecimal digit
RETURN VALUES

The functions all return a non-zero (true) value if the argument c satisfies the
condition described, and zero if not

271

SCIL_Image 1.4 — Reference Manual

| sSMouseDown

NAME
IsMouseDown - test whether a specified mouse button is down

SYNOPSIS
#i ncl ude "di sp_p. h"

int | sMouseDown(| M EVENT nouse_event, int button)

DESCRIPTION
IsMouseDown() can be used to find out whether the specified button or buttons are
down. The "button™ argument can be a combination of the symbolic values LEFT,
MIDDLE, RIGHT, separated by "|" (the bitwise OR). The function returns the
"bitwise OR" of the buttons which were specified and being down (e.g. if the button
argument reads"LEFT | MIDDLE | RIGHT" and the buttons being down are LEFT
and RIGHT, thevalue"LEFT | RIGHT" will be returned. IsMouseDown() can only be
used after acall to the "point_im" routine which returns a mouse-event as one of its
arguments.

EXAMPLE
#i ncl ude "di sp_p. h"
#i ncl ude "image. h"

I MAGE *ip;
i nt X, V;
i nt val ;

| M EVENT event;

printf("Left Mddle R ght\n");
while (point_im(& p, &, &y, &event) !="q9) {
val = |IsMuseDown(event, LEFT | RIGHT | M DDLE)
printf(" % % %\r", (val &EFT)>0, (val &M DDLE) >0
(val &RI GHT) >0) ;
fflush(stdout);
}

RETURN VALUES
"Bitwise OR" combination of LEFT, MIDDLE and RIGHT buttons being down.
0 if none of the specified button(s) was down.

SEE ALSO
point_im MousePress MouseRelease MouseMove EventType KeyPressed

272

SCIL_Image 1.4 — Reference Manual

isodata_threshold

NAME
isodata_threshold - thresholding using the isodata algorithm.

SYNOPSIS
#i ncl ude "improto.h"

int isodata_threshold(IMAGE *in, | MAGE *out)

DESCRIPTION
Perform thresholding operation on the grey value image "in" and store the result in the
binary image "out". The threshold-level is determined by the isodata algorithm. This
algorithm is an iterative method based upon the grey level histogram of the image.
The histogram is split up into two parts, the foreground pixels and the background
pixels, assuming an initial threshold value. Then the average value of the foreground
and of the background pixelsis calculated and a new threshold value is taken midway
between those two values.
This processis repeated, based upon the new threshold estimate until the threshold
value does not change any more.

RETURN VALUES
The used threshold value.

SEE ALSO
threshold entropy_threshold

273

SCIL_Image 1.4 — Reference Manual

iter ok
NAME
iter_ok - check if the number of iterationsis positive or zero

SYNOPSIS
#include "iminfra.h"

int iter_ok(int iter)

DESCRIPTION
The function checks if the number "iter" is zero or greater than zero. If itisnot an
error is generated and the following message is added to the error-stack:

Nr of iterations [<iter>] must be a positive nunber

The function is used in operations that have an argument that specifies a number of
iterations.

RETURN VALUES
IE_OK (1) if the number is positive or zero
IE_NOT_OK (0) if the number is negative

SEE ALSO
range ok positive ok

274

SCIL_Image 1.4 — Reference Manual

NAME

| Threshold

I Threshold - interactive threshold editor

SYNOPSIS

#i ncl ude "itools. h"

voi d | Threshol d(|1 MAGE *i nage)

DESCRIPTION

IThreshold() is an interactive threshold editor with two threshold levels. The
histogram of the image "image" is shown in a separate window. The two vertical lines
that run through the histogram of the image represent the threshold levels, the
numbers printed above them are the number of pixels equal to those levels. These two
lines are part of the scrolling mechanism present under the histogram which can be
used to change the threshold levels. The result of thresholding with the two levels can
be seen simultaneously in the image through the use of the colors green, red and blue.
The pixelsthat have a value equal to the lower level are shown in red, the pixels equal
to the upper level in blue and the pixels in between in green. Pixels outside both levels
keep their original appearance.

To move the scrolling mechanism, click the mouse button and drag the middle part.
Both the threshold levels will move synchronously. Dragging with the mouse button
in the left part of the mechanism will alter the lower level only. The upper level can be
moved by dragging the right part of the scrolling mechanism.

At the bottom of the threshold editor three buttons are located with the following
functions:

"OK" Exit the editor, threshold the image according to the two levels set.
"CANCEL" Exit the editor, leave the image intact.

"HELP" Short on-line help.

RETURN VALUES

None

SEE ALSO

|GreyMap

275

SCIL_Image 1.4 — Reference Manual

jpeg_readfile
jpeg_writefile

set_jpeg_quality
NAME
jpeg_readfile - read an image from afile in JPEG (JFIF) format

jpeg_writefile - write an image to afile in JPEG (JFIF) format
set_jpeg_quality - change the JPEG quality percentage

SYNOPSIS
#i ncl ude "i mproto.h"

| MAGE *jpeg_readfile(char *filename, | MAGE *inage, int xpos, int
ypos)

int jpeg_witefile(l MAGE *image, char *fil enane)

int set_jpeg quality(int percentage)

DESCRIPTION
jpeg_readfile() reads the image stored in the JPEG file "filename" and putsit in image
"image". If "USE_NAME" (aNULL pointer) is specified as the image, anew image is
created at position "xpos"*, "ypos', with the same name as thefile. If an imageis
already present with that name, that image will be re-used.

jpeg_writefile() writes the image "image" to the file "filename" using the JPEG
format.

These functions are capable of handling JPEG-files according to the JPEG File
Interchange Format (JFIF) specifications.

The obligatory filename extension for thisfile format is".jpg".

By default the image quality is set at 75%. To change this percentage for subsequent
writes, use the set_jpeg_quality() function.

RETURN VALUES
jpeg_readfile() returns the pointer to the image in which the data was put, either an
existing image or anewly created one. It returns NULL on failure to load the file.

jpeg_writefile() and set_jpeg_quality() :
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
writefile readfile

276

SCIL_Image 1.4 — Reference Manual

karhunen_loeve
Im_eigenvectors

im_principle_component

NAME
karhunen_loeve, im_eigenvectors, im_principle_component - principle component
analysis of image planes

SYNOPSIS
#i ncl ude "improto.h"

i nt karhunen_| oeve(l MAGE *in, | MAGE *out, int start, int end)
int imeigenvectors(l MAGE *in, VAR OBJECT *vecs, VAR OBJECT *val s)

int imprinciple_conmponent (I MAGE *in, VAR OBJECT *vecs, |MAGE *out,
int nr)

DESCRIPTION
These functions apply an eigenvector analysis on the planes of image "in". This 3D
input image is interpreted as a set of 2D image "features'. The karhunen_loeve()
function returns directly the "start" to "end" principle components of the input, where
the first principle component has the largest eigenvalue and the last
(=ImageDepth(in)-1) principle component the smallest. Theim_eigenvectors()
function returns the eigenvectors "vecs' and eigenvalues "vals' in the corresponding
var_objects (DOUBLE_T). After analysis, the components can be extracted by
applying im_principle_component(). The "vecs' var_object is the one returned from
im_eigenvectors(); "nr" determines which component will be returned in "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
covplanematrix

277

SCIL_Image 1.4 — Reference Manual

KeyPressed
NAME
KeyPressed - test whether akey has been pressed inside an image

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt KeyPressed(l M EVENT event)

DESCRIPTION
KeyPressed() can be used to find out whether akey has been pressed inside an image.
It returns the ASCII value of the key pressed or 0 (zero) if no key was pressed.
KeyPressed can only be used after acall to the "point_im" routine which returns an
event as one of its arguments.

EXAMPLE
#i ncl ude "di sp_p. h"
#i ncl ude "image. h"

I MAGE *ip;
i nt X, V;
i nt val ;

| M EVENT event;

while (point_im& p, &, &y, &event) !'="q) {
val = KeyPressed(event);
if(val) printf("[%]", val);

NOTE

The KeyPressed mechanism ensures the mapping of carriage return to new-line, no
matter what mode the terminal isin.

RETURN VALUES
The ASCII vaue of the key pressed.
0if no key pressed.

SEE ALSO
point_im MousePress MouseRelease MouseMove IsMouseDown EventType

278

SCIL_Image 1.4 — Reference Manual

Kirsch_temp
NAME

Kirsch_temp - edge detection filter

SYNOPSIS

#i ncl ude "improto.h"

int kirsch_tenp(l MAGE *in,

DESCRIPTION

Template type edge detection based upon the Kirsch operator. Within the moving
window in theimage "in", with dimensions 3 * 3, eight convolutions with the
following masks are calcul ated:

(0)
-3 -3
30
-3 -3

g1 o1 a1

(4)

-3
0 -3
-3

o1 o1 O

D

| MAGE *out,

-3 5 5
-3 0 5

-3

o1 o1 w

-3

IA
oo wd

-3

-3
-3
-3

(2)
5 5 5
3 0 -3
3 -3 -3

(6)
3 -3 -3
3 0 -3
5 5 5

| MAGE *direction,

(3)
5 5 -3
5 0 -3
3 -3 -3

(7)
3 -3 -3
3 0 5
3 5 5

int flag)

The output value is the maximum of the results of all these convolutions. It is stored

into "out", in the pixel corresponding with the central pixel of the window. The

sequence number of the convolution mask with the maximum result is an estimate of
the direction of the first derivative and it is stored in the image "direction”, if thisis

specified (flag = 1).

RETURN VALUES
IE_OK (1) on success

Negative error status on failure (see im_error.h)

SEE ALSO

laplace prewitt_temp robinson_temp prewitt_diff roberts diff sobel diff

279

SCIL_Image 1.4 — Reference Manual

kuwahara

NAME
kuwahara - edge preserving smoothing (Kuwahara)

SYNOPSIS
#i ncl ude "i mproto.h"

int kuwahara(l MAGE *in, | MAGE *out, int fsize)

DESCRIPTION
Perform an edge preserving smoothing (Kuwaharafilter) on the pixels of image "in"
and store the result in image "out".
Image "in" is scanned with a moving window with dimensions "fsize" * "fsize".
The command subdivides the moving window into four sub-windows. In each sub-
window the variance of the pixel valuesis calculated. The window with the lowest
variance is taken as the averaging window. The resulting average value is stored in the
pixel inimage "out" that corresponds with the central pixel in the moving window.
This approach tends to avoid the sub-windows with large variationsin pixel values,
e.g. due to the occurrence of an edge.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
edge preserve

280

SCIL_Image 1.4 — Reference Manual

kuwahara_round

NAME
kuwahara round - kuwaharafilter using a circular filter window

SYNOPSIS
#i ncl ude "improto.h"

i nt kuwahara_round(l MAGE *in, | MAGE *out, int fsize)

DESCRIPTION

Perform an edge preserving smoothing (Kuwaharafilter) on the pixels of image "

and store the result in image "out". Image "in" is scanned with a moving circular
window with diameter "fsize".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
grey_morph_round kuwahara vkuwahara

inll

281

SCIL_Image 1.4 — Reference Manual

|abel

NAME
label - image labeling

SYNOPSIS
#i ncl ude "i mproto.h"

int label (I MAGE *in, I MAGE *out, int conn)

DESCRIPTION
Subdivide binary image "in" into different components, based upon connectivity
analysis, label each object with a sequence number, assign this sequence number as a
new pixel value to each pixel of the object and store the resulting image in the labeled

image "out". "conn" is the connectivity which can be either 4 or 8..

For 2D images the maximum number of objects that can be present in the imageis
limited by the maximum label number that can be stored in the output image (short =
32767).

For 3D images the number of object that can be present in the image is limited to
4095 due to the implementation of the algorithm.

RETURN VALUES
The number of objectsin theinput image"in".

SEE ALSO
hull objectsize rhull small_object removal

282

SCIL_Image 1.4 — Reference Manual

laplace

NAME
laplace - Laplace edge detector

SYNOPSIS
#i ncl ude "improto.h"

int [aplace(l MAGE *in, | MAGE *out, int nask)

DESCRIPTION
Differential edge detection based upon the Laplacian operator. Within the moving
window in theimage "in", with dimensions 3 * 3 a convolution with one of the
following masksis calculated. The mask to be applied may be specified by the
parameter "mask”, where "mask" is 1, 2 or 3 corresponding with the following masks:

L) (2) (3)
0 -1 0 11 -1 121
14 -1 1 8 -1 2 4 -2
0 -1 0 11 -1 1 -2 1

The convolution result of the selected mask is stored into the corresponding central
pixel of the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
prewitt_temp kirsch_temp robinson_temp prewitt_diff roberts diff sobel diff

283

SCIL_Image 1.4 — Reference Manual

laxis
NAME
laxis - obtain long axis of fitted ellipse of object

SYNOPSIS

#include "im.aio.h"

doubl e | axi s(LI ST *Ii nk)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

laxis() returns the length of the long axis of fitted ellipse of the object pointed to by
"link" if this has previously been measured.

RETURN VALUES
length of the long axis of fitted ellipse of object on success
0.0if link is not an object or if long axis has not been measured

SEE ALSO
measure object shape meas object_dens meas saxis

284

SCIL_Image 1.4 — Reference Manual

lens

stop_lens

NAME
lens, stop_lens - interactive part image processing

SYNOPSIS
#i ncl ude "inscil.h"

int lens(I MAGE *output, int width, int height, char *conmand)

int stop_| ens(void)

DESCRIPTION
lens() is afunction, which allows interactive image processing on small part images of
dimensions "width" * "height".

In lens() when the user to pointsto any of the visible images a small rectangle of
dimensions "width" * "height" is copied to the output image, and the specified
command string is executed. If command is 0 only the copy action is performed.

Thelens() command is especialy useful when trying out new algorithms which are
still in interpreted rather than in compiled form. Since lens() lets you choose
interesting parts of the image the data to process can be kept small, and the slower
interpreted speed can be used without to much frustration. It certainly makes a
difference in SCIL whether you are operating on an 31* 31 image, or on a 256* 256
image.

To stop lens() either give a<RETURN> at the keyboard or use the function
stop_lens().

stop_lens() halts lens(), which normally keeps on running until a<RETURN> is typed
at the keyboard.

EXAMPLE
To use lens() as asimple magnifier, only the copy action of lens() is needed, since the
user can resize the output image at will. The following can be typed:

readf bnoise.im
lens(B, 41, 41, NULL);

Now pointing at image A will result in a magnification of the pointed area displayed
inimage B.

The following example illustrates the use of lensin combination with acommand. In
the example noise removal through percentile filtering can be done almost in real

time:

int small;

smal | = make_i mage snall GREY_2D 64 64;
lens(small, 31, 31, "percentile snmall small");

285

SCIL_Image 1.4 — Reference Manual

RETURN VALUES
None.

SEE ALSO
copy_part_image

life
NAME
life - Conway’s game of life

SYNOPSIS
#i ncl ude "improto.h"

int life(IMAGE *in, |MAGE *out, int iter, int bound)

DESCRIPTION
Calculate the next generation(s) from a given generation from image "in" according to
the rules of the "Conway’s game of life". Theresult is stored in the image "out". "iter"
can be used to calculate several generations in one cycle. "bound" specifies that the
edge around the image must be set to foreground (1) or to background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

286

SCIL_Image 1.4 — Reference Manual

list
more

NAME
list, more - show contents of the program buffer

SYNOPSI S
list [start],[end]

nmore [start], [end]

DESCRIPTION
The loaded text program can be inspected with the similar commands "list" or "more".
The difference between "more" and "list" is that the first offers the text interactively in
chunks while the latter just bulks away. "more" asks what to do at the end of each
page. The following answers are possible:

<SPACE> hitting the space bar will show the next full page on the screen

<CR> shows one more line

d shows half a page more

q prevents more from more

EXAMPLE

[C1] list list all
[C] list 5 di splays line 5 of programtext
[C3] list 5,10 lists lines from5 to 10
[C4] list ,10 lists fromstart to line 10
[C5] list 10, lists fromline 10 until end

Instead of separating "start" and "end" with acomma a space is also allowed.

287

SCIL_Image 1.4 — Reference Manual

list_cluts

NAME
list_cluts- display alist of all cluts

SYNOPSIS

#include "iminfra.h"

int list_cluts(void)

DESCRIPTION
"list_cluts" generates alist terminal of al clutsthat are available on the controlling.

RETURN VALUES
IE_OK (1)

SEE ALSO
create clut clut_by name

288

SCIL_Image 1.4 — Reference Manual

list_label

NAME
list_label - label image and create list with objects

SYNOPSIS
#i ncl ude "im.aio. h"

LI ST *list_label (I MAGE *in, |MAGE *out, int con, int garb)

DESCRIPTION
in - Pointer to binary image
out - Pointer to output image
con - Connectivity (4/8)
gab - Garbage level

list_label() labels the objectsin the input image "in". Objects smaller than "garb”
pixels are not labeled and do not appear in the output image "out". "con" isthe
connetivity used for the labeling, values can be 4 or 8. During the labeling alinked list
is created with all the objects. Thislist can later be used to manipulate or measure the

objects according to the AIO concept.

The recursive labeling algorithm tries not to use the same label on a horizontal
scanline.

During the labeling process some object information is automatically obtained and
placed in the object list:

Xmin, xmax - Minimum and maximum x coordinate
ymin, ymax - Minimum and maximum y coordinate
area - Number of object pixels

NOTE
list_label is part of the AlO package. It isthe users responsibility to remove the list
with "rm_list(list)"

EXAMPLE
To | abel object bigger than 20 pixels, nmeasure the perineter
and hi de those objects whose perineter is bigger than 70.0:

#i ncl ude "image. h "
#i ncl ude "im.aio. h"
LI ST *I, *o;

readfil e("cernet", a, 0,0);

t hreshol d(a, b, 128);

i nvert _in(b,b);

I = 1list_label(b,c,8,20);

FORALL(o0,l) object _shape_neas(c, o, PERI);
FORALL(o0,!l) if(peri(o) > 70.0) hide_object(c,o0);
di spl ay_i mage(c);

I =rmlist(l);

RETURN VALUES

289

SCIL_Image 1.4 — Reference Manual

A list with information on the labeled objectsis returned.

SEE ALSO
aio_label rm list

list var_objects
NAME
list var_objects - display alist of al var_objects

SYNOPSIS
#i ncl ude "obj ectsp. h"

int list_var_objects(void)

DESCRIPTION
"list_var_objects’ displaysalist of al var_objects and their classes on the controlling
terminal.

RETURN VALUES
Always|E_OK (1)

SEE ALSO
var_object destroy var _object show_var_object_info var_object by name

Imax

NAME
Imax

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See grey_dilation

290

SCIL_Image 1.4 — Reference Manual

Imin
NAME
Imin

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See grey_erosion

In_im
NAME
In_im - natural logarithm

SYNOPSIS
#i ncl ude "improto.h"

int In_in(I MAGE *in, |MAGE *out)

DESCRIPTION
Calculate the natural logarithm of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
Number of domain conflicts (number of negative or zero pixelsin the input image), so
0isOK.
Negative error status on failure (seeim_error.h).

SEE ALSO
exp_im logl0 im

291

SCIL_Image 1.4 — Reference Manual

|oad

NAME
load - load a C source code file into the interpreter

SYNOPSIS
load [fil enane]

DESCRIPTION
With the command "load" program text isloaded into SCIL. When no filenameis
given, SCIL will prompt for one. When loading a specific file the contents of a
previous loaded file is overwritten, also global variables are deleted.

EXAMPLE
[Cl] | oad denp.c

or
[C1] | oad

filenane: denvo.c
[C2]

Evidently both examples will load the file "demo.c".

292

SCIL_Image 1.4 — Reference Manual

local _contrast

NAME
local_contrast - contrast enhancement filter

SYNOPSIS
#i ncl ude "improto.h"

int local _contrast(lIMAGE *in, | MAGE *out, int radius, int
frightmarexp, int fleftmarexp, int fleftmargin, int frightmargin)

DESCRIPTION
local_contrast() isafilter that locally enhances the contrast of image "in" by
evaluating the histogram in a circular window around a pixel of interest and stores the
result in the image "out". The variable "radius’ determines the radius of the window.

This procedure operates on the basis of asimplified from of histogram equalization:
assuming the histogram is sparse (number of pixelsin window islow compared to
grey-value range). See below for details about processing of large dynamic range
images. Equalization is then realized by numbering the non-empty bins starting from
zero. The numbered bins can be thought to present an equalized histogram. Due to the
sparseness and image noise, the number of binswill, usualy, not vary much.

The resulting histogram is stretched using a pre-determined constant (see below). Its
center (median) is shifted to coincide with the median of the original histogram.
Subsequently, the value of the "central” pixel istraced to itslocation in the equalized
histogram and form there to the stretched histogram.

To understand why this results in contrast enhancement, consider two neighboring
pixels. Since the windows around these pixels largely overlap, the range of both
histograms will be roughly the same. As aresult, the overall expansion factor from
original histogram to stretched equalized the two pixel-values will be multiplied with
the expansion factor: contrast is enhanced. In image areas where the range original
histogram was large (edges) no stretching occurs; contrast may even be reduced
depending on the value of the stretching factor. The positions of the marginsis
controlled through "leftmargin” and "rightmargin”; the stretch values at these
positions are controlled through "frightmarexp" and "fleftmarexp".

A special condition occurs when shifting of the histogram would result in (stretched)
histogram bins outside the range in the original image. In these cases shifted is limited
to avoid this situation. In some applicationsit is desirable to enhance contrast only in
light or dark areas of the image. Thisis achieved by making the stretch factor
dependent on the median in the original histogram. This dependency has the form of a
simple linear mapping between two bound or "margins’. Outside the margins the
stretch factor is equal to the value at the nearest margin.

Processing of large dynamic range images.

293

SCIL_Image 1.4 — Reference Manual

Images with a grey-value range larger than 0..255 are assumed to be recorded using
photon counting or equivalent sensors. Since the procedure will not work well on
images where the variance is strongly dependent on the signal level (asin photon
limited images), the input image is transformed by taking the square root of the pixels
values. Subsequently, the operation is performed and the transform is reversed.

LITERATURE
van der Voort, H.T.M, G.J. Brakenhoff, JA.C. Vakenburg & N.Nanninga. 1985.
Design and use of a computer- controlled confocal microscope. Scanning 7: 66-78.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
homomorphic

294

SCIL_Image 1.4 — Reference Manual

local _glc_entropy
local _glc_contrast

local _glc_asymmetry

NAME
local _glc_entropy - local texture measure, co-occurence of greylevels
local_glc_contrast - local texture measure, co-occurence of greylevels
local_glc_asymmetry - local texture measure, co-occurence of greylevels

SYNOPSIS
#i ncl ude "improto.h"

int local _glc_entropy(l MAGE *input, |MAGE *output, int fwidth, int
fhei ght int vectorx, int vectory)

int local _glc_contrast(lMAGE *input, |MAGE *output, int fw dth, int
fhei ght, int vectorx, int vectory)

int local _glc_asymetry(l MAGE *input, | MAGE *output, int fwidth, int
fheight, int vectorx, int vectory)

DESCRIPTION
The functions calculate alocal 2-dimensional histogram of the combinations of
greyvalues of pixelsthat are the startpoint/endpoint of a vector with a specified
("vectorx","vectory") displacement. Calculation takes place in arectangle
"fwidth"*"fheight" around each centre pixel. The calculated valueis stored in image
"output”.

The functions calcul ate:

local_glc_asymmetry Asymmetry of the histogram
Sum over g1,g2 of (p(gl,g2)**2)

local_glc_contrast Contrast of the histogram
Sum over g1,g2 of ((91-g2)**2)* p(91.92)

local_glc_entropy Entropy of the histogram
Sum over g1,g2 of p(g1,92)*log(p(91.92))

Where g1 and g2 are the grey-values at the start and end of the vector, and p(g1,92) is
the chance of this combination in thislocal "fwidth"*"fheight" part of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_gld mean local_gld entropy local_gld _contrast local_gld asymmetry
local_glr_nonuniformity local_glr_shortrunemphasis
local_glr_longrunemphasis local_glr_greynonuniformity local _glr_percentage

295

SCIL_Image 1.4 — Reference Manual

glc_asymmetry glc_contrast glc_entropy

296

SCIL_Image 1.4 — Reference Manual

local_gld_mean
local _gld_entropy
local _gld_contrast

local _gld_asymmetry

NAME
local_gld _mean - local texture measure, difference of greylevels
local_gld_entropy - local texture measure, difference of greylevels
local_gld contrast - local texture measure, difference of greylevels
local_gld asymmetry - local texture measure, difference of greylevels

SYNOPSIS
#i ncl ude "improto.h"

int local _gld_mean(l MAGE *input, |MAGE *output, int fwi dth, int
fhei ght, int vectorx, int vectory)

int local _gld entropy(l MAGE *input, |MAGE *output, int fwidth, int
fhei ght, int vectorx, int vectory)

int local _gld_contrast(lMAGE *input, |MAGE *output, int fw dth, int
fheight, int vectorx, int vectory)

int local _gld_asymetry(l MAGE *input, | MAGE *output, int fwidth, int
fhei ght,int vectorx, int vectory)

DESCRIPTION
The functions calculate alocal histogram of the absolute differences of all
combinations of pixelsthat are the startpoint/endpoint of avector with a specified
("vectorx","vectory") displacement. Calculation takes place in arectangle
"fwidth"*'fheight" around each centre pixel. The calculated value in the image"

output”.

The functions calculate:

local_gld_mean Mean of the histogram
Sum of i*p(i)

local_gld_entropy Entropy of the histogram
Sum of p(i)*log(p(i))

local_gld_contrast Contrast of the histogram
Sum of (i**2)*p(i)

local_gld_asymmetry Asymmetry of the histogram
Sum of (p(i)**2)

Where i is the absolute difference, and p(i) is the chance of that absolute difference in
the local "fwidth"*'fheight" part of the image.

297

SCIL_Image 1.4 — Reference Manual

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_glc_entropy local_glc _contrast local _glc_asymmetry
local_glr_nonuniformity local_glr_shortrunemphasis
local_glr_longrunemphasis local_glr_greynonuniformity local_glr_percentage
gld_mean gld_entropy gld contrast gld asymmetry

298

SCIL_Image 1.4 — Reference Manual

NAME

local_glr_nonuniformity
local _glr_shortrunemphasis
local _glr_longrunemphasis
local_glr_greynonuniformity

local _glr_percentage

local_glr_nonuniformity - local texture measure, runlength statistics
local_glr_shortrunemphasis - local texture measure, runlength statistics
local_glr_longrunemphasis - local texture measure, runlength statistics
local_glr_greynonuniformity - local texture measure, runlength statistics
local_glr_percentage - local texture measure, runlength statistics

SYNOPSIS

#i ncl ude "improto.h"

doubl e local _glr_nonuniformty(l MAGE *input, | MAGE *output, int
fwidth, int fheight)

doubl e | ocal _glr_shortrunenphasi s(| MAGE *input, | MAGE *output, int
fwidth, int fheight)

doubl e | ocal _glr_I| ongrunenphasi s(1 MAGE *i nput, | MAGE *out put, int
fwidth, int fheight)

doubl e | ocal _glr_greynonuni form ty(l MAGE *input, | MAGE *output, int
fwidth, int fheight)

doubl e | ocal _glr_percentage(l MAGE *input, |MAGE *output, int fwidth,
i nt fheight)

DESCRIPTION

The functions calculate alocal histogram of the greyvalue/runlength combinationsin
the image. Calculation takes place in arectangle "fwidth"*"fheight" around each
center pixel. The calculated value is stored in the image "output”.

The functions calcul ate:

local_glr_shortrunemphasis Runlength short run emphasis
Sum over i,j of p(i,j)/(j**2)

local_gIr_longrunemphasis Runlength long run emphasis
Sum over i,j of p(i,))*(j**2)

local_glr_greynonuniformity Runlength greylevel nonuniformity
Sgrt (Sum over i of ((Sum over j of p(i,j))**2))

local_glr_nonuniformity Runlength nonuniformity
Sgrt (Sum over j of ((Sum over i of p(i,j))**2))

299

SCIL_Image 1.4 — Reference Manual

local_glr_percentage Runlength percentage
100* (Number of runs/number of pixels)

Wherei isthe greylevel, j isthe runlength and p(i) is the chance of
that combination in the local "fwidth"*"fheight" part of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
local_gld mean local _gld entropy local_gld_contrast local_gld_asymmetry
local_glc_entropy local_glc _contrast local _glc_asymmetry
glr_nonuniformity glr_shortrunemphasis glr_longrunemphasis
glr_greynonuniformity glr_percentage

log10_im
NAME
log10_im - 10 based logarithm

SYNOPSIS
#i ncl ude "improto.h"

int 1ogl0_in(I MAGE *in, |MACGE *out)

DESCRIPTION
Calculate the base 10 logarithm of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
Number of domain conflicts (number of negative or zero pixelsin the input image), so
0isOK.
Negative error status (seeim_error.h).

SEE ALSO
expl0_im In_im

300

SCIL_Image 1.4 — Reference Manual

logon

logoff

NAME
logon - open alogbook file

logoff - close alogbook file

SYNOPSIS
| ogon <l ogfil e>

| ogof f

DESCRIPTION
The command "logon" followed by a filename "logfil€" creates alogbook, to keep
track of all direct commands given during the session. At alater stage thisfile can be
used as a macro to feed the interpreter. The command logoff disconnects and closes
the logbook file.

EXAMPLE
[Cl] logon | ast_session

Opensthefile"last_session" and from then on echoes all direct commands into the
file.

If alogon command is given while there already was alogfile connected, thisfileis
closed first.

301

SCIL_Image 1.4 — Reference Manual

lookup

NAME
lookup - table look-up based grey level modification

SYNOPSIS
#i ncl ude "i mproto.h"

int 1 ookup(l MAGE *in, | MAGE *out, VAR OBJECT *table, int clip)

DESCRIPTION
Substitute image "in" pixel by pixel through table lookup and store the result in "out".
The original pixel valuein"in" isused as an index in the look-up table stored in the
var_object "table" which must be 1 dimensional and of type PIXEL_T or SHORT _T.
The value of the corresponding position in "table" is used as the new pixel value for
"out". "clip" is used to avoid error conditions. If "clip" is set, no error is generated but
the input value is clipped between 0 and the lenght of the "table" beforeit is used

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold contrast_stretch equalize tri_state threshold

302

SCIL_Image 1.4 — Reference Manual

lower gskeleton

upper_gskeleton

NAME
lower_gskeleton, upper_gskeleton - grey value skeleton

SYNOPSIS
#i ncl ude "improto.h"

int | ower_gskel eton(I MAGE *in, | MAGE *g_out, int border, int
endpi xel)

i nt upper _gskel eton(lI MAGE *in, | MAGE *g_out, |IMAGE *b_out, int
nmetric, int border, int endpixel)

DESCRIPTION
There exists two definitions for grey-value skeletons: the upper skeleton and the lower
skeleton. Pruning the branches of the upper skeleton yields a watershed. Whereas the
upper skeleton always runs across the surface of the grey-value landscape, the lower
skeleton may run inside. Both skeletons support options for the preservation of
endpixels and setting the border of the output image ("endpixel" and "border”, 0 = off,
1 =o0n). The upper_g_skeleton() also stores the binary skeleton imagein "b_out".

The skeletons erode each elevation (grey-level) in order of increasing distance to the
background. The lower_gskeleton() uses the Hilditch skeleton which is based on a
city-block metric. The upper_gskeleton() uses a 3x3 Chamfer metric which allows the
user to choose either the city-block metric or a pseudo Euclidian metric ("metric’ = 1
= use pseudo Euclidian).

The upper skeleton is computational advantageous and is done independent of the
number of grey levels (number of bits). The execution time of the lower skeleton is
linear in the number of grey levels. Each level takes about the same execution time as
the upper skeleton. The upper skeleton only accepts images with a maximum
grey-value of 255.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

303

SCIL_Image 1.4 — Reference Manual

lowest_int
NAME
lowest_int - truncate pixel valuesto lowest integer value

SYNOPSIS
#i ncl ude "i mproto.h"

int |owest_int(IMAGE *in, |MAGE *out)

DESCRIPTION
Convert each element of image "in" into an integer value by taking the integer value
just less than or equal to the original value and store the results into the corresponding
elements of image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fraction_im truncate im nearest_int

304

SCIL_Image 1.4 — Reference Manual

[seek

tell

NAME
Iseek, tell - move read/write pointer

SYNOPSIS
long Iseek(int fildes, long offset, int whence)

long tell (int fildes)

DESCRIPTION

These functions are interface functions to the standard C functions as implemented on

the current operating system. The functionality of these functionsis:

The file descriptor refers to afile open for reading or writing. The read (resp. write)

pointer for the fileis set as follows:
If "whence" is 0, the pointer is set to offset bytes.
If "whence" is 1, the pointer is set to its current location plus offset.
If "whence" is 2, the pointer is set to the size of the file plus offset.
The returned value is the resulting pointer location.
The function tell(fildes) is identical to Iseek(fildes, OL, 1).
RETURN VALUES
-1 isreturned for an undefined file descriptor, seek on a pipe, or seek to a position

before the beginning of file.

SEE ALSO
open creat fseek

305

SCIL_Image 1.4 — Reference Manual

macro

NAME
macro - execute a macro file

SYNOPSIS

macro [-i] [-v] <macrofile>

DESCRIPTION
The command macro executes the lines in amacrofile asif they were directly typed.
Therefore the macrofiles are restricted to the direct command mode.

Options:
-i every line can be executed interactively i.e. for each line the user can
choose to execute it, to skip it or to quit the macro al together.
-V every lineis shown on the screen

EXAMPLE
[C1] macro -i cl eanup. nac
<whatever_in_file> [y/n/qlq
[C2]

306

SCIL_Image 1.4 — Reference Manual

majority
NAME
majority - majority voting

SYNOPSIS
#i ncl ude "improto.h"

int majority(l MAGE *in, | MACE *out, int bound, int weight)

DESCRIPTION
Performs "weighted" mgjority voting on image "in" and stores the result in image
"out". Theimage is scanned by a moving 3* 3 window. If the magjority of the pixels
within the window are object pixels, the central pixel within the window becomes an
object pixel (vaue 1). If the mgjority of the pixels within the window are background
pixels, the central pixel within the window becomes a background pixel (0). The
"weight" parameter can be used to influence the "voting-weight" of the central pixel as
shown below. Legal values for the "weight" parameter are 0, 1, 2 and 3.

1 1 1
1 2*weight+l 1
1 1 1

The threshold value used to determine the outcome of the voting is also dependent on
"weight" (threshold = "weight + 5"). In case "weight" = 0, the following filter kernel

is created:
1 1 1
1 1 1
1 1 1

and the threshold value becomes 5, effectively making it amedian filter. Setting
"weight" to 3 creates the kernedl:

1 1 1
1 7 1
1 1 1

and threshold is set to 8, thus making it atrue "pepper and salt removal” filter, only
isolated foreground pixels are converted to background pixels and vice versa.

Choosing the values 1 or 2 for "weight. creates filters whose action on the imageis
somewhere in-between a median filter and a pepper-and-salt filter

"bound" specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

307

SCIL_Image 1.4 — Reference Manual

make_color_im

split_color_im
NAME
make _color_im - convert three images into a color image

split_color_im - convert a color image into three separate images

SYNOPSIS
#i ncl ude "col or _2dp. h"

int make_col or _i m(I MACE *iml, | MAGE *inR, |MAGE *inB, | MAGE *out)

int split_color_inm(IMAGE *in, | MAGE *outl, | MAGE *out2, | MAGE *out 3)

DESCRIPTION
make_color_im() takes the three images "im1", "im2" and "im3" and store the pixels
of each image in the corresponding pixels of "out". "im1" will be stored in the red
component of "out", "im2" in the green component and "im3" in the blue component
of "out".

split_color_im() takes a color-image "in" and stores the red, green and blue
components of each pixel into the images "out1", "out2" and "out3" respectively.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_color convert

308

SCIL_Image 1.4 — Reference Manual

make_gabor
standard_gabor

gabor_bank

NAME
make_gabor, standard_gabor, gabor_bank - make gabor filters

SYNOPSIS
#i ncl ude "improto.h"

i nt nmake_gabor (I MAGE *out, double fcentral, double sigma_u, double
sigma_v, double orientation)

i nt standard_gabor (|1 MAGE *out, double radial_bandw, double fcentral,
doubl e angul ar _bandw, doubl e orientation)

i nt gabor_bank(l MAGE *out, doubl e radial bandw, doubl e angul ar_bandw,
int nr)

DESCRIPTION
make_gabor() calculates an even-symmetric Gabor-filter in the Fourier-domain
around the central frequency "fcentral" with standard deviations "sigma_u" and
"sigma Vv". Thefilter isrotated "orientation” degrees. For the function
standard_gabor(), the filter sigmas can be specified as the radial bandwith
"radial_bandw" (in octaves) and the angular bandwith "angular_bandw" (in degrees).
gabor_bank() calculates abank of standard_gabor filters for which the central
frequencies are chosen in such way that the half-values of the filters are touching. The
number of circlesfilled in the frequency domainis given by "nr".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
apply_frequency bank

309

SCIL_Image 1.4 — Reference Manual

make _image
NAME
make_image - make an image with a display window attached

SYNOPSIS
#i ncl ude "inscil.h"

| MAGE *nake_i nage(char *nane, int type, int lenx, int leny, int |enz,
int posx, int posy)

DESCRIPTION
make_image() creates an image with the specified "name" of the specified "type" with

the specified dimensions "lenx", "leny" and "lenz". make image() also creates a

display window for theimage at ("posx”,"posy"). The available standard image types
(seeimage.h) are:

GREY 2D
BINARY 2D
FLOAT 2D
COMPLEX_2D
GREY_3D
BINARY_3D
FLOAT 3D
COMPLEX_3D
COLOR 2D
COLOR 3D
LABEL_2D
LABEL_3D

make_image() works by calling create image() followed by create display().
RETURN VALUES

A pointer to the newly defined image

NULL if the image could not be created.

SEE ALSO
create image create display destroy_image roi_define

310

SCIL_Image 1.4 — Reference Manual

MakeNewMenu
AddToMenu

ActivateMenu

NAME
MakeNewMenu - building block for system independent menu model

AddToMenu - building block for system independent menu model
ActivateMenu - make menu visible

SYNOPSIS
#i ncl ude "nd_gen. h"

ABSTRACT *MakeNewMenu(char *nanme, ABSTRACT *parent menu)
voi d AddToMenu(char *nane, ABSTRACT *nenu, ABSTRACT *parent nenu)

voi d Activat eMenu(ABSTRACT *top)

DESCRIPTION

MakeNewMenu:

name Name of the new menu

parentmenu Abstract pointer to parent menu. If NULL then a new menu tree
is started

AddToMenu:

name Name of menu item

menu Indicates whether a pull-right menu or just an item should be
added. If NULL nameis seen as an simple item, otherwise name
isthe name of the pull-right item in the parent menu

parentmenu Parent menu to which the item or pull-right should be added.

ActivateMenu:

top The root of amenu tree

MakeNewMenu() and AddToMenu() are the two building blocks with which any
menu can be build. Any Menu and Dialog generator for SCIL must contain these two
routines. The system independent parts of SCIL uses these two routines to build its
menus.

A menu is activated or made invisible through:
ActivateMenu(top);

EXAMPLE
The simple interface will consist of:

ABSTRACT *Fi || Menu(TopLevel, nenustr, ... menustr, NULL)
ABSTRACT *MenuFrontile(file)
Abstract Menu nodel

311

SCIL_Image 1.4 — Reference Manual

R - +
Basi ¢ building block: | label | Item subrmenu nane
R +
| ptr | NULL or pointer to subnenu
R +
Example menu:
File Option
S + R +
| Special ---->+------- + | Special ------ St- oo +
| open | | specl | | dialog | | specl
| close | | spec2 | | menu | | spec2
| quit | e + | spec2 | o +
N + S +
Abstract mode!:
Menu handl e
S +
| Control
e
|
V
D e S
| |
\Y \%
R S S +
| File | | Option |
R T LT
| |
| Vv
| IS D IR G T I S R e
| | | | |
+oa- - ~ | ~eeeea--- + Vv Vv Vv
| | Fomm e e o + H------ + F----- - +
| | | dialog | | menu | | spec2 |
| | +---0----4+ +---0--4+ +---0---+
| Vv
| LS R T CE TR I I SR SR L G S,
| | | | |
| Y Vv Vv Vv
| Fomm e e o - + F----- - I S + F------- +
+-> | Special| | open | | close | | quit
FoemFoemet F---0---F +---0----+ +---0---+
|
|
Y
Cemeoam> e - - >
| |
Y
B R +
| specl | | spec2
+---0----4+ +---0---+
The example menu can be build by:
THI NG Menu, File, Option, Special
/[* Start new menu tree */
Menu = MakeNewienu("Control ", NULL);

/* Create File menu and add to top */
File MakeNewMenu("Fil e", Menu);
/* Create Option nenu and add to top */

312

SCIL_Image 1.4 — Reference Manual

Option = MakeNewMenu(" Option", Menu);
/* Create Special nenu,add to File nenu*/
Speci al = MakeNewMenu(" Special", File);

AddToMenu("open", 0, File); [/* Add open itemto File nenu */
AddToMenu("cl ose", 0O, File); /* Add close itemto File menu */
AddToMenu("quit", 0, File); /* Add quit itemto File nenu */

/* Add Special nenu to Option nmenu */
AddToMenu(" Speci al ", Special, Option);

AddToMenu("di al og", 0, Option); /* Add dialog itemto Option nmenu */
AddToMenu(" menu", 0, Option); /* Add menu itemto Option nmenu */
AddToMenu("spec2", 0, Option); /* Add spec2 itemto Option nenu */

AddToMenu("specl", 0, Special); /* Add specl itemto Special nmenu */
AddToMenu("spec2", 0, Special); /* Add spec2 itemto Special nmenu */

NOTE
Although the routines can be used directly in a SCIL session, they are meant to be
used by system programmers only. For occasional use of menu’s, other more easy to
use menu creation interfaces will be provided for. These interfaces however do use
these routines to build the menu’s.

RETURN VALUES
MakeNewMenu() returns a pointer to an abstract structure representing the new menu.

AddToMenu() and ActivateMenu return nothing

313

SCIL_Image 1.4 — Reference Manual

malloc
free
realloc

calloc

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
void *nmal | oc(unsigned int size)

void free(void *ptr)
void *realloc(void *ptr, unsigned int size)

voi d *cal |l oc(unsigned int nelem unsigned int elsize)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

malloc() and freg() provide a simple general-purpose memory allocation package.
malloc() returns a pointer to ablock of at least size bytes beginning on aword
boundary.

The argument to free() is a pointer to ablock previously alocated by malloc(); this
space is made available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc() is overrun
or if some random number is handed to free().

malloc() allocates the first big enough contiguous reach of free space foundin a
circular search from the last block allocated or freed, coalescing adjacent free blocks
asit searches. It calls sbrk (see break(2)) to get more memory from the system when
there is no suitable space already free.

realloc() changes the size of the block pointed to by "ptr" to "size" bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the lesser
of the new and old sizes.

calloc() allocates space for an array of "nelem” elements of size "elsize". The spaceis
initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

RETURN VALUES

314

SCIL_Image 1.4 — Reference Manual

malloc, realloc and calloc return anull pointer (0) if thereis no available memory or if
the area has been detectably corrupted by storing outside the bounds of a block.
malloc may be recompiled to check the area very stringently on every transaction; see
the source code.

max_element

min_element

NAME
max_element - determine position of maximum

min_element - determine position of minimum

SYNOPSIS
#i ncl ude "improto.h"

int max_el ement (I MAGE *in, VAR OBJECT *result, int whole, int
di nensi on)

int mn_element (I MAGE *in, VAR OBJECT *result, int whole, int
di nensi on)

DESCRIPTION
Determine the position of the pixel with minimum/maximum value in image "in" and
store the result in the var_object "result”. If "whol€" is set (=1) then the position of the
minimum/maximum of the entire image will be determined. If "whole" is not
specified (=0) then the position of the minimum/maximum of each line is determined.
In that case the following has to taken into account: If "dimension” is 1 then the
minimum/maximum each x-line is determined. (2: each y-line, 3: each z-line if a 3d-

image).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pix_minval pix_maxval pix_average val

315

SCIL_Image 1.4 — Reference Manual

maxelm

NAME
maxelm

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See max_element

maximum_cost_path

NAME
maximum_cost_path - find an optimal path in a cost matrix

SYNOPSIS
#i ncl ude "grey_2dp. h"

i nt maxi num_cost _pat h(1 MAGE *i nput, VAR OBJECT *output, int markov,
int circular)

DESCRIPTION
Using a dynamic programming technique, find an 8-connected path connecting the
top and bottom boundaries of theimage "input”. Of all possible paths, the path is
chosen with the maximum sum over its pixels. "markov” (default 0) is added to the
pixelsinthe current search direction, avalue assigned to it decreases the probability
that the path becomes overly curved.

The algorithm is such that each horizontal line of the image "input" contains precisely
one pixel on the found path. These horizontal positions are stored in the
1-dimensional array "output”. Pixelsin "input" with a negative value are forbidden
points; the algorithm will find a path without using these points.

If the"circular" isYes (1), "input" istreated "circularly”, i.e. the pixelsin thelast row
of "input" are assumed to be the upper neighbors of the pixelsin the first row.
Specifying thisrestricts the algorithm to solutions with 8-connectivity between the
path’s pointsin the first and the last row of the image "input".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_trace resample perp back project drawcurve

316

SCIL_Image 1.4 — Reference Manual

maximum_im
NAME
maximum_im - element wise maximum

SYNOPSIS
#i ncl ude "improto.h"

int maxi num.in(l| MAGE *inl, | MAGE *in2, | MAGE *out)

DESCRIPTION
Compare each element of "in1" with the corresponding element of "in2", take the
maximum value of the two and store this value in the corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
minimum_im

317

SCIL_Image 1.4 — Reference Manual

maximum_trace

NAME
maximum_trace - find a path tracing maximum value

SYNOPSIS
#i ncl ude "grey_2dp. h"

int maxi mumtrace(l MAGE *input, |MAGE *output, int startx, int
starty, int dir, int avglen, int length, int mnedge, double mnval
VAR_OBJECT *t abl e)

DESCRIPTION
Starting at position ("startx", "starty") in the image "input"”, the command searches for
the direction in which the mean grey-value is maximum. Theinitial search directionis
specified by the parameter "dir", which may vary from 0 to 7, representing the
following directions:

ahw
o *N
~NoRr

Given acurrent pixel (x,y) and a current direction (d), there are three candidate points
for the next pixel, viz. the neighbor points in the directions (d-1), (d) and (d+1)
(modulo 8). To decide which to take, three straight lines are considered, one in the
direction (d), another in between the directions (d) and (d+1) and athird in between
the directions (d) and (d-1). Along each of these lines the mean value is calculated,
over alength of "avglen" pixels. The next pixel isthe candidate point that corresponds
with the direction with the maximum average. The process is repeated at the new
pixel, using the found direction as a new value for (d).

The process stops:
- If the distance of the candidate pixel to the image boundariesisless than the
value of "minedge”.
- If the maximum of the mean values in the candidate directionsis less than
the specified value "minval”.
- If apixel isobtained that is set in the binary image "output
- If the number of pixels found becomes equal to the value "length".

The coordinates x and y of thei-th pixel obtained are stored into the locations (0,i)
and (1,i) of thevar_object "table" of type SHORT _T. Thetable "table" is optional; it
should be specified if the found path isto be used by command resample_perp(). The
pixels found are set in the binary image "output”. Except for offering away to stop
the search as mentioned above, thisimage isonly for inspection. For further
processing of the path, operand "table" should be used.

If the VAR_OBJECT "table" is specified, the number of points obtained in the trace is
equal to the length of the VAR_OBJECT "table" (1st dimension) after the operation;
"table" is adjusted to the correct length.

RETURN VALUES

318

SCIL_Image 1.4 — Reference Manual

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_cost_path resample perp back_project drawcurve

maxval

NAME
maxval

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_maxval

319

SCIL_Image 1.4 — Reference Manual

measure

NAME
measure - high level object measurements

SYNOPSIS
#include "im.aio.h"

LI ST *measure(l MAGE *grey, |IMAGE *binary, int garb, int inter,
unsi gned | ong shape, unsigned long dens, int print_it, char *file)

DESCRIPTION
grey - Grey value image containing original object
binary - Binary image containing mask of the objects
garb - Object garbage level
inter - I nteractive mode (disabled)
print_it - Print results
shape, dens - Bitmaps with feature specification
file - Store resultsin file

measure() is the highest level measurement routine of the AIO package.

The function list_label() is used to label the objects in the binary image using 8
connectivity and a garbage level "garb". Then the functions object_shape meas() and
object_dens meas() are used to measure the shape and densitometry features specfied
in the "shape" and "dens" bitmaps. The results of the measurements are shown on your
terminal/worksheet if "print_it" is 1. If afilename other than "-" isgivenin "file" the
results are also stored in that file.

NOTE
As of version 2.0 of the Image library, the interaction switch "inter" has been disabled.
The routine only performs automatic measurement of the all objectsin the binary
image. In SCIL_Image, a new interactive function Imeasure() has been introduced to
perform the interactive measurement of objects.

RETURN VALUES
A list with object information is returned on success
NULL on failure.

SEE ALSO
object_shape meas object_dens meas list_label

320

SCIL_Image 1.4 — Reference Manual

memchr
memcmp
memcpy
memmove

memset

NAME
memchr, memcmp, memcpy, memmove, memset - memory operations

SYNOPSIS
#i ncl ude <string. h>

void *menchr(void *s, int ¢, int n)
int mencnp(void *s, void *t, int n)
void *nmencpy(void *s, void *t, int n)
voi d *memmove(void *s, void *t, int n)

void *nmenset(void *s, int ¢, int n)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

memchr() returns a pointer to the first occurrence if character "c" in memory area"s"
or NULL if "c" is not present among the first "n" characters.

memcmp() compares the first "n" characters of memory area"s" with memory area
"ty itreturns<0if "s' <"t"; 0if "s' =="t", or >0if "s" > "t".

memcpy() copies "n" characters from memory area"t" to memory area”s’, and returns
IISII

memmove() copies"n” characters from memory area"t" to memory area"s", Copying
between areas that overlap is handled correctly. memmove() returns s’

memset() places character "c" into thefirst "n" characters of memory area"s’, it
returns s’

RETURN VALUES
see the description of each of the functions

SEE ALSO
strchr stremp strepy

321

SCIL_Image 1.4 — Reference Manual

merge
NAME
merge - image merge

SYNOPSIS
#i ncl ude "i mproto.h"

int nerge(l MAGE *in, |IMACGE *out, int direct, int iter)

DESCRIPTION
Merge two halves of image "in" storing the lines of one half into even positions and
the other half into odd positions of the image "out". The command is executed on a
per row or per column basis as specified by "direct”, "direct” = 0 means merging
horizontal lines, "direct" = 1 means merging vertical lines and "direct” = 3 means

merging Z-dlices (if "in" isa 3D image). The command is repeated "iter" times.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
merge_horizontal merge vertical split

merge_horizontal

NAME
merge_horizontal - merge in horizontal direction

SYNOPSIS
#i ncl ude "i mproto.h"

int nerge_horizontal (I MAGE *in, |MAGE *out, int iter)

DESCRIPTION
Same as merge() with "direct” = 0.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
merge vertical merge split

322

SCIL_Image 1.4 — Reference Manual

merge vertical
NAME
merge_vertical - merge in vertical direction

SYNOPSIS
#i ncl ude "improto.h"

int merge_vertical (I MAGE *in, |MAGE *out, int iter)

DESCRIPTION
Same as merge() with "direct” = 1.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
merge_horizontal merge split

mergh
NAME
mergh

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See merge_horizontal

mergv
NAME
mergv

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See merge _vertical

323

SCIL_Image 1.4 — Reference Manual

message line info
NAME
message _line_info - show textual info to the user

SYNOPSIS
#i ncl ude "nd_gen. h"

int nmessage_line_info(int code, char *buf)

DESCRIPTION
message _line_info() create a window that can be used to show textual messages to the
user. The message can be transferred in lines to the window module with the
message _line_info(). The total message for the window can contain a maximum of
10,000 bytes. If the window istoo small to show the whole text the user can scroll the
text up and down.

The "code" argument can be used to define a block-structure in the text, however
nothing is yet done with the block information, but may be done with it in the future.
It must however be used to indicate the end of the text (code =-2).

"code" indicates :

0: Start of possible more than one block; "text" isignored.
1 Start of text-block.
2. .. further lines of the text-block.

-1.: End of text-block
-2 End of al text-blocks, show message window; "text" isignored.

The programmer is responsible for the placing the newlines in the text. The routines
does not place any newlinesin the text.

EXAMPLE
/* exanple to show text information to the user */
nmessage_line_info(0,"This text is ignored");
nmessage_line_info(1,"Textual information for the user:\n\n");
nmessage_line_info(2,"This is the info you wanted to pass\n");
nmessage_line_info(2,"Rest of the textbody..\n");
nmessage_line_info(2,"Even nore lines\n");
nmessage_line_info(-1,"Last text line.\n");
nmessage_line_info(-2,"This text is also ignored");

RETURN VALUES
OK (1) on success
NOT_OK (0) when the maximum number of characters has been passed

324

SCIL_Image 1.4 — Reference Manual

minelm

NAME
minelm

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See min_element

minimum_im
NAME
minimum_im - element wise minimum

SYNOPSIS
#i ncl ude "improto.h"

int mninmin(l MAGE *inl, |MAGE *in2, | MAGE *out)

DESCRIPTION
Compare each element of "in1" with the corresponding element of "in2", take the
minimum value of the two and store this value in the corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_im

minval

NAME
minval

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See pix_minval

325

SCIL_Image 1.4 — Reference Manual

mirrh

NAME
mirrh

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See mirror_horizontal

mirror

NAME
mirror - mirror image

SYNOPSIS
#i ncl ude "i mproto.h"

int mrror(l MAGE *in, | MAGE *out, int direct)

DESCRIPTION
Mirror image "in" relative to a central axis and store the result in "out". The direction
of the axis may be horizontal or vertical as specified by "direct”. The command is
executed on a per row or per column basis as specified by "direct”, "direct” = 0 means
a horizontal mirror is used (top-line becomes bottom line), "direct” = 1 means a
vertical mirror and "direct" = 3 meansa Z-mirror is used (if "in" isa 3D image).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror_horizontal mirror_vertical rotate

326

SCIL_Image 1.4 — Reference Manual

mirror_horizontal
NAME

mirror_horizontal - mirror in horizontal direction

SYNOPSIS
#i ncl ude "improto.h"

int mrror_horizontal (I MACE *in, | MAGE *out)

DESCRIPTION
Same as mirror() with "direct" isO.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror_vertical mirror rotate

mirror_vertical

NAME
mirror_vertical - mirror in vertical direction

SYNOPSIS
#i ncl ude "improto.h"

int mrror_vertical (I MAGE *in, | MAGE *out)

DESCRIPTION
Same as mirror() with "direct" is 1.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror_horizontal mirror rotate

327

SCIL_Image 1.4 — Reference Manual

mirrv

NAME
mirrv

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See mirror_vertical

mix
NAME
mix - pixel wise compare and select new pixel value

SYNOPSIS
#i ncl ude "i mproto.h"

int mx(IMAGE *in, |MAGE *out, long thres, long vall, long val2, |ong
val 3)

DESCRIPTION
Compare each pixel in the image "in" with atest-value "thres' and select a new pixel
out of achoice of three, following the rules:

- if the input pixel islessthan the "thres®, the new pixel value will be "val1"
- if the input pixel is equal to the "thres", the new pixel value will be "val2"
- if the input pixel is greater than the "thres®, the new pixel value will be "val3"

The resulting pixels are stored into the image "out".
The values "thres’, "val1", "val2" and "val3" can either be scalars or images, in any
combination. If the valueis a scalar the value is of course a constant value. If the
value is an image then the value of the pixel that corresponds with the pixel in the
input image is taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
tri_state threshold clip threshold contrast_stretch equalize lookup

328

SCIL_Image 1.4 — Reference Manual

mix_filter
NAME
mix_filter - get sum and difference of two filters

SYNOPSIS
#i ncl ude "improto.h"

int mx_filter(I MAGE *inl, |MAGE *in2, |MAGE *sum | MAGE *diff, | MAGE
*al pha)

DESCRIPTION
Stores the weighted sum and difference filters of "in1" and "in2" according to:
sum = alpha*inl + (1.-alpha)*in2;
diff = alpha*inl - (1.-alpha)*in2;

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
random_filter

329

SCIL_Image 1.4 — Reference Manual

MmMOops3x3

NAME
mmops3x3 - mathemaical morphological operators

SYNOPSIS
#i ncl ude "i mproto.h"

unsi gned | ong nmops3x3(1 MAGE *X, | MAGE *Y, IMAGE *M int S, int T,
i nt opcode, int edge)

DESCRIPTION
The function mmops3x3() basically performs the hit-or-miss transform (HOM) on the
images " X" and "Y" using structuring elements"S" and "T" restricted to a 3x3
neighborhood. The result is stored in theimage "Y". The result of the HOM may be
combined with a mask image "M". The operation performed depends on the the
parameter "opcode”. The "edge" parameter specifies whether to set (1) or clear (0) the
border around the image before the operation.

Notation (Morphology for programmers)

X ® [ST] : Hit-or-miss transform using structuring
elements S (object) and T (background).

X° : Complement of X

XnY . Intersection (AND) of X and Y

Xxay : Union (OR) of X and Y

X\Y : Difference (X \Y =X n Y°)
Opcode Operation
(symbalic) (numeric)
HOM 1 Y =XQ®[ST]
THINN 2 Y=XO[ST]=X\(X®[ST])
THICK 3 Y=XO[ST]==XO(X®[ST])
C_HOM 4 Y=Mn (X®[ST])
C_THINN 5 Y=Mn (XO[ST])
C_THICK 6 Y=Mn (XO[ST])
C_NOTHOM 7 Y=Mn (X®[ST])"
NOT_CHOM 8 Y=(MnX®[ST])*
NOTC_HOM 9 Y=M°n (X®I[ST])
NOT_HOM 10 Y=(X®[ST])°
NOTC NOTHOM 11 Y=M®n (X®[ST])®

Structuring Element:

The structuring elements Sand T (both restricted to the 3x3 square) are coded with a
decimal number with 3 digits. Each digit encodes one of the three rows:

330

SCIL_Image 1.4 — Reference Manual

X X X 4+42+1

x
N
I
onN N

coded as 720

0
0
7

k k k 4+2+1 coded as 7

Don’'t type in leading zeros in the encoding of a structuring element asin C this means
an otcal number. Thiswill lead to unexpected results (but not what you wanted).

A short introduction

The simplest morphological operations are the erosion and dilation. The erosion of a
binary image X with a structuring element Sis denoted as

Xo6S

and it selects from the input image all those pixels where the structuring element Sfits
within the object X. That is, at each position in the image we check whether all
neighbours as defined with the set S are object pixelsin the origina (i.e. have binary
value 1). If so then that pixel is part of the eroded set. If not then the pixel isa
background pixel.

The hit-or-miss transform is the intersection (AND) of two erosions. The object set

(the original image) is eroded with structuring element S and the background set (the

inverted original image) is eroded with background set T. The intersection of these

two erosions results is the hit-or-miss transform (opcode HOM):
X®[ST|=XeSnX‘oeT

This means that a pixel at position (i,j) in animage is an object pixel (binary value 1)
in the hit-or-miss result in case

all neighbour pixelsindicated with the object set S are object pixelsin the
original image

AND

all neighbour pixelsindicated with the background set T are background pixels
in the the original image

Please note that this implies that the structuring sets Sand T should have no pixelsin
common (unless you want to clear animage...).

331

SCIL_Image 1.4 — Reference Manual

As an example consider the hit-or-miss transform using the following structuring sets:

X
S=. X. T

1
X X X
xX X X

X

Note that the dots are placeholders. They are not part of the set, they are indicated just
to "see" the entire 3x3 neighbourhood. An other way of looking at thisisto say that
they are"don’t care" pixels. Note that because S and T should have no pixelsin
common we denote this as

[ST] =

[elelNe}
O X O
[elelNe]

where elements of S are denoted with "x" and elements of T with "0". The hit-or-miss
transform of an image with this mask [S,T] will detect all isolated pixelsin the
original image. Theisolated pixelsin a binary image can be removed by taking the
difference of the above hit-or-miss transform with the original image:

XO[ST]=X\X®[ST]
this operation is called "thinning" and its opcode is THINN.

The "dua" operator of thinning is thickening (opcode THICK). Now we don’'t remove
the pixels found by the hit-or-miss transform but instead we "add" them to the image:

XO[ST]=XTOXQ®[ST]
The results of hit-or-miss transforms, thinnings and thickenings can be combined with
amask image M leading to the opcodes C_HOM (conditional HOM), C_THINN etc.

This can be useful in several algorithms.

EXAMPLE
1) Finding the object contour

The (8 connected) object contour is found by taking the difference of the original set

and the eroded set (erosion using the 4 connected neighbourhood as structuring
element):

S =X X X
X .

X\XesS

Although the erosion is not directly available in mmops3x3 we can easily implement
the above by taking

T=... (no pixels at all)

332

SCIL_Image 1.4 — Reference Manual

and then

X\X e S=X\XQ®I[ST]

so the command to perform this operation is:

mops3x3 in out out 272 0 THINN O

2) Connectivity preserving thinning

A skeleton operation can be interpreted as connectivity preserving thinning: aslong as
the connectivity is not broken, pixels from the contour of a set are removed. Thisis

the essence of the skeleton algorithms based on thinning (as opposed to skeletons

based on maximal disks). A very simple implementation of thisideais the following

piece of C-code that indeed implements something of a skeleton (but the "built-in"

skeletons are much better!):

#i ncl ude "image. h"

t hi nskel et (i n, out)
| MAGE *in, *out;

{
I MAGE *t np;
int n;
tnp = nake_i nage "t np";
copy_imin out;
do {
copy_i mout tnp;
n = mMmops3x3 tnp
n = mMmops3x3 out
n = mMmops3x3 out
n = mMmops3x3 out
n = mMmops3x3 out
n = mMmops3x3 out
n = mMmops3x3 out
n = mMmops3x3 out
} while(!equal _imges(tnp,
destroy_i mage tnp;
}
RETURN VALUES

The function returns the number of pixelsin the resultant image:

retval = N(X®(S,T)) on success

I[E_NOT_OK (0) onfailure

out
out
out
out
out
out
out
out

out
out
out
out
out
out
out
out

out));

720
660
464
66
27
33
131
330

13
111
310
700
640
444

46

THI NN,
THI NN,
THI NN,
THI NN,
THI NN,
THI NN,
THI NN,
THI NN,

333

SCIL_Image 1.4 — Reference Manual

modal_input
NAME

modal_input - modal text input window
PLATFORM

Unix
SYNOPSIS

#i ncl ude "nd_gen. h"

int modal_input(char *bufo, ...)

DESCRIPTION
modal_input() isameans to prompt the user for input, and waits until that input is
given. Both textual input awell as a choice from a number of buttons (max. 8) is
possible.

A window is popped up in which the specified strings are displayed and at the bottom
one up to eight button are visible.

The text, the buttons and the input field are all specified as strings (char pointers), but
they must comply with the following rules:

1) A button string must be present in which the buttons are defined between
square brackets ([buttontext]). The maximum number of buttonsis eight. Only
one button string is allowed.

2) A maximum of 16 stringsis possible of which the last must be the button
string. In a string the newline character ('\n’) may be used to accommodate
more lines.

3) The input field buffers must be specified after the button strings, the maximum
number of input fieldsis eight. An input field is specified by the keyword
"INPUT" in the text strings, no other text may be present in that string. Each
input field must be a existing character buffer of sufficient length.

Below are afew examplestoillustrate their use.

EXAMPLE
[* example 1; without text input */
int choice;

choice = modal_input("SCIL_Image is beautiful\n", "[Y es][No]");
if (choice == 1) printf("We think so too \n");

if (choice == 2) printf("But we think it is \n");

/* end of example 1 */

[* example 2; with text input */
int choice;
char buf[100];

sprintf(buf, "this is the default text");
choice = modal_input("What do you think of SCIL_Image ?",

334

SCIL_Image 1.4 — Reference Manual

"1 NPUT",
"(type your answer above\nit will appear also in inmge
A"
"TOK]", buf);
printf(" Your answer was --%--\n", buf);
di sp_text(a, 0, 100, buf);
/* end of exanmple 2 */

RETURN VALUES
The number of the button pressed

modulo_im

NAME
modulo_im - modulo (remainder of integer division)

SYNOPSIS
#i ncl ude "improto.h"

int nodul o_i (I MAGE *inl, | MAGE *in2, | MAGE *out)

DESCRIPTION
Divide each element of "in1" by the corresponding element of "in2" and store the
remainder of the division in the corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
div_im

335

SCIL_Image 1.4 — Reference Manual

MouseMove

NAME
MouseMove - test whether the mouse moved with a button down

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt MouseMove(l M EVENT npuse_event)

DESCRIPTION

MouseMove() can be used to find out whether the mouse moved with one or more
buttons down. The function returns either TRUE or FALSE. MouseMove() can only
be used after acall to the "point_im()" routine which returns a mouse-event as one of

its arguments.

EXAMPLE
#i ncl ude "di sp_p. h"
#i ncl ude "image. h"

I MAGE *ip;
i nt X, V;
| M_ EVENT event;

while (point_im(& p, &, &y, &event) !'="q9) {
if (MousePress(event))
printf("Don’t nmove.\n");
el se i f(MuseMve(event))
printf("l said, don't nove\n");

}
RETURN VALUES
TRUE (non zero) if moved
FALSE (zero) otherwise
SEE ALSO

point_im MousePress MouseRelease IsMouseDown EventType KeyPressed

336

SCIL_Image 1.4 — Reference Manual

MousePress

NAME
MousePress - test whether a button has been pressed

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt MousePress(| M EVENT nouse_event)

DESCRIPTION
MousePress() can be used to find out whether a mouse button has been pressed.
Depending on the button pressed the function returns one of the symbolic values
LEFT, MIDDLE, RIGHT defined in imwindow.h. MousePress() can only be used
after acall to the "point_im" routine which returns a"mouse-event" as one of its
arguments.

EXAMPLE
#i ncl ude "di sp_p. h"
#i ncl ude "i nage. h"

I MAGE *ip;

i nt X, VY;

I M EVENT event;

while (point_im(& p, &, &y, &event) !'="'q")
if (MousePress(event) == LEFT)

di sp_vector(ip, 0, 0, X, Yy);

RETURN VALUES
MIDDLE, LEFT, RIGHT if abutton was pressed
0 if no button was pressed
SEE ALSO

point_im MouseRelease MouseMove IsMouseDown EventType KeyPressed

337

SCIL_Image 1.4 — Reference Manual

MouseRel ease

NAME
M ouseRelease - test whether a button has been released

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt MouseRel ease(l M EVENT nouse_event)

DESCRIPTION
MouseRelease() can be used to find out whether a mouse button has been rel eased.
Depending on the button released the function returns one of the symbolic values
LEFT, MIDDLE, RIGHT defined in imwindow.h. MouseRelease() can only be used
after acall to the "point_im" routine which returns a"mouse-event" as one of its
arguments.

EXAMPLE
#i ncl ude "di sp_p. h"
#i ncl ude "image. h"

I MAGE *ip;
i nt ox, oy;
i nt X

H y1
| M EVENT event;

di sp_draw_node;
while (point_im& p, &, &y, &event) !'="q) {
if (MousePress(event) == LEFT){
oX = X; 0oy =Y;
di sp_rect(ip, ox, oy, 20, 20);

el se if(! MouseRel ease(event) == LEFT){
di sp_rect (i p, ox, oy, 20, 20);
di sp_rect (ip,Xx,Yy, 20, 20);
oX = X; 0y =Y;

}
}
RETURN VALUES
MIDDLE, LEFT, RIGHT if a button was released
0 if no button was released
SEE ALSO

point_im MousePress MouseMove IsMouseDown EventType KeyPressed

338

SCIL_Image 1.4 — Reference Manual

muj
NAME
muj

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See conjugate_mul_im

natural_window_size

NAME
natural_window_size - give an image awindow of its own size

SYNOPSIS
#i ncl ude "di sp_p. h"

int natural _wi ndow_size(| MAGE *in)

DESCRIPTION

This function adjusts the size of the window of an image to the size of the image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set window_size set window_pos set_start pos

339

SCIL_Image 1.4 — Reference Manual

nearest_int

NAME
nearest_int - truncate pixel values to nearest integer value

SYNOPSIS
#i ncl ude "i mproto.h"

int nearest_int (I MAGE *in, | MAGE *out)

DESCRIPTION
Convert each element of image "in" to an integer value by means of rounding and
store the result into the corresponding elements of image "out". The effect is that the
integer value most close to the original valueistaken. If the fractional part is exactly
0.5, for positive values the integer value just greater than the original value istaken
and for negative values the integer value just less than the original value is taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fraction_im truncate im lowest_int

negation_im
NAME
negation_im - negation

SYNOPSIS
#i ncl ude "i mproto.h"

int negation_in(| MAGE *in, | MAGE *out)

DESCRIPTION
Negate each element of "in" and store the result in the corresponding element if "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sign_im eval

340

SCIL_Image 1.4 — Reference Manual

next_plane

NAME
next_plane - display next plane or slice of an image

SYNOPSIS
#i ncl ude "di sp_p. h"

int next_plane(I MAGE *im int num

DESCRIPTION
Display the next or previous slice or plane of animage. "num" =="-1" takes the
previous slice, "0" takes the current dlice and "1" takes the next dlice. See also
"auto_plane".

RETURN VALUES
None

SEE ALSO
display_image set_display _dlice auto_plane

object_contour

NAME
object_contour - transform object contour into freeman chain code

SYNOPSIS

#i ncl ude "im.aio. h"

LI ST *obj ect _contour (| MAGE *mask, LI ST *Iink)

DESCRIPTION
mask - Image containing labeled objects
link - Link pointing to object information

AlO primitive to obtain the freeman code representation of an objects contour.

NOTE
object_contour() is part of the A1O package, and is meant to be only visible at the
programming level.

RETURN VALUES
A list with the freeman code
NULL on failure

SEE ALSO
object_shape meas

341

SCIL_Image 1.4 — Reference Manual

object_dens meas
NAME
object_dens meas - densitometry measurements on alabeled object

SYNOPSIS
#include "im.aio.h"

i nt object_dens_neas(| MAGE *grey, | MAGE *mask, LIST *link, unsigned

| ong bi t map)
DESCRIPTION
grey - Image containing original grey value information
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

object_dens meas() is the function to measure any densitometry features of an object.
(Also used by the higher level measure() routine)

In the bitmap GREY VAL, TRANSMIS and OD can be specified or a (logical OR)
combination off these values.

The features measured are:
mean value
integrated sum
standard deviation

The results are stored together with the other object information. Results can be

obtained through functions:
grey_mean(object)
trans_mean(object)
od_mean(object)
grey_sum(object)
trans_sum(object)
od_sum(object)
grey_stdev(object)
trans_stdev(object)
od_stdev(object)

EXAMPLE
To nmeasure the optical density paraneters of all the objects in a
list:

#i ncl ude "i mage. h"
#i nclude "im.aio.h"
LI ST *I, *o;

readfile("cernmet", a, 0,0);
t hreshol d(a, b, 128);

i nvert _in(b, b);
| = 1list_label(b, ¢, 8, 0);
FORALL(0, 1){

342

SCIL_Image 1.4 — Reference Manual

obj ect _dens_neas(a, ¢, o, OD);
printf("Mean % Sum % Stdev %\n", od_nean(o), od_sum(o0),
od_stdev(0));

NOTE
object_dens meas() is part of the AlO package

RETURN VALUES
IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO
measure object_shape meas grey meantrans mean od_mean
grey_sum trans sum od _sum grey stdev trans stdev od_stdev

343

SCIL_Image 1.4 — Reference Manual

NAME

object_freeman_meas

object_freeman_meas - object measurement of features based on freeman chain of
contour

SYNOPSIS

#include "im.aio.h"

i nt object_freeman_neas(| MAGE *nmask, LIST *link, unsigned |ong
bi t map)

DESCRIPTION
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

NOTE

Al O primitive to measure shape features based on freeman chaincode of the contour
of objects. Used by the higher level object_shape meas() routine. In the bitmap the
following features or a combination (logical OR) of them can be specified:

PERI

CR

BEND

The results are stored together with the other object information. Results can be
obtained through functions asin:

peri(object)

cr(object)

bend(obj ect)

object_freeman_meas() is part of the A1O package, and is meant to be only visible at
the programming level.

RETURN VALUES

IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO

measure object shape meas object dens meas peri cr bend

344

SCIL_Image 1.4 — Reference Manual

NAME

object_moment_meas

object_moment_meas - object measurement of features based on moments

SYNOPSIS

#i ncl ude "im.aio. h"

i nt object_nonent _meas(| MAGE *mask, LIST *link, unsigned |ong bitmap)

DESCRIPTION
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

NOTE

Al O primitive to measure shape features based on moments. Used by the higher level
object_shape meas() routine. In the bitmap the following features or a combination
(logical OR) of them can be specified:

GRAVX

GRAVY

ANGLE

ECCENTR

LAXIS

SAXIS

The results are stored together with the other object information. Results can be
obtained through functions asin:

gravx(object)

gravy(object)

angle(object)

eccentr(object)

laxis(object)

saxis(object)

object_moment_meas() is part of the AlO package, and is meant to be only visible at
the programming level.

RETURN VALUES

IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO

measure object_shape meas object_dens meas
angle eccentr gravx gravy laxis saxis

345

SCIL_Image 1.4 — Reference Manual

object rect to silo
NAME
object_rect to_silo - add object from image to an image-silo

SYNOPSIS
#i ncl ude "i mage. h"
#i nclude "silo.h"

int object rect to silo(SILOPTR siloptr, int silo_key, | MAGE
*srcimage, LIST *link)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in the image-silo.
srcimage - Source image.
link - Link pointing to object

Copies the rectangle enclosing the object pointed to by "link" from the image
"srcimage” to the silo "siloptr” at the position "silo_key".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (seeim_error.h)

346

SCIL_Image 1.4 — Reference Manual

object_shape meas
NAME
object_shape meas - shape measurements on a labeled object

SYNOPSIS
#i ncl ude "im.aio. h"

i nt object_shape_neas(l MAGE *mask, LIST *link, unsigned | ong bitmap)

DESCRIPTION
mask - Image containing labeled objects.
link - Link pointing to object information
bitmap - Bitmap with feature specification

object_shape meas() is the function to measure any shape feature of an object. (Also
used by the higher level measure() routine) The results are stored together with the
other object information.

Currently implemented: Results can be obtained through functions asin:
AREA area(object)
PERI peri(object)
CR cr(object)
BEND bend(obj ect)
GRAVX gravx(object)
GRAVY gravy(object)
ANGLE angle(object)
XMIN xmin(object)
XMAX xmax (object)
YMIN ymin(object)
YMAX ymax(object)
WIDTH width(object)
HEIGHT height(object)
LAXIS |axis(object)
SAXIS saxis(object)
ECCENTR eccentr(object)
EXAMPLE

To neasure the area, perinmeter, center of gravity and contour ratio
of all the objects in a list:

#i ncl ude "image. h "
#i ncl ude "im.aio. h"
LI ST *I, *o;

readfil e("cernet", a, 0,0);
t hreshol d(a, b, 128);

i nvert _in(b,b);
I =1list_label(b, ¢, 8, 0);
FORALL(0, 1){

obj ect _shape_neas(c, o0, AREA| PERI | GRAVX| GRAVY| CR);

printf("Area %d Perineter %\n", area(o), peri(0));

printf("Center of gravity (%, %), Contour Ratio %\n"
gravx(o), gravy(o), cr(o));

347

SCIL_Image 1.4 — Reference Manual

NOTE
object_shape meas() is part of the AlO package

RETURN VALUES
IE_OK (1) if measurement was successful
Negative error status on failure (see im_error.h)

SEE ALSO
measure object_dens meas
area peri cr bend gravx gravy angle xmin xmax ymin ymax
width height laxis saxis eccentr

objectsize
NAME
objectsize - object size estimation

SYNOPSIS
#i ncl ude "i mproto.h"

int objectsize(l MAGE *in, | MAGE *out)

DESCRIPTION
Calculate for each object in the labeled image "in" the object size by counting the
number of pixels, assign to all pixels of the object the calculated size and store the
result in image "out". So for each object the label number is replaced by the object
size.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hull 1abel rhull small_object_removal

348

SCIL_Image 1.4 — Reference Manual

odd fsizes ok
NAME
odd fsizes ok - check if filter sizes are odd and in the range

SYNOPSIS
#include "im.infra.h"

int odd_fsizes_ok(int fx, int fy, int fnax)

DESCRIPTION
The functions checks if the arguments "fx" and "fy" are odd values and in the range
from oneto "fmax". The range is checked by the function range_ok() and the check if
the values are odd by the function odd_ok(). If one of the values is outside the range
an error is generated and the following message is added to the error-stack:

Filter Wdth [<fx>] out of range (1..<fnax>)
or
Filter Height [<fy>] out of range (1..<fmax>)
When one of the valuesis not an odd value then the message will be:
Filter Wdth [<fx>] should be odd
or

Filter Height [<fy>] should be odd

RETURN VALUES
IE_OK (1) if the values"fx" and "fy" are O.K.
IE_NOT_OK (0) if either of the valuesis even or out of the range.

SEE ALSO
range_ok odd_ok

349

SCIL_Image 1.4 — Reference Manual

odd ok

NAME
odd ok - check if avalueisaodd integer value

SYNOPSIS

#include "iminfra.h"

int odd_ok(int value, char *text)

DESCRIPTION
The parameter "value" is checked to seeif it isan odd value. If it isnot an odd value
an error is generated and the following message is added to the error-stack:

<text> [<val ue>] should be odd

RETURN VALUES
IE_OK (1) if thevalueisodd
IE_NOT_OK (0) if thevalueiseven

SEE ALSO
even ok odd fsizes ok

350

SCIL_Image 1.4 — Reference Manual

open
NAME
open - open for reading or writing

SYNOPSIS
i nt open(char *nane, int node)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

open() opensthefile "name" for reading (if "mode" is0), writing (if "mode" is 1) or
for both reading and writing (if "mode" is 2). "name" is the address of a string of
ASCII characters representing a pathname, terminated by a null character.

Thefileis positioned at the beginning (byte 0). The returned file descriptor must be
used for subsequent calls for other input-output functions on the file.

RETURN VALUES
Thevalue -1 isreturned if the file does not exist, if one of the necessary directories
does not exist or is unreadable, if the fileis not readable (resp. writable), or if too
many files are open.

SEE ALSO
creat read write close

open_silo
NAME
open_silo - open an existing image-silo

SYNOPSIS
#i ncl ude "silo.h"

SI LOPTR open_si | o(char *sil onane)

DESCRIPTION
siloname - filename of the image-silo.

Opens asilo by the name "siloname”. Readsin dl the entries to make an internal entry
list. Returns a handle to this silo which must be handed to all silo-1/0 functions.

RETURN VALUES
A pointer to the silo structure
NULL if an error occurred.

351

SCIL_Image 1.4 — Reference Manual

opening3x3
NAME
opening3x3 - open

SYNOPSIS
#i ncl ude "i mproto.h"

i nt openi ng3x3(1 MAGE *in, | MAGE *out, int iter, int con, int bound)

DESCRIPTION
Performs an opening from "in" to "out", which is performed by "iter" erosions from
in" to "out" followed by "iter" dilations from "out" to "out". The operation deletes
objects having a width less than two times the specified number of cycles. "bound"
specifies that the edge around the image must be set to foreground (1) or to
background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
closing3x3 erosion3x3 dilation3x3

or_im
NAME
or_im - bitwise or of images

SYNOPSIS
#i ncl ude "i mproto.h"

int or_inm(I MAGE *inl, |IMAGE *in2, | MAGE *out)

DESCRIPTION
Perform a bitwise OR operation of each element of "in1" with the corresponding
element of "in2" and store the result in "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im xor_im invert_im shift_im

352

SCIL_Image 1.4 — Reference Manual

overload func
overloadable func
type overload func

type overloadable func

NAME
overload func - get overloaded function pointer

overloadable func - check if afunction is overloadable
type overload_func - get overloaded function pointer for a specified image type

type overloadable func - check if afunction is overloadable for a specified image
type

SYNOPSIS

#include "im.infra.h"

FPI overl oad_func(char *name, | MAGE *im

FPI type_overl oad_func(char *nane, int type)
FPI overl oadabl e _func(char *name, | MAGE *in)

FPI type_overl oadabl e func(char *name, int type)

DESCRIPTION
overload func() and type overload func() check if the generic function "name" is
overloadable for the specific image "im" or image-type "type". If it is, they return the
C-function pointer to the overloaded function. If it is not overloadable, they generate
an error and return aNULL pointer.

type overloadable func() and overloadable func() perform the same functionality but
do NOT generate an error if the function is not overloadable.

RETURN VALUES
A pointer to the function
NULL if not overloadable.

SEE ALSO
init_func_overload show_func_overload

353

SCIL_Image 1.4 — Reference Manual

pal ette2col or

NAME
palette2color - convert a palette image into a RGB color-image

SYNOPSIS
#i ncl ude "i mproto.h"

int palette2color(lI MAGE *in, | MAGE *out)

DESCRIPTION
palette2color() converts the palette-image "in" into afull-color RGB image in image
"out" A palette-image is a grey-value image with a color-lookup-table attached in
which alimited numbers of colorsis present with which each of the grey-value values
is displayed. Because the grey-values serve only as an index in the lookup-table, no
sensible image-processing can be done on the image. Converting the image to afull-
color RGB image, makes image-processing possible again.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_clut

354

SCIL_Image 1.4 — Reference Manual

parabolic_dilation
parabolic_erosion
parabolic_opening

parabolic_closing

NAME
parabolic_dilation - grey value dilation using a parabolic structuring function

parabolic_erosion - grey value erosion using a parabolic structuring function
parabolic_opening - grey value closing using a parabolic structuring function
parabolic_closing - grey value opening using a parabolic structuring function

SYNOPSIS
#i ncl ude "improto.h"

int parabolic_dilation(lMAGE *in, | MAGE *out, double rho)
i nt parabolic_erosion(l MAGE *in, | MAGE *out, double rho)
int parabolic_closing(lMAGE *in, | MAGE *out, double rho)

i nt parabolic_opening(l MAGE *in, | MAGE *out, double rho)

DESCRIPTION
These functions perform the morphological dilation, erosion, closing and opening on
the grey valueimage "in" using a parabolic structuring function

q(x,y) = /(4 rho) (x"2 + y"2)

and stores theresult in "out”. The "width" of the parabolais given by the "rho"
parameter. The larger "rho" the wider the parabola becomes and the larges the
effective neighborhood sizeis.

EXAMPLE
1) Background correction

The following code fragment performs a closing on the "schema’ image to wipe out
the black drawing. The result of the closing is an approximation of the white paper.
Taking the difference between closing and original (black tophat) gives the drawing in
white on a black background.

int i;

readf schemnm

parabolic_clos a b 2

grey_norph_round a ¢ 23 Yes CLCSE
i =90; profile(a,i);profile(b,i);profile(c,i);

355

SCIL_Image 1.4 — Reference Manual

Note that both closings do the job. Both are isotropic (rotational symmetric structuring
functions). The parabolic closing is faster though and the resulting function is
smoother.

2) Euclidean distance transform

The parabolic erosion can be used to calculate the Euclidean distance transform of a
binary image. Thisisillustrated with the following code fragment:

set _display_node ¢ LIN STRETCH YES Yes;
set _display_node d LIN _STRETCH YES Yes;

eval a=(xx==128&&yy==128) ?255: 0;
parabolic _dila a b 5;
thres b b 1;

distance b ¢ 5 7 12;
/* note that this is 5 tines the di stance */

bi nary_to_grey b d 10000;
parabolic_erosion d d 0. 25;
/* note that 4*0.25 = 1 ==> erosion with "unit’ parabola */

eval d=irint(5*sqrt(d));

Note that in the Chamfer distance transform (in image "C") the octagonal shape of the
distance cone can be readily seen. If oneisinterested in the differential geometrical
structure of the distance transform then the Euclidean one should be prefered.
However in case oneisinterested in the constrained distance transform, the Chamfer
distance is the best solution.

LITERATURE
R.v.d.Boomgaard, L.Dorst, S. Makram-Ebeid, J. Schavemaker, "Quadratic structuring
functionsin mathematical morphology”, in "Mathematical morphology and its
applications to image and signal processing", (eds. P.Maragos, R.W. Schafer and
M.A. Butt), Kluwer Adademic Publishers, 1996, pp. 147---154.

RETURN VALUES
IE_OK(1) on success
IE_NOT_OK (0) on failure (see im_error.h)

356

SCIL_Image 1.4 — Reference Manual

part from silo
NAME
part_from silo - transfer an image from silo to part of an image.

SYNOPSIS
#i ncl ude "image. h"
#i ncl ude "silo. h"

int part_fromsilo(SILOPTR siloptr, int silo_key, | MAGE *dstinmage,
int left, int top)

DESCRIPTION
siloptr - Pointer to theimage-silo.
slo_key - Numerical entry silo_key.
dstimage - Numerical image in which the part must fit.
left - Start x-coordinate of the part-image.
top - Start y-coordinate of the part-image.

Copiesthe"silo_key" image from the image-silo "siloptr" and places thisin image
"dstimage” at coordinate "left”, "top".

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

part_image display
NAME
part_image display - display part of animage

SYNOPSIS
#i ncl ude "inscil.h"

int part_image_display(I MAGE *im int sx, int sy, int sz, int width,
int height, int depth)

DESCRIPTION
part_image display() displays the part of image "im" with dimensions
"width"*"height"*"depth" located at position ("sx","sy","sz").

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
display_image

357

SCIL_Image 1.4 — Reference Manual

part to silo
NAME
part_to_silo - add part of imageto an image-silo

SYNOPSIS
#i ncl ude "i mage. h"
#i nclude "silo.h"

int part_to_silo(SILOPTR siloptr, int silo_key, | MAGE *srcinage, int
left, int top, int sizex, int sizey)

DESCRIPTION
siloptr - Pointer to the image-silo.
silo_key - Numerical entry in the image-silo.
srcimage - Source image.
left - Start x-coordinate of the part-image.
top - Start y-coordinate of the part-image.
sizex - Width of the part-image.
Sizey - Height of the part-image.

Copiesthe part with sizes"sizex" * "sizey" at the position ("left”, "top") from the image
"srcimage” to the silo "siloptr” at the position "silo_key" inthe silo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (seeim_error.h)

percentile

NAME
percentile - percentile filtering

SYNOPSIS
#i ncl ude "improto.h"

int percentile(l MAGE *in, |MAGE *out, int fx, int fy, int num

DESCRIPTION
Perform a percentile filter, a generalization of the median filter. Image "in" is scanned
with amoving window with dimensions "fx" * "fy". The pixel values within this
window are sorted. The pixel which has (after sorting) sequence number "num™
(starting from "1") is taken as the output pixel value and is stored in the pixel in image
"out" that corresponds with the central pixel of the window.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

358

SCIL_Image 1.4 — Reference Manual

peri
NAME
peri - obtain perimeter of an object

SYNOPSIS
#i ncl ude "im.aio. h"

doubl e peri (LI ST *Iink)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

peri() returns the perimeter of the object pointed to by "link" if this has previously
been measured.

RETURN VALUES
perimeter of object on success
0.0if link is not an object or if angle has not been measured.

SEE ALSO
measure object_shape meas object_dens meas

359

SCIL_Image 1.4 — Reference Manual

perror

errno

NAME
perror, errno - system error messages

SYNOPSIS
void perror(char *s)

int sys_nerr;
char *sys errlist[];

int errno;

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

perror() produces a short error message on the standard error describing the last error
encountered during a call to asystem or library function. If "s" isnot aNULL pointer
and does not point to an empty string, the string it pointsto is printed, followed by a
colon, followed by a space, followed by the message and aNEWLINE. If "s" isa
NULL pointer or points to an empty string, just the message is printed, followed by a
NEWLINE. To be of most use, the argument string should include the name of the
program that incurred the error. The error number is taken from the external variable
errno (seeintro(2)), which is set when errors occur but not cleared when non-
erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings "sys_errlist”
is provided; "errno" can be used as an index in this table to get the message string
without the newline. "sys nerr" isthe number of messages provided for in the table; it
should be checked because new error codes may be added to the system before they
are added to the table.

360

SCIL_Image 1.4 — Reference Manual

phase im
NAME
phase_im - find phase of every complex image element

SYNOPSIS
#i ncl ude "improto.h"

i nt phase_i m(1 MAGE *in, | MAGE *out)

DESCRIPTION
For each complex element a + bi of "in" the phase atan2(b,a) is returned in the range [-
pi,pi] and stored in the image "out". If "out" is a complex image then the result will be
stored in the real part of each element of "out" and the imaginary part will be cleared,
otherwise the image "out" will be afloat image.

RETURN VALUES
Number of domain conflicts (number of would be atan2(0,0)) so 0is OK.
Negative error status (seeim_error.h).

pix_abs sum
NAME
pix_abs sum - returns absolute sum of pixels

SYNOPSIS
#i ncl ude "improto.h"

doubl e pi x_abs_sun(| MAGE *i n)

DESCRIPTION
Add all absolute values of the elements of image "in" and returns the resullt.

RETURN VALUES
The absolute sum.

SEE ALSO
abs im pix_sum

361

SCIL_Image 1.4 — Reference Manual

pix_average val
NAME
pix_average val - calculate the average value of all pixels

SYNOPSIS
#i ncl ude "i mproto.h"

int pix_average_val (I MAGE *in, VAR OBJECT *result, int whole, int
di mensi on)

DESCRIPTION
Calculate the average pixel value of the image "in" and store the result in the object
"result”. If "whol€e" is set (=1) the average value of the entire image will be calculated.
If "whol€e" is not set (=0) then the average value is calculated on aline-by-line basis.
In that case the following has to be taken into account: If "dimension” is 1 then the
average of each x-lineis calculated. (2: each y-line, 3: each z-line if a3D-image). The
object "result” will be automatically adjusted so that al datawill fit. If the object
"result” isDONT_STORE (aNULL pointer) then the result will be printed on the
terminal(thisis only possible when "whol€" is set).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
pix_minval pix_maxva max_element min_element

pix_count
NAME
pix_count - count pixels with a certain value

SYNOPSIS
#i ncl ude "i mproto.h"

l ong pix_count (I MAGE *in, int val)

DESCRIPTION
Count the number of pixelsinimage"in" that have value "val".

RETURN VALUES
The number of pixels or
Negative error status on failure (see im_error.h)

362

SCIL_Image 1.4 — Reference Manual

pix_minval

pix_maxval
NAME
pix_minval - calculate minimum pixel value

pix_maxval - calculate maximum pixel value

SYNOPSIS
int pix_mnval (I MAGE *in, VAR OBJECT *result, int whole, int
di nensi on)

int pi x_maxval (I MAGE *in, VAR OBJECT *result, int whole, int
di nensi on)

DESCRIPTION
Cal culate the minimum/maximum value of theimage "in" and store the result in the
object "result”. If wholeis specified (=1) the minimum/maximum value of the entire
image will be calculated. If wholeis not specified (=0) then the minimum/maximum
valueis calculated on aline-by-line basis. In that case the following has to be taken
into account: If "dimension™ is 1 then the minimum/maximum of all x-linesis
calculated. (2: adl y-lines, 3: dl z-linesif a 3d-image). The object "result” will be
automatically adjusted so that all datawill fit in. If the object "result” is
DONT_STORE (aNULL pointer) then the result will be printed on the terminal (this
isonly possible when "whol€e" is specified).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
min_element max_element pix_average va

363

SCIL_Image 1.4 — Reference Manual

pixX_sum
NAME
pix_sum - calculate the sum of the pixel values

SYNOPSIS
#i ncl ude "i mproto.h"

int pix_sum | MAGE *in, VAR OBJECT *sum

DESCRIPTION
Calculate the sum of al pixel values within the image "in", and store that sum in the
var_object "sum" if an object is specified. In case of aNULL pointer
(DONT_STORE) the result will be printed on the terminal.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

pix_value str
NAME
pix_vaue str - get the value of a"pixel” inastring

SYNOPSIS
#i ncl ude "i mproto.h"

char *pix_value_str(IMAGE *im int x, int y, int z)

DESCRIPTION
pix_vaue_str() returns the value of the pixel located at ("x","y","Z") in the image "im"
in string format. The buffer in which the string is stored isa global char buffer of
length 100.

RETURN VALUES
Pointer to the global buffer in which the string is stored.

364

SCIL_Image 1.4 — Reference Manual

pixval
NAME
pixval - pixel value of an object

SYNOPSIS
#i ncl ude "im.aio. h"

Pl XEL pi xval (LI ST *1i nk)

DESCRIPTION
link - Link pointing to the object

AlO primitive to obtain value of an object feature
pixval () returns the pixel value (label) of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The pixel value (label) of the object on success
0if link is not an object

SEE ALSO
measure object_shape meas object_dens meas list_|abel

365

SCIL_Image 1.4 — Reference Manual

pl_io ok
NAME
pl_io_ok - check if the specified bitplanes are in the correct range

SYNOPSIS
#include "iminfra.h"

int pl_io_ok(int in, int out)

DESCRIPTION
This function is meant to check if the values"in" and "out" are valid bitplanes of grey
valued images. The function performs a call to range_ok() for each of the two values.
The valid range for the bitplanesis specified by the defines"MIN_PLANE" (1) and
"MAX_PLANE" (16) from theincludefile"image.h". If "in" or "out" is out of range
an error is generated and one of the following messages is added to the error-stack:

I nput bitplane [<in>] out of range (1..16). (for the "in"
par anet er)

Qut put bitplane [<out>] out of range (1..16). (for the "out"
par anet er)

RETURN VALUES
IE_OK (1) if thevalue are in the range
IE_NOT_OK (0) if either of the valuesis outside the range

SEE ALSO
plane ok range ok

366

SCIL_Image 1.4 — Reference Manual

plane ok

NAME
plane ok - check if the planeisin the correct range.

SYNOPSIS
#include "im.infra.h"

i nt plane_ok(int plane)

DESCRIPTION
The bitplane "plane" is checked if it isin the range of valid bitplane of the grey-valued
images. This range is determined by the defines"MIN_PLANE" (1) and
"MAX_PLANE" (16) inthefile "image.h". The function callsrange ok() to check
therange. If "plane” is outside the correct range an error is generated and the
following message is added to the error-stack:

Bi t pl ane [<pl ane>] out of range (1..16)

RETURN VALUES
IE_OK (1) if the planeisin the correct range.
IE_NOT_OK (0) if itisnot

SEE ALSO
pl_io_ok range ok

plane to _binary
NAME
plane to_binary - convert a grey value image bitplane to a binary image

SYNOPSIS
#i ncl ude "bi n_2dp. h"

int plane_to_binary(I MAGE *in, int plane, | MAGE *out)

DESCRIPTION
The specified plane "plane” of the grey 2d image "in" is converted to a binary image
"out

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
binary to plane binary to grey set im_type

367

SCIL_Image 1.4 — Reference Manual

planecopy

NAME
planecopy - copy a bitplane between grey valued images

SYNOPSIS
#i ncl ude "i mproto.h"

int planecopy(l MAGE *in, int inplane, |IMACE *out, int outplane)

DESCRIPTION
Copy bitplane "inplane" from image "in", to bitplane "outplane” in image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_im plane_to_binary binary to plane

plot_histogram
NAME
plot_histogram - plot histogram on the controlling terminal

PLATFORM
UNIX.

SYNOPSIS
#i ncl ude "inscil.h"

int plot_histogran(l MAGE *in, int action, int clip)

DESCRIPTION
Calculates the grey level histogram of image "in" and plot the resulting histogram on
the controlling terminal. The grey level range of image "in" is subdivided into 64
classes or bins. "action" can be one of normal (0), cumulative (1), trunc_peak (2) or
trunc_at_clip. "clip" is used for clipping.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
histogram histdata hist2d

368

SCIL_Image 1.4 — Reference Manual

point_im
NAME
point_im - get information of mouse pointer in image

SYNOPSIS
#i ncl ude "di sp_p. h"

int point_im I MAGE **inptr, int *xptr, int *yptr, int *butptr)

DESCRIPTION
point_im() returns either on a keyboard hit or when a button is pressed inside a display
window of an image.
The x and y-coordinates are passed through "xptr", "yptr". Button information is
passed through "butptr. The image in which the pointing event took place is passed
through "imptr".

If akey was received first then al other information is not valid.

RETURN VALUES
ASCII code of the key pressed
0 if an event happened inside the display window before keypress

SEE ALSO
MousePress MouseRelease MouseMove IsMouseDown EventType KeyPressed
poll _mouse

369

SCIL_Image 1.4 — Reference Manual

point_im_display buf
NAME
point_im_display buf - text buffer to be displayed in pop-up window

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt point_imdisplay_buf(char *buf, int follow)

DESCRIPTION
This function can be used to specify the string of text "buf" that can be displayedin a
pop-up window in one of the images. If the "pim" is activated by "handle pim", the
pop-up window will pop up below the cursor (if "follow" is set to 1) or in the top of
the image pointed at.

EXAMPLE
See the denp "my_point.c" in the standard deno directory.

RETURN VALUES
None

SEE ALSO
handle pim point_im

370

SCIL_Image 1.4 — Reference Manual

point_object
NAME
point_object - interactive object selection

SYNOPSIS

#i ncl ude "im.aio. h"

LI ST *poi nt _obj ect (I MAGE *i mage, LIST *list)

DESCRIPTION
image - Image with labeled objects
list - List with al the objects

AlO primitive to select an object inside a labeled image from alist interactively by
pointing with the mouse at the object of choice.

The routine can also be stopped, returning NULL if the return key is hit.

EXAMPLE
To interactively point at an object and copy this object to another
i mage the follow ng could be typed:

#i ncl ude "image. h "
#i ncl ude "im.aio. h"
LI ST *I, *o;

readfil e("cernet", a, 0,0);

t hreshol d(a, b, 128);

i nvert _in(b,b);

I =1list_label(b, ¢, 8, 0);

set _imtype(d, LABEL_2D);
while(o = point_object(c, 1)){
copy_object(c, d, 0);
di spl ay_i mage(d);

I =rmlist(l);
RETURN VALUES

Thelink of the pointed object.
NULL if the routine was stopped by hitting return.

371

SCIL_Image 1.4 — Reference Manual

poll_mouse

NAME
poll _mouse - poll the mouse position and button state

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int poll_rmouse(l MAGE *image, int *imx, int *imy, int *win_x, int
*Wion_y)

DESCRIPTION
This function returns the position of the mouse pointer in the display window of the
image "image" and the state of the buttons of the mouse. The position of the mouseis
returned in both image- and window-coordinates.

The image-coordinates are returned through the parameters "im_x" and "im_y", which
must be pointers. The window-coordinates are returned through "win_x" and "win_y",
also pointers. The state of the mouse button(s) is returned through the return value of
the function. The button state is the bitwise or-value of LEFT, MIDDLE and RIGHT
(from include file "imwindow.h™"). So if no button was pressed when the mouse was
polled the return value would be 0.

NOTE: poll_mouse() is a polling function which means that the position and button
state are returned immediately. point_im() however does not return until a mouse
button or akey is pressed.

RETURN VALUES
The button state

SEE ALSO
point_im MousePress MouseMove MouseRelease

372

SCIL_Image 1.4 — Reference Manual

positive_ok
NAME
positive_ok - check if avalueis positive

SYNOPSIS
#include "im.infra.h"

int positive_ok(int value, char *text)

DESCRIPTION
Theinteger "value' is checked to seeiif it is positive or not. If the value is negative an
error is generated and the following message is added to the error-stack:

<text> [<val ue>] nust be positive

Zero is considered to be positive as well in thisfunction, if a check must be performed
on avalue that may not be zero then the function greater0_ok() can be used.

NOTE
This function can only handle integer values, to check on floating point values, use the
function fpositive_ok().

RETURN VALUES
IE_OK (1) if the value is positive (zero included)
IE_NOT_OK (0) if the value is negative

SEE ALSO
greater0_ok fpositive ok

373

SCIL_Image 1.4 — Reference Manual

post_op
NAME
post_op - perform image housekeeping after an operation

SYNOPSIS
#include "iminfra.h"

i nt post_op(l MAGE *out)

DESCRIPTION
post_op() performs some image infrastructure housekeeping on image "out", keeping
the integrity of the image data-structure, and displaying the output image if the display
mode ison.

post_op() should be called at the end of an image processing in which the pre_op()
routine (with mode ADJUST (_NIP)) has been used on the image "out".

RETURN VALUES
IE_OK (1) if successful
IE_NOT_OK (0) if failed

SEE ALSO
pre_op

power_im
NAME
power_im - power raising

SYNOPSIS
#i ncl ude "i mproto.h"

int power_im(|I MAGE *inl, |MACE *in2, |MACGE *out)

DESCRIPTION
Raise each element of "inl" to the power given by the corresponding element of "in2"
and store the result in the corresponding element of "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

374

SCIL_Image 1.4 — Reference Manual

power of 2 ok
NAME
power of 2 ok - check if avalueisapower of 2

SYNOPSIS
#include "im.infra.h"

int power_of _2 ok(int value, char *text)

DESCRIPTION
The function checksto seeif "value" is power of 2. If it isnot an error is generated
and the following message is added to the error-stack:

<text> [<val ue>] nust be a power of 2

RETURN VALUES
IE_OK (1) if thevalueisapower of 2
IE_NOT_OK (0) if itisnot

375

SCIL_Image 1.4 — Reference Manual

pre_op

set_cross dim
NAME
pre_op - function called before each image processing operation

set_cross _dim - set special sizesfor the pre_op command

SYNOPSIS
#include "iminfra.h"

int pre_op(l MAGE *first, |IMACE *second, int node, int first_spec
unsi gned | ong sec_type)

void set_cross_din(int cross_x, int cross_y, int cross_z)

DESCRIPTION
The pre_op() function is part of the image infrastructure. Depending upon the "mode"
argument, pre_op() either checks input images ("mode" = COMPARE), or adjusts the
output image(s) ("mode" isADJUST or ADJUST _NIP). set_cross _dim() is used to
specify specia dimensions for the pre_op() function if it isto adjust the output image.

The pre_op() function must be called just before the low-level image processing
function is called. Furthermore pre_op must always be used in combination with the
post_op() routine.

In SCIL_Imageimages are arranged in aflat class hierarchy. In this hierarchy there
can be 32 different virtual image main-classes, and an unlimited number of image
sub-classes. Each type of image is a unique sub-class instance. The data layout of any
sub-class image must physically match with its main-class image. The sub-class
image, however, can define its own extra information elements and its own class
specific operations. The main-class of the "first" image is specified through the so-
called main class specifier "first_spec”. The type or sub-class of the second image is
specified through the "sec_type" argument.

The meaning of the main-class "first_spec" argument, and the "sec_type" argument
depends upon the value of the mode argument.

MODES:

COMPARE pre_op() is called with the COMPARE mode when two input
images must be checked to be of (a) certain main-class(es) in order
for the low-level image processing function to operate properly.
The "first_spec" argument is used to specify what kind of image

main-classes are allowed for the first image argument. All legal
class specifiers should be or’ ed.

376

SCIL_Image 1.4 — Reference Manual

The"sec_type" argument is used to specify that the main class of
the "second" image must be the same as the main class of the given
"sec_type" type.

A special case hereisthe constant "OUT_AS IN" meaning that the
second image must have the same main-class as the first image.

ADJUST pre_op() is called with the ADJUST mode when the output image

must be set to the proper type and dimensions.

The"first_spec" argument is used to specify what kind of image
main-classes are allowed for the first image in order for the low-
level image processing function to operate properly.

The"sec_type" argument is used to specify the type the second
image should be adjusted to. When adjusting the "second" image
the dimensions of the first image are taken, unless a special flag
"cross_dimensions' is set. If the cross_dimensionsflag is set than

the global variables "cross x", "cross y", and "cross z" will be
used. These can be set using the set_cross_dim() function.

A special caseiswhen the "sec_type" argument is set to
"OUT_AS IN". Inthis case the "second" image is adjusted to the
same type and dimensions as the "first" image.

ADJUST _NIP This mode shows equal behavior to ADJUST mode, except that if

EXAMPLE

"first" and "second" are the same image, always a hew piece of
memory will be alocated for the output. This option is meant for
operations that cannot be performed in place like neighborhood
operations. With this option the input and output image for such
operations may be the same.

Bel ow sone typical exanples, and special cases are given.

* One input, one output.

- Input and output nust be grey_2d.

uni form(in, out)
| MAGE *in, *out;

if (!pre_op(in, out, ADJUST, G 2D SPEC, QUT_AS IN))
ret urn(FALSE)
low uniform.....)
post _op(out);
}

- Input must be grey_2d output nust be binary_2d.

t hreshol d(i n, out)
I MAGE *in, *out;
{

377

SCIL_Image 1.4 — Reference Manual

if (!pre_op(in, out, ADJUST, G 2D SPEC, BI NARY_2D))
return(FALSE) ;
[ow_threshol d(.....)
post _op(out);
}

* Two inputs, one output.

- Inputs and output nust be grey 2d/3d, output becones the sane as
the inputs.

add(inl, in2, out)
| MAGE *inl, *in2, *out;

{
if (!pre_op(inl, in2, COWARE, G 2D SPEC | G 3D SPEC,
QUT_AS_IN)
return(FALSE) ;
if (!pre_op(inl, out, ADJUST, |nageTypeSpec(inl),
QUT_AS_IN)
return(FALSE) ;
low add(....);
post _op(out);
}

- First input nust be grey_2d, second input nust be binary_2d, output
nmust become binary_3d.

strange_func(inl, in2, out)
| MAGE *inl, *in2, *out;

{
if (!pre_op(inl, in2, COVPARE, G 2D SPEC, BI NARY_2D))
return(FALSE);
if (!pre_op(inl, out, ADJUST, G 2D SPEC, BI NARY_3D))
ret urn(FALSE) ;
| ow strange_func(.......)
post _op(out);
}

* Speci al output adjustnent.

- No output dinmension adjustnment. To avoid adjustnent of the
di nensi ons but allow type adjustnment, for exanple to the type of the
i nput i mage, the foll owing can be done:

bl ow(i n, out)
| MAGE *in, *out;

{
if (!pre_op(in, in, COVWPARE, G 2D SPEC, QUT_AS IN))
return(FALSE) ;
if (!pre_op(out, out, ADJUST, |nmageTypeSpec(out),
| mmgeTypel dent (in)))
return(FALSE) ;
low blow(....);
post _op(out);
}

- Qutput dimensions specifically set.

strange_func(in, out)
| MAGE *in, *out;
{
set _cross_dinm 50, 31, 1);

378

SCIL_Image 1.4 — Reference Manual

if (!pre_op(in, out, ADJUST, G 2D SPEC, Bl NARY_2D))
return(FALSE) ;
strange_func(....);
post _op(out);
}

RETURN VALUES
IE_OK (1) on success
IE_NOT_OK (0) on failure (images do not match, image could not be converted etc.)

SEE ALSO
post_op

prewd

NAME
prewd

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See prewitt_diff

379

SCIL_Image 1.4 — Reference Manual

prewitt diff
NAME
prewitt_diff - Prewitt differential type edge detector

SYNOPSIS
#i ncl ude "i mproto.h"

int prewitt_diff(IMAGE *in, |MAGE *out, int node)

DESCRIPTION
Differential edge detection based upon the Prewitt operator. Within the moving
window inimage "in", with dimensions 3* 3, the horizontal and vertical differential
values are calculated by a convolution with the masks (horizontal respectively

vertical):
1 1 1 -1 0 1
0O 0 O -1 0 1
-1 -1 -1 -1 0 1
The output value is calculated from these convolutions, depending on the "mode"
specified:
sort (1) the output value is the square root of the sum of the quadratic
convolution results.
sum (0) the output value is the sum of the absolute values of the convolution
results
RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
roberts diff sobel diff laplace prewitt temp kirsch_temp robinson_temp

380

SCIL_Image 1.4 — Reference Manual

prewitt_temp
NAME
prewitt_temp - edge detection filter

SYNOPSIS
#i ncl ude "improto.h"

int prewitt_tenmp(l MAGE *in, |MACE *out,

DESCRIPTION

Template type edge detection based upon the Prewitt operator. Within the moving
window in theimage "in", with dimensions 3 * 3, eight convolutions with the

following masks are calcul ated:

(0) L) (2)
101 1 111 11
12 1 12 1 1 -2
1011 1101 1 -1

(4) (5) (6)
111 1 -1 -1 1 -1
1 -2 -1 1 -2 -1 1 -2
1 11 111 11

-1
1
1

3)

1
-2
-1

e

(7)
1 -1
1 -2
11

| MAGE *direction,

1
1
1

int flag)

The output value is the maximum of the results of all these convolutions. It is stored

into "out", in the pixel corresponding with the central pixel of the window. The

sequence number of the convolution mask with the maximum result is an estimate of
the direction of the first derivative and it is stored in the image "direction”, if thisis

specified ("flag” = 1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO

laplace kirsch_temp robinson_temp prewitt diff roberts diff sobel diff

381

SCIL_Image 1.4 — Reference Manual

prewt

NAME
prewt

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See prewitt_temp

382

SCIL_Image 1.4 — Reference Manual

printf

fprintf

sprintf
NAME

printf, fprintf, sprintf - formatted output conversion
SYNOPSIS

#i ncl ude <stdio. h>

int printf(char *format, ...)

int fprintf(FILE *stream char *format, ...)

int sprintf(char *s, char *format, ...)
DESCRIPTION

These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

printf() places output on the standard output stream stdout. fprintf() places output on
the named output stream. sprintf() places "output” in the string "'s", followed by the
character '\0'.

Each of these functions converts, formats, and prints its arguments after the first under
control of the first argument. The first argument is a character string which contains
two types of objects. plain characters, which are ssimply copied to the output stream,
and conversion specifications, each of which causes conversion and printing of the
next successive arg printf.

Each conversion specification is introduced by the character %. Following the %,
there may be:

- an optional minus sign "-" which specifies |eft adjustment of the converted value in
the indicated field;

- an optional digit string specifying afield width; if the converted value has fewer
characters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank-padding;

- an optional period "." which serves to separate the field width from the next digit
string;

- an optional digit string specifying a precision which specifies the number of digitsto

appear after the decimal point, for e- and f-conversion, or the maximum number of
charactersto be printed from a string;

383

SCIL_Image 1.4 — Reference Manual

- the character | specifying that afollowing d, o, X, or u corresponds to along integer
arg. (A capitalized conversion code accomplishes the same thing.)

- acharacter which indicates the type of conversion to be applied.

A field width or precision may be "*" instead of a digit string. In this case an integer
arg supplies the field width or precision.

The conversion characters and their meanings are:

dox Theinteger argis converted to decimal, octal, or hexa-decimal notation
respectively.

f Thefloat or double arg is converted to decimal notation in the style
"[-]ddd.ddd" where the number of d’s after the decimal point is equal to the
precision specification for the argument. If the precision is missing, 6 digits are
given; if the precision is explicitly 0, no digits and no decimal point are
printed.

e Thefloat or double arg is converted in the style "[-]d.ddde+_dd" where thereis
one digit before the decimal point and the number after is equal to the
precision specification for the argument; when the precision is missing, 6
digits are produced.

g Thefloat or double arg is printed in styled, in stylef, or in style e, whichever
gives full precision in minimum space.

c The character arg is printed. Null characters are ignored.

S Arg istaken to be a string (character pointer) and characters from the string are
printed until anull character or until the number of charactersindicated by the
precision specification is reached; however if the precision is0 or missing al
characters up to anull are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be
in the range 0 to 2**32-1

% Print a’ %' ; no argument is converted.

In no case does a non-existent or small field width cause truncation of afield; padding
takes place only if the specified field width exceeds the actual width. Characters
generated by printf are printed by putc.

EXAMPLE
To print adate and time in the form "Sunday, July 3, 10:02", where weekday and
month are pointers to null-terminated strings.

printf("%, % %, %02d:%92d", weekday, nonth, day, hour, mn);

384

SCIL_Image 1.4 — Reference Manual

To print pi to 5 decimals:
printf("pi = %5f", 4*atan(1.0));

SEE ALSO
putc scanf ecvt

propagation
NAME
propagation - propagation

SYNOPSIS
#i ncl ude "improto.h"

int propagation(l MAGE *in, | MAGE *mask, | MACE *out, int iter, int
conn, int edge)

DESCRIPTION
Performs propagation ("masked expansion™) on objectsin image "in", masked by the
image "mask” and stores the result in image "out". The objectsin "in" are interpreted
asthe kernels of larger objects ("mask objects"). These mask objects are specified by
"mask". The algorithm is executed by arepeated expansion of the kernel objects with
the condition that the resulting pixels stay within the borders of the mask objects.

The expansion may be executed only "iter" times, "iter" is 0 specifies that the process
must be repeated until all kernelsin the input image have fully expanded within the
mask objects in the mask image.

"conn" specifies the connectivity of the propagation and can be either 4 or 8. "edge"
specifiesif the pixels outside the image are to be seen as object pixels ("edge’ = 1) or
as background pixels ("edge" = 0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

385

SCIL_Image 1.4 — Reference Manual

ps_head
ps_image

ps_tail
NAME
ps_head - open afile for (encapsulated) postscript output

ps_image - put an image in a postscript file
ps_tail - close a postscript output file

SYNOPSIS
#i ncl ude "i mproto.h"

int ps_head(char *filenanme, int papersize)

int ps_inmge(l MACE *image, int orient, int unit, double xpos, double
ypos, doubl e xsiz, double ysiz, int border, char *comment, int
text si ze)

int ps_tail (void)

DESCRIPTION
These functions can be used to create a (Encapsulated) Postscript file that contains
one or more images.

First ps_head() must be used to open the postscript-file.

Secondly, use ps_image() one or more times to put one or more images in the
postscript file.

Finally, use ps_tail() to close the Postscript file. Now the file can be send to a
PostScript printer (e.g. using the UNIX "lpr* command) or used in atext as
encapsulated postscript.

ps_head() creates afile with the name "filename" and puts in some Postscript header
information. "papersize” specifies the size of paper by one of these values:

1=A4

2=US LETTER

3=A3

4=A5

ps_image() dumps the data of "image" in the postscript file previously opened with
ps_head(). "orient" determines the orientation of the image, either portrait (=0) or
landscape (=1). "unit" specifies the unit of measurement for the parameters "xpos’,
"ypos', "xsiz" and "ysiz", values are:

1 =inches

2 = points

3 = centimeters

386

SCIL_Image 1.4 — Reference Manual

4 = millimeters

"xpos" and "ypos" determine the position of the image on paper relative to the top-left
corner. "xsiz" and "ysiz" specify the size of the image on paper.

When "border” is set to 1, abox is drawn around the image, 0 is no box. "comment™ is
an optional text-string that can be put under the image as a caption. "textsize" isthe
pointsize of the caption, the font is Times-Roman.

ps tail() cleans up after ps_image() and closes the postscript file. If this function is not
called, the Postscript file isincomplete and will produce unpredictable result when
sent to a printer or used in text as a Encapsulated Postscript file.

EXAMPLE
ps_head("exanpl e.eps”, 1) [/* open A4 postscript file */

/*

* put image A in Landscape, at position 5.5, 6.7 (cn) of top right
* corner, the sizes are 10.0 by 10.0 (cm and draw a box around

* it. Also print "lmage A" under the inmage, using 10 points font
*/

ps_i mage(A, 1, 3, 5.5, 6.7, 10.0, 10.0, 1, "lImage A", 10);

/* ps_image() may be called again to put nore inmages in the file */

ps_tail() /* close file "exanple.eps" , MJIST BE USED */

SEE ALSO
im1ps im2ps im3ps im4ps

387

SCIL_Image 1.4 — Reference Manual

pseudo

NAME
pseudo - pseudo grey value graphics

SYNOPSIS
#i ncl ude "i mproto.h"

int pseudo(l MAGE *in, | MAGE *out)

DESCRIPTION
Create a binary image with a pseudo-grey value impression of the grey value image
"in" and store the result into the bitplane image "out". Each pixel of image "in" is
replaced by a6 x 6 binary mask, in which the ratio between the number of black and
white pixelsis proportional to the original grey-value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
dither greduce

psremoval

NAME
psremoval - pepper and salt removal

SYNOPSIS
#i ncl ude "improto.h"

int psrenoval (I MAGE *in, | MAGE *out, int bound)

DESCRIPTION
Performs the "pepper and salt removal" operation on image "in" and stores the result
inimage "out". The image is scanned by a moving window with dimensions 3* 3. If
the central pixel within the window is the only object pixel within the window, it
becomes a background pixel (value 0). If the central pixel isthe only background
pixel within the window, it becomes an object pixel (value 1). This operation deletes
singular pixels (either fore- or background). "bound" specifies that the edge around
the image must be set to foreground (1) or to background (0) pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

388

SCIL_Image 1.4 — Reference Manual

put

NAME
put

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seetri_state threshold

put_xy into_image
NAME
put_Xxy into_image - set pixels, given their coordinates

SYNOPSIS
#i ncl ude "grey_2dp. h"

int put_xy_ into_imge(VAR OBJECT *input, |MAGE *output, int value)

DESCRIPTION
A 2-dimensional VAR_OBJECT "input" of type SHORT T with size 2 or 3 asitsfirst
dimension, is used to set pixelsin the image "output”. Per row of the array, one pixel
is set in the output image.

If "input" has arow-length (first dimension) of 2, the pixels found in "input" are set to
"value" (the two elements of the row are taken as the x- and y-coordinates of the
pixels). If "input" has a row-length of 3, the three elements of the row are taken as the
x- and y-coordinates and the grey-value of the pixel to be put into "output”.

All pixels with coordinates not found in "input" are left unchanged. If a pair of
coordinates is found more than once the average of the input grey-values is taken for
this pixel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
chaincode to xy image to chaincode chaincode to image

389

SCIL_Image 1.4 — Reference Manual

putc
putchar
fputc

putw

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSI S
#i ncl ude <stdi o. h>

int putc(int c, FILE *strean
int putchar(int c)
int fputc(int c, FILE *stream

int putw(int w, FILE *strean)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

putc() appends the character "c" to the named output "stream”. It returns the character
written.

putchar(c) is defined as putc(c, stdout).
fputc() behaves like putc(), but is a genuine function rather than a macro.

putw() appends word "w" to the output "stream". It returns the word written. putw()
neither assumes nor causes specia alignment in the file.

The standard stream stdout is normally buffered if and only if the output does not refer
to aterminal; this default may be changed by setbuf. The standard stream stderr is by
default unbuffered unconditionally, but use of freopen() (see fopen()) will causeit to
become buffered; setbuf(), again, will set the state to whatever is desired. When an
output stream is unbuffered information appears on the destination file or terminal as
soon as written; when it is buffered many characters are saved up and written asa
block. fflush() (see fclose()) may be used to force the block out early.

BUGS
Because it isimplemented as a macro, putc treats a stream argument with side effects
improperly. In particular "putc(c, *f++);" doesn’t work sensibly.

Errors can occur long after the call to putc.

RETURN VALUES

390

SCIL_Image 1.4 — Reference Manual

These functions return the constant EOF upon error. Since this is agood integer,
ferror should be used to detect putw errors.

SEE ALSO
fopen fclose getc puts printf fread

puts

fputs
NAME
puts, fputs - put a string on a stream

SYNOPSI S
#i ncl ude <stdi o. h>

i nt puts(char *s)
int fputs(char *s, FILE *stream

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

puts() copies the null-terminated string "'s" to the standard output stream stdout and
appends a newline character.

fputs() copies the null-terminated string s to the named output "stream”.
Neither routine copies the terminal null character.

SEE ALSO
fopen gets putc printf ferror fread

391

SCIL_Image 1.4 — Reference Manual

gpix
NAME
gpix - plot binary image on laser printer

PLATFORM
UNIX.

SYNOPSIS
#i ncl ude "improto.h"

int gpix(IMACE *in, char *fnane, int zoom int append)

DESCRIPTION
Create afile "fname" to represent a hard-copy of the binary image "in" on alaser
printer of Digital’s LNO3 type. The plot fileis an ASCII file containing the plot
information represented in the LNO3 pixel format. The magnification factor of the plot
is specified by the factor "zoom".
The parameter "append"” specifiesif the plot fileis to be appended to an existing plot
file or text file (1= append, 0= not append). Appending the plot to atext file enables
the possibility of merging text and figures. If appending is not specified and the file
"fname" already exists, the existing plot file will be overwritten.

NOTE
The default value of "zoom™ is 1 which gives 28.4 pixels per millimeter.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

quit
NAME
quit - quit SCIL_Image session gracefully

SYNOPSIS
void quit(void)

DESCRIPTION
quit() exits SCIL_Image gracefully, flushing al the buffers and closing all open files.
It is synonymousto "exit(1)"

RETURN VALUES
None

SEE ALSO
exit

392

SCIL_Image 1.4 — Reference Manual

raise_window
lower window
iconify_window

deiconify_window

NAME
raise_window - pop an image-window to the foreground

lower_window - push an image-window to the background
iconify_window - iconify an image-window
deiconify_window - deiconify an image-window

PLATFORM
UNIX, Macintosh

SYNOPSIS
#i ncl ude "di sp_p. h"

int rai se_w ndow(| MAGE *im

int | ower_w ndow(| MAGE *im

int iconify_w ndow(l MAGE *im

i nt deiconify_w ndow(| MAGE *im

DESCRIPTION
raise_window(), lower_window(), iconify_window() and deiconify_window() perform
window manipulation on the display window of an image. For images without a
display window, like ROIs and images created with create_image() NO error is
generated.

raise_window() pops the display window of image "im" to the foreground.
lower_window() pushes the display window of image "im" to the background.
iconify_window() iconifies the display window of image "im"
deiconify_window() deiconifies the display window of image "im"

RETURN VALUES
IE_OK (1)

393

SCIL_Image 1.4 — Reference Manual

rand

srand

NAME
rand, srand - random number generator

SYNOPSIS
voi d srand(unsigned int seed)

int rand(void)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

rand() uses a multiplicative congruential random number generator with period 2** 32
to return successive pseudo-random numbers in the range from 0 to 2** 31-1.

The generator isreinitialized by calling srand() with 1 as argument. It can be set to a
random starting point by calling srand() with whatever you like as argument.

random_filter

NAME
random_filter - make random filter image

SYNOPSIS
#i ncl ude "i mproto.h"

int randomfilter(l MAGE *out, double nean, double max, int symmetric)

DESCRIPTION
Creates arandom filter with mean given by "mean" and maximum element given by
"max". If symmetric istrue (set to 1), the filter will be constrained by f(x,y) = f(-x,y).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
random_im

394

SCIL_Image 1.4 — Reference Manual

random_im

srandom_im

NAME
random_im - fill an image with random values

srandom_im - set seed for random_im random generator

SYNOPSIS
#i ncl ude "improto.h"

int randomin(IMAGE *im int alt)

voi d srandom.i m(l ong seed)

DESCRIPTION

random_im() fills the image "im" with random values. Two random generators are

available. The"Normal" ("at" = 0) can be influenced by a seed that can be set by
srandom_im(). The "Alternate” ("alt" = 1) random generator cannot be externally

influenced.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
evd

395

SCIL_Image 1.4 — Reference Manual

range ok
NAME
range ok - check isavaueisin the specified range

SYNOPSIS
#include "iminfra.h"

int range_ok(int value, int vmin, int vhax, char *text)

DESCRIPTION
range_ok() checksto seeif "value" isin the range specified by "vmin" and "vmax"
(bordersincluded). If it is, atrue statusisreturned. If "value" is outside the range then
an error is generated and the following message is added to the error-stack:

<text> [<val ue>] out of range (<vmi n>..<vmax>)

A lot of the checking routines use this function to do the actual checking and supply a
default message for that specific check.

EXAMPLE
if range_ok() is called as "range_ok(18, 1, 9, "Nunber bel ow 10");"
then the on the error-stack will be:

Nunber below 10 [18] out of range (1..9)

NOTE
This function has the same functionality as frange ok(). range_ok() can handle only
integer values and frange_ok() can handle only floating point values.

RETURN VALUES
IE_OK (1) if the value isinside the range (borders included).
NOT_OK (0) if the value is outside the range.

SEE ALSO
frange ok

396

SCIL_Image 1.4 — Reference Manual

raster

NAME
raster - rasterization of an image

SYNOPSIS
#i ncl ude "improto.h"

int raster (I MAGE *in, | MAGE *out, int factor, int ratio)

DESCRIPTION
Rasterise an image as follows: replace each pixel in theimage "in" by a block of
"factor" * "factor" pixels, the upper left "ratio” * "ratio" pixels having the original
pixel value, and the remaining pixels having the background value 0. The result is
stored into the image "out", which should at least be "factor” times bigger in both the
x- and y-direction.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

397

SCIL_Image 1.4 — Reference Manual

read

NAME
read - read from file

SYNOPSIS
int read(int fildes, char *buffer, int nbytes)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

A file descriptor is aword returned from a successful open(), creat(), dup(), or pipe()
call. "buffer" isthe location of "nbytes" contiguous bytes into which the input will be
placed. It is not guaranteed that all "nbytes" bytes will be read; for example if the file
refersto atypewriter at most one line will be returned. In any event the number of
characters read is returned.

If the returned value is O, then end-of-file has been reached.

RETURN VALUES
As mentioned, 0 is returned when the end of the file has been reached. If the read was
otherwise unsuccessful the return value is-1. Many conditions can generate an error:

physical 1/0 errors, bad buffer address, preposterous nbytes, file descriptor not that of
an input file.

SEE ALSO
open creat

398

SCIL_Image 1.4 — Reference Manual

read var_ object
NAME
read var_object - readsavar_object from afile

SYNOPSIS
#i ncl ude "objectsp. h"

int read_var_object(char *fil ename, VAR OBJECT *object)

DESCRIPTION
"read var_object” readsthe var_object specified by the pointer "object” from afile.
When executed, this function looks for two files on disk. A file with the name
"filename".voh and afile the name "filename".vod.
Thefile with the extension ".voh" isan ASCII header file which describes the
var_object. In the file with the extension ".vod" the actual data resides.
If the pointer "object”" isa NULL-pointer then avar_object is created with the name
that is present in the header-file. Thisisthe name of the var_object when it was
written to disk. When the object already exists then the contents of the old var_object
will belost.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object write var_object

399

SCIL_Image 1.4 — Reference Manual

readfile

NAME
readfile - read an image from file

SYNOPSIS
#i ncl ude "i mproto.h"

| MAGE *readfile(char *filenane, | MAGE *inage, int xpos, int ypos)

DESCRIPTION
Read the image stored in file "filename" and put it in image "image”. If
"USE_NAME" (aNULL pointer) is specified as the image, a new image is created at
position "xpos", "ypos’, with the same name as the file. If an imageis already present
with that name, that image will be used. Several file formats are supported (see
below), each of which have an obligatory extension. If afilename is supplied with no
extension the function will append the obligatory extensions one at the time to find
thefile.

ICSformat Two files per image are present, the data-file with the extension ".ids"
and the header-file with the extension ".ics"

TIFF format Theread function is capable of reading TIFF-files according to the
TIFF 6.0 specifications.The file must have an extension that starts with
".tif". The extensions used for finding a TIFF file are ".tif" and ".tiff".

JPEG format The file must have the ".jpg" or ".jpeg" extension.
TCL format The file must have the ".dat" extension.

AIM format The data-files of the AIM format must have the ".im" extension. Data-
files for which no header file with the extension ".hd" is present, are
assumed to contain a 256 * 256 grey value image.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL pointer on failure

SEE ALSO
ics readfile tiff_readfile tcl_readfile aim_readfile jpeg_readfile writefile

400

SCIL_Image 1.4 — Reference Manual

real_im
NAME
real_im - get the real part of acomplex image

SYNOPSIS
#i ncl ude "improto.h"

int real _im(I MAGE *in, | MAGE *out)

DESCRIPTION
Takethereal part of each element of the image "in" (a complex image) and store the
resultsin the image "out". If "out" is a complex image then the result will be stored in
the real part of each element of "out" and the imaginary part will be cleared. If "out" is
not a complex image the result will be afloat image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
imaginary_im complex_im

real _time recognizer
NAME
real_time_recognizer - real time recognizer

SYNOPSIS
#i ncl ude "improto.h"

int real tinme_recognizer(lI MAGE *in, |MAGE *out, | MAGE *se, int thr,
i nt bound)

DESCRIPTION
Thereal time recognizer is a special implementation of t_morphology() for weighted
structuring functions whose weights are restricted to -1, 0 and +1. For a description of
how to use threshold morphology we refer to the documentation of t_morphology().

Please note that the name is a bit misleading. DO NOT EXPECT REAL TIME
PERFORMANCE.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion arbit_dilation hit_or_miss t_morphology

401

SCIL_Image 1.4 — Reference Manual

reduce

NAME
reduce - image reduce

SYNOPSIS
#i ncl ude "i mproto.h"

int reduce(l MAGE *in, | MAGE *out, int hfact, int vfact, int dfact,
i nt adjust)

DESCRIPTION
Reduce image "in" with a horizontal factor "hfact", avertical factor "vfact" and a
depth factor "dfact” (3d only) by resampling pixels and store the result in image "out".
If "adjust” is true (not zero) then the sizes of the image "out" will be set to fit the
result. The dimensions of the output image are not adjusted by default due to various
reasons.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
blow fblow

402

SCIL_Image 1.4 — Reference Manual

remark

NAME
remark - on-line remark facility for the user

PLATFORM
UNIX.

SYNOPSIS
voi d remark()

DESCRIPTION
If during a session of the package a bug or another problem occurs, the command
remark can be issued to generate on-line a performance report. The command remark
will prompt with a> sign. Following this prompt aline of text can be entered,
terminated with a <newline> character. The command will prompt for more lines until
an empty line is entered (only a <newline> character), which terminates a remark
session. When the remark session is terminated the command will prompt for your
name. The report will be stored into the remark file in the application standard
directory. Thisfileismaintained by the manager of the package, who can take action
to solve the problem.

Restriction(s):
The text lines to be entered with this command should not exceed 80
characters (including the <newline> character).

NOTE
The SCIL remarkfileislocated at the position indicated by the system environment
variable SCIL_REMARKS, this position is determined at the start of the package.
Thisfile hasto be writable for every user.

403

SCIL_Image 1.4 — Reference Manual

remove

rename

NAME
remove - remove afile

rename - rename afile

SYNOPSIS
int remove(char *fil enane)

int renane(char *ol dnane, char *newnane)
DESCRIPTION

Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

remove() removes the named file, so that a subsequent attempt to open it will fail.
rename() changes the name of afile from "oldname" to "newname".

RETURN VALUES
non-zero if the attempt on the file fails

remove_holes

NAME
remove_holes - remove small holesin image

SYNOPSIS
#i ncl ude "improto.h"

int remove_hol es(I MAGE *in, | MAGE *out)

DESCRIPTION
Removes single background pixels and sets of pixels which are not 4-connected to
other background pixels within foreground objectsin the image "in" and stores the
result in the image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

404

SCIL_Image 1.4 — Reference Manual

resample_perp
NAME
resample_perp - resample perpendicular to curve

SYNOPSIS
#i ncl ude "grey_2dp. h"

int resanple_perp(l MAGE *i nput, VAR OBJECT *xy, |MAGE *out, int
width, int fitlength, VAR OBJECT *data, int threshold)

DESCRIPTION
Resample the image "input" perpendicular to the curve specified by the coordinate
list "xy". For all N coordinate pairsin"xy" ("xy" should be a 2-dimensional
VAR_OBJECT of type SHORT _T, with size 2 asthefirst dimension and size N as
the second), a straight line is fitted through "fitlength” points, "fitlength"/2 points
forward and "fitlength"/2 points backward in the list. The input image "input” is
resampled on aline perpendicular to the fitted line segment and passing through its
center of gravity. The resampling is done symmetrically with respect to the center
point. The sample interval isone pixel. The new pixel values are calculated by linear
interpolation between the nearest pixelsin the original image.

The number of samples on the lineis specified by "width", to which the width (first
dimension) of the image "out" will be adjusted. For each sampling line, the data are
stored into one row of "out".

Three parameters defining the sampling line segment are stored into the
corresponding row of the floating point VAR_OBJECT "data’, if thisis specified,
viz.: the x-coordinate of the center point into element O of the row, the Y coordinate
into element 1 and the direction of the line (in radians) into element 2.

If the sampling exceeds the image boundaries, the corresponding entriesin "out" are
set to -1.

With the parameter "threshold” it is possible to specify the area which cannot be used
for the computations. Pixels with avaue less than or equal to this parameter are
considered as prohibited.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
maximum_trace maximum_cost_path back project drawcurve

405

SCIL_Image 1.4 — Reference Manual

retrieve_object list
NAME
retrieve_object list - retrieve last labeled object list

SYNOPSIS
#include "im.aio.h"

LI ST *retrieve_object |ist(void)

DESCRIPTION
Retrieves a pointer to the most recently labeled object list. Since it isthe users
responsibility to free object listsit isimportant to retrieve a pointer to the most
recently labeled list. If the user forgets to save the list returned by list_label(),
retrieve_object _list() can give some relief.

NOTE
retrieve_object _list() is part of the AlO package

RETURN VALUES
A pointer to the list with the last |abeled objects

SEE ALSO
measure

RGB_gamma_correction

NAME
RGB_gamma_correction - gamma correction on a RGB color-image

SYNOPSIS
#i ncl ude "col or 2dp. h"

int RGB_gamma_correction(l MAGE *in, | MAGE *out, double r_gammma
doubl e g _gamma, doubl e b_ganms)

DESCRIPTION
RGB_gamma _correction() performs a gamma correction on the R-, G- and B-channel
of the RGB color-image "in" and store the result in the image "out". The gamma-value
for each of the channels can be specified separately by the parameters "'r_gamma’ for
the R-channel, "g_gamma’, for the G-channel and "b_gamma for the B-channel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

406

SCIL_Image 1.4 — Reference Manual

rhull

NAME
rhull - restricted convex hull detection

SYNOPSIS
#i ncl ude "improto.h"

int rhull (1 MAGE *in, | MAGE *out, int dist)

DESCRIPTION
Calculate arestricted convex hull of each object in the labeled image "in" and store
the result in image "out". For each object in "in", al combinations of two contour
points with Euclidean distance less than or equal to "dist”, are connected by a straight
line. If abackground pixel isfound on such aline, it is added to the original object.
This operation closes al holesin an object which are less than "dist" wide. The
contour of an object is also smoothed, gaps with alength less than "dist" are
completely filled.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hull label objectsize small_object_removal

rm_list
NAME
rm_list - remove list with objects

SYNOPSIS
#i ncl ude "im.aio. h"

LIST *rmlist(LIST *list)

DESCRIPTION
list - List with objects

rm_list() removes the list with objects pointed to by "list" and returns allocated space
to the system.

RETURN VALUES
NULL

SEE ALSO
list_label measure retrieve object list

407

SCIL_Image 1.4 — Reference Manual

rm_object
NAME
rm_object - mark object to be removed from the list

SYNOPSIS
#include "im.aio.h"

voi d rm object (LI ST *link)

DESCRIPTION
link - Link pointing to object

rm_object() marks the object pointed to by "link", to be removed from the list on the
next call to the update() function.

NOTE
The object is not removed from the image. Y ou need to call hide_object() to remove
an object from an image.

EXAMPLE
To renove objects touching the edge of an inage:

#i ncl ude "i mage. h"
#include "im.aio.h"
LI ST *I, *o;

readfile("cermet", a, 0,0);

t hreshol d(a, b, 128);

invert _in(b, b);

| =1list_label(b,c,8,0);

FORALL(o0,1) if(edge_object(c,0)) rmobject(0);
| = update(l);

/*

* Now to prove that the objects are no longer in the |ist

*/
FORALL(o0,|) copy_object(c,d,o);
I =rmlist(l);
RETURN VALUES
None
SEE ALSO

hide_object update

408

SCIL_Image 1.4 — Reference Manual

rm_silo
NAME
rm_silo - destroys an image-silo

SYNOPSIS
#i ncl ude "silo.h"

int rmsilo(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to theimage-silo.

A routine to remove a silo from the filing system. Returns all allocated space to the
system.

NOTE
It isalso lega to remove the file. Thisroutine is meant to be used inside a program.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

rm_silo_object
NAME
rm_silo_object - remove an image from image-silo

SYNOPSIS
#i ncl ude "silo.h"

int rmsilo_object(SILOPTR siloptr, int silo_key)

DESCRIPTION
siloptr - Pointer to theimage silo
silo_key - Key entry of theimagein the silo
Emptiesthe entry at position "silo_key" in the silo "siloptr". It also adjusts the internal
entry list.
RETURN VALUES

Always|E OK (1)

409

SCIL_Image 1.4 — Reference Manual

rmvar

NAME
rmvar - clear interpreter

SYNOPSIS

rnmvar

DESCRIPTION
Clearsthe interpreter hereby removing old programs, variables, structure descriptions
typedefs and preprocessor defines.

roberts_diff

NAME
roberts_diff - Roberts gradient edge operator

SYNOPSIS
#i ncl ude "i mproto.h"

int roberts_diff(IMAGE *in, | MAGE *out, int fsize, int node)

DESCRIPTION
Differential edge detection based upon the Roberts gradient, an estimation of the local
gradient. Within the moving window in image "in", with dimensions "fsize" * "fsize"
the differences between the pixel values at the end points of the diagonals of the
window are calculated. The output value, which is stored into image "out”, is
calculated from these differences according the "mode" specified:

sort (1) the output value is the square root of the sum of the quadratic
differences
sum (0) the output value is the sum of the absolute values of the differences
RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
prewitt_diff sobel diff laplace prewitt_temp kirsch _temp robinson_temp

410

SCIL_Image 1.4 — Reference Manual

robg

NAME
robg

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See roberts_diff

411

SCIL_Image 1.4 — Reference Manual

robinson_temp

NAME
robinson_temp - edge detection filter

SYNOPSIS
#i ncl ude "i mproto.h"

int robinson_tenmp(l MAGE *in, |IMAGE *out, |IMAGE *direction, int flag)

DESCRIPTION
Template type edge detection based upon the Robinson operator. Within the moving
window in theimage "in", with dimensions 3 * 3, eight convolutions with the
following masks are calcul ated:

(©) oy (2 3)
1 0 1 0 1 2 1 21 2 10
2 0 2 1 0 1 0 0 0 1 0-1
1 0 1 210 1 -2 -1 0 -1 -2
(4) () (6) ()
1 0 -1 0 -1 -2 1 -2 -1 2 -1 0
2 0 -2 1 0 -1 0 0 0 10 1
1 0 -1 2 1 0 1 21 0 1 2

The output value is the maximum of the results of all these convolutions. It is stored
into "out", in the pixel corresponding with the central pixel of the window. The
seguence number of the convolution mask with the maximum result is an estimate of
the direction of the first derivative and it is stored in the image "direction”, if thisis
specified ("flag"=1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
laplace prewitt_temp kirsch temp prewitt_diff roberts diff sobel diff

412

SCIL_Image 1.4 — Reference Manual

roi_define

NAME
roi_define - define aregion of interest

SYNOPSIS
#include "im.infra.h"

| MAGE *roi _define(char *nanme, | MAGE *parent, int sx, int sy, int sz,
int width, int height, int depth, BOOL_MASK *nask)

DESCRIPTION
roi_define() creates aregion of interest with name "name" in the parent image
"parent” at ("sx","sy","sz") with dimensions "width"*"height"*"depth". The last
parameter is an optional Boolean mask (can also be NULL) which allows for aroi
definition with an arbitrary shape. A roi has the same status as any other image except
for the fact that aroi can not be defined inside another roi.

Not only rectangular shaped regions of interest are possible in SCIL_Image, but also
arbitrary shaped ones. To create one, a binary image has to be converted into a
Boolean mask by use of the function get_bool _mask(). The pointer to this Boolean
mask must then be specified as the last parameter of roi_define().

NOTE
The normal behavior of output imagesin Image is that they automatically are adjusted
to the correct size and type suited for the result of the operation. ROIs however only
allow type changes but have fixed dimensions. The only way to change the
dimensions of aroi isto use change image size.

RETURN VALUES
A pointer to the roi on success.
NULL pointer on failure to create the roi.

SEE ALSO
destroy_image get_bool _mask change image size

413

SCIL_Image 1.4 — Reference Manual

rotate

NAME
rotate - image rotation

SYNOPSIS
#i ncl ude "i mproto.h"

int rotate(l MAGE *in, | MAGE *out, int iter)

DESCRIPTION
Rotate image "in" over "iter"* 90 degrees and store the result inimage "out”. If "iter" is
positive the operation is performed clockwise, if "iter" is negative counterclockwise.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
mirror

NAME
run - execute the programin the program buffer

SYNOPSIS
run

DESCRIPTION
The run command is used to execute a previously loaded file. All old variables are
deleted.

414

SCIL_Image 1.4 — Reference Manual

S Append

S BreakList
S CloseList
S CopyList
S Delete

S Findltem
S Freelist
S Insert

S Length

S Prefix

S SortList

NAME
S Append, S BreakList, S Closelist, S CopyList, S Delete, S Finditem, S Freelist,
S Insert, S Length, S Prefix, S SortList - linked list functions

SYNOPSIS
#include "linklist.h"
LI ST *S_Append(I NFO *item LIST *Ilist)
LIST *S Insert(INFO *item LIST *list)
LIST *S Prefix(INFO *item LIST *list)

LIST *S Del ete(LIST *item

int S FreelList(LIST *list,

FREEFUNC Fr eel nf 0)

FREEFUNC Fr eel nf 0)

int S Length(LIST *list)

LIST *S Findltem(I NFO *item LIST *list)

LI ST *S SortList(LIST *list, COVMPAREFUNC conpare)
LI ST *S BreakLi st (LI ST *list)

LI ST *S O oseLi st (LI ST *list)

LI ST *S_CopyLi st (LI ST *1ist)

DESCRIPTION
These functions are used for generic linked list creation and maintenance. A linked listis
build using the following structure:

415

SCIL_Image 1.4 — Reference Manual

typedef struct List {
struct List *next;
struct List *prev;
I NFO *i nf o;
} LIST;

A linked list isanumber of LIST structures linked together by their "next" and "prev"
fieldsto form adouble linked list. Any information can be stored in thelist aslong asa
pointer to the datais available. The pointer is stored in the "info" field (as avoid poin-
ter). The number of lists and the number of eementsin each list isnot limited by these
functionsin any way.

S Append(), S Insert() and S_Prefix() are used to build alist. They alocate anew LIST
structure, store the "item" pointer in the info field and insert the LIST structure at the
correct position in thelist "list" taking care that the "next" and "prev" fields of their
neighbors (if present) are updated correctly. S Append() appends the new element to the
end of linked list "list". S_Prefix() inserts the new element at the start of list "list".

S Insert() inserts the new element just before the element pointed to by "list”. If "list" is
NULL anew linked list is started and the returned LIST pointer should be stored for
future reference of thelist.

S Delete() and S_Freelist() are used to remove certain elements from the list or the
entire list respectively. S Delete() deletes element from linked list. The function
"freefunc” is used to destroy the element attached to the list. When the element was
allocated using malloc(), the function free() can be used. Complicated el ements e.g.
structures with pointere to other structures should be destroyed by dedicated
destroy-functions. NULL isallowed if the element is not to be destroyed.

S Length() returns the length of thelist i.e. the number of elementsin thelist.

S Finditem() searchesin thelist "list" for the element "item™ and returns a pointer to the
LIST structure that contains the element. If it cannot find "item™, NULL isreturned

S CloseList() and S BreakList() convert aNULL terminated list in acircular list and
vice versa. When building alinked list, the "prev" field the first item and the "next"
field of the last element are NULL terminated. S CloseList() connects these those
elements creating acircular list. S BreakList() breaks the circular open again at the
LIST structure pointed to by "list" making it the new start of thelist.

S SortList() sortsthelist according to the supplied comparison function "compare”.
Thelist is sorted using the gsort() function.

S CopyList() make a copy of alist. This second list contains physically the same
eementsasthefirgt listi.e. the elementsin thelist are not duplicated. Removing an
element from onelist will leave a pointer dangling it the other list.

RETURN VALUES

416

SCIL_Image 1.4 — Reference Manual

S Append(), S Prefix(), S Insert() and S_CopyList() al return NULL if thereis not
enough memory to create the new LIST structure(s). If successful, S Append() and

S Prefix() return a pointer to the start of the (changed) list, S_Insert() returns a pointer
to the new member of thelist. S CopyList() returns a pointer to the start of the new list.

S Delete() returns apointer to the "next" member of the list, if the deleted member was
the last of the list, apointer to the previous member isreturn. In casethe list contained
only one member, or "list" was NULL, NULL isreturned. S _FreelList() returns FALSE
(O) islist was NULL, otherwiseiit returns TRUE ().

S Length() returnsthe length of thelist. S_Finditem() returnsapointer to aLIST struct
or NULL if not found. S BreakList() and S_CloseL.ist() return their argument.

S SortList() returnsa LIST pointer to the sorted list or NULL if the list was empty or if
it cannot allocate memory to store the sorted list.

saxis
NAME
saxis - obtain short axis of the fitted ellipse of an object

SYNOPSIS
#i ncl ude "im.aio. h"

doubl e saxi s(LI ST *Ii nk)

DESCRIPTION
link - Link pointing to object

AlO primitive to obtain value of an object feature

saxis() returns the length of the short axis of the fitted ellipse of the object pointed to
by "link™ if this has previously been measured.

RETURN VALUES
length of the short axis of the fitted ellipse of object
0.0if link is not an object or if short axis has not been measured

SEE ALSO
measure object_shape meas object dens meas laxis

417

SCIL_Image 1.4 — Reference Manual

scanf
fscanf

sscanf

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#i ncl ude <stdi o. h>

int scanf(char *format, ...)
int fscanf(FILE *stream char *format, ...)

int sscanf(char *s, char *format, ...)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

scanf() reads from the standard input stream stdin. fscanf() reads from the named
input "stream". sscanf() reads from the character string "'s'. Each function reads
characters, interprets them according to a format, and stores the resultsin its
arguments. Each expects as arguments a control string "format", described below, and
aset of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

- Blanks, tabs or newlines, which match optional white space in the input.

- An ordinary character (not %) which must match the next character of the input
stream.

- Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum field width, and a
conversion character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, unless assignment
suppression was indicated by *. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or until the field width, if
specified, is exhausted.

The conversion character indicates the interpretation of the input field; the
corresponding pointer argument must usually be of arestricted type. The following
conversion characters are legal:

% asingle’%’ isexpected in the input at this point; no assignment is done.

418

SCIL_Image 1.4 — Reference Manual

d adecimal integer is expected; the corresponding argument should be an integer
pointer.

0 an octal integer is expected; the corresponding argument should be ainteger
pointer.

X a hexadecimal integer is expected; the corresponding argument should be an
integer pointer.

S acharacter string is expected; the corresponding argument should be a

character pointer pointing to an array of characters large enough to accept the
string and aterminating '\O’, which will be added. The input field is terminated
by a space character or anewline.

C acharacter is expected; the corresponding argument should be a character
pointer. The normal skip over space charactersis suppressed in this case; to
read the next non-space character, try "%l1s". If afield width is given, the
corresponding argument should refer to a character array, and the indicated
number of charactersis read.

f afloating point number is expected; the next field is converted accordingly and
stored through the corresponding argument, which should be a pointer to a
float. The input format for floating point numbersis an optionally signed string
of digits possibly containing a decimal point, followed by an optional exponent
field consisting of an E or e followed by an optionally signed integer.

[indicates a string not to be delimited by space characters. The left bracket is
followed by a set of characters and aright bracket; the characters between the
brackets define a set of characters making up the string. If the first character is
not circumflex (), the input field is all characters until the first character not in
the set between the brackets; if the first character after the left bracket is”, the
input field isal characters until the first character which isin the remaining set
of characters between the brackets. The corresponding argument must point to
acharacter array.

The conversion characters d, 0 and x may be capitalized or preceded by | to indicate
that a pointer to long rather than to int isin the argument list. Similarly, the
conversion characters e or f may be capitalized or preceded by | to indicate a pointer
to double rather than to float. The

conversion characters d, o and x may be preceded by h to indicate a pointer to short
rather than to int.

The scanf functions return the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. The constant
EOF isreturned upon end of input; note that thisis different from O, which means that
no conversion was done; if conversion was intended, it was frustrated by an
inappropriate character in the input.

419

SCIL_Image 1.4 — Reference Manual

EXAMPLE
For example, the call

int i; float x; char name[50];
scanf ("%l% %", & , &, nane);

with theinput line

25 54.32E-1 t honpson

will assign to i the value 25, x the value 5.432, and name will contain "thompson\0".

Or,

int i; float x; char name[50];

scanf ("9%2d% % d% 1234567890] ", &, &x, nane);
with input

56789 0123 56a72

will assign 56 to i, 789.0 to X, skip "0123", and place the string "56\0" in name. The
next call to getchar will return’a’.

RETURN VALUES

The scanf functions return EOF on end of input, and a short count for missing or
illegal dataitems.

SEE ALSO
atof getc printf

420

SCIL_Image 1.4 — Reference Manual

searchfile

rel_searchfile

NAME
searchfile, rel_searchfile - find and open afile

SYNOPSI S
#i ncl ude "support.h"

FI LE *searchfil e(char *nane, char *envvar, char *pathret)

FILE *rel _searchfil e(char *name, char *envvar, char *pathret)

DESCRIPTION
searchfile(), searches for the file whose nameisgiven in "name". If it can not open the
fileusing "name", it will remove any directory names from "name" and will try to open
the filein the current directory. If sill unsuccessful, it will search for thefilein al the
directoriesthat are listed in the environment variable specified in "envvar". When the
fileisfound, it is opened using fopen() with read-only permission ("r"). The entire path-
name of thefileis stored in the supplied buffer "pathret”, that is assumed to be at |east
256 bytes long. The FILE pointer to the still open file is returned.

rel_searchfile() searches and opensfilesin amost the identical way as searchfile(). The
only difference isthat any preceding directory names are not stripped from "name”. It
appends the entire path-name in "name" to the directory namesin "envvar".

The various directories specified in the environment variable "envvar" must be separated
by aseparator. On UNIX systems, thisisa™:" (colon), on Ms-Windows and Macintosh
systemsitisthe™;" (semicolon). Additionally it is allowed on MS-Windows systems to
usethe"/" (forward dash) as adirectory separator in path-names, this to reduce the
chance of errors when using the"\" (backd ash) which in C-strings must be escaped with
another backdash.

NOTE
(rel)searchfile() uses fopen() with type "r" to open the files. This means that when
using searchfile() to open files that contain binary data (non-text files) on some platform
trandation of carriage-return characterswill occur. For binary files on MS-Windows
and Macintosh this means that you must close the file using fclose() and reopen it with
fopen(pathret, "rb"). Remember to use the path-name from "pathret" to reopen thefile,
the correct path-name for the file you just closed isin that buffer.

RETURN VALUES
searchfile() and rel_searchfile() return the FILE pointer of the opened file which was
searched for or NULL if the file cannot be found.

421

SCIL_Image 1.4 — Reference Manual

set aio disp
NAME
set_aio_disp - enable/disable immediate display of AlO objects

SYNOPSIS
int set_aio_disp(int node)

DESCRIPTION
When "mode" is 1 then the objects in labeled images are displayed at once when they
are copied or hidden using the functions hide_object(), copy_object(), g_copy_object()
and g_copy_object_to(). The objects will be displayed without having to display the
entire image.

When "mode" is 0, changes will only become visible when the image is (re)displayed.
Thisis useful when copying or hiding a number of objects.

RETURN VALUES
status of the Al1O display mode (value of "mode" on the last call to set_aio_disp())

SEE ALSO
hide_object copy_object g_copy_object g_copy_object_to

set_border

NAME
set_border - set the border of an image

SYNOPSIS
#i ncl ude "i mproto.h"

int set_border (I MAGE *out, double value, int top, int right, int bot,
int left, int z_nmin, int z_nmax)

DESCRIPTION
The border of image "out" is given avalue "value". The size (=thickness) of the
border for each side of the imageis given by "up”, "right", "bot", "left", "z_min",
"z_max"

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

NOTE
The parameters "z_min" and "z_max" areignored for 2D images.

SEE ALSO
set_int

422

SCIL_Image 1.4 — Reference Manual

set_clut

NAME
set_clut - attach a color lookup table to an image

SYNOPSIS
#include "im.infra.h"

int set_clut(IMAGE *image, CLUT *clut, int disp)

DESCRIPTION

Attaches the color lookup table "clut" to "image". If the flag "disp" is set (=1) then the

image will be (re)displayed to show the effect.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create clut

set_color

NAME
set_color - set pixel value of color image

SYNOPSIS
#i ncl ude "col or 2dp. h"

int set_color(l MAGE *image, int red_val,

DESCRIPTION

int green_val,

int blue_val)

set_color() setsall pixels of "image" to the RGB vaue given by "red val",

"green_va", blue val".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear_im make color_im

423

SCIL_Image 1.4 — Reference Manual

set_common_line

NAME
set_common_line - fill the common_line structure in one pass

SYNOPSIS
#include "iminfra.h"

void set_comon_|ine(COVWON LINE *comline, int type, void *data, int
X, int y, int z, int t, int chan, double h_mn, double h_nax)

DESCRIPTION
This function fillsthe COMMON_LINE structure "com_line" in one pass with the
values specified as the arguments. It is used in the low-level routines of the convert()
operation. The function is meant for programmers convenience.

"com_line" is pointer to the COMMON_LINE structure that must be filled.
"type" specifies which type of dataisused, COM_LONG or COM_DOUBLE.

"data" is apointer to the allocated memory to store the data of one image line.

"Xyt "z, "t and "chan” are the sizes and the position of theimage linein the
memory pointed at by "data’

"h_min" and "h_max" are the minimum and maximum value of the datain the entire
source image of the convert operation.

RETURN VALUES
None

SEE ALSO
convert

424

SCIL_Image 1.4 — Reference Manual

set_comp_margin
NAME
set_comp_margin - set space between images in composite photo

SYNOPSIS
#i ncl ude "silo.h"

voi d set_conp_nmargin(int size)

DESCRIPTION
size - Size of margin

Function to define the space between sub-images in a composite photo.

RETURN VALUES
None

SEE ALSO
start_comp silo_to_comp

set_complex

NAME
set_complex - set pixel value of image

SYNOPSIS
#i ncl ude "improto.h"

int set_conplex(lI MAGE *im double real part, double imginary part)

DESCRIPTION
Set al pixelsinimage "im" to the complex value given by "real_part" and
"Imaginary_part".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear_im

425

SCIL_Image 1.4 — Reference Manual

set_dialog_pos
NAME
set_dialog_pos - set the position of the dialog box

PLATFORM
Unix, Macintosh.

SYNOPSIS
#i ncl ude "nd_gen. h"

int set_dialog pos(int x, int y)

DESCRIPTION
set_dialog_pos() sets the position of the dialog box to ("x","y").

RETURN VALUES
None

SEE ALSO
set_menu_pos

426

SCIL_Image 1.4 — Reference Manual

set_display _mode
NAME
set_display_mode - set the display mode for an image

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"
#i ncl ude "dnodes. h"

int set_display_node(l MAGE *i mage, int node, int global, int
di rect _di spl ay)

DESCRIPTION
set_display_mode() sets the scaling mode used for displaying the image "image". The
"mode" must be set for each image separately. Only one mode can be set
simultaneously for an image. When specifying more than one mode, only one modeis
set, which oneis not defined. The currently implemented modes are defined in the
include file "dmodes.h", they are:

DM_NORMAL Normal display.

DM _LIN_STRETCH Linear stretched display.

DM _LOG STRETCH Logarithmic stretched display.
DM_LIN_ERROR Linear stretched error display.
DM_LOG _ERROR Logarithmic stretched error display.
DM_SIGMOID Sigmoidal stretched display.

In an image with display mode DM_LIN_ERROR or DM_LOG_ERROR thevaueOis
displayed as greyvalue 127. Positive errors are displayed between 127 and 255. Negative
errors are displayed between 0 and 127.

"global" isin effect only for 3D images.

global = No (0): The minimum and maximum va ue used for stretching are
determined only from the current dlice.

global = Yes(1): The min an max value used for stretching are determined
from the entire image

"direct_display" indicates if the image should be (re)displayed directly Yes(1) or not
No(0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_sigmoid_shape set_dither_mode get_display_mode show_dmode flags

427

SCIL_Image 1.4 — Reference Manual

set_display dlice
NAME
set_display _dlice - display adlice of aimage

SYNOPSIS
#i ncl ude "di sp_p. h"

int set_display_slice(l MAGE *inmage, int slice)

DESCRIPTION
Displays dlice number "dice" of image "image". The slice number that is being
displayed at the moment isthe field "dlice" of the IMAGE structure.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
display_image next_plane

428

SCIL_Image 1.4 — Reference Manual

set_dither_mode

NAME
set_dither_mode - perfect display of images

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

int set_dither_node(l MAGE *i mage, int node, int direct_display)

DESCRIPTION
Images that have a color lookup-table attached are normally displayed by mapping the
entries of the table the color the is the nearest in the SCIL_Image color-lookup table.
Due to the limited number of colorsthat will fit in a color-table a one time the effect
can be very poor. By turning on color-dithering (for each image separately) the display
routine will show the image in "true color" (a near perfect approximation).

set_dither_mode() turns on the color-dithering for the image "image" when "mode” is
set to 1. It isturned off when "mode” is set to 0. "direct_display” indicates that the
image should be (re)displayed directly Yes(1) or not No(0).

NOTE
Turning this option on shows a significant performance penalty for the display update
times

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (seeim_error.h)

SEE ALSO
set_display_mode

429

SCIL_Image 1.4 — Reference Manual

set_float

NAME
set_float - set pixel value of an image

SYNOPSIS
#i ncl ude "i mproto.h"

int set_float(lMAGE *im double constant)

DESCRIPTION
Set dl pixelsinimage"im" to the floating point value "constant".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear im evad

set_im_type
NAME
set_im_type - change the type of animage

SYNOPSIS
#include "iminfra.h"

int set_imtype(I MAGE *im int type)

DESCRIPTION
The type of image "im" is changed to "type". The data of the image islost.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

430

SCIL_Image 1.4 — Reference Manual

set_image flag

clear_image flag
NAME
set_image flag, clear_image flag - set/clear the image flags.

SYNOPSIS
#i ncl ude "improto.h"

void set_inmage_flag(I MAGE *im int flag)

void clear_i mage_flag(I MAGE *im int flag)

DESCRIPTION
An image contains several flags that can be used to indicate special treatment of such
an image flag. These flags can be set with set_image flag() and cleared with
clear_image flag(). After aflag has been set/cleared, the image publishes a
SPB_NEWSTATE message. Currently the following flags are defined:

READ_ONLY (bit O, integer value 1), image is read-only, the
infrastructure does not alow you to use the image as an
output image. The image size and/or type cannot be

altered.
NOT _IN_DIALOG (bit 1, integer value 2), signals to the GUI that the image
should not be shown in dialog boxes.
NO_AUTO_POINT (bit 2, integer value 4), signalsto the GUI that when

pointing in the image viewer with the mouse, the pixel
information should not be shown.

NO _AUTO DISPLAY (bit 3, integer value 8), signals to the GUI that the image
should not automatically be displayed on changesto the
image.

RETURN VALUES
None

431

SCIL_Image 1.4 — Reference Manual

set_image_interaction

handle events

NAME
set_image _interaction - disable SCIL_Image event loop

handle_events - call the SCIL_Image event loop once

SYNOPSIS
#i ncl ude "in2scil.h"

int set_inmage_interaction(int node)

voi d handl e_event s(voi d)

DESCRIPTION
When running an interpreted program, the event loop of SCIL_Imageis called after
each statement. This can cause event driven programs to miss out on events.
set_image _interaction(), when called with "mode" = On (1), prevents the interpreter
from calling the event loop after each statement.

When set_image_interaction() has been called with "mode" = On from within an
interpreted program, handle_events() should be called in its event loop to allow
SCIL_Image to update images, operate the menu etc.

A program that uses set_image_interaction should also call it with "mode" is Off (0)
when it exits, to restore the interpreter to its prior state.

RETURN VALUES
None

SEE ALSO
handle_events poll_mouse point_im im_input_func del_im_input_func
im_exposure_func del_im_exposure_func

432

SCIL_Image 1.4 — Reference Manual

set_int
NAME
set_int - set pixel vaue of an image

SYNOPSIS
#i ncl ude "improto.h"

int set_int(IMAGE *im int constant)

DESCRIPTION
Set dl pixelsin the image "im" to the integer value "constant”

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clear im eval

433

SCIL_Image 1.4 — Reference Manual

set_line editor

NAME

set_line_editor - switch the line editor mode

PLATFORM
UNIX.

SYNOPSIS

void set _line_editor(int node)

DESCRIPTION

This function can be used to change the operation mode of the command line editor.
By default the command line editor emulates the "vi" editor. The "vi" mode can also
be set by using "mode" = Vi (1). The "vi" mode is described in the main manual of
SCIL_Image. The other operating mode of the command line editor is controlled by
the cursor keys and some other <Control> keys as described below. Thismodeis
enabled by specifying "mode" = Cursor (0). The keys used in that mode are the

following:
AL
ANP,Up
N,Down
~F,Right
"B,Left
"R

"E

K

XU
"H,DEL
AD (EOF)

RETURN VALUES
None

Print the history list.

Walk back through the history

Walk forward through the history

Jump to the next character in the current line.

Jump to the previous character in the current line.
Reprint the current line.

Jump to the end of the current line.

Clear the rest of the current input line.

Discard the complete current line.

Delete the character before the current cursor position.

Discard the complete current line. If EOF is typed twice the line
"exit(0);" will be passed to the command decoder.

434

SCIL_Image 1.4 — Reference Manual

set_menu_pos
NAME
set_menu_pos - set the position of the menu panel

PLATFORM
Unix.

SYNOPSIS
#i ncl ude "nd_gen. h"

int set_nenu_pos(int x, int y)

DESCRIPTION
set_ menu_pos() sets the position of the control_panel to ("x","y").

RETURN VALUES
None

SEE ALSO
set_dialog_pos

set_rgb bits
NAME
set_rgb_bits - set the bitplane colors for MULTI_LUT _T lookup table

SYNOPSIS

#include "im.infra.h"
int set_rgb bits(int r_bit, int g_bit, int b_bit)

DESCRIPTION
With this function the bitplanes that will be displayed in color when using a
MULTI_LUT _T lookup table can be specified. Bitplane "r_bit" will be displayed in
red, "g_bit" in green and "b_bit" in blue.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
create clut

435

SCIL_Image 1.4 — Reference Manual

set RGB2XYZ_matrix
set RGB2XYZ_mvalues

print. RGB_matrices

NAME
set RGB2XYZ_matrix - set the RGB to XY Z conversion matrix

set RGB2XYZ_mvalues - set the RGB to XY Z conversion matrix values
print. RGB_matrices - display the RGB to XY Z conversion matrix values

SYNOPSIS
#i ncl ude "col or 2dp. h"

void set RGB2XYZ matrix(int matrix_type)

voi d set_ RGB2XYZ_nval ues(doubl e nll, double ml2, double ml3, double
n21, doubl e nR22, double n23, double nBl, double nB2, double nB3)

void print_RGB nmatrices(void)

DESCRIPTION
Conversion between the RGB and XY Z color-model is done by a matrix
multiplication:
X		mll mi2 mi3]		R
Y	=] n21 n22 m23		G	
Z		nB1 n82 n83		B

The correct conversion matrix depends on many factors such as input device, display
monitor etc. To influence the conversion, the conversion matrix can be changed.

set RGB2XYZ_matrix() setsthe matrix to asmall number of predefined values via
"matrix_type" (listed below). set RGB2XYZ_mvalues() can be used to set the matrix
to any desired value via its parameters "m11" ... "m33".

Matrix type id
NTSC_T 1
PAL_T 2
CIE_T 3
smpte_T 4
Rec709_T 5

After the values have been set, immediately the inverse matrix is calculated which
performs the XYZ to RGB conversion.

print. RGB_matrices() displays the values of both the conversion matrices, the RGB
to XYZ matrix and the XYZ to RGB matrix.

RETURN VALUES

436

SCIL_Image 1.4 — Reference Manual

None

SEE ALSO
convert_cmodel

set roi_clean_display

NAME
set_roi_clean _display - redisplay parent of a ROl when displaying a ROI

SYNOPSIS
#include "im.infra.h"

voi d set_roi _clean_display(int node)

DESCRIPTION
When aregion of interest isthe output for an operation its parent image will also be
redisplayed depending upon the "mode" flag. This flag can be set using
set_roi_clean_display().

Only when the image type of the ROI has changed as aresult of the operation, the
influence of the flag will become visible. In that case the parent image has become
empty except for the ROI as result of the change of image type. When theflagis"1"
the parent image will be displayed again and only the ROI can be seen. If the flag has
been set to "0" only the ROI will be displayed, leaving the rest of the parent image
visible on the screen. The parent image has become empty however. The flag can be
set using "set_roi_clean_display”. Itsinitial valueis™"1".

The example below shows that the ROI has become of another type and therefore the
type of the parent image changed as well. The data of the image however is still
visible but no longer present as can be seen when the image is copied to another
image.

EXAMPLE
readfile("trui", A 0, 0);
roi _define("roil1", A 64, 64, 0, 128, 128, 1, 0);
set _roi _cl ean_display(0);
threshold(roil, roil, 128);
copy_inm(A B);

RETURN VALUES
None

437

SCIL_Image 1.4 — Reference Manual

set_roi_pos
set_roi_mask

set_roi_parent

NAME
set_roi_pos, set_roi_mask, set_roi_parent - roi manipulation functions

SYNOPSIS
#include "iminfra.h"

int set_roi_pos(IMAGE *roi _im int sx, int sy, int sz)
int set_roi_mask(lI MAGE *roi _im BOOL_MASK *mask)

int set_roi_parent (I MAGE *roi_im | MAGE *parent)

DESCRIPTION
These functions manipul ate ROI-images created with roi_defing(), their functionality
can also be achieved by calling roi_define() with new parameters.

set_roi_pos() movesthe origin of the ROI "roi_im" in the parent image to
("sx","sy","sz") without changing the sizes of the ROI. The ROI is only moved if it
remains totally within the parent image.

set_roi_mask() givesthe ROI "roi_im" anew Boolean "mask". Like with roi_defing()
the BOOL_MASK hasto be created first using the function get_bool _mask().

set_roi_parent() changes the parent image of the ROI "roi_im" to "parent”. As soon as
the"roi_im" isused for input, its type will be changed to that of the new parent. If the
RIO does not fit in the new parent image, the parent of the ROI is not changed.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
roi_define get_bool mask

438

SCIL_Image 1.4 — Reference Manual

set_screen_gamma

NAME
set_screen_gamma - specify the gamma correction for your screen

PLATFORM
UNIX, MS-Windows.

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt set_screen_gamma(doubl e ganmg)

DESCRIPTION
Gamma correction is used to correct for nonlinear responses on display devices
(monitors). The value "gamma is used to calculate a curve that describes the response
of the device. This curveisused to correct for the nonlinear response.

If used, this function must be called prior to the call to initimage() or init_scil_image()
in the scilinit file, if not called, a default of 1.0 will be assumed (no correction).
Calling thisfunction AFTER the display isinitialized has no effect on the display of
images.

RETURN VALUES
None

439

SCIL_Image 1.4 — Reference Manual

set_sigmoid_shape
NAME
set_sigmoid_shape - determine the sigmoid shape used for the sigmoid display mode

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

set _signoi d_shape(fl oat slope, float bendi ng_point)

DESCRIPTION
This routine sets two global variables that describe a sigmoid used for creating an
alternative lookup table for the display of images. "slope" determines the rate of
ascent of the sigmoid. "bending point" determines the position of the bending point of
the sigmoid.

RETURN VALUES
None.

SEE ALSO
set_display_mode set_dither_mode

440

SCIL_Image 1.4 — Reference Manual

set_start_pos

set_start _sizes
NAME
set_start pos- set theinitia position of the four windows

set_start sizes- set theinitial size of the four windows

SYNOPSIS
#i ncl ude "inscil.h"

void set_start_pos(int x1, int yl, int x2, int y2, int x3, int y3,
int x4, int y4)

void set_start_sizes(int wl, int hl, int w2, int h2, int w3, int h3,
int w4, int h4)

DESCRIPTION
With set_start_pos() the initial position of the display windows of the images created
by default_images() is set. This function must be called before default_images(). The
first display window that default_images() creates gets position ("x1","y1"). The
second is put at ("x2","y2"), etc.

set_start sizes() setsthe initial sizes of the display windows of the images created by
default_images(). This especially useful on small displays. This function must be
called before default_images. The first window that initimage puts on the display then
getssizes ("w1","h1"). The second is gets size ("w2","h2"), etc.

RETURN VALUES
None

SEE ALSO
default_images set window_pos set window_size natural_window_size

441

SCIL_Image 1.4 — Reference Manual

set_tiff _compression
NAME
set_tiff_compression - enable compression of TIFF data

SYNOPSIS
#i ncl ude "i mproto.h"

void set tiff_conpression(int enable)

DESCRIPTION
The datain a TIFF file can either be compressed or uncompressed. When writing
TIFF files, this function can be used to specify that the data should be compressed or
not. If "enable" is 1, all subsequent writing to TIFF fileswill be compressed. To
disable compression of the data, specify "enable" as 0.

Default is no compression.

RETURN VALUES
None

SEE ALSO
tiff_writefile

set_tiff_image number
NAME
set_tiff_image _number - specify the image to be read from a TIFF file

SYNOPSIS
#i ncl ude "i mproto.h"

void set _tiff_inmage nunber(int numnber)

DESCRIPTION
To read a sub-image that can be present in a TIFF file, set the number to the required
image in thefile. 1isthefirst imagein a TIFF file (and the default). If anumber is
specified that is not present in a TIFF file, the first image from that TIFF file will be
taken.

RETURN VALUES
None

SEE ALSO
tiff_readfile

442

SCIL_Image 1.4 — Reference Manual

set var_object _class
NAME
set_var_object_class - change the class of an var_object

SYNOPSIS
#i ncl ude "objectsp. h"

int set_var_object_class(VAR OBJECT *obj, char *class)

DESCRIPTION
Changes the class of the object "obj" to "class". This allows you to maintain different
groups of objects since is possible in the command description file of SCIL_Image to
specify which class you want to show in the dialog-box. The selection is made by
comparing the specified class with the field "class' in the var_object structure. Only
the objects with a matching class name are shown.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object destroy var_object show_var_object_info list var_objects

set_var_object_comment

NAME
set_var_object_comment - add a comment string to the var_object

SYNOPSIS
#i ncl ude "objectsp. h"

int set_var_object_coment (VAR OBJECT *obj, char *comment)

DESCRIPTION
Add a (null-terminated) string "comment” to the structure of the var_object "object”.
The string may be of any length aslong asit is null-terminated. The function itself
allocates memory for the string, so if adding comment to avar_object while not using
this function, be sure that the memory was allocated with malloc() because other
functionsrely on it (they use free()). When the var_object is saved, the comment
string will be saved in the header-file.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object destroy var_object show_var_object_info

443

SCIL_Image 1.4 — Reference Manual

set var_object data
NAME
set_var_object_data- set the data of avar_object to type and sizes

SYNOPSIS
#i ncl ude "objectsp. h"

int set_var_object data(VAR OBJECT *obj, int type, int nr_channels,
int nr_dim int dinl, int din2, int dinB, int dinmd, int dinb)

DESCRIPTION
Set the data of avar_object to the desired type and sizes. This function does the same
asset_var_object type() and set_var_object_size() together. The var_object is set to
type "type" and to the dimensions specified by "nr_channels’, "nr_dim" and "dim1" ..
"dim5". For a complete description on these parameters see the functions
set_var_object_type() and set_var_object_size().

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object set var_object type set var_object size

SCIL_Image 1.4 — Reference Manual

set var_object_size
NAME
set_var_object_size - change the sizes of avar_object

SYNOPSIS
#i ncl ude "objectsp. h"

int set_var_object_size(VAR OBJECT *obj, int nr_channels, int nr_dim
int diml, int din2, int dinB, int dimd, int dinb)

DESCRIPTION
Changes the sizes of the object "obj". "nr_channels" isthe number of channels for the
object, "nr_dim" isthe desired number of dimensionsand "dim1" .. "dim5" specify the
size of each dimension. The maximum number of dimensionsis5. If lessthan 5
dimensions are required then it is sufficient to specify only "nr_dim" dimensionsin
the function-call. The dimensions over "nr_dim" are set to 1, regardless whether they
were supplied or not.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object set var_object data set var_object_type

445

SCIL_Image 1.4 — Reference Manual

set var_object type
NAME
set_var_object_type - set the type of the datain avar_object

SYNOPSIS
#i ncl ude "objectsp. h"

int set_var_object type(VAR OBJECT *obj, int type_of data)

DESCRIPTION
Set the data-type of the var_object "obj" to the type "type of data’. Only the
following data-types are allowed:

PIXEL_T
CHAR T
SHORT T
INT_T
LONG. T 1
FLOAT T 3
DOUBLE T 64

NOOWORARDNE

The dimensions of the var_object remain the same, only the type changes. Because a
new piece of memory is allocated for the changed type, the contents of the var_object
will be lost(except of courseif the data-type remains the same).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object set var_object data set var_object size

446

SCIL_Image 1.4 — Reference Manual

set_ window_pos
NAME
set_window_pos - set the position of the display window of an image

SYNOPSIS
#i ncl ude "di sp_p. h"

int set_w ndow pos(I MAGE *im int x, int y)

DESCRIPTION
set_ window_pos() puts the display window of the image "im" at position ("x","y").

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_start pos set window_size natural_window_size

set window _size
NAME
set_ window_size - set the size of adisplay window

SYNOPSIS
#i ncl ude "di sp_p. h"

int set_wi ndow size(IMAGE *im int sizex, int sizey)

DESCRIPTION
set_ window_size() changes the size of the display window of theimage "im" to
Ils' ZeX"* IIS' Zw" .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
natural_window_size set window_pos set_start_pos

447

SCIL_Image 1.4 — Reference Manual

setbuf
setbuffer
setlinebuf

setvbuf

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSI S
#i ncl ude <stdi o. h>

voi d setbuf (FILE *stream char *buf)
voi d setbuffer(FILE *stream char *buf, int size)
void setlinebuf (FILE *stream

int setvbuf (FILE *stream char *buf, int type, int size)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the destination
file or terminal as soon as written; when it is block buffered many characters are saved
up and written as a block; when it isline buffered characters are saved up until a
NEWLINE is encountered or input is read from stdin. fflush() (see fclose) may be
used to force the block out early. Normally all files are block buffered. A buffer is
obtained from malloc upon the first getc() or putc() on the file. If the standard stream
stdout refersto aterminal it is line buffered. The standard stream stderr is unbuffered
by default.

setbuf() can be used after a stream has been opened but before it is read or written. It
causes the array pointed to by "buf" to be used instead of an automatically allocated
buffer. If buf isthe NULL pointer, input/output will be completely unbuffered. A
manifest constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array
is needed:

char buf [BUFSI Z] ;

setbuffer(), an aternate form of setbuf(), can be used after a stream has been opened
but beforeit isread or written. It uses the character array buf whose size is determined
by the size argument instead of an automatically alocated buffer. If buf isthe NULL
pointer, input/output will be completely unbuffered.

setvbuf() can be used after a stream has been opened but before it is read or written.

type determines how stream will be buffered. Legal values for type (defined in
<stdio.h>) are:

448

SCIL_Image 1.4 — Reference Manual

_1OFBF fully buffers the input/output.

_IOLBF line buffers the output; the buffer will be flushed when aNEWLINE is
written, the buffer isfull, or input is requested.

_IONBF completely unbuffers the input/output.

If "buf" is not the NULL pointer, the array it pointsto will be used for buffering,
instead of an automatically allocated buffer. "size" specifies the size of the buffer to
be used.

setlinebuf() is used to change the buffering on a stream from block buffered or
unbuffered to line buffered. Unlike setbuf(), setbuffer(), and setvbuf(), it can be used
at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using
freopen() (see fopen). A file can be changed from block buffered or line buffered to
unbuffered by using freopen() followed by setbuf() with a buffer argument of NULL.

RETURN VALUES
If anillegal value for type or size is provided, setvbuf() returns a non-zero value.
Otherwise, the value returned will be zero.

SEE ALSO
fclose fopen fread getc maloc printf putc puts setbuf

449

SCIL_Image 1.4 — Reference Manual

SetMacFileType

SetM acFileCreator

NAME
SetMacFileType, SetMacFileCreator - set Macintosh file type/creator

PLATFORM
Macintosh

SYNOPSIS
#i ncl ude "support.h"

voi d Set MacFi | eType(l ong type)

voi d Set MacFil eCreator(long creator)

DESCRIPTION
On Macintosh systems, each file is assigned a so-called type and a creator. These
four-characters strings are used by the operating system and application programs to
identify which program created which data-file and classify the data-files into different
categories. E.g. plain text files all have the type TEXT’ so editorswill only alow you to
open fileswith type TEXT".

By calling SetMacFileType() and SetMacFileCreator() you will set two global variables
that hold these values to be used in all following calls to creat(), fopen() etc. until you
assign adifferent value. However when not specifying binary mode when creating afile,
some compilers will overrule the type with TEXT'.

NOTE
Please note the specia notation for these strings, they are declared to be long int
variables (4 bytes). The string should be specified using single quotes (*) around the text
e.g. TEXT'. Although single quotes may only used on single charactersin C, Macintosh
C-compilerswill alow this notation.

RETURN VALUES
None

450

SCIL_Image 1.4 — Reference Manual

setprompt
NAME
setprompt - Set scil command prompt

PLATFORM
UNIX.

SYNOPSI S
voi d set pronpt (char *pronpt)

DESCRIPTION
setprompt changes the scil default prompt "[C2]" to the specified prompt. In the
prompt string an exclamation mark may be used to specify the position of the
command number.

EXAMPLE
To set the scil prompt to "<hello 2>"

setpronpt ("<hello !>");

RETURN VALUES
None

451

SCIL_Image 1.4 — Reference Manual

sfp
NAME
sfp - simulated fluorescence process (creates shadow images).

SYNOPSIS
#i ncl ude "i mproto.h"

int sfp(I MAGE *In, IMAGE *Qut, int Orientation, int Background, int
Light, int View, int Excitation, int Emission, int Extra_light)

DESCRIPTION
Creates a 2D image from a 3D image suggesting depth by means of shadows. The
algorithm is based on Simulation of a Fluorescence Process. The object islit (excited)
by aimaginary source of light and as a result, shadows are projected on an artificial
background. The direction from the exciting light as well as the direction from which
you are viewing the object can be specified independently. A list of the parametersis
given containing the meaning and the valid value intervals:

parameter interval

Orientation [0,1] specifies whether the light and viewing direction is
west-east (0) or north-south (1).

Background [0,65535] sets the value of the color of the background.

Light [-3,3] sets the direction the light is shining. The number isthe
angle of the light in voxels per dlice.

View [-3,3] specifies the direction of view.

Excitation [0,1.4] specifies the absorption factor of the illuminating light

by the voxels. A value of "1" meansthat aray is
attenuated by afactor 1/eif it passes through avoxel

with value 255.

Emission [0.04,1.4] specifies the emission factor for the light that is sent
back to the viewer. Works the same way as
"Excitation".

Extra light [-4,3] switches on an extra source of light from the specified

direction. The intensity is half of that of the original
source of light. It is used to light the parts of an object
that are in the shadow of another part of the object. A
value of -4 means no extralight source is used.

RETURN VALUES

IE_OK (1) on success
Negative error status on failure (see im_error.h)

452

SCIL_Image 1.4 — Reference Manual

453

SCIL_Image 1.4 — Reference Manual

shape
NAME

shape - calculate shape parameters of objects

SYNOPSIS

#i ncl ude "i mproto.h"

int shape(l MAGE *| abel _im VAR OBJECT *| abel, VAR OBJECT *xcentre,

VAR_OBJECT *ycentre,

VAR _OBJECT *area, VAR OBJECT *peri, VAR OBJECT

*p2a, VAR _OBJECT *ccoun, VAR OBJECT *count, int nosnooth)

DESCRIPTION

Calculate a number of shape parameters of objects. Theimage "label_im" is scanned
from the upper left corner to the lower right corner. If a non-zero pixel isfound within
the image, this indicates the upper left corner of alabeled object. The measured
parameters for each object will be stored into an output array (that is storedin a
var_object). Thereisan output array for each parameter. The order of parametersin
the arrays corresponds with the order in which the objects are detected. All measures
except "label" and "p2a" are expressed in pixels. The following information will be
stored in the output arrays.

Label number

Xcentre

Y centre

Area

Perimeter

Contour count

store the label number of the detected object into the element
of the integer array "label" corresponding with the sequence
number of the detected object.

store the X coordinate of the object’s center of gravity into
the floating point array "xcentre".

storethe Y coordinate of the object’s center of gravity into
the floating point array "ycentre".

store the area of the detected object into the integer array

area .

store the length of the curve, consisting of the (8-connected)
contour of the object into the floating point array "peri”.

store the value of the squared contour length divided by 4* Pl
times the area of the detected object, into the floating point
array "p2a’. In this measure, a curve following the outer
contour of the object is used for calculation of the contour
length. Note that thisis not the same value as "peri”, which is
the length of a curve following the centers of the contour

pixels.

store the number of contour pixels of the detected object into
the integer array "ccoun”.

The number of objects found will be stored into the scalar variable "count".

454

SCIL_Image 1.4 — Reference Manual

In general, before measuring the parameters, alocal object contour smoothing is done
on the obtained intermediate contour codes. The smoothing is performed by
replacement of chain-code sequences which describe sharp corners or jagged edges by
smoother chain-codes. Thislocal contour smoothing is performed until no more
changes occur. The smoothing may be suppressed by specifying the parameter
"nosmooth” (=1).

The maximum number of values that can be stored in an array is 1024, so no more
than 1024 object are measured in one image.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
density calibrated density |abel

shift_im
NAME
shift_im - pixel wise shift of image pixels

SYNOPSIS
#i ncl ude "improto.h"

int shift_im(IMAGE *in, |IMAGE *out, int nshift)

DESCRIPTION
Shift all pixels of image "in" "nshift" bits and store the result in image "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im or_im xor_im invert_im

455

SCIL_Image 1.4 — Reference Manual

show_cur_dir
NAME
show_cur_dir - Show directory in title bar.

PLATFORM
UNIX.

SYNOPSIS
voi d show cur_dir(int flag)

DESCRIPTION
show_cur_dir enables/disables the display of the current working directory in thetitle
bar of the command window. "flag" = 1 isenable, "flag" = 0 isdisable

RETURN VALUES
None

show_dmode flags

NAME
show_dmode flags - show the display mode flags of an image

PLATFORM
UNIX, Macintosh.

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt show dnode_fl ags(| MAGE *i nage)

DESCRIPTION
show_dmode flags() displays on the terminal window, the value of the display mode
flags of "image". This value includes the modes that can be set with both
set_display_mode() and set_dither_mode(). The corresponding value can be found in
the include file "dmodes". The different modes are all represented by aunique bitina
long word that is present in the viewport structure attached to the IMAGE structure.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
get_display _mode set_display mode set_dither_mode

456

SCIL_Image 1.4 — Reference Manual

show_func_overload

NAME
show_func_overload - show (part of) the function overload tables

SYNOPSIS

#include "im.infra.h"
i nt show func_overl oad(char *spec_func, int imtype, char *file_nane)

DESCRIPTION

show_func_overload can be used to display (part of) the function overload tables. The
output looks like:

imtypel imtype2 imtype3
func_name X X

This means that function "func_name" is overloadable for image types "im_typel"
and "im_type3" but not for type "im_type2".

If a"spec_func" isgiven only that function is taken into account, NULL as afirst
argument means al functions are taken into account.

If an"im_type" is given as the second parameter only functions that are overloadable
for that image type are displayed (0 == all types).

If a"file_name" is given as the third argument the output is send to that file, with
NULL the output is send to the controlling terminal.

RETURN VALUES
None

SEE ALSO
init_func_overload overloadable func

457

SCIL_Image 1.4 — Reference Manual

show_func_stack
show_error_stack
im_clear_func_stack
im_clear_errors
get im_error_stack

im_get func_stack copy

NAME
show_func_stack, show_error_stack, im_clear_func_stack, im_clear_errors,
get_im_error_stack, im_get _func_stack copy - examination and manipulation of
function and error-stack.

SYNOPSIS

#include "imerror.h "

voi d show func_stack(void)

voi d show error_stack(void)

void imclear_func_stack(void)

void imclear_errors(void)

void *get _imerror_stack(void)

void imget func_stack copy(l M FUNC STACK *fstack, int *flevel)

DESCRIPTION
fstack - pointer to local storage for the func-stack
flevel - pointer to local storage for the stack-level

show_func_stack() performs atextual dump of the function stack that is maintained
by theim_begin_func() and im_end_func() functions.

show_error_stack() performs atextual dump of the error-stack.

Both show_func_stack() and show_error_stack() use theimage output() function to
display their information. So it is up to the user interface if and how thisinformation
is shown.

clear_func_stack() and clear_error_stack() erase the contents of the function and
error-stack. This function should only be used by an interface after an error has
occurred and has been reported to the user.

get_im_error_stack() retrieves the pointer to the global error object "im_error_stack”.

This pointer can then be used to subscribe to the error-stack and thus receive
notification if an error occurred in the image-processing.

458

SCIL_Image 1.4 — Reference Manual

im_get_func_stack_copy() copies the global function-stack and the stack-level
counter to local storage.

Every user-interface for Image should take care of reporting errors to the user.

RETURN VALUES
None

SEE ALSO
im_begin_func im_end_func im_report_error image_output

show_image info
NAME
show_image _info - display information of an image

SYNOPSIS
#include "im.infra.h"

voi d show_ i mage_i nf o(l1 MAGE *im

DESCRIPTION
show_image_info() displays the data of the IMAGE data-structure of the specified
image "im" on the controlling terminal. This function isintended for debug purposes
only.

RETURN VALUES
None

459

SCIL_Image 1.4 — Reference Manual

show_menu_layout

NAME
show_menu_layout - dump the layout of the menu to file

PLATFORM
Unix.

SYNOPSIS
#i ncl ude "nd_gen. h"

int show_nenu_| ayout (char *filenanme, int show_itens)

DESCRIPTION
show_menu_layout() dumps the layout of the menu-system to afile by the name
"filename". The "show_items" flag determines if the menu-item are to be dumped as
well. "show_items' = 1 shows the menu and what isin the menus. "show_items" = 0.
shows only the menus.

The output is formatted with spaces to reflect the menu hierarchy.

RETURN VALUES
None

460

SCIL_Image 1.4 — Reference Manual

show_statistics

perc_to pixe
NAME
show_statistics - calculates statistic values of an image

perc_to pixel - converts a percentage to a pixel value.

SYNOPSIS
#i ncl ude "improto.h"

int show statistics(IMAGE *in, int node, int slicenr, int lo_limt,
int hi_limt)
int perc_to_pixel (IMAGE *in, int top, int node, int slicenr, double
perc)

DESCRIPTION

show_statistics() calculates and prints the following values from the total image "in"
or from a Z-dice "dicenr" of the 3D image "in" between the values["lo_limit",

"hi_limit"] :

Histo size size of internally calculated histogram, thisis the same as the
amount of pixel values.

Range the interval that contains the voxel values of the image, can be
influenced by lo_limit and hi_limit.

Range (perc.) the offset percentage of the range, measured from (in percents) the
top and the bottom of the histogram.

Amount the number of voxels between lo_limit and hi_limit.

Mean value the mean value of the histogram. /N sum i (histo[i]*i)

Standard Dev the standard deviation of the histogram.
sgrt(1/N sum_i (histo[i]*i - mean)"2)

SpecificDev the specific deviation. standard dev / modal

Std interval the standard interval.[mean - standard dev, mean + standard dev]

RMS the root mean square. /N sum i (histo[i]*i*1)

Modal the modal value.

left 1/e the point left from modal with the frequency of 1/e*f _modal. This

value can be out of range.

461

SCIL_Image 1.4 — Reference Manual

right /e

Median

1st quartile

3rd quartile
Background

Object perc

the point right from modal with the frequency of 1/e*f _modal. This
value can be out of range.

the 50% point in the histogram

the 25% point in the histogram

the 75% point in the histogram

the val ue between the background noise and the object data. This
value is determined by searching the zero point in the 3rd derivation
of the histogram. Thiswill give the value of the lowest point
between the background peak and the object peak.

the percentage of object-voxelsin the whole range.

Percentile points can be calculated with the function perc_to pixel(), it convertsa
percentage to a pixel value, by defining the histogram of the image "in" or slice (only
3D), and calculating the number of pixels from the top or the bottom of the histogram.
"top" is"Top" (0) means calculating the percentage from the top of the histogram,
"Bottom" (1) means from the bottom.

"mode" speci fies whether the entire image "in" isto be used ("Image" (0)) or just a
dice ("Slice" (1)). "dlicenr” tellswhich slice to usein "Slice" mode.

RETURN VALUES

perc_to_pixel() returns the pixel value at the percentage on success.
show_statistics() returns IE_OK (1) on success.
Negative error status on failure (see im_error.h)

462

SCIL_Image 1.4 — Reference Manual

show_var_object_info
NAME
show_var_object_info - display information on avar_object

SYNOPSIS
#i ncl ude "objectsp. h"

i nt show var_object i nfo(VAR OBJECT *obj)

DESCRIPTION
This function displays information on the var_object "obj" on the controlling terminal.
The information displayed concerns the name, class, type and the dimensions of the
object. Also the address of the datais displayed

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
list var_objects var_object destroy var_object var_object by name

sigma
NAME
sigma - standard deviation filter

SYNOPSIS
#i ncl ude "improto.h"

int sigma(l MAGE *in, | MAGE *out, int fsize)

DESCRIPTION
Standard deviation filter with sizes"fsize" * "fsize" from image "in" to image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

463

SCIL_Image 1.4 — Reference Manual

sign_im
NAME
sign_im- sign

SYNOPSIS
#i ncl ude "i mproto.h"

int sign_im | MAGE *in, | MAGE *out)

DESCRIPTION
Determine the sign of each element of the image "in" and store the result in the
corresponding element of the image "out". If an element of "in" has a positive or zero
value, theresult is 1, otherwise the result is - 1.

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
negation_im

464

SCIL_Image 1.4 — Reference Manual

silo_list
NAME
slo_list - list contents of the silo entries

SYNOPSIS
#i ncl ude "silo.h"

void silo_list(SILOPTR siloptr)

DESCRIPTION
siloptr - Pointer to theimage-silo.

Printsalist of al occupied entries. The entry information is printed:
entry number (silo_key).
start position in file.
Sizex.
sizey.

NOTE
Thisroutineis only used as a debugging tool. The routine will be removed in the future.

RETURN VALUES
None

465

SCIL_Image 1.4 — Reference Manual

silo_to_comp
NAME
silo_to_comp - transform image-silo into composite photo

SYNOPSIS
#i ncl ude "silo. h"

int silo_to conp(SILOPTR siloptr, COWTR conptr, int startlabel, int

endl abel)

DESCRIPTION
siloptr - Pointer to an image-silo.
comptr - Pointer to an composite photo.
startlabel - Silo-entry to start with.
endlabel - Silo-entry to end with.

Transfers a part of animage-silo to acomposite photo. If the startlabel is bigger than the
endlabel then the silo is scanned backwards.

NOTE
It does not create anew composite photo but merely adds the silo to an aready started
composite photo.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (seeim_error.h)

466

SCIL_Image 1.4 — Reference Manual

sin
cos
tan
asin
acos
atan
atan?2
sinh
cosh

tanh

NAME
sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh - trigonometric functions

SYNOPSIS
#i ncl ude <nmat h. h>

doubl e si n(doubl e x)
doubl e cos(doubl e x)
doubl e asi n(doubl e x)
doubl e acos(doubl e x)
doubl e at an(doubl e x)
doubl e atan2(doubl e x, double y)
doubl e si nh(doubl e x)
doubl e cosh(doubl e x)

doubl e tanh(doubl e x)

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:
sin(), cos() and tan() return trigonometric functions of radian arguments. The
magnitude of the argument should be checked by the caller to make sure the result is
meaningful.

asin() returnsthe arc sin in the range -pi/2 to pi/2.

467

SCIL_Image 1.4 — Reference Manual

acos() returnsthe arc cosine in the range 0 to pi.
atan() returns the arc tangent of x in the range -pi/2 to pi/2.
atan2() returns the arc tangent of x/y in the range -pi to pi.

sinh(), cosh(), and tanh() compute the designated hyperbolic functions.

RETURN VALUES

Arguments of magnitude greater than 1 cause asin and acosto return value O; errno is

set to EDOM. The value of tan at its singular pointsis a huge number, and errno is set
to ERANGE.

468

SCIL_Image 1.4 — Reference Manual

sin_im
cos im
tan_im
asin_im
acos im
atan_im
atan2 _im
sinh_im
cosh_im

tanh_im

NAME
sin_im, cos_im, tan_im, asin_im, acos_im, atan_im, atan2_im, sinh_im, cosh_im,
tanh_im - trigonometric functions on images

SYNOPSIS
#i ncl ude "improto.h"

int sin_inm | MAGE *in, | MAGE *out)
int cos_in(I MAGE *in, | MAGE *out)
int tan_im(I| MAGE *in, | MAGE *out)
int asin_im(I MAGE *in, | MAGE *out)
int acos_i m(I MAGE *in, | MAGE *out)
int atan_i m(I MAGE *in, | MAGE *out)
int sinh_im I MAGE *in, | MAGE *out)
int cosh_im(I MAGE *in, | MAGE *out)
int tanh_i m(I MAGE *in, | MAGE *out)

int atan2_i m(1 MACE *inl, |MAGE *in2, |MAGE *out)

DESCRIPTION
Trigonometric functions to be performed on images. The extension"_im" is added
because the trigonometric functions are predefined in C and therefore they cannot be
used for whole images. If illegal operations are performed on pixelsin theimage, a
count of the number of illegal operationsis printed.

sin_im(), cos_im() and tan_im() return trigonometric functions of radian arguments.

469

SCIL_Image 1.4 — Reference Manual

asin_im() returnsthe arc sin in the range -pi/2 to pi/2.

acos_im() returnsthe arc cosine in the range 0 to pi.

atan_im() returns the arc tangent of x in the range -pi/2 to pi/2.
atan2_im() returns the arc tangent of in1/in2 in the range -pi to pi.

sinh_im(), cosh_im() and tanh_im() calculate the hyperbolic function of each element
of the input image. The elements are assumed to be expressed in radians.

RETURN VALUES
asin_im, acos_im, atan2_im returns the number of illegal operations which occurred.
Therefore these functions return O on success.

sin_im, cos_im, tan_im, atan_im, sinh_im, cosh_im and tanh_im return IE_OK (1) on
success or negative error status on failure (seeim_error.h)

single pixels
NAME
single pixels - single point detection

SYNOPSIS
#i ncl ude "improto.h"

int single_pixels(lMAGE *in, |IMAGE *out, int bound, int conn, int
obj bkg, int detect_rem

DESCRIPTION
Detects single object pixelsin image "in" and stores the result inimage "out". The
image is scanned by a moving window with dimensions 3* 3. If the central pixel
within the window is the only object pixel in the window, it keepsitsvalueand is
detected as a single object pixel. Otherwise the central pixel becomes a background
pixel. "obj _bkg" specifies the kind of point that are searched for, object (1) or
background (0). "detect_rem" specifies whether the points found should be detected
(2) or removed (0). "bound" specifies that the edge around the image must be set to
foreground (1) or to background (0) pixels. “conn™ specifies the connectivity and can
either be 4 or 8.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

470

SCIL_Image 1.4 — Reference Manual

size
NAME
size

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See objectsize

skelpoints

NAME
skelpoints - detect the special skeleton points

SYNOPSIS
#i ncl ude "improto.h"

i nt skel points(I MAGE *in, | MAGE *out, int bound, int opcode, int
type)

DESCRIPTION

Detects specia pointsin askeleton inimage "in" and stores the result in image "out".
The type of points detected depends upon "opcode":

1 end pixels

2 link pixels

3 branch pixels
The image is scanned by a moving window with dimensions 3* 3. In each window the
central pixel ischecked for being a special point. If so the central pixel remains an
object pixel, otherwise it is deleted as an object pixel.

"type" determines how the skeleton points are defined; according to Hilditch (0) or
according to Preston (1).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hild_skelet holt_skelet

471

SCIL_Image 1.4 — Reference Manual

seep
NAME
sleep - suspend execution for interval

SYNOPSIS
unsi gned sl eep(unsi gned seconds)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be up to 1 second less than that
requested, because scheduled wakeups occur at fixed 1-second intervals, and an
arbitrary amount longer because of other activity in the system.

The routine isimplemented by setting an alarm clock signal and pausing until it
occurs. The previous state of thissignal is saved and restored. If the sleep time
exceeds the time to the alarm signal, the process sleeps only until the signal would
have occurred, and the signal is sent 1 second later.

small_object removal

NAME
small_object_removal - object select on size

SYNOPSIS
#i ncl ude "i mproto.h"

int small _object_removal (I MAGE *in, | MAGE *out, int size)

DESCRIPTION
Calculate for each object inimage "in" the object size by counting the number of
pixels and compare the size with "size". If the sizeislessthan "size", all object pixels
of the object are deleted (replaced by 0). If the sizeis greater than or equal to size, the
object isunmodified, i.e. it keepsits original label value.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
hull 1abel objectsize rhull

472

SCIL_Image 1.4 — Reference Manual

sobel_diff

NAME
sobel_diff - Sobel edge operator

SYNOPSIS
#i ncl ude "improto.h"

int sobel _diff(IMAGE *in, | MAGE *out, int node)

DESCRIPTION
Differential edge detection based upon the Sobel operator. Within the moving window
inimage "in", with dimensions 3* 3, the horizontal and vertical differential values are
calculated by a convolution with the masks (horizontal respectively. vertical):

The output value is calculated from these convolutions, depending upon the "mode"

specified:

sgrt (1) the output value is the square root of the sum of the quadratic convolution
results

sum (0) the output value is the sum of the absolute values of the convolution results

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
prewitt_diff roberts diff laplace prewitt temp kirsch _temp robinson_temp

SOS

NAME
SoS

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See small_object_removal

473

SCIL_Image 1.4 — Reference Manual

spb_publish
NAME

spb_publish - publish an event message to an object
SYNOPSIS

#i ncl ude "spublish. h"

voi d spb_publish(void *obj, int ness, void *data)
DESCRIPTION

spb_publish() publishes the message "mess" to all subscribers of the object "obj".
"data" is apointer to object- and message-specific data that accompanies the event
that triggered the publish. The type and contents of this data is determined by the
combination of object-type and message. A description of this data must be retrieved
from the documentation of the publishing object.

NOTE
The same message published by another type of object is very probably accompanied
by other data, both in type and contents.

RETURN VALUES
None

SEE ALSO
spb_subscribe spb_unsubscribe

474

SCIL_Image 1.4 — Reference Manual

spb_subscribe

spb_unsubscribe

NAME
spb_subscribe - subscribe to an publishing object

spb_unsubscribe - unsubscribe from an publishing object

SYNOPSIS
#i ncl ude "spublish. h"

voi d spb_subscribe(void *obj, void *id, SPBFUNC subscr, void *cl data)

voi d spb_unsubscri be(void *obj, void *id, SPBFUNC subscr)

DESCRIPTION
The function spb_subscribe() subscribes an object to another (publishing) object in
order to receive notification of important events of that object by means of messages.
"obj" isthe publishing object. "id" is an identifier for the subscriber, typically a
pointer to the subscribing object itself. "subscr” is a pointer to the function the
subscriber uses to process the messages. "cldata” is an (optional) pointer to data the
subscriber wants to receive whenever the publishing object broadcasts a message. The
type and contents of this datais only known to the subscribing object, it isNOT
interpreted by the subscribe-mechanism in any way.

spb_unsubscribe() removes the subscriber "id" from the list of subscriber of object
"obj". "subscr" is a pointer to the function the subscriber used to process the messages.
The function must be specified because a subscribing object can subscribe multiple
functions to a single publishing object.

The message-processing function "subscr" must have the following function header:

void func(void *obj, void *id, int nmess, void *data, void *cl data)

"obj" isthe publishing object, "id" isthe identifier for the subscribing object, "mess’
is the message the publishing object broadcasts. "data" is pointer to the data that
accompanies the message. "cldata’ is a pointer to the data the subscribing object
specified when subscribing to the publishing object.

RETURN VALUES
None

SEE ALSO
spb_publish

475

SCIL_Image 1.4 — Reference Manual

SpixX
NAME
Spix - pixel swapping

SYNOPSIS
#i ncl ude "i mproto.h"

int spix(lIMAGE *in, | MAGE *out)

DESCRIPTION
Swap the pixels of image "in" between even and odd columns and store the result into
image "out". The effect of this operation isto mutually swap pairs of pixelsthat, in
"packed" mode, were stored in one word. (Packed mode storage is usual for some
peripherals and storage devices).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

splih
NAME
splih

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See split_horizontal

476

SCIL_Image 1.4 — Reference Manual

split
NAME
split - image split-up

SYNOPSIS
#i ncl ude "improto.h"

int split(IMAGE *in, |IMAGE *out, int direct, int iter)

DESCRIPTION
Split image "in" into two halves, one half containing even lines and one half
containing odd lines of image "in" and store the result in image "out". Depending on
"direct", the command is executed on a per row (0) or per column (1) basis'. The
command is repeated "iter" times.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
split_horizontal split_vertical merge

477

SCIL_Image 1.4 — Reference Manual

split_channels

join_channels

NAME
split_channels - split amulti channel image in separate images

join_channels - build a multi channel image from separate images

SYNOPSIS
#i ncl ude "improto.h"

int split_channel s(I MAGE *in, | MAGE *outl, | MAGE *out2, | MAGE *out 3,
| MAGE *out 4)

int join_channel s(I MAGE *inl, |MAGE *in2, |IMAGE *in3, |MAGE *in4,
| MAGE *out, int imtype, int subtype)

DESCRIPTION
split_channels() takes each of the channels of a multi-channel image (up to 4
channels) and stores these channels in separate images. E.g. a RGB-color imageis
split in three images, one containing the red image, one the green image and one the
blue image. Each of the output images "out1" .. "out4" may beaNULL pointer to
retrieve only a subset of all the channels. The type of the output imagesis not changed
by this function, they remain as they were before the call to split_channels().

join_channels() takes the images "inl" .. "in4" and constructs a multi-channel image
from them. The type of the output image can be specified with the "im_type"
parameter. If the image type has sub-types, e.g. RGB for color images, this can be set
using "subtype". Each of the input images may be a NULL pointer to leave that
channel untouched -if the output image is already a multi-channel image of the
required "im_type" and "subtype’- or empty. In case a multi-channel image is chosen
as an input image, the first channel of that image is taken; regardless of its position on
the parameterslist. The images"inl" .. "in4" must all be off the same size.

NOTE
split_channels() does not change the type of the output image in any way; they remain
as they were before the call to the function.

EXAMPLE
uniform filtering a RGB-color image can be done by using a"normal” grey-value
uniform filter on each of the channels.

#i ncl ude "image. h"

readfile("flami ngo, a, 0,0);
split_channel s(a, b, c, d, NULL);
uni form b, b, 5, 5, 1);

uni formc, c, 5 5, 1);
uni formd, d, 5, 5, 1);
join_channel s(b, ¢, d, NULL, b, COLOR 2D, RGB T);

RETURN VALUES

478

SCIL_Image 1.4 — Reference Manual

IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_channel

split_horizontal

NAME
split_horizontal - split in horizontal direction

SYNOPSIS
#i ncl ude "improto.h"

int split_horizontal (I MAGE *in, |MACE *out, int iter)

DESCRIPTION
Same as split() with "direct" = 0.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
split_vertical split merge

split_vertical
NAME
split_vertical - split in vertical direction

SYNOPSIS
#i ncl ude "improto.h"

int split_vertical (I MAGE *in, |MAGE *out, int iter)

DESCRIPTION
Same as split() with "direct” = 1

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
split_horizontal split merge

479

SCIL_Image 1.4 — Reference Manual

spliv
NAME
spliv

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See split_vertical

sgrt_im
NAME
sgrt_im - square root

SYNOPSIS
#i ncl ude "i mproto.h"

int sgrt_i m I MAGE *in, | MAGE *out)

DESCRIPTION
Calculate the sguare root of each element of "in" and store the result in the
corresponding element of "out".

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
Number of domain conflicts (number of negative pixelsin the input image), so 0 is
OK.
Negative error status on failure (see im_error.h).

ssum

NAME
ssum

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

See piXx_sum

480

SCIL_Image 1.4 — Reference Manual

start_comp

NAME
start_comp - start a composite photo in an image

SYNOPSIS
#i ncl ude "image. h"
#i ncl ude "silo. h"

COWPTR start_conp(l MAGE *im

DESCRIPTION
image - Image pointer.

Function which must be called to start a composite photo inimage "im". It returns a

pointer to the composite photo. This pointer must be used in all subsequent composite

photo references.

RETURN VALUES
Pointer to COMPOSIT struct
Negative error status on failure (seeim_error.h)

481

SCIL_Image 1.4 — Reference Manual

Stat

fstat

NAME
stat, fstat - get file status

PLATFORM
UNIX

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

int stat(char *nane, struct

int fstat(int fildes,

DESCRIPTION

stat *buf)

struct stat *buf)

These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

stat() obtains detailed information about a named file. fstat() obtains the same
information about an open file known by the file descriptor from a successful open(),

creat(), dup() or pipe(2) call.

"name" pointsto a null-terminated string naming afile; "buf" is the address of a buffer
into which information is placed concerning thefile. It is unnecessary to have any
permissions at all with respect to the file, but al directories|leading to the file must be

readable.

The layout of the structure pointed to by "buf" as defined in <stat.h> is given below.
"st_mode" is encoded according to the "#define" statements.

struct stat {

dev_t st _dev;

ino_t st _ino;

unsi gned short st_node;

short st _nlink;

short st _uid;

short st _gid;

dev_t st _rdev;

of f _t st _si ze;

time_t st _ati ne;

time_t st_ntime;

time_t st _cti ne;
i
#define S IFMIr 0170000 /* type of file */
#define S IFDIR 0040000 /* directory */
#define S_I FCHR 0020000 /* character special */
#define S_| FBLK 0060000 /* bl ock special */
#define S | FREG 0100000 /* regular */
#define S ISU D 0004000 /* set user id on execution */
#define S |1 SG@ D 0002000 /* set group id on execution */
#define S | SVTX 0001000 /* save swapped text even after use */
#define S | READ 0000400 /* read perm ssion, owner */

482

SCIL_Image 1.4 — Reference Manual

#define S_|WRI TE 0000200 /* write perm ssion, owner */
#define S | EXEC 0000100 /* execute/search perm ssion, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see
chmod(2)). The defined types, ino_t, off_t, time_t, name various width integer values;
dev_t encodes major and minor device numbers; their exact definitions arein the
include file <sys/types.h> (see types(5).

When fildes is associated with a pipe, fstat reports an ordinary file with restricted
permissions. The size is the number of bytes queued in the pipe.

st_atimeisthe file was last read. For reasons of efficiency, it isnot set when a
directory is searched, although this would be more logical. st_ mtime is the time the
file was last written or created. It is not set by changes of owner, group, link count, or
mode. st_ctimeis set both by writing and changing the i-node.

RETURN VALUES
0 isreturned if astatusis available;
-1 if the file cannot be found.

483

SCIL_Image 1.4 — Reference Manual

stereo_view
NAME
stereo_view - calculate stereo images

SYNOPSIS
#i ncl ude "i mproto.h"

int stereo_view(I| MAGE *in, int node, int view, |MAGE *left, |MACE
*mddl e, | MAGE *right)

DESCRIPTION
stereo_view() calculates two or three images from which a stereo image can be made.
It can calculate the front view and the views from 45 degrees to the left and 45
degreesto the right. "mode" specifiesif the resulting images are kept in one output
image or distributed over two or three image. When "mode" is"Join" (1) all the

resulting images are put in the output image "left". "mode" is " Separate” (0) stores the
results each in an image specified by "left”, "middle" and "right”. "view" determines
which views are calculated, "LMR" (0) calculates all three views. "LM" (1) means the
left and the middle front view, "MR" (2) the middle and right view and "LR" means

the left and the right view.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sfp

484

SCIL_Image 1.4 — Reference Manual

strcasecmp
strncasecmp

strsave

NAME
strcasecmp, strncasecmp, strsave - string operations

SYNOPSI S
#i ncl ude "support.h"

i nt strcasecnp(const char *strl, const char *str2)
i nt strncasecnp(const char *strl, const char *str2, size_t nun)

char *strsave(const char *str)

DESCRIPTION
strcasecmp() and strncasecmp() compare two strings in a case-insensitive way. Their
behavior is like the ANSI-C stremp() and strnemp() functions except that differencesin
upper and lower case in the strings are ignored. If the strings are equal, strcasecmp()
returns zero. strncasecmp() returns zero if the strings are equal up to "num” characters.

strcasecmp() and strncasecmp() are two definesin the "support.h” that point to the
functions str_casecmp() and strn_casecmp() respectively. Thisis done to prevent
name-conflicts on platforms that supply strcasecmp() and strncasecmp() in the C-library.

strsave() copies the string "str” to newly allocated memory and returns a pointer to the
new string. If the string is empty or no string is supplied, NULL isreturned.

RETURN VALUES
strcasecmp() and strncasecmp() return zero if the strings are equal, a negative value if
"strl" islessthan "str2" and a positive value if "strl" is greater than "str2".

strsave() returns a pointer the newly alocated string or NULL if it cannot allocate
enough memory.

485

SCIL_Image 1.4 — Reference Manual

strcat
strncat
stremp
strncmp
strcpy
strncpy
strlen
strchr
strrchr
index
rindex
strspn
strcspn
strpbrk
Strstr
strtok

strerror

NAME
strcat, strncat, strcmp, strncmp, strepy, strnepy, strlen, strchr, strrchr, index, rindex,
strspn, strespn, strpbrk, strstr, strtok, strerror - string operations

SYNOPSIS
char *strcat(char *s1, char *s2)

char *strncat(char *sl1, char *s2, int n)
int strcnp(char *sl1, char *s2)

int strncnp(char *sl1, char *s2, int n)
char *strcpy(char *sl1, char *s2)

char *strncpy(char *sl1, char *s2, int n)
unsi gned int strlen(char *s)

char *strchr(char *s, char c)

486

SCIL_Image 1.4 — Reference Manual

char *strrchr(char *s, char c¢)
char *index(char *s, char c)
char *rindex(char *s, char c)
size_ t strspn(char *s, char *t)
size_t strcspn(char *s, char *t)
char *strpbrk(char *s, char *t)
char *strstr(char *s, char *t)
char *strtok(char *s, char *t)

char *strerror(int errnum

DESCRIPTION
These functions are interface functions to the standard C functions as implemented on
the current operating system. The functionality of these functionsis:

These functions operate on null-terminated strings. They do not check for overflow of
any receiving string.

strcat() appends a copy of string "s2" to the end of string "s1". strncat() copies at most
"n" characters. Both return a pointer to the null-terminated result.

stremp() compares its arguments and returns an integer greater than, equal to, or less
than 0, according as "s1" is lexicographically greater than, equal to, or less than "s2".
stremp() uses native character comparison, which is signed. strncmp() makes the same
comparison but looks at most "n" characters.

strepy() copies string "s2" to "s1", stopping after the null character has been moved.
strncpy() copies exactly "n" characters, truncating or null-padding "s2"; the target may
not be null-terminated if the length of "s2" is"n" or more. Both return "s1".

strlen() returns the number of non-null charactersin"s".

strchr() (strrchr()) returns a pointer to the first (last) occurrence of character "c" in
string "'s", or zero if "c" does not occur in the string.

strspn() returns the length of the prefix of "s" that consists of characters from "t".
strespn() returns the length of the prefix of "s' that consists of characters not in "t".

strpbrk() returns a pointer to the first occurrence in string "'s" of any characters from
string "t", or NULL if none are present.

strstr() returns a pointer to the first occurrence of string "t" in string "'s", or NULL if
not present

487

SCIL_Image 1.4 — Reference Manual

strtok() searches string "'s" for tokens delimited by characters from "t", A sequence of
calls of strtok(s,t) splits"s" into tokens, each delimited by a characters from "t". The
first call in asequence hasanon-NULL "s". It finds the first token in"s" consisting of
charactersnot in "t"; it terminates that by overwriting the next character of "s" with "\O’
and returns a pointer to the token. Each subsequent call, indicated by a NULL value of
"s", returns the next such token, searching from just past the end of the previous one.
strtok() returns NULL when no further token is found, the string "t" may be different
on each call.

SEE ALSO
memcmp memcpy memchr

swab

NAME
swab - swap bytes

SYNOPSIS
voi d swab(char *from char *to, int nbytes)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

swab() copies "nbytes" bytes pointed to by "from" to the position pointed to by "to",
exchanging adjacent even and odd bytes. It is useful for carrying binary data between
to other machines. "nbytes' should be even.

488

SCIL_Image 1.4 — Reference Manual

sync_display
NAME
sync_display - wait for all window-system events to be processed

PLATFORM
UNIX

SYNOPSIS
#i ncl ude "di sp_p. h"

i nt sync_displ ay(void)

DESCRIPTION
sync_display() causes the X window systems request buffer to be flushed and then
waits for all window-system events to be processed by the X server.

Thisfunction is generally only needed for debugging interactive
functions/applications during which you want to be sure that all window-system calls
have been processed.

RETURN VALUES
IE_OK (1)

system

NAME
system - issue a shell command

PLATFORM
UNIX, MS-Windows.

SYNOPSIS
int systenm(char *string)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

system() causes the string to be given to shell asinput asif the string had been typed
asacommand at aterminal. The current process waits until the shell has compl eted,
then returns the exit status of the shell.

RETURN VALUES
Exit status 256 indicates the shell couldn’t be executed.

489

SCIL_Image 1.4 — Reference Manual

t _morphology

NAME
t_morphology - threshold morphology transform

SYNOPSIS
#i ncl ude "i mproto.h"

int t_norphol ogy(lI MAGE *in, | MAGE *out, |IMAGE *se, int thr, int
bound)

DESCRIPTION
Threshold transform on the binary image "in" using the weighted structuring element
"se" with the given threshold value "thr" and store the result in the binary image in
"out".

The threshold transform is equivalent with a correlation of the binary image "in"
(valued 1 for object pixels and O for background pixels) with the mask given in the
grey valueimage "se". The result of this correlation (agrey value image) is then
thresholded. If the correlation sum is greater than or equal to "thr" the corresponding
pixel in the output image is an object pixel, else a background pixel. "bound" specifies
if the pixels outside the image should be interpreted as foreground pixels ("bound" =
1) or as background pixels ("bound" = 0).

Threshold morphological transform can be used to detect specific structuresin binary
images. All the pixelsin the structuring element with positive weight (grey value)
ideally should be object pixels. All pixels with negative weight ideally should be
background pixels. Pixels with weight zero are don’t care pixels.

As an example consider the following weighted structuring element to detect
horizontal linesin an image:

Correlating this mask with a binary image the resulting value in a pixel is between -42
(the sum of all negative weighted pixels) and +7 (the sum of all positive weighted
pixels). Note that in case the correlation sum equals +7 the structure defined with the
structuring element exactly fits in the image. Thus setting the threshold value equal to
+7 (or in genera equal to the sum of all positive values) gives the hit-or-miss
transform. In order to find the structure also when some noise is present we may lower
the threshold to 5.

Because in the above defined structure there are far more background pixels than there
are object pixels, a better choice for the weighted structuring element is:

490

SCIL_Image 1.4 — Reference Manual

Note that in this case the correlation value ranges from -42 to +42. In a sense, with our
choice of weights we indicate that an object pixel is 6 times asimportant as a
background pixel. But also that all background pixels are equally important (as are the
object pixels).

A further refinement is to take into account that pixels further from the center line are
less important than those close to the center line. Thus a new (and better) choice for
the weighted structuring element is.

1 -1 -1 -1 -1 1 -4
2 2 2 2 2 2 =2
4 4 4 -4 -4 -4 -4
+14 +14 +14 +14 +14 +14 +14

In this case the correlation value ranges from-98 to +98.

Further refinements are possible. We can take into account that the line thickness may
vary by introducing extra lines in our weighted structuring element with positive
weights. Of course the structures to be detected need not be restricted to horizontal
lines. Any geometrical structure can be used.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
arbit_erosion arbit_dilation hit_or_miss real_time_recognizer

491

SCIL_Image 1.4 — Reference Manual

taylor_polynomial

taylor _expansion
NAME
taylor_polynomial, taylor_expansion - create and apply taylor polynomial

SYNOPSIS
#i ncl ude "improto.h"

int tayl or_pol ynoni al (VAR OBJECT *out, int order, double delta_x,
doubl e delta_y, double delta_s)

int tayl or_expansion(lI MAGE *in, | MAGE *out, double sigma, int order
doubl e accuracy, double delta x, double delta_y, double t)

DESCRIPTION
taylor_polynomial() creates the taylor expansion polynomial up to "order" derivatives'
for spatial offset ("delta x", "delta_y") and scale offset "delta_s". The coefficientsin
the output var_object "out" (of type DOUBLE_T) represents the factor which each
derivative should be multiplied before summation. The organization of the output is as
follows:

{L}, {Ly,Lx}, {Lyy, Lyx, Lxx}, ...

Each factor belongs to the corresponding derivative in
{f}, {df/dy, df/dx}, {df/dydy, df/dydx, df/dxdx}, ...

The function taylor_expansion() applies the expansion to image "in", by means of
gaussian derivative filters using "order" "sigma" and "accuracy". The scale parameter
is replaced by -t*sqrt("sigma"), resulting in the natural scale for t=0.5.

LITERATURE
L. Florack, The syntactical structure of scalar images, PhD Thesis, University of
Utrecht, The Netherlands, 1991.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
gauss_family fuzzy derivative

492

SCIL_Image 1.4 — Reference Manual

taylor _segmentation

NAME
taylor_segmentation - segments a textured image by NJet examination

SYNOPSIS
#i ncl ude "improto.h"

int taylor_segmentation(l MAGE *in, | MAGE *out, double dscale, int
order, doubl e snpot h)

DESCRIPTION
Performs a segmentation on the textured image "in" by means of differentiation. This
can be interpreted as extracting the Taylor series or local NJet of the input image. The
order of the taylor expansion is given by "order"; the scale for differentiation is
"dscale". After the convolution, local energy is taken with "smooth" determining the
gaussian sigma. A non-linear transform (sgrt_im) is applied and a feature reduction by
means of Karhunen-Loeve Transform. The final result is stored in image "out".

LITERATURE
M. Unser and M. Eden, Nonlinear operators for improving texture segmentation based
on features extracted by spatial filtering, |EEE Transactions on Systems, Man, and
Cybernetics, vol. 20, 1990, 804-815.

J.J. Koenderink and A.J. van Doorn, Receptive field families, Biological Cybernetics,
vol. 63, 1990, 291-297.

RETURN VALUES
IE_OK (1) on succes
Negative error status on failure (see im_error.h)

SEE ALSO
gauss_family mul_im vgauss sgrt_im karhunen_loeve

493

SCIL_Image 1.4 — Reference Manual

tcl_readfile

NAME
tcl_readfile - read an image from afilein TCL format

SYNOPSIS
#i ncl ude "i mproto.h"

| MAGE *tcl _readfile(char *filenanme, | MAGE *inmage, int Xpos, int ypos)

DESCRIPTION
Read the image stored in file "filename" and put it in image "image”. If
"USE_NAME" (aNULL pointer) is specified as the image, a new image is created at
position "xpos", "ypos’, with the same name as the file. If an imageis already present
with that name, that image will be used.

The file must have the ".dat" extension.

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL pointer on failure

SEE ALSO
readfile ics _readfile tiff_readfile aim readfile jpeg_readfile writefile tcl_writefile

494

SCIL_Image 1.4 — Reference Manual

tcl_writefile

NAME
tcl_writefile - write an image to filein TCL format

SYNOPSIS
#i ncl ude "improto.h"

int tcl_witefile(l MAGE *image, char *fil enane)

DESCRIPTION
Write the image "image” to the file "filename" using the TCL format. If the image
contains only 8 bit data (grey values 0..255), the image will be written in packed
format (8 bit per pixel), otherwise the data will be written using 16 bits per pixel.

Thefilewill have the".dat" extension.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
writefile ics writefile tiff_writefile jpeg writefile readfile tcl_readfile

495

SCIL_Image 1.4 — Reference Manual

threshold

bi_threshold

NAME
threshold - thresholding into binary image

bi_threshold - thresholding with two levelsinto binary image

SYNOPSIS
#i ncl ude "improto.h"

int threshol d(1 MAGE *in, |IMAGE *out, int |evel)

int bi_threshold(I MAGE *in, |MAGE *out, int low, int high)

DESCRIPTION
threshold performs a thresholding operation on the grey value image "in" and stores
the result in the binary image "out". If the value of a pixel is greater than or equal to
"level" the corresponding bit in the "out" imageis set to "1". Otherwiseit isset to "0".

bi_threshold() converts all the pixel in the range from "low" to "high" into "1" pixels
in the output and all pixelsthat are outside that range to "0" pixels. "low" and "high"
are converted to "1" pixels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip contrast_stretch equalize tri_state threshold lookup

496

SCIL_Image 1.4 — Reference Manual

ti_block

NAME
ti_block - generate chess-board test image

SYNOPSIS
#i ncl ude "improto.h"

int ti_block(IMAGE *out, int block size, int forgr, int backgr)

DESCRIPTION
Generate a chess-board like pattern and store the result in "out". The pattern consists
of alternating foreground and background squares. The size of the squares are given
by "block_size". The pixel values of the fore- and background squares are given by
"forgr" and "backgr".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_circle ti_hlines ti_lines ti_Ishading ti_points ti_qgshading ti_vlines

ti_circle

NAME
ti_circle - generate test image with concentric circles

SYNOPSIS
#i ncl ude "improto.h"

int ti_circle(IMAGE *out, int dist, int rad, int line_w, int forg,
i nt back)

DESCRIPTION
Generate a pattern of concentric circles and store the result in "out". The center point
of the circleswill be at the center of the image. The distance between the circlesis
specified by "dist". The starting point of the innermost circle is specified "rad",
measured from the center point. "line_ w" specifies the width of the circles. "forg" and
"back" specify the pixel values of the fore- and background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_hlines ti_lines ti_Ishading ti_points ti_qshading ti_vlines

497

SCIL_Image 1.4 — Reference Manual

ti_fractal
ti ifr
NAME
ti_fractal, ti_ifr - generate fractal images

SYNOPSIS
#i ncl ude "improto.h"

int ti _fractal (I MAGE *out, double dim

int ti_ifr(lMAGE *out, double slope)

DESCRIPTION
These functions generate fractals. ti_fractal() generates afractal image with fractal
dimension given by "dim". The function ti_ifr() generates an inverse function
response, with slope "slope". After multiplying with a random image and applying a
hartley or fourier transform, the spatial fractal is obtained. This function can be
interpreted as a"fractal” point spread function.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

498

SCIL_Image 1.4 — Reference Manual

ti_hlines
NAME
ti_hlines - generate test image with horizontal lines

SYNOPSIS
#i ncl ude "improto.h"

int ti_hlines(IMAGE *out, int dist, int start_p, int line_w int
forg, int back)

DESCRIPTION
Generate a horizontal line pattern and store the result in image "out". The distance
between the lines is specified by "dist". The starting point of the line pattern is
specified by "start_p", measured from the top side of the image. "line_ w" specifies the
width of the lines. "forg" and "back" specify the pixel values of the fore- and
background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_lines ti_Ishading ti_points ti_qshading ti_vlines

499

SCIL_Image 1.4 — Reference Manual

ti_lines
NAME
ti_lines - generate test image with crossing lines
SYNOPSIS
#i ncl ude "i mproto.h"
int ti _lines(I MAGE *out, int dist, int start_p, int line_w int forg,
i nt back)
DESCRIPTION

Generate a pattern of crossing lines and store the result in image "out" The distance
between the lines is specified by "dist". The starting point of the line patternis
specified by "start_p", measured from the top side and from the left side of the image.
"line_w" specifies the width of the lines. "forg" and "back" specify the pixel values of
the fore- and background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_Ishading ti_points ti_gshading ti_vlines

ti_Ishading
NAME
ti_Ishading - generate linear shading image

SYNOPSIS
#i ncl ude "improto.h"

int ti_Ilshading(l MAGE *out, double top_r, double top_|, double bot I)

DESCRIPTION
Generate alinearly shaded grey value image and store the result in image "out". The
intensity is defined by "top _r", "top_I" and "bot_I". "top_r" specifies the value of the
top right pixel, "top_|" the top left pixel and "bot_|" the bottom left pixel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_points ti_gshading ti_vlines

500

SCIL_Image 1.4 — Reference Manual

ti_points
NAME
ti_points - generate test image with symmetric points

SYNOPSIS
#i ncl ude "improto.h"

int ti_points(IMAGE *out, int dist, int start_p, int width, int forg,
i nt back)

DESCRIPTION
Generate a pattern of equidistant square dots and store the result in image "out”. The
distance between the dots in horizontal and vertical direction is specified by "dist".
The starting point of the pattern is specified by "start_p", measured from the top side
and from the |eft side of the image. "width" specifies the dimensions of the dots.
"forg" and "back" specify the pixel values of the fore- and background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_Ishading ti_gshading ti_vlines

ti_gshading
NAME
ti_gshading - generate quadratic shading image

SYNOPSIS
#i ncl ude "improto.h"

int ti_qgshading(l MAGE *out, int cval, int top_l)

DESCRIPTION
Generate a quadratically shaded grey value image and store the result in image "out".

The intensity is defined by "cval" and "top_|". "cval" specifies the intensity at the
center point and "top_|" the intensity in the top left pixel.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_Ishading ti_points ti_vlines

501

SCIL_Image 1.4 — Reference Manual

ti_vlines
NAME
ti_vlines - generate test image with vertical lines

SYNOPSIS
#i ncl ude "i mproto.h"

int ti_vlines(IMAGE *out, int dist, int start_p, int line_w int
forg, int back)

DESCRIPTION
Generate a vertical line pattern and store the result in image "out". The distance
between the lines is specified by "dist". The starting point of the line patternis
specified by "start_p", measured from the left side of theimage. "line_ w" specifiesthe
width of the lines. "fore" and "back™ specify the pixel values of the foreground and
background.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
ti_block ti_circle ti_hlines ti_lines ti_Ishading ti_points ti_qshading

ticb
NAME
ticb

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_block

ticc
NAME
ticc

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_circle

502

SCIL_Image 1.4 — Reference Manual

tiff_readfile

NAME
tiff_readfile - read an image from afile in TIFF format

SYNOPSIS
#i ncl ude "improto.h"

| MAGE *tiff_readfile(char *filenane, | MAGE *inmage, int xpos, int
ypos)

DESCRIPTION
Read the image stored in file "filename" and put it in image "image". If
"USE_NAME" (aNULL pointer) is specified as the image, a new image is created at
position "xpos", "ypos"’, with the same name as the file. If an image is already present
with that name, that image will be used.

The read function is capable of reading TIFF-files according to the TIFF 6.0
specifications. The file must have an extension that starts with ".tif". The extensions
used for finding a TIFF file are ".tif" and ".tiff".

If more than oneimage is present in a TIFF file, the number of the image to be read
can be set by the function "set_tiff_image number".

RETURN VALUES
The pointer to the image in which the data was put, either an existing image or a
newly created one.
NULL pointer on failure

SEE ALSO
set_tiff_image _number readfile ics readfile tcl_readfile aim_readfile jpeg_readfile
writefile tiff_writefile

503

SCIL_Image 1.4 — Reference Manual

tiff_writefile
NAME
tiff_writefile - write an image to afilein TIFF format

SYNOPSIS
#i ncl ude "i mproto.h"

int tiff_witefile(l MAGE *image, char *fil enane)

DESCRIPTION
Write the image "image” to the file "filename" using the TIFF format. The write
function writes TIFF-files according to the TIFF 6.0 specifications.

The file will have the extension " .tif".

By default the data will be written uncompressed. To write the data compressed, use
the function "set_tiff_compression".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
set_tiff_compression writefile ics writefile tcl_writefile jpeg_writefile readfile
tiff_readfile

tilh
NAME
tilh

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_hlines

504

SCIL_Image 1.4 — Reference Manual

tiln
NAME
tiln

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_lines
tils
NAME
tils
DESCRIPTION

Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_Ishading

tilv
NAME
tilv

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_vlines

505

SCIL_Image 1.4 — Reference Manual

time
NAME
time - time a command

SYNOPSIS

ti me <command>

DESCRIPTION
The command time records system and user time of a specific command. Typically
useful in benchmarking. Anything can be timed.

EXAMPLE
[C1] int i=1000;
[C2] time while(i--);
user time: 0.983 systemtine: 0.000
[C3]

tipt
NAME
tipt
DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_points

tigs
NAME
tigs

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeti_gshading

506

SCIL_Image 1.4 — Reference Manual

tmpfile

tmpnam

NAME
tmpfile, tmpnam - create temporary files

SYNOPSIS
#1 ncl ude <stdi o. h>

FILE *tnpfil e(void)

char *tnpnan({char *s)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

tmpfile() creates atemporary file of mode "wb+" that will be automatically removed
when closed or when the program terminates normally. tmpfile() returns a stream, or
NULL, if it could not create thefile.

tmpnam(NULL) creates a string that is not the name of an existing file, and returns a
pointer to an internal static array. tmpnam(s) storesthe stringin"'s" aswell as
returning it asthe function value. "s' must" have room for at least "L_tmpnam"
characters. tmpnam() generates a different name each timeit is called ; at most
TMP_MAX different names are guaranteed during execution of the program. Note
that tmpnam() creates a name, not afile.

RETURN VALUES
See the description of the functions.

507

SCIL_Image 1.4 — Reference Manual

tolower

toupper

NAME
tolower, toupper - change the case of characters

SYNOPSIS
#i ncl ude <ctype. h>

int tolower(int c)

i nt toupper(int c)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunction is:

If "c" isan uppercase letter, tolower(c) returns the corresponding lowercase | etter;
otherwiseit returns"c". If "c" is an lowercase | etter, toupper(c) returns the
corresponding uppercase letter; otherwise it returns"c".

SEE ALSO
islower isupper

508

SCIL_Image 1.4 — Reference Manual

tri_state threshold

NAME
tri_state threshold - 3-state thresholding

SYNOPSIS
#i ncl ude "improto.h"

int tri_state threshol d(I MAGE *in, | MAGE *out, int thresh, int vall,
int fl1, int val2, int fl2, int val3, int fl3)

DESCRIPTION

Depending upon the threshold value "thres’, change all pixel values of image "in" into
one of thevalues"vall", "val2" or "val3", according to the rules:

- if input pixel < "thres": output pixel = "vall"

- if input pixel = "thres": output pixel = "val2"

- if input pixel > "thres": output pixel = "val3"
and store the result inimage "out”. If "fl1" is 0 and the first rule is applied, then the
value of the output pixel will not be set to "val1" but to the value of the input pixel.
The same appliesto "fl2" and "fI3".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
clip threshold contrast_stretch equalize lookup mix

509

SCIL_Image 1.4 — Reference Manual

truncate im

NAME
truncate_im - truncate pixel values

SYNOPSIS
#i ncl ude "i mproto.h"

int truncate_inm | MAGE *in, | MAGE *out)

DESCRIPTION
Convert each element of image "in" into an integer value by means of truncation of
the fractional part and store the result into the corresponding elements of "out". For
positive values the effect is that the integer value just less than or equal to the original
value istaken. For negative values the effect is that the integer value just greater than
or equal to the original valueis taken.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
fraction_im nearest_int lowest_int

510

SCIL_Image 1.4 — Reference Manual

TWAcquire

TWAcquireArea

NAME
TWAcquire - acquire an image from a Twain device

TWAcquireArea - acquire aregion of animage from a Twain device

PLATFORM
MS-Windows.

SYNOPSIS
#i ncl ude "i mage. h"

i nt TWAcqui re(l MAGE *i nmage)

int TWAcqui reArea(l MAGE *i mage, double res, double xleft, double
ytop, doubl e xright, ybottom int type)

DESCRIPTION
TWAcquire() (=TwainAcquire in the menu) retrieves an image from a Twain
compliant device that is attached to the system. Theimage is stored in "image". If
more that one deviceis present, the default device istaken. Currently no provisions

are available to salect another than the default device.

The device must be attached to and its (driver) software properly installed on the
system as controlling the device is done by the device software itself.

TWAcquireArea() (=TwainScan in the menu) retrieves aregion of the image that can
be acquired from an attached device. The size and position of the region to scan is
determined by "xleft", "ytop", "xright" and "ybottom". The scan resolution is given by
"res'. Thetype of the datais specified by "type" and can be one of the following
values:

Unknown

Binary

Grey value

Color

wnNPEe O

RETURN VALUES
1 on success
O on failure

511

SCIL_Image 1.4 — Reference Manual

txt

NAME
txt

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with
TCL_Image routines.

Seeimage text

unequalO_ok

NAME
unequal0_ok - check to see if an integer value is unequal to zero

SYNOPSIS
#include "iminfra.h"

i nt unequal 0_ok(int value, char *text)

DESCRIPTION
If the value "value" is not equal to zero, an error is generated and the following
message is added to the error-stack:

<text> [<val ue>] nust be unequal to O

NOTE
This functions can only check on integer values, to check on floating point values, use
the function funequal0_ok()

RETURN VALUES
IE_OK (2) if "value" isunequal to zero
IE_ NOT_OK (0) if it isequal to zero

SEE ALSO
positive ok greaterO ok funequalO_ok

512

SCIL_Image 1.4 — Reference Manual

ungetc

NAME
ungetc - push character back into input stream

PLATFORM
UNIX.

SYNOPSI S
#i ncl ude <stdi o. h>

int ungetc(char *c, FILE *streamn

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

ungetc() pushes the character "c" back on an input stream. That character will be
returned by the next getc() call on that stream. ungetc() returnsc.

One character of pushback is guaranteed provided something has been read from the
stream and the stream is actually buffered. Attempts to push EOF are rejected.

fseek() erases all memory of pushed back characters.
RETURN VALUES
ungetc returns EOF if it can’'t push a character back.

SEE ALSO
getc setbuf fseek

513

SCIL_Image 1.4 — Reference Manual

uniform

NAME
uniform - uniform linear filtering

SYNOPSIS
#i ncl ude "i mproto.h"

int uniform(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz)

DESCRIPTION
Image "in" is scanned with a moving window with sizes "filtx" * "filty" ("filtx" *
"filty" * filtz" for 3D images). For each window position the average value of the
pixels within the window is calculated. This average pixel valueis stored into the
pixel inimage "out" that corresponds with the central pixel in the window.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

uniform_round

NAME
uniform_round - uniform filter using a circular filter window

SYNOPSIS
#i ncl ude "i mproto.h"

int uniformround(l MAGE *in, |IMAGE *out, int fsize, int norm

DESCRIPTION
Image "in" is uniform filtered with a circular window and the result is put in image
"out". The diameter of the circular window is"fsize". If "norm" is On (1) the result of
the filter is normalized.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
uniform grey_morph_round

514

SCIL_Image 1.4 — Reference Manual

update

NAME
update - delete marked objects from an object list

SYNOPSIS

#i ncl ude "im.aio. h"

LI ST *update(LI ST *Ilist)

DESCRIPTION
list - List with objects

update() removes all marked objects from the object list "list". Objects are marked
from removal with the rm_object() function.

NOTE
The object is not removed from the image. Y ou need to call hide_object() to remove
an object from an image.

EXAMPLE
To renove objects touching the edge of an inage

#i ncl ude "image. h"
#i ncl ude "im.aio. h"
LI ST *I, *o;

readfil e("cernet", a, 0,0);

t hreshol d(a, b, 128);

i nvert _in(b,b);

I =1list_label(b,c,8,0);

FORALL(o0,1) if(edge_object(c,0)) rmobject(o);
| = update(l);

/*

* Now to prove that the objects are no longer in the list

*/
FORALL(o0,|) copy_object(c,d,0);
I =rmlist(l);

RETURN VALUES

pointer to the updated list

SEE ALSO
hide_object rm_object

515

SCIL_Image 1.4 — Reference Manual

val_check

NAME
val_check - check if avalue is smaller than the image size

SYNOPSIS
#include "iminfra.h"
#i ncl ude "comand. h"

int val _check(l MAGE *image, int axis, int value)

DESCRIPTION
The function checksif "value" is positive and smaller than the size of the dimension
specified by "axis'. The values that "axis' can have are defined in the include file
"command.h" and they are:

WIDTH (1) to check if "value" is smaller than the width of the image
HEIGHT (2) to check if "value" is smaller than the height of the image
DEPTH (3) tocheck if "value" is smaller than the width of the image

A special valuefor "axis" if END (-1) that just returns the value -1. Thisis a special

case implemented for the function im_val_ok() which performs a series of callsto
val_check().

If the value is outside the image, for each of the different axis another messageis
generated, telling which axisis involved.

RETURN VALUES
END (-1) if "axis" is-1
IE_OK (1) if the value is within the image borders
IE_NOT_OK (0) if the value outside the image

SEE ALSO
im_val_ok range ok

516

SCIL_Image 1.4 — Reference Manual

var_object
NAME
var_object - create avar_object

SYNOPSIS
#i ncl ude "objectsp. h"

VAR _OBJECT *var_object(char *nanme, char *class, int type, int
nr_channels, int nr_dim int dinl, int din2, int din8, int dind, int
di nb)

DESCRIPTION
"var_object" creates a new object of the desired type and sizes.

"name" is the name of the object.

"class' isthe class name of the var_object.

"type" isthe type of data stored in the var_object. In principle only the standard C-
types are supported, with one exception, the type "PIXEL" is also supported for it is
the most often used type.

The following types are supported:

PIXEL T 1
CHART 2
SHORT T 4
INT_T 8
LONG. T 16
FLOAT T 32
DOUBLE T 64

"nr_channels" isthe number of channels that each elements consist of. This special
dimension is added because in a number of casesit is more convenient. For example,
complex datais considered as two-channel to show better compatibility with other
data (especially where images are concerned).

"nr_dim" specifies both the number of dimensions of the object, and the number of
parameters (of the rangediml ... dim5) that are valid. All dimensions over "nr_dim"
are set to 1 so when calling this function it is allowed and taken into account that not
al of the parameter of diml .. dim5 are supplied (Thisis allowed in the C-language).
So for example if you say:

var_object("ny_object","array", FLOAT T, 1, 1, 128);

an object with the name "my_object” and of class "array" is created which is aone-
dimensional array of 128 floats.

Even null-dimensional array’s (which arein fact scalars) are allowed, simply specify
"nr_dim" as 0 and you have a single variable of the desired type.

o517

SCIL_Image 1.4 — Reference Manual

The maximum number of dimensionsis currently set to 5.

NOTE
When using any of the functions for changing the sizes or data-type of the var_object
and the system is not capable of allocating enough memory for it, then the contents of
the var_object concerned will NOT have been lost. The var_object will be off the
same sizes as before with all its data intact.

RETURN VALUES
A pointer to the newly defined var_object on success.
NULL pointer on failure

SEE ALSO
destroy var_object var_object by name show_var_object info list_var_objects
write var_object read var_object var_object convert var_object_to_image
image to var_object var_object copy set var object type set var_object size
set var_object_data set_ var_object class set var_object_comment

var_object_by name
NAME
var_object_by name - get pointer of var_object by its name

SYNOPSIS
#i ncl ude "i mproto.h"

VAR_OBJECT *var_obj ect _by_name(char *name, int case_sensitive)

DESCRIPTION
If the pointer to an var_object is not at hand you obtain that pointer by use of this
function. "name" is the name of the var_object, "case _sensitive" specifies whether a
distinction between lower case and upper case characters should be made. If it is zero
then no distinction is made.

RETURN VALUES
Pointer to the requested var_object on success.
NULL pointer if var_object "name" does not exist.

SEE ALSO
var_object destroy var_object show_var_object_info

518

SCIL_Image 1.4 — Reference Manual

var_object_convert

NAME
var_object_convert - convert avar_object into another type

SYNOPSIS
#i ncl ude "objectsp. h"

i nt var_obj ect _convert (VAR OBJECT *source, VAR OBJECT *desti nati on,
int out_type)

DESCRIPTION
Convert avar_object into another data-type. "destination™ will become avar_object
that is of equal sizes as "source" but of type "out_type". If "out_type" equals zero then
"out_type" will be equal to the type of "destination”, so the data of "source" will be
converted to the type of "destination™ and stored in "destination”. For afull listing of
all available data-types see var_object()

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object var_object_to_image image_to var_object

var_object_copy
NAME
var_object_copy - copy the contents of one var_object to another

SYNOPSIS
#i ncl ude "objectsp. h"

i nt var_object _copy(VAR OBJECT *obj 1, VAR OBJECT *obj 2)

DESCRIPTION
Copy the contents of the var_object "obj1" to the var_object "obj2". The type and
sizes of the second object are adjusted to match that of the first one.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object

519

SCIL_Image 1.4 — Reference Manual

var_object_ok
NAME
var_object_ok - check if the pointer isavalid var_object pointer

SYNOPSIS
#i ncl ude "objectsp. h"

i nt var_obj ect ok(VAR OBJECT *var_object)

DESCRIPTION
The pointer "var_object” is checked if it pointsto avalid var_object. The linked list in
which all the var_objects are present is scanned for the occurrence of "var_object"”. If
no var_object exist with this pointer, an error is generated and the following message
is added to the error-stack:

Non exi sting var_object pointer.

The functionis var_object() performs the same check and has the same return values
but does not generate an error (and nothing is added to the error-stack).

RETURN VALUES
IE_OK (1) if the pointer isavalid var_object.
IE_NOT_OK (0) if "var_object" does not point to avar_object.

SEE ALSO
is var_object

520

SCIL_Image 1.4 — Reference Manual

var_object_to _image
NAME
var_object_to_image - convert avar_object into an image

SYNOPSIS
#i ncl ude "objectsp. h"

i nt var_object _to_i nage(VAR OBJECT *object, | MAGE *inage, int
type_of _i nage)

DESCRIPTION
Convert the var_object "object" into the image "image". "type _of image" specifiesthe
type that the image will become. If "type _of image" is zero then the type of the image
itself will be taken. Var_objects with more than 3 dimensions cannot be converted
into an image (not counting the nr_channels dimension).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object image to var_object

521

SCIL_Image 1.4 — Reference Manual

Vi

pwd

grep
NAME
vi, $, Is, cd, sh, pwd, grep - execute shell commands

PLATFORM
UNIX.

SYNOPSIS

$<command>

I s <nane>

cd <di r name>

sh

pwd

grep <pattern> <fil ename>

DESCRIPTION
With "$<command>" a single command is executed by the operating system and
control isdirectly returned to SCIL. For instance "$date" displays current date and
time. Several frequently used operating system commands can be typed directly
which are: "vi", "Is", "sh", "cd", "pwd" and the "grep" command.

EXAMPLE
[C1] vi filename
[C] Is *.c
[C3] sh
[C4] cd test

The first command will activate the UNIX screen editor concerning the file "filename"
and the second will give adirectory list of all fileswith extension ".c". With the
command "sh" another shell (/bin/sh) will be initiated to give a sequence of operating
system commands before returning control. The "cd" command can be used to change
the current working directory, in this case "test"

522

SCIL_Image 1.4 — Reference Manual

vkuwahara

NAME
vkuwahara - 3D kuwaharafilter

SYNOPSIS
#i ncl ude "improto.h"

i nt vkuwahara(l MAGE *in, |MAGE *out, int fsize, int vari)

DESCRIPTION
The vkuwahara() filter operates on a 3* 3*3 window in the 3D image "in" and stores
the result inimage "out". The filter size "fsize" can be set to either 27 or 19 (27 isthe
entire 3* 3* 3 window, 19 is the 3* 3*3 window without the 8 corner voxels).

The window is divided into 8 octants each containing 8 (27 window) or 7 (19
window) voxels. From each octant the variance or relative variance of the voxels
valuesis determined. The new voxels value will be the mean value of the octant that
shows the smallest (relative) variance. For computing speed reasons, the difference
between the maximum and the minimum of the voxelsin each octant istaken asa
measure for the variance.

The parameter "vari" determines whether the variance of awindow isto be weighted
by the mean (1) or not (0).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

523

SCIL_Image 1.4 — Reference Manual

vlaplace

NAME
vlaplace - 3D laplacefilter.

SYNOPSIS
#i ncl ude "i mproto.h"

int vlaplace(l MAGE *in, | MAGE *out)

DESCRIPTION
Differential edge detection based on the L aplacian operator:
dn2 dn2 dan2
D=----- + ----- + -----

Image "in" isfiltered and the result is stored in image "out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

viinear

NAME
vlinear - 3D linear filter

SYNOPSIS
#i ncl ude "i mproto.h"

int vlinear(I MAGE *in, | MAGE *filter, | MAGE *out)

DESCRIPTION
Perform alinear filter on image "in" and store the result in image "out". The
weigh-factors are determined by the 3* 3* 3 image "filter". For each voxel of image
"Iin", the voxelsin a 3* 3* 3 window around this voxel are multiplied by the
corresponding weigh-factor from image "filter". The sum of the multiplications,
divided by the total sum of the weigh-factors is the new value the voxel in image
"out".

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

524

SCIL_Image 1.4 — Reference Manual

vmedian

NAME
vmedian - 3D median filter

SYNOPSIS
#i ncl ude "improto.h"

int vmedian(I MAGE *in, | MAGE *out, int fsize)

DESCRIPTION
vmedian() sorts the voxelsin the filter window inimage "in" on value. The new voxel
value in image "out" will be the median value of the sorted voxels. The size of the
filter window can be set using "fsize". Valid values are 7 (the voxdl plusits direct
neighbors on the X-, Y and Z-axis), 19 (a 3* 3* 3 cube around the voxel without the 8
corner voxels) and 27 (the complete 3* 3* 3 cube around the voxel). This filter will
remove extreme values in the image due to noise, while preserving edges.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
vpercentile

vpercentile

NAME
vpercentile - 3D percentage filter

SYNOPSIS
#i ncl ude "improto.h"

int vpercentile(l MAGE *in, | MAGE *out, int perc)

DESCRIPTION
vpercentile() takes a 27 voxel window (3* 3* 3) around each voxel in the image "in",
sorts them on value. The new voxel-value in the image "out” will be the value that is
at the specified position (by "perc") of the sorted row of 27 voxels. So, if 100% is
specified, the maximum voxel value in the window will be taken. 0% means the
minimum value. Finally, 50% is exactly equal to the median filter on 27 voxels.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
vmedian

525

SCIL_Image 1.4 — Reference Manual

vsobel

NAME
vsobel - 3D Sobdl filter.

SYNOPSIS
#i ncl ude "i mproto.h"

i nt vsobel (I MAGE *in, | MAGE *out, int weight factor)

DESCRIPTION
Differential edge detection based upon the Sobel operator. The image "in" isfiltered
and the result is stored in image "out". Thisfilter detects gradients in the image
corresponding to edges of the object(s): sudden jumpsin voxel valueswill be
recognized and the new voxel value is proportional to the size of the jump.
"weight_factor" specifies the distance between two z-dlices relatively to the distance
between two voxelsin the x and y direction. "weight_factor" is a shift factor in bits
(0=*1; 1=*2; 2=*4 etc.).

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

warp_image
NAME
warp_image - adjust one image to the sizes of another

SYNOPSIS
#i ncl ude "improto.h"

int warp_i mge(l MAGE *in, | MAGE *out)

DESCRIPTION
"copy" image "in" to image "out", even when they do not have the same dimensions.
The function fblow() is used to do the scaling of theimage if the sizes of "in" and
"out" are not equal.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
copy_im

526

SCIL_Image 1.4 — Reference Manual

width
NAME
width - width of object

SYNOPSIS
#i ncl ude "im.aio. h"

int width(LIST *link)

DESCRIPTION
link - Link pointing to the object

AlO primitive to obtain value of an object feature
width() returns the width of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process

RETURN VALUES
The width of the object in pixels on succes
0if link is not an object

SEE ALSO
measure object_shape meas object_dens meas list_|abel

527

SCIL_Image 1.4 — Reference Manual

win_to_comp

NAME
win_to_comp - add rectangular window from image to composite photo

SYNOPSIS
#i ncl ude "i mage. h"
#i nclude "silo.h"

int win_to_conp(COWPTR conptr, | MAGE *image, int left, int top, int
sizex, int sizey)

DESCRIPTION
comptr - Pointer to composite photo.
image - Image which contains the part-image.
left - Start x-coordinate of part-image.
top - Start y-coordinate of part-image.
sizex - Part-image width.
sizey - Part-image height.

win_to_comp() copiesthe part of the image "image" from location ("left","top™) and
with sizes"sizex"*"sizey" to the composite photo "comptr"

RETURN VALUES
The position where the part-image went to:
X-start-coordinate - function value modulo 2048.
y-start-coordinate - function value div 2048.
wrap

NAME

wrap - pixel wrap around

SYNOPSIS
#i ncl ude "improto.h"

int wap(l MAGE *in, |MAGE *out, int hdispl, int vdispl, int zdispl)

DESCRIPTION
Wrap around (scroll) the pixelsinimage "in" with step size "hdispl” in horizontal
direction, step size "vdispl” in vertical direction and step size "zdispl™ in the depth
direction and store the result in image "out". Pixels which are shifted out over the
image boundaries are shifted in again at the opposite side.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

528

SCIL_Image 1.4 — Reference Manual

write
NAME
write - write on afile

SYNOPSIS
unsigned int wite(int fildes, char *buffer, int nbytes)

DESCRIPTION
Thisfunction is an interface to the standard C function as implemented on the current
system. The functionality of thisfunctionis:

A file descriptor is aword returned from a successful open(), creat(), dup(), or pipe(2)
call.

write() writes data from memory to afile. "buffer" is the address of "nbytes’
contiguous bytes which are written to the output file. The number of characters
actually written is returned. It should be regarded as an error if thisis not the same as
requested.

RETURN VALUES
Returns -1 on error:
bad descriptor,
buffer address,
count;
physical 1/0 errors.

SEE ALSO
creat open

529

SCIL_Image 1.4 — Reference Manual

write var_object
NAME
write_var_object - write avar_object to afile

SYNOPSIS
#i ncl ude "objectsp. h"

int wite_var_object (VAR OBJECT *object, char *fil enane)

DESCRIPTION
"write_var_object” write the var_object specified by the pointer "object” to afile.
When executed, this function puts two files on disk. A file with the given name and
the extension ".voh" and afile with the same name but with the extension ".vod". The
file with the extension ".voh" isan ASCI| header file which describes the var_object.
In the file with the extension ".vod" the actual data resides.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
var_object read_var_object

530

SCIL_Image 1.4 — Reference Manual

writefile
NAME
writefile - write an imageto file

SYNOPSIS
#i ncl ude "improto.h"

int witefile(l MAGE *image, char *filenane, int fileformat)

DESCRIPTION
Write the image "image” to the file "filename" using the "fileformat” format. The

following formats are supported.

ICS F(2) ICS format; two files per image are written, the data-file with the
extension ".ids" and the header-file with the extension ".ics"

TIFF_F(2) Tiff format; the write function is capable of writing TIFF-files
according to the TIFF 6.0 specifications. The file will have the
extension ".tif".

JPEG F(3) JPEG format;the file will have the extension ".jpg".
TCL_F(4) TCL_lmage format;the file will have the".dat" extension.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
readfile ics writefile tiff_writefile tcl_writefile jpeg_writefile

writf
NAME
writf

DESCRIPTION
Thisisan old function name, only provided for backward compatibility with

TCL_Image routines.

See writefile

531

SCIL_Image 1.4 — Reference Manual

Xmax

NAME
Xxmax - maximum X coordinate of an object

SYNOPSIS
#include "im.aio.h"

int xmax(LI ST *1ink)

DESCRIPTION
link - Link pointing to the object

AlO primitive to obtain value of an object feature
xmax() returns the maximum X coordinate of the object pointed to by "link".

This feature need not be specified beforehand asit is automatically measured during
the labeling process.

RETURN VALUES
The maximum X coordinate of the object on success
0if link is not an object

SEE ALSO
measure object _shape meas object_dens meas list_|abel

532

SCIL_Image 1.4 — Reference Manual

Xmin
NAME
xmin - minimum X coordinate of an object

SYNOPSIS
#i ncl ude "im.aio. h"

int xmin(LlI ST *link)

DESCRIPTION
link - Link pointing to the object

AlO primitive to obtain value of an object feature
xmin() returns the minimum X coordinate of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The minimum X coordinate of the object on success
0if link is not an object

SEE ALSO
measure object_shape meas object_dens meas list_|abel

533

SCIL_Image 1.4 — Reference Manual

Xor_im
NAME
Xor_im - bitwise xor of image pixels

SYNOPSIS
#i ncl ude "i mproto.h"

int xor_inm | MAGE *inl, |MAGE *in2, | MAGE *out)

DESCRIPTION
Perform a bitwise XOR operation of each element of "in1" with the corresponding
element of "in2" and store the result in "out"

NOTE
For more powerful image arithmetic expressions (scaling, adding offsets, etc.), use the
function eval() .

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
and_im or_im invert_im shift_im

534

SCIL_Image 1.4 — Reference Manual

XYZ_ref white
RGB_ref_white

print. XYZ_ref _white
NAME
XYZ_ref _white - set the reference whitein XY Z values

RGB_ref_white - set the reference white in RGB values
print. XY Z_ref_white - print the reference white valuesin XY Z

SYNOPSIS
#i ncl ude "col or 2dp. h"

voi d XYZ ref _white(double Xn, double Yn, double Zn)
void RGB ref _white(int Rn, int Gi, int Bn)

voi d print_XYZ_ref_white(void)

DESCRIPTION
When converting the XY Z color-model to other color-models like L*a*b* and
L*u*v*
(the latter is currently not implemented in Image), areference XY Z triplet is needed.
Thistriplet is commonly named "white point” or "reference white". To set the white-
point, the function XY Z_ref_white() can be used. "Xn", "Yn" and "Zn" beginthe X, Y
and Z value of the "white-point". For convenience the same white point can also be set
using the function RGB_ref white(), specifying the point in RGB values, which are
then immediately converted to XY Z using the current conversion method (see
set RGB2XYZ_matrix).

print. XY Z_ref_white() displays the current reference whitein X, Y, and Z values.

RETURN VALUES
None

SEE ALSO
set RGB2XYZ_matrix

535

SCIL_Image 1.4 — Reference Manual

ymax

NAME
ymax - maximum'Y coordinate of an object

SYNOPSIS
#include "im.aio.h"

int ymax(LI ST *link)

DESCRIPTION
link - Link pointing to the object

AlO primitive to obtain value of an object feature
ymax() returns the maximum Y coordinate of the object pointed to by "link".

This feature need not be specified beforehand asit is automatically measured during
the labeling process.

RETURN VALUES
The maximum Y coordinate of the object on success
0if link is not an object

SEE ALSO
measure object _shape meas object_dens meas list_|abel

536

SCIL_Image 1.4 — Reference Manual

ymin
NAME
ymin - minimum Y coordinate of an object

SYNOPSIS
#i ncl ude "im.aio. h"

int ymn(LI ST *link)

DESCRIPTION
link - Link pointing to the object

AlO primitive to obtain value of an object feature
ymin() returns the minimum Y coordinate of the object pointed to by "link".

This feature need not be specified beforehand as it is automatically measured during
the labeling process.

RETURN VALUES
The minimum Y coordinate of the object on success
0if link is not an object

SEE ALSO
measure object_shape meas object_dens meas list_|abel

537

SCIL_Image 1.4 — Reference Manual

z planes

NAME
z_planes - view planes of a3D imagein a2d image

SYNOPSIS
#i ncl ude "i mproto.h"

int z_planes(l MAGE *in, |MAGE *out, int start, int nunber, int
border, int val ue)

DESCRIPTION
z_planes() shows the selected Z planes of the 3D image "in" in the 2D image "out".
Starting at plane number "start”, "number" planes are laid out in several rows and
columns. If "border" istrue (not 0), lines are drawn in the output image "out" to
separate the different planes. "value' is the grey-value used for drawing the
border-lines.

RETURN VALUES
IE_OK (1) on success
Negative error status on failure (see im_error.h)

SEE ALSO
sfp dir_maximum

ZCross

NAME
zcross - calculate zero crossings

SYNOPSIS
#i ncl ude "improto.h"

int zcross(lI MAGE *input, | MAGE *output, double threshold)

DESCRIPTION
Calculate a bit image that contains a skeleton-like picture, containing the positions
where the grey-values cross the value "threshold”. If "threshold" is zero, the image
gives the positions where the sign of the image changes.

RETURN VALUES
IE OK (1) on success
IE_NOT_OK (0) on failure

SEE ALSO
dist_skelet

538

SCIL_Image 1.4 — Reference Manual

NAME
? - show help information

SYNOPSIS
?

PLATFORM
UNIX, Macintosh.

DESCRIPTION
Direct commands availablein SCIL:

help <command>
? <pattern>

load <filename>
run

chain <filename>
list [start],[end]
more [start],[end]
time <command>
logon <logfile>
logoff

macro [-i] [-v] <macfile>
hist [start],[end]

: <pattern>
expand [1/0]
rmvar

$ <os_command>
vi <filename>

Is [options]

sh

cd

pwd

describe command

show variable/function information
load program text

interpret program

load and run the named program
show program text

same aslist but in chunks

time a command

connect "logfile" to session
disconnect "logfile"

execute macro file

show history

recall command

enable/disable command expanding
clear old variables

issue a shell command

invoke screen editor

directory list

start a shell

change current working directory
print working directory

grep <pattern> <filenames> Start UNIX grep

539

SCIL_Image 1.4 — Reference Manual

Command syntax in alphabetical order

BLCOMMEBND ...t 1522,
[NUMBENT ..o 1231
110][=.F_2_?_>_1_|
P KPALEND oo QOO
VOIA _EXIL(INE SEALUS) ...v.vecveeevcvescreeeeseetssesesssessessssssssssssessessssssssssssssessssssssessnsessessssnsesensenee s AALL
VOIT ADOTE(VOI) ...t ee e e s ee e ee s eseseeee e s eeeeseeneeseeseeeesesesennes 5
L L= 0 (L) S 6
int abs IMIMAGE *in, IMAGE *OUL)........ccceeiieiecee ettt 47
void abs_pathname(char * path)37
int absd_im(IMAGE *inL, IMAGE *IN2, IMAGE *OUL)........urereeeeesssmrenesseesssssssneeessseeeess 9
dOUDI€ ACOS(AOUBIE X)evvvvereverrririrseiieeiseiesiesss s sesssessssessssssssssesssessssesssesssenssens 40 01
int acoS IM(IMAGE *in, IMAGE *OUL)cciemreeeeeneieeinesssssssssessesssssssssesssssssssees - 409
void ActivateM enU(ABSTRACT *10D)vvvuurvrruersresssssssssssssssssssssssssssessssssssessssssssssnns 1311;
int add_applic_exposure_func(void (*funC)(IMAGE *iP)) ...ccceeveereeiniieieeie e . ﬂ
int add_applic_win_input_func(void (*fUNC)() ...cccoveieieeieeie e 1 0;
int add_complex(IMAGE *in, double real _part, double imaginary _part, IMAGE *out)........ 11
int add_float(IMAGE *in, double constant, IMAGE *0UL)ccccveveieeieeie e 12;
int add_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)cccccuvirieririnieisesenesesie s a3
int add_int(IMAGE *in, int constant, IMAGE *OUL).........c.cccceiieiiiie e 14
int Addimagelnfo(IMAGE *im, char *name, void *info, void (*dfunc)(void *)).................. 15
void AddToMenu(char *name, ABSTRACT *menu, ABSTRACT *parentmenu)............... 311
IMAGE *aim_readfile(char *filename, IMAGE *image, int Xpos, int YPOS)..........ccccvevreruenns 16
int aio_label IMAGE *in, IMAGE *OUL, iNt CONNECE)vouuvermreermersseesssesssessesessesseseeesens AT
void all_im(char *command, INt TYPE)ccueerrrreriri e e 5185
int anchor_skelet(IMAGE *in, IMAGE *mask, IMAGE *out, int iter, int endp, int bound). ;19
intand_im(IMAGE *inl, IMAGE *in2, IMAGE *0ut)ccconiiiiiniiciccccae ,-_2_(_)_5
double angle(LIST *HINK).......covieeriiiieereee e 520,
int angle_detection(IMAGE *in, IMAGE *out, double thres)cccocvvvvvvvnssnnnnn 21
int applic_exposure(int send_events, int Skip_When_busy)...........cccccovviniiiicnnnininn 2221
int applic_win_input(int send_events, int Skip_ When _busy).........cccoevveninininieiene e 5235
int apply_frequency bank(IMAGE *in, IMAGE *bank, IMAGE *out, int begin, int end)... ;24
int apply_spatial_bank(IMAGE *in, IMAGE *bank, IMAGE *out, int begin, int end).......... {2_4;
int arbit_dilation(IMAGE *in, IMAGE *out, IMAGE *se, int bound)ccccoveievieieennnd 25!
int arbit_erosion(IMAGE *in, IMAGE *out, IMAGE *sg, int bound)............ccccoevvnniiiniennne. 26
10NG @r€B(LIST *IINK).....ocvoieiiriiciiics s 1200
Char *aSCtime(SITUCE tM ¥ 1)vvereerreereeesseessssesssssessssessssssssssssssssssssssssesssssssssssesssssssese 421
AOUDIE ASIN(OUDIE X).....ovvvaeerrireisceeeseeseseesisessess st ssessesssesssessssssssssssessssssssessensne i 40 14
int asin_iM(IMAGE *in, IMAGE *OUL)..........cccoviniiniiiinnssssss s f_@f_)
dOUDI€ @AN(AOUDIE X) -...vuevreieeieicieie bbb 467!
int atan_iM(IMAGE *in, IMAGE *OUL)cccoeiriiiiniiniei s 1469:
double atan2(double X, dOUDIE Y)..........c.ruerierieririneiireeireeiesiesisseseseesessesssssssssesesenenenen i 4614
int atan2_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)cocunrvermrirermncenreereeereeeeneeenn 469
int atexit(void (*FUNC)(VOI)) ...veeueeieeie ettt sre e enne s ;29
double atof (Char ¥ NPLr) ..o :30:;
INE BL0T(CHEAN * NPT ... :30:;

SCIL_Image 1.4 — Reference Manual

[ONG BLOI(CNEE FNPEE) e ee et ee e se e ese e s ssees s eeeeeeeeeseseeeeeenees :30;
int auto_ diSPlay(iNt MOGE)ceeveeeiiiieieiee et b e bbb 32,
iNt QU0 PlaNE(INE Flag)ccieeeeeeiereeee ettt b et beae e e nernneas :33;
iNt AULO_POINE(INE FIA0) ..vevvivereeeteceiteee ettt sa s bbbt seseebe e e 34
intb to_ comp(COMPTR comptr, int sizex, int sizey, PIXEL *buf)..........ccccoovvvevieieciee 35
int back_project(VAR_OBJECT *input, VAR_OBJECT *data, VAR_OBJECT *output, int
WIOEN) e s :36:
int bank_frequency response(IMAGE *bank, IMAGE *out, int begin, int end).................... :24;
void base_name(char *bname, const char *path)..........c.cccviiiiinci e :37;
o[0T o =N o= o [IS I 110 T 140;
int benke(IMAGE *patl, IMAGE *pat2, IMAGE *out, int maxiter, double gain, double
convergence, int width, int Neight, iNt AEPth)orveeereeerreeeeeeeeeeeseeeeeeessseseseeeessessnee 4L
int bernsen_threshold(IMAGE *in, IMAGE *out, int filt_x, int filt_y, int max_diff)...........:lp_(_)_i
int bi_threshold(IMAGE *in, IMAGE *out, int low, int high)..........ccccoceeciiinnniccinnn.. 1496
int bin_disp_colors(int fg, iNt DG).......ccceeeiiiieeiceceeee e 42!
int binary_to_grey(IMAGE *in, IMAGE *out, iNt Val).........ccccceeveiieiicie e 43
int binary_to_plane(IMAGE *in, IMAGE *out, int plane)...........c.ccoovevrncinnicnneicnnennnni43;
INE DT OK(INE VBIUE) ...ttt s e s s een s e e s i44;
int blow(IMAGE *in, IMAGE *out, int hfact, int vfact, int dfact, int adjust).............c.c.c..... 45;
double box_dimension(IMAGE *input, IMAGE *mask, int fsizemin, int fsizestep, int
FSIZEMAX) 1.ttt 46
void *bsearch(void *key, void *base, size t n, size t size, int (*cmp)(void *key, void

0= 011 1)) OO OO RORORRTOOOS 48;
int buf_from_silo(SILOPTR siloptr, int silo_key, PIXEL *Bbuf)cccooveeeiiiiecieeee 50
int buf_to_silo(SILOPTR siloptr, int silo_key, PIXEL *buf, int sizex, int sizey)...................51
double cabs(struct { double X, ¥;}Z).......ccccovriiiiiiiiiiicnd 241
int calc_greyValUE(IMAGE *IMAQE).........coueiiueieeereeeeeete ettt sttt sa e be s e s b neens 52!
int calibrated_density(IMAGE *label_im, IMAGE *grey_im, char *fname, int append,
VAR_OBJECT *t8DIE).......cocruiriiiiiiiiiisiis s O]
void *calloc(unsigned int nelem, unsigned int @1SIZe)..........cocovveeeeveeeeeieeeesseseeeesssnesneeene s 314
int canny(IMAGE *in, IMAGE *out, IMAGE *Lx, IMAGE *Ly, double sigma, double acc,
|nt ledth INENOMMEX) ..vvovvvvvvsoisscssss st ssssssssssssssns s ssssessssss D4
doubleceil(doublex) bbbttt bbbttt en et nnnnenenenenne LAO]
ChaiN fIlENAIME55
int chaincode to_image(VAR_OBJECT *input, IMAGE *IiMage).........cccceeeverieeseeseeieesreenn, 56
int chaincode to xy(VAR_OBJECT *input, VAR_OBJECT *output, int offset).................. 57
int change_image _size(IMAGE *im, int width, int height, int depth)...........cccoevieeiiiienee 58
int channel_bi_threshold(IMAGE *in, IMAGE *out, double minl, double max1, double
min2, double max2,double min3, double max3,double min4, double max4)............cccccceveve .59
Char *SYS EITHSI];.evrereeereeeriririeeere ettt sne s et QOO
int chdir(char *dirname)...........cooeuruiiciiinici s OO,
int check_image integrity(iNt Print)........ccccoeiieiirieseese e e 61
void check_status(int Status, Char *Str).........ccccciiiiiiii s 62,
iNt Clear_iIM(IMAGE *OUL)......cvuiuriieeiricieieisees e ssesseseeens s OS]
void clear_image flag(IMAGE *im, int flag)........cccccvreeiirnnneienrneccenneeeeseneneen 4311
int clear_part_image(IMAGE *im, int sx, int sy, int sz, int width, int height, int depth)........: 63
int clear_var_object(VAR_OBJECT *0DJECL)ccovevueiitiieeetecieceeeete ettt 64
Voo RO = Gl ks 4= 1 1) OO 65

542

SCIL_Image 1.4 — Reference Manual

int clip(IMAGE *in, IMAGE *out, int |owest, int NIGhest)...........coc..ervveervineiiensiieseisennens 166
1ONG CLOCK(VOI) ...t A 4
INE CLOSE(INE FIIAES)vvveieice e 40O
void close_COMP(COMPTR COMPLL)cvivimiiiiinisiniieisins s ssssssssssssssssssssesses SO 04
iNt ClOSE_SHO(SILOPTR SHOPLT) w..veouevermaeeesneesseeesssessesesssessssssssesesssesssssssssssssssessssssssssanesens 67
int closing3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)..............c.cccoevvveneee.... §68;
CLUT *clut_by name(char *name, int Case_SENSItIVE)..........ccceveeveeieseene e 168;
INE CIUE_OK(CLUT *CIUL) vttt ettt st sttt neneene 69:
int cmp_pixelS(IMAGE *inl, IMAGE *in2, VAR_OBJECT *first)cccccovvierurrvsiereesnsinnens i70
int color_get_model_size(int MOdE!)cccviviriiriiniinicisee e L
void COM_dialOG(CHAr * SEFNG) ..o eee s ee e s een s e e s s e {72
void cOMPAECE SIHO(SILOPTR SHOPL).......cveeeeeeeeeeeeeeeeesess e e sees s ees s s sn s {73
int complex_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)cccccocevieierie e i73;
int compute_CIUt(CLUT *CIUL) ..o VA
INE CON_OK(INE CON) ..ttt 75
INt CONG_OK(INt CON) ...ttt sss s s OF
int conjugate IM(IMAGE *in, IMAGE *OUL).......cccoiiiiiiieie e 76:
int conjugate mul_im(IMAGE *inl, IMAGE *in2, IMAGE *0Ut)cccceeeveeieiieceeieens T
int constr _distance(IMAGE *in, IMAGE * constraint, IMAGE *out, int hstep, int dstep, |nt
int contour(IMAGE *in, IMAGE *out, int edge, int conn, int obj_bKg).........cccccvivevieiennenns :7_5_9
int contrast_stretch(IMAGE *in, IMAGE *out, double Iperc, double hperc)..........c.cccveuenee. 79
int convert(IMAGE *in, IMAGE *OUt, iNt OUL_tYPE)c.veeviereereseeseseseeeeseseeetsseseese s esneseas :80:
int convert_cmodel (IMAGE *in, IMAGE *out, cmodel)...........c.cocovviniiiiniine, 8L
int convolution(IMAGE *in, IMAGE *conv, IMAGE *out, int addva, int divva)................ 82
int cooccur(IMAGE *in, IMAGE *out, int xdist, int ydist)...........ccocoviiniiiiiiiicee :83;
int copy_channel(IMAGE *in, IMAGE *out, int inchan, int outchan).............cccccoceevveiennn, @33
CLUT *copy_clut(CLUT *source, CLUT *dest, char *name)84
HISTOGRAM *copy_histogram(HISTOGRAM * srchisto, HISTOGRAM *desthisto)......... ,92
int copy_IM(IMAGE *IN, IMAGE *OUL)cc.ccciiieiicie ettt aneeas ;84
int copy_object(IMAGE *src_im, IMAGE *dst_im, LIST *link)........c.cccocovnninninnnnnnn i85;
int copy_part_image(IMAGE *in, BOOL_MASK *mask, IMAGE *out, int sx, int sy, int sz,
int width, int height, int depth, int dx, int dy, int dz, int clear)86
int copy_part_image(IMAGE *in, IMAGE *out, int sx, int sy, int sz, int width, int height, int

depth, INt dX, Nt dy, INE0Z) .eeeorrrmeeeeeeeessseeeesseessssssseeessssssssssssseesssssssssssseeessssesssssssns 1864
AOUDIE COS(AOUDBIE X) ...t sesssesssessssssssssesssessssesssesssenssens 40 01
int coS IM(IMAGE *in, IMAGE *OUL).........ocuueumerreeeneenesnessssssssssesssesssssssessessesssssssess s 409
AOUDIE COSN(AOUDIE X) c..ovovvvvreeesseeeesseeesseessssee st 1467
int cosh_iM(IMAGE *in, IMAGE *OUL).......ccccvuernirneiirieneiiniemeineerssessesnsennsssssesneessesneee i469;
double covarianCe(IMAGE *IN1, IMAGE *IN2)ccoeoiiiiniiireineeseesee s 87!
int covmatrix(IMAGE *in, VAR_OBJECT *out, int width, int height)cccooeoeiieienns 87
int covplanematrix(IMAGE *in, VAR_OBJECT *0OUL)cccccvvieriieiecie e 8 8:
AOUDIE CI(LIST HK) cevoovereeeesaeeesseeesseeessseesssesssseeesssessssssssssssssssssss e ssssessssssssesssssessssssssssnns 88!
int creat(char *name, iNt MOE) ..o :89;
CLUT *create_clut(int type, char *Name)...........cccovvvvinininiiiiniinnininisessssssesssssnsssnseenn 290,
void create diff WindoOW(IMAGE *IiMAQE)cccveueirerieieieieeieeeereereeere e e e sresesesresaeseeresd 95
int create_display(IMAGE *image, int Xp, int yp, int XS, iNt YS)......cccccvvvennrrsnsnnnnnn i1
HISTOGRAM *create_histogram(char *name, int chans, int dims, int diml, int dim2, int
Aim3, it AiMA, INEAIMS) ..ot sssenenes 92:

SCIL_Image 1.4 — Reference Manual

IMAGE *create_image(char *name, int type, int lenx, int leny, int 1enNz)occoovvveeeveneens 94;
void create live WiNdOW(IMAGE *IMAJE)cceveereeiieiieieerie e st ereseesre e sre e ssee e 95;
SILOPTR create_silo(Char *SIHONAIME)c.crureiererieieireieireeieesee e 95;
Char *CIME(LIME) ooveeeriiieeeeeee ettt b et a e aebe et e e tene e 271
int cube view(IMAGE *in, IMAGE *out, int plane, int view, int interaction)....................... 97
int decrement_im(IMAGE *in, IMAGE *0UL).........cccccevirimmincinsssc s 198;
void default_images(int NUMDEY)...........ccccri e OO,
int defuz(IMAGE *in, IMAGE *out, int filt_x, int filt_y, doublethr)..............cccconnnnne. 1100
int deiconify_Window(IMAGE *iM).......cccoeuiiiiiiiiiisssissssssssssssssssssend 3904
int del_im_exposure _func(void (*fp)(IMAGE *)) 249
int del_im_input_func(void (*fp)(IMAGE *, int, int, int, IM_EVENT))249
int dens_limits(int minimum, int maximum, double max_opt_dens)....................................E__l_Q_Z___i
int density(IMAGE *label_im, IMAGE *grey_im, char *fname, int append)....................... 104
int destroy_ClUt(CLUT *ClUL).......ccoceiiiiicenriee e sensesesssssesessesesee 10D
int destroy_histogram(HISTOGRAM *hiSt0).......cccueiririmininieeiininieeeeeeeeeeeseseseseneneneee 1924
int destroy_image(IMAGE *IiM).........ccoorimnininnniinncsssss s 109
int destroy_var_object(VAR_OBJIECT *0Dj)c..cverurrerreeneeeresceessessssssssssssssssensssnssssssnseens 106!
int dialog_options(int nfew, int nsome, int nmany, int nhuge, int f_feedb, int s_feedb, int
m_feedb, int h_feedb, int g_feedb, int with_arrows, int with_range)..........ccccccevevvveecnennen. 107
int dialog_stay_up(int flag)cccceerrniieeiiieeerse e 108!
int dialog_WM(iNt NUMDEY)ccvviriiiiirireeierse et sesesenne s LOOS
int different_ok(int vall, int val2, char *text)cccervreieieninnseeienrsseesesesesieesenesenene 109
double difftime(time_t time2, time_t iMEL).........ccurrrrerererrerereiersseeeseesesessesessseseseneees 210
int dilation3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)c.c.coeceseereenni110:
int dir_maximum(IMAGE *in, IMAGE *out, int dir)ccceoerieinnnnnenseeeee e 111
void dir_name(char *dname, const char *path)...........cccccovvniiiiniiiiiisiseni 30
int disp_circle(IMAGE *im, int X, iNt Y, iNEr) ... 1121
int disp_draw_mode(int MOME)cceureriieririrreieeierereeie e sesesesesseneness 112}
int disp_draw_value(int VAIUE)............ccvveuiiinicininicincc e AL2E
int disp_ova(IMAGE *im, int x, inty, int xr, int yr)112
int disp_rect(IMAGE *im, int X, inty, iNt XSIZ€, iNt YSIZE)........cccovveieieeieee e 112
int disp_srect(IMAGE *im, int X, inty, int XSize, INt YSIZE)ccccovevviiinciiciniccninnn 112
int disp_text(IMAGE *im, int X, int Y, Char *Str)........covvvveeeeeeeeeseeresseseeeesssssnesssssseessssesnns 2]
int disp_text_font(Char *fONt)ccerrriieierreee s LA 3!
int disp_vector(IMAGE *im, int X1, int y1, int X2, iNt Y2)ccocvevvivnnniinncinnicnnnniennd 113
int display_image(IMAGE *IM)urreummrreneesneesssessssnssssssssssssssssssssssssssssssssssssnessssd 1141
double dist_average(IMAGE *input, IMAGE *mask, double threshold, int background)....i__l__l___5__i
int dist_skelet(IMAGE *in, IMAGE *out, int angle, int hstep, int dstep, int action)............@_l_(_i_i
int distance(IMAGE *in, IMAGE *out, int hstep, int dstep, int kstep, int edge)................... 1117:
iNt dither(IMAGE *iN, IMAGE *OUL)c.ccviirieiiieieiee e :118:
int div_complex(IMAGE *in, double real_part, double imaginary_part, IMAGE *out)........ ﬁ
int div_float(IMAGE *in, double constant, IMAGE *OUL)........c.ccerniniinnicinsicnceieennt 124
int div_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)ccccouririeiiriieiee e 13;
int div_int((IMAGE *in, int constant, IMAGE *OUL)..........ccccoeviinnnenenenid 4
int do_alert(char *Strl, ...) ..o L1
INE AOFF(VOI) ..ttt bbbt 32!
Ta 1o (o) T VZo T) HO OO RPOTROPPRE X 2
int draw_line(IMAGE *image, int X1, int y1, int X2, int y2, int Value)ccoeceunerverereenns i 120
int drawcurve(VAR_OBJECT *input, IMAGE *output, int value, int smooth, int circ)....... 121:

544

SCIL_Image 1.4 — Reference Manual

int dump_histogram(HISTOGRAM *histo, char *file, int nUM)...........ccccceviiiieiiecece 1235!
int dump_var_object(VAR_OBJECT *object, char *filename, int number)...........c..c.c....... 3_1_2_2_5
int dyn_link(char *library, int VErboSe)cccoveeeiieie e ;F_1_2_§_i
int dyn_unlink(char *library, int verbose) 123
double eCCENT(LIST *1INK)......verrercereereesereeeesessesssesssesssesssssssssssessesssssesssessssssssessessnest L24
char *ecvt(double value, int ndigit, int *decpt, iINt *SIgN)ccceeiiiieieeceeeeee e i_l_2_§_i
double edge average(IMAGE *input, IMAGE *mask, int filtersize, int usegrad)................ 1126:
int edge object(IMAGE *Iimage, LIST *lINK)cocovereeeseeeseseeesesesssessssses s 1127:
int edge_oK(int BOUNG) ..o L2
int edge_preserve(IMAGE *inl, IMAGE *in2, IMAGE *out, int filtx, int filty)..................:128:
int eigen_segmentation(IMAGE *in, IMAGE *out, int size, int nr, double scale)................ i129:
int eigenfilters(IMAGE *in, IMAGE *out, int width, int he|ght)130
int eigenvectors(VAR_OBJECT *obj, VAR_OBJECT *vecs, VAR_OBJECT *vals) ».1.3.1
int entropy_threshold(IMAGE *in, IMAGE *out, double fraction)............ccccoceevevviiennene. ;F_l_@_l_i
int equal_images(IMAGE *IimL, IMAGE *IiM2)cccccooeiieiececeee e 1132:
int equaliZ(IMAGE *in, IMAGE *OUL)ccrueeireierierinssisessesssessesssssssssssssessesssesse L33
int equivalent_im(IMAGE *inl, IMAGE *in2, IMAGE *OUt)c.coccerunrrnrerrrereerenienni 133
int erosion3x3(IMAGE *in, IMAGE *out, int iter, int con, int bouNd)............c.coeveeernrernnn i 134
VOIT €T _TEPOM(VOI) ..ot eee e eseees e s e ese e eeeee e ee s eseseene s eseeeeeeseseseesenees 135,
int eval(char *expression, int POrder) ... 1136
iNt even_oK(int ValUE, Chalr ¥EEXL)covueuiueieerirereiriseiseieeeesese ettt sssessssenens 1139:
int EventType(IM_EVENT @UENt)........cccccvireierrieiiereeeeeeeiesse s ssssesesssssessssessessssesesense J40;
VOId EXIT(INE SALUS) ..o vvvvvvereerereniseeisensisensssesssessssesseessssssssessssesssssessssessssnesssssessensesseness A4 L
AOUDIE EXP(AOUDIE X) ...vvvvvrverrireerceseeseeseseeeseessessessessessesssssssssssssssssssssssnssssessessnest LA2)
int exp_ IM(IMAGE *in, IMAGE *OUL)cceoiiiieieece et L_l_4_f3“
int expl0 iM(IMAGE *in, IMAGE *OUL)cooviiiiieie ettt 1144:
EXPANG SIMOUESeceeeei ettt 145!
doUDI€ FABS(AOUBIE X) -...vuveerciieicie ettt 146!
int fast_fourier(IMAGE *in, IMAGE *out, int direction)ccccecevvevecrennciccrneneieenen 1 1470
int fast_hartley(IMAGE *in, IMAGE *out, int noreﬂ:allng)l48
int folow(IMAGE *in, IMAGE *out, double hfact, double vfact, double dfact, int adjust). '._1_4_9_
INt FClOSE(FILE * SLrEam)coiiiiiiiiic e L.1.5.9_
char *fcvt(double value, int ndigit, int *decpt, iNt *SIgN) ..cccoeeeiiiie e 1125:
FILE *fdopen(int fildes, Char *type)..........ccocveireiiniriiineiieicseiseeseseseseesneesesesesneenn - A8 L
INE FEOF(FILE * SEFEAMY)cueieee ettt e st ae s r e e e e aeeneesneesreenne e 65
Nt FETOr(FILE *Sream).........c.ocviieieiiiccic s {OD)
iNt FIIUSH(FILE * SrEAM) ..vcvvvevcereeeeeieeteeisessssessessssssssssessssssssssssssesssessssssssssesssssssnsssesssst L0
INE FQ_DUFFEISIVOIT) c.vvvvvvvreierseesesessseees ettt 151
int fg_channelS(VOoid)cocvoiiiiiiiii 1152;
INt FY_ClOSE(VOIT) ...t 1153:
iNt fg_depth(VOId)c.ovieiiic e LOA
int fg_exec(const void *input, int ilength, void *output, int olength) 155!
INt FY_FIEEZE(VOID) c.v.vveveeeireereiieeieeieeieeis ettt sssssesssesssst LOL
It FQ GAINGINE ¥ PYAIN ..o s e se s eee st seeee s s eseseeeseeeseseeseeseeeeseseeseeeseeesssesees 156
iNt fg_get datasSiZe(VOid)c.eccueiieiieie e e 1157
const char *fg_get_last_ error(VOId)ccceeieiieiece s 1158;
int fg_get_rgh order(Void)........cocooeoririieireeeses e e LOO
int fg_getdata(int framenumber, void * storage, int offset, int offsety, int incrx, intincry, int
COUNEX, INt COUNLY, IME TYPE) ...vovevecerecereeeeesseeeeseesssssssssesssssessssessssssssssssessssssssssssssssssnsessesesseses LOO:

SCIL_Image 1.4 — Reference Manual

int fg_grab(int firstchan, int firstbuf, int nchannels) ... 161
int fg_grab_image(IMAGE *out, int chan, int width, int height, int slices, int hstep, int vstep,
it tstep, iNt OFfX, INE OFFY) ...c.cvieiiiceir e LO2]
int fg_grab_Next(Void)ccceueiiiiiicieiiicccce st 103
int fg_grab_series(int startchannel, int startbuffer, int nchannels, int nbuffers, int nskip) ... 164
int fg_height(Void)ccoviiiiiiiiiic st L O
int fg_init(const char *INItfil€) ... 165
int fg_load(const char *dIINaME)ccccccriiiiiirce e 106
int fg_mMaxdepth(VOid).........ccueurririeieieirricieeesreee et sesesesseenen LD
int fg_mMaxheight(Void)..........cccuricviiiniiciiinicscs s ssnsesnsen 1O
INt FG_MEXWIAtN(VOID) ...vvvvvvereereeeeseeeeseessesessseesssesssssessssesssssessssssssssssssssnssssssnssssd 107
iNt FQ_MINNBIGNEVOIT) ..vveveeerreereeeseeesseeeseeeesseessssesss st sesss st esssssessssssssssnesssnssssnsssnn s LOBS
int fg_mMinWidth(Void)ccceuririniniciiicccccccccc s 108)
int fg_offset(int *POfFSEL)covvvriiccrcc e LOD)!
int fg_set input_lut(const void * ptable, int nelem) 170
int fg_setdepth(int depth)c.ccvvueviciiieiicsc s L L
INt FG_SBLGAIN(INT GAIN) ...urvvrrereesreeeeseeesseesseessss s ssesss st sssssssesssssesssssssssssessssessess 106!
INt FQ_SELOFFSEL(INE OFFSEL)....vvvverrerreeeseeesseeeseeeeseeess st seeessessssssssssssssesssssessssnssssnssssnsssnn LOO!
int fg_setres(int width, int ReIght) ..o 172
int fg_setroi(int ox, int oy, intix, intiy, int cx, int cy)173
iNt fQ_SEtYPE(INE LYPE) ...c.veevceiirereerceee et nsnesesenesennen LR
iNt fQ_tYPE(INt * PLYPE)....eereereieiririsieeereririe ettt sesessssesenesessssesesenesessesn L 2H
INEFG_WITN(VOID) .ovvvvveverererceeieeeieseiesss st sess s essssesstssessssesssssesssssssessessssnd LOO!
INt FYEC(FILE *SIEAM)oovvevreeerneeeseeesseeeseeesssessssesssssessssssssssssnssssnssssnssssnnssssnssssnssss 2001
int fgetpos(FILE *stream, fpos_t *Ptr)........cccocviicniiiincscicesseesssssesisennend 10 7
char *fgets(char *s, int n, FILE *Stream)cccccoviiiiiiniciciiccccciceeeenneeennd 209
int WINAPI fgr_buffers(void) ... LD
int WINAPI fgr_channelS(VOid)ccoreeueinirnenienieerneesieiseseseses s essesesesssssessesesess 102
int WINAPI fgr_close(VOid)coceimiiiriiniinnnscnss st LG
iNt WINAPI fGr_depth(VOid).......cureerrreemeeereeeesneeessesssseessssssssssssssssssessssssesssssssssssssensesnd L4
int WINAPI fgr_exec(const void *input, int ilength, void * output, int olength).................... 155!
int WINAPI fgr_freeze(void).........ccocoeiiiiiiniicciiccicnccinscssssse e 1011
int WINAPI fgr_gain(int *pgain)..........ccoceciiiiiiiciissssssssss st LOO
int WINAPI fgr_get_datasize(Void).........coccouvriiniiniinscniecseseeseesessseses st 19 7
int WINAPI fgr_get_last_error(char *Storage)...........cccoveveereieiniieccicssinecieesseeciesnnd 198!
int WINAPI fgr_get_rgb_ order(Void).........cocoeereeeeereereieeessessesseesessesssssssesessessssssssssssesssnesnn 109:
int WINAPI fgr_getdata(int framenumber, void *storage, int offsetx, int offsety, int incrx, int
incry, int countx, int county, iNt tYPE)ccoccvciciccicicncccecssssseseeeessssssesssssssesesesns 1603
int WINAPI fgr_grab(int firstchan, int firstbuf, int nchannels)...............cccoociiiii 1610
int WINAPI fgr_grab neXt(VOI)cccueieeiiee et 1163:
int WINAPI fgr_grab_series(int startchan, int startbuf, int nchannels, int nbuffers, int nsklpl_l_g_é}_
iNt WINAPI fgr_NEIGRt(VOId)vveemeceeermeereseressneesssseessssesssssssssssssssssssssssssssssssssssnesssd L16:
int WINAPI fgr_init(Const Char *INitfile)coovvueeeerreernreesneessseeeseneesessssseesssssssseesss LOD!
int WINAPI fgr_maxdepth(Void).........ccceeieiniicicicicccccccccccsceceeeecesesesesenennnd 1941
int WINAPI fgr_maxheight(Void).........ccoociiiiiiiiiiiiccicc e 167
int WINAPI fgr_maxwidth(Void)cccoveiinnininiiiiicrccnessenssesseseseenneend 167
int WINAPI fgr_minheight(Void)ccoeiririicisisieinesesesesie s seesesee e LOB:
iNt WINAPI fgr_minwidth(VOid)ceeemreeermieriressieesessessessesesssssesssessssesssssessssesenes LOG!
int WINAP! fgr_offSet(int *POFFSEL)o.evveeereeerrereseeiesssesessssessssesssesssessssssssssessssssesssnesns 109!

546

SCIL_Image 1.4 — Reference Manual

it WINAPI fgr_off SEt(iNt OFfSEL)c.oveevieriiiicieirc et 1169:
int WINAPI fgr_set_input_lut(const void *ptable, int nelem)..........ccccoceveveeiececce e '.F_l_7_(_)_i
int WINAPI fgr_setdepth(int depth)c.ceveeeeeeieeeeseeeee s 171
int WINAPI fgr_setgain(int gain)..........c.coeeeeeeeenreenmeeeesesinssinssssssssessessessssessssesssessssss 106
int WINAPI fgr_setres(int width, int DEIGNL)..........c..eeeeereeeneeneeneeieesseeeessessseessesssennn s L1 21
int WINAPI fgr_setroi(int ox, int oy, intix, int iy, int X, iINECY) ..ccccovvveiiereeeceee e i_l_?_;%_i
iNt WINAPI fgr_SettyPe(int TYPE)cueveeeeereeeeeeeieeetereeess e tetesse s sess s s sesesss st sessssssssasenes 1174
iNt WINAPI fgr type(int ¥ PLYPE).......cveeeeeeeeeseseeeeeseeeesess sttt eseses s s assssssssssssssssssnssssnnns \174:
iNt WINAPI fgr_ Width(VOId)c.ocueuieriririieeineeseiseeseeeesse sttt sesnens 176!
int fgreater0_ok(double value, Chr ¥TEXE)...........ccrrvreireieriericeiseeiseeisessssesseesseseseesesseeeen L8
doublefilter_energy ratio(IMAGE *inl, IMAGE *in2, IMAGE*fiIter).............................i__l___?_g_i
int flip(MAGE *in, IMAGE *out, int axis, int angle)179
AOUDIE FIOOF(AOUDIE X) ..vvvvrvevsevrvesaeeeeseeessessssee st 146
double fmod(double X, dOUDIE Y).........ccciiiiiiiiiiii 1180:
FILE *fopen(char *filename, Char *tYPe)cccveueeeeie it '.F_l§_l_i
int fpositive_ok(double value, char *text) 182
int fprintf(FILE *stream, char *format, ...).......cccocoeeiiiciiiicccc001 383
int fpUtc(int ¢, FILE * StTE3M)........cvvuvereereeeeseeseesseesssssssssssssssesssessesssssssssssessssssesssesss - 390
iNt FPULS(Char *S, FILE *SIEAM) ...couvvvvrereeeseeessseeesseesesssessssssssssssssssssssssessssssssssssssssssnns 1391
int fraction_iM(IMAGE *in, IMAGE *0UL)..........cccoeiiiiiiiiiii s 1183:
int frange_ok(double value, double vmin, double vmax, char *text)cccceeeveevvieennenne 1184
int fread(void *ptr, int size, int nitems, FILE *Stream)............ccceceveveevevecrseersesseessssescsnnnn s 1851
VOId FTEB(VOIT ¥ PUF) w.vvvvverneeircesieeeseseiessssesssessssssss st sssssessssesssssessssessssessssessesssssene s O
FILE *freopen(char *filename, char *type, FILE *stream)181
double frexp(double X, INE *EXP).....cciieiiieiece et nne e i 180:
int fscanf(FILE *stream, char *FOrMaL, ...).......cooueeeiurieenieneiiriecisee e 1418;
int fseek(FILE * stream, long offset, int ptrName)............ccceeveeeieese e 'L.1§§.5
int fSetPOS(FILE *Stream, fPOS ¥ P ...t 477!
int fstat(int fildes, Struct stat *BUF)c.oevurerenrereeeecceeseseeseseseeeeseeseseenn 4821
10NQ FLE(FILE * SIEAM)cvvvcvrecereeeeieetseesseesssessesssssssssseesssssssssessesssessssssssssssssssssssssssss LOO:
int funequal0_ok(double value, char *text) ._1§_7_
int fuz_width(double sigma, int deri, double acc, int maxlen) ... 188:
int fuzzy_derivative(IMAGE *in, IMAGE *out, double sigmax, double sigmay, int derix, int _
deriy, double accx, double accy, int fwidthx, int fwidthy).........ccoceoviviniinciniiicn..1188:
int fwrite(void *ptr, int size, int nitems, FILE *stream)cccccoeenvicciccnciccicencenenen1 1850
int g_copy_object(IMAGE *grey_src, IMAGE *mask_src, IMAGE *dst, LIST *link)......;190:
int g_copy_object_to(IMAGE *grey_src, IMAGE *mask_src, IMAGE *dst, LIST *link, int
X, ML) covetreeeesseeeess s sss ettt 1191
int gabor_bank(IMAGE *out, double radial_bandw, double angular_bandw, int nr)...........;309;
int gauss(IMAGE *in, IMAGE *out, double sigmax, double sigmay, double accx, double
accy, int fwidthx, int FWIAENY)c.ccuvieiieicceecee e 192
int gauss_deblur(IMAGE *in, IMAGE *out, double sigma, int order, double accuracy, double
171t (o) J USROS < 1
int gauss family(IMAGE *in, IMAGE *out, double sigma, int order, double accuracy, int
ZEXO, INEBVEN) ..ovovveveevveseessssee st 1194
char *gevt(double value, int ndigit, char *BUf)cccocvrrienerereeereese e 1 125
int geo_affine(IMAGE *in, IMAGE *out, double AO, double A1, double A2, double B1,

double B2, double B3, int method, int adapt, int BOAEN)..........c.oceveeeveeeeeereee e 195

SCIL_Image 1.4 — Reference Manual

int geo Warp(IMAGE *in, IMAGE *OUL)........ccccocoiiiiiniiisesse e 199
BOOL_MASK *get_bool_mask(IMAGE *im)..........c.cccovrrnnnnnnnnnnnnnsssssesesesenen s 197,
int get_disp_MOde(VOId)ccuuiiriiiiiiiei e O
int get_display_mode(IMAGE *IMagE)..........cceovurmrriimrnmniinininiinsisinssisssssssssssssssssssssnses 198
int get_free entry(SILOPTR SHOPLT)cureerureerreeseeeseeesneesssssssssessessssseesssnssssnsssseneess 198!
void *get_im__error_stack(Void)ccceviiiicininiiiiniicniinncse e 458,
IMAGE *get_image_by_name(char *name, int case_Sensitive).............ccceecveeiiiiccninnennd 199
int get_image window_info(IMAGE *im, char *buf)é_9_£_9
int get_ pixel(IMAGE *im, int x, inty, [int z,] [int/double*vall, ...])...ccccoorimniniesieesrrennn. :200:
int get_pixel_range(MAGE *image, double minval, double maxval)................cccccuevvnnen.ni202;
int get_pixXel_SIZ&(IMAGE *IM) ...cvurmrrverrerirreessneesssssessnsssssssssssssssssssssssssssssssssssssnessssd 209,
int get_sizes(SILOPTR siloptr, int silo_key, int *sizex, int *szey)203
int get_slice(IMAGE *im3d, IMAGE *im2d, int orientation, int slice_no)............c.cceuevueee. 1204
int get_super_ClUt(VOId)cccvriririereiiieenreeee e, 20!
int get_super_histo(VOId)ccorrireeeiinirneieierss e, 2001
iNt get_SUPEr_iM(VOId)ccovruiiiriiricinicc e 20D
INt GEAC(FILE *SITEAM)ccvvvvereerseeeeseeesseesssssessssessnssssssnsses 2001
INE GEICNAI(VOID) .vvoooveveeereeeeeeeseeees et es st sess st sssssssssssssssenssssnssssnssssessssnssss 2001
char *GETENV (const char *Name)............cocovvvinnnnnnnnnnssssnssssssssssssssnnnnnd 20 04
void * Getlmagel nffo(IMAGE *im, Char *Name)..........cccovuernieniienieneeneeeseeseesesnees s D
char *getlogin(Void)........cccuerrrreeeirirreeeie el 20O
Char *GEES(Char *S)cveueuiieririeeirrie s ne s s e et 209!
double glc_asymmetry(IMAGE *input, IMAGE *mask, int vectorx, int vectory)................5__2___1__(__)__5
double glc_contrast(IMAGE *input, IMAGE *mask, int vectorx, int vectory)..................... ig_l_(_)_i
double glc_entropy(IMAGE *input, IMAGE *mask, int vectorx, int vectory)..................... g_l_(_)_i
double gld_asymmetry(IMAGE *input, IMAGE * mask, int vectorx, int vectory)................ 1212:
double gld_contrast(IMAGE *input, IMAGE * mask, int vectorx, int vectory) Lg_l_g_i
double gld_entropy(IMAGE *input, IMAGE * mask, int vectorx, int vectory).....................1_2__}__2___5
double gld_mean(IMAGE *input, IMAGE * mask, int vectorx, int vectory) 212
double glr_greynonuniformity(IMAGE *input, IMAGE *mask).........ccccccevvrveveeiesieeseenen, 53_1_4_5
double glr_longrunemphasis(IMAGE *input, IMAGE *Mask)..........ccoeuneereernienmnernieenennni214
double glr_nonuniformity(IMAGE *input, IMAGE *Mask)..........cccoeveneneninnnninnnnennnnn i 2141
double glr_percentage(IMAGE *input, IMAGE *mMask)...........cccccveverieneeie e, Lg_l_éf_i
double glr_shortrunemphasis(IMAGE *input, IMAGE*mask)214
SErUCE M * GMETME(tIME T *1P) wovververreeesseeesiseeessseesssssess st ssssssssessssssssssessssssssssssssssssi 204
AOUDIE GraVX(LIST *IINK)....cveueveerereesseeeseeesseeesseeessesssssssssssessssssssesssssessssssssssssssssssssnssssst 2401
double gravy(LIST *liNK).......ccccoviiinininiiiiiiiicssssnnssns e 200
int greater0_ok(int value, char *teXt) ... 217:
int greduce(IMAGE *in, IMAGE *out, int nlev, int aUto_CONY).............ccoovveerrrveesrrerernnree 218!
grep <pattern> <flleName>...........cccooviiiiiicc s D22
iut grey_dilation(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz)...............................218:
int grey_erosion(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz) 219
double grey Mean(LIST *1iNK)......c.ccoueiiiieiieceee et 220:
int grey_morph_arbit(IMAGE *in, IMAGE *filter, IMAGE *out, int norm, int type).......... 221
int grey_morph_diamond(IMAGE *in, IMAGE *out, int fsize nw_se, int fsize ne sw, int
18] €1 F OSSP U PSP PPPPPRTOPOPRPPROPPPINZ2%al
int grey_morph_ellipse(IMAGE *in, IMAGE *out, int X_axis, int y_axis, double orient, int
Lo LT Y, o =) OO 72

548

SCIL_Image 1.4 — Reference Manual

int grey_morph_hollow_ellipse(IMAGE *in, IMAGE *out, int X_axis, inty_axis, double

OFENL, INE CONN, TNELYPE) ..vvvvrerereeeeeeeeseseeseesee bbbt 1221
int grey_morph_round(IMAGE *in, IMAGE *out, int fsize, int norm, int type).................. L2.2..1_5
double grey_StABV(LIST *[INK)cceureeeeieriesisiseeiseeiseesessesssssessesessesssssssssssse e 22
double grey_SUM(LIST *IINK)......oveucemeereerereeeeeesseesessessesssesssssssessessessesssessssssssessessne 2241
VOId haNDIE EVENES(VOIT) ... ee e e s e ee e ee s s e e essseeeeeeeeeeeesenees 432
int handle_Pim(iNt ACHVALE)c.oueeuiurieeiiireiee et 1225
int have_diffIMAGE *in, IMAGE *out, int MOdE)...........ccccovviriiriiiiii s 1226
INE NEIGNE(LIST *IINK) vttt 227!
NEIP SPBELEITI> ...ttt | 22O
int hide_object(IMAGE *image, LIST *Ilnk)229
int hide_object_at(IMAGE *image, LIST *link, int x, inty) 229
int hild_skelet(IMAGE *in, IMAGE *out, int iter, int endp, int bound)..........c.ccccvenenneee. g_@(_)
L TES 1 d R (=g | SRS 1231
int hist2d(IMAGE *inl, IMAGE *in2, IMAGE *out, int Clip)cc.ccocerriiriinnresenereeesee 1232
int histdata(MAGE *in, VAR_OBJECT *data, int len, int clip)cccoeverviervereieirirerennnn 12331
HISTOGRAM *histo_data(MAGE *image, HISTOGRAM *histo, int bins, double
MINrange, doubI€ MEXFANGE)c.cuurermreeseresseeeseeesssressssesssssssssesssssesssssesssssssssssssenssssenses s 1920
iNt NSLOGrAM(IMAGE *IN).....oouvevrerirseeeessnesesssssssseses st st sssss sttt sssssss 1233,
HISTOGRAM *histogram_by name(char *name, int case_check)..........c.ccrvreerrierennnnn 1 234
int histogram_comment(HISTOGRAM *histo, char *comment)............ccccovvevveieerecceesnenn, 1235:
int histogram_oK(HISTOGRAM *hiSt0)cceuueuireieeiiiieicisseieeiese s sessssessssesessssess s . 234
int histogram_to_image(HISTOGRAM *histo, IMAGE *image, int out_type)................... ;236!
int histogram_to_var_object(HISTOGRAM *histo, VAR_OBJECT *object) 236
int hit_or_miss(IMAGE *in, IMAGE *out, IMAGE *sg, int bound)...........cccccceevveiviinnnene. i_2§_7_i
int holt_skelet(IMAGE *in, IMAGE *out, int iter, int bound)...........ccoc.covsrinnnriiinnniinniins..1238;
int homomorphic(IMAGE *in IMAGE *,out, double low_amplitude, doublefilt_size) 239
iNt AUT(IMAGE * N, IMAGE *OUL)ccueieiieieieice e 240;
double hypot(double X, dOUDIE Y)cccueviecriieicrrieereee e 24 L
int Ibenke(IMAGE *filter, IMAGE *out, double gain, double convergence, double sigma, int
WIGER, I REIGNEY c.vvvovevsoieeie sttt sttt 1242
inticonify WindOW(IMAGE *IM)c.ooiiiieiicecee e 1393

IMAGE *ics _readfile(char *filename, IMAGE *image, ICS *ics_header, int xpos, int ypos)243}

intics writefile(IMAGE *image, char *filename, ICS *ics header)_2_4fl_
int IGreyMap(IMAGE *IMAQE)cvuuevrrrrrrereieeirneieriesssssinssssesssessesssssssssssssssessensss 245
void im_begin_func(const char*fname)246
VOid iM_ClEAr_ErOrS(VOId).......cereurererrereereeesssssssssesssessssssessssssessssssssssssssesssesssssssessen i4D8H
void iM_clear FUNC_SEACK(VOIM)veeeeeeeeeeeeeeeeeeeeeeeseee s e eeseese e eee e seeseeseeeesseeee s eseeeseenees 458!
void im_debug_stack(int flag)...........coovvvvrvinriiiniiiiisisisssssssssesnns | 2401
intim_eigenvectors(IMAGE *in, VAR_OBJECT *vecs, VAR_OBJECT *vals)277:
void im_end_func(const char*fname)246
intim_exposure_func(void (*fp)(IMAGE *), int handle_err)249
intim_from_silo(SILOPTR siloptr, int silo_key, IMAGE *dstimage) 248
void im_get func_stack_copy(IM_FUNC_STACK *fstack, int *flevel)........cccceevvvennnnen. 4_5_2_3
INtIM_get_StatuS(VOId)oooueivrriiniineiisisissississssssssssssssssssssssssssssssssssnns 240
int im_input_func(void (*fp)(IMAGE *, int, int, int, IM_EVENT), int handle_err);249:
int im_principle_component(IMAGE *in, VAR_OBJECT *vecs, IMAGE *out, int nr):277:
int im_report_error(const char *fname, int status, const char *MesSage)..............ccverurrernri 246!
IM_OHFUNC im_set_output_handler(IM_OHFUNC funcptr)cccceeevevevieveciieceeseene, 1251

SCIL_Image 1.4 — Reference Manual

intim_to_silo(SILOPTR siloptr, int silo_key, IMAGE *imMage)..........ccnerrierrierererreenereennnni2D21
intim_val_ok(IMAGE *image, int al [, int v1,int a2, int v2, ...])..cccoornnnneinneneenennnni253:
void im1ps(IMAGE *im, char *title, double xsize, double ysize, int fntsize, int border, int
WHEFE, Char * SPEC)eueeiiciiisris ettt 2O
void im2ps(IMAGE *im1, char *titlel, IMAGE *im2, char *title2, double xsize, double
ysize, int fntsize, int border, int where, char *Spec).........cccoovccviicccccciicccccind 254
void im3ps(IMAGE *im1, char *titlel, IMAGE *im2, char *title2, IMAGE *im3, char
*title3, double xsize, double ysize, int fntsize, int border, int where, char *spec)..................254!

void imdps(IMAGE *im1, char *titlel, IMAGE *im2, char *title2, IMAGE *im3, char
*title3, IMAGE *im4, char *title4, double xsize, double ysize, int fntsize, int border, int

Where, Char * SPEC) ..o 2O
iNtiMage_ OK(IMAGE *IMAOE)uvverueeerreereesseeessessssesessssssssssssesssssessssnessssssssssssssnsssnnd 200!
void image_output(int stream, const char *format, ...)........ccocovvrrnniininincnces 1256
int image_readwrite OK(IMAGE *IMage)coveererrnirieinnneeee et 20 1
intimage_text(IMAGE *out, int x, inty, int val, int boxval, int zoom, char *str) 257
int image_to_chaincode(IMAGE *image, VAR_OBJECT * QULPUL)..........ccrereeerrereeenrenrennats 258:
int image_to_histogram(IMAGE *image, HISTOGRAM *histo)...........ccccoeeueiniincicnincne..i 236
int ImageM otionEvents(IMAGE *image, int MOGE)ccceremererrnerenersnerseeeeesseeseesnersi 200
int images_ok(IMAGE *imagel, IMAGE *Image2).........cccccevvuerrinnrniniccncnecesseseseiesnnn 201
int imaginary_im(IMAGE *in, IMAGE *OUL)...........ccccoerniiinniieisinsseesssese s 201
LIST *Imeasure(IMAGE *grey, IMAGE *binary, int garb, unsigned long shape, unsigned
long dens, int print_it, Char *fil€)ccvreriiincee e 202
intincrement_im(IMAGE *in, IMAGE *OUL)c.orverrreneesnnesnessisnessssssssssssessesessene 2031
char *iNdEX(Char *S, CRar €)....uceeureerreeereeeeseeeseeesseessseessssesssessssessssessssssssnssssssssssensesss i 481
int init_func_overload(Void)cccocviiiiininiii s 204
void init_scil_image(Void)..........cccviiiiiiiiiiici e 2041
VOId INIT_SIHOMVOI) ..o 2O
INE INITIMAGE(VOI)......cvveieiiieiririreeie ettt 2O
1A= 1 o OO RORRRRRC o |
INESYS NEIT; oottt sttt ses sttt ses st ensssnssssnssssnssssensssns OO
VOId iNtErPret(Char *SIr) ... QOO
intinvert_im(IMAGE *in, IMAGE *0uUt)........ccccooiiiiiiiii e 200
int Irectangle(IMAGE **im, char *mess, int X, inty, int z, int w, int h, int d)2_6_?
INE IS CIUL(CLUT *CIUL) ..ottt ssssssssssesssesessnsesss OO
intis_histogram(HISTOGRAM *hiStO)..........cccvmmimininiininicinnniscnsnsssss s 294
iNtiS IMaGE(IMAGE *IMAGE).......cvvrmrreermrerernressnesssssesssesses 200;
intis var_object(VAR_OBJECT *var_object) 269
INEISIOWEN(INE C) oottt sssesssssessssse 2 O
int IsMouseDown(IM_EVENT mouse_event, int BULLON)............cccccevnnieennneccsnnnd 2021
int isodata_threshold(IMAGE *in, IMAGE *OUL)oovvveerveererreeseeeeeseeessssessssneesesnesen 203!

550

SCIL_Image 1.4 — Reference Manual

INE TSUPPEI(INT C) .. s 1270:
INEISXOAIGI(INE). 1270:
INETEEN_OK(INEITEN) e} 274
void IThreshold(IMAGE *IMAEGE)cccrueiriirieirie e e L2 O
int join_channels(IMAGE *inl1, IMAGE *in2, IMAGE *in3, IMAGE *in4, IMAGE *out, int
IM_LYPE, INt SUBLYPE)..-vvvvvereesrreeeseeessseesssesessssssssssssssssssssssssssssssssssssssnsssssnssssssnsssssssn i 18]
IMAGE *jpeg_readfile(char *filename, IMAGE *image, int Xpos, int YPOS)..........ccceeveeee. 1 276:
int jpeg_writefile(IMAGE *image, char *filename)..........cccccooeeeiievicce e 1276:
int karhunen_loeve(IMAGE *in, IMAGE *out, int start, int end)..........c.ccovrvineinniiinendd 277
int KeyPressed(IM_EVENT @Vent) ..o 2 O
int kirsch_temp(IMAGE *in, IMAGE *out, IMAGE *direction |ntfIag).............................__2___7__9_'
int kuwahara(IMAGE *in, IMAGE *OUt, iNt fSIZE) ..o : 280
int kuwahara_round(IMAGE *in, IMAGE *0Ut, iNt fSIZE)........occ.onmereenrreeeinneeesnneesseneeennni 281
int [abel (IMAGE *in, IMAGE *out, int CONN).........ccvvmninminiinene 12821
long labs(long n)6
int laplace(IMAGE *in, IMAGE *0Ut, iNt MaSK)c..ceurmrricrireeireniensssessessseeseesesseees | 283
AOUDIE [aXIS(LIST *1INK)....ooverrereirceiceereireiesiessiessisssisesssesssessessssssssessessesssesssessssssssesene L 2O
double [dexp(AOUDIEX, INE Ncureriereereeeereereeesesssesssesesessessssssseesessessesssessssssssesseesesi L80;
int lens(IMAGE *output, int width, int height, char *command).............ccccceevviieiviiecneee g§§
int life(MAGE *in, IMAGE *out, int iter, int bound)ccccooiiiiiiiiics 286!
St [SEAE],LENA] 1.vvreieeicieceecie ettt 287!
INETISE_CIULS(VOIM) ... 2 OO
IN 1iSt_NiStOGramS(VOId)cveemreemmeresresssssseeseeesssessesssessssesssssessssssssessssessssessssee s LOGD)
LIST *list_label(IMAGE *in, IMAGE *out, int con, int garb)c.ccoeeeveerneernereeeeeeerees: 289
iNt list_var_ObJECtS(VOIA)veeumeeermeeesreeesneeesssesssnesssssssssssnsssssssssssssssssnnssssnssssssnnssssssnt 290]
int IN_imM(IMAGE *in, IMAGE *OUL)cccoeiiiiiiii s 1291
load [fIlENAME]oviieiic e LD
int local_contrast(IMAGE *in, IMAGE *out, int radius, int frightmarexp, int fleftmarexp, int
fleftmargin, int frightmarging ..o L 2D O
int local_glc_asymmetry(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx,
INEVECTONY) wovovveesnneesseeesssesessseessssessssssssss s ssssss s ssssessssssssssssssssssssssssssssnsssssnssssses 200
int local_glc_contrast(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int
VECLOTY)...vvvoeeveoeeeeeeseeeeseesssseessssessssssssssss e ssssesssssssssasssssasssssesssssssssssssssnsssssnssssnssssanssssnnt 2951
int local_glc_entropy(IMAGE *input, IMAGE *output, int fwidth, int fheight int vectorx, int
1Y7< ot (0]) OSSPSR USRS U PP PPPPOPPRPRPOR 24 o
int local_gld_asymmetry(IMAGE *input, IMAGE *output, int fwidth, int fheight,int vecto_r_>g__
I VECLOTY) cvovevecvcecvseesesesesese e ssssses s sssssssssss s tesssssssesssssssnsssssssnsssessssassesssssnssssnssssnssnsssnsensen 2 11
int local_gld_contrast(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int
VECLOTY)....oomvvrrrmesssessssssessssssesssnsssssssssssssssssnnss e 297
int local_gld_entropy(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int_
177< ot (0]) OSSPSR USRS U PTSPRPROPRPRPORR p24. Y
int local_gld_mean(IMAGE *input, IMAGE *output, int fwidth, int fheight, int vectorx, int
vectory)297

double local quoercentage(IMAGE*mput IMAGE*output |nt fwidth, |ntfhe|ght)........_2_§_9_g___
doublelocal_glr_shortrunemphasis(IMAGE *input, IMAGE *output, int fwidth, |ntfhe|ght12_99,
struct tm *1ocaltimME(tiME T 1) .ooveeee e e e 27

SCIL_Image 1.4 — Reference Manual

double [0g(doubIE X) ... JA2)
double 10g10(dOUDIE X)ccvviiiiriiriirsrrrrrrsr e LA
int 10g10_iM(IMAGE *in, IMAGE *OUL)c.cvveriueieirirrieieieinreneesseseseeneeesesesesssssssseneses s 300!
LOQOFT .o QO]
10GON KIOGFIES ..ottt sess st sssss st ssssssensssnssssssssssnssssensssnst GOL!
int lookup(IMAGE *in, IMAGE *out, VAR_OBJECT *table, int clip)ccccoevvevreiieinenee. ig_qg_i
int lower_gskeleton(IMAGE *in, IMAGE *g_out, int border, int endpixel)................c........i303:
int lower_Window(IMAGE *iM)......ccccocrii e, OO
int lowest_int(IMAGE *in, IMAGE *OUL).........c.coouiumurrnieinieinrenieeeneseeesesesesesessiessenees 04!
long Iseek(int fildes, long offset, int Whence)305
MACrO [-] [-V] SMACIOFIIE>veerrierreeeeieeeeseeee et ssessssssssssssssssessssnssssnssssesssss 30O
int magjority(IMAGE *in, IMAGE *out, int bound, int weight)...........cccceoveiiieiecce e, 5§_QZ_E
int make_color_im(IMAGE *im1, IMAGE *im2, IMAGE *im3, IMAGE *out)................. :308:
int make_complex_im(IMAGE *inl, IMAGE *in2, IMAGE *0ut)........ccccccevvvieneeiecie e, 73
int make_gabor(IMAGE *out, double fcentral, double sigma_u, double sigma v, double
OFFENMEAEION) vvvvveeverseeeesseeessseessseesss s sessssssss st sesss st ssssssssssssssssssssssssssssensss GOQ)
IMAGE *make_image(char *name, int type, int lenx, int leny, int lenz, int posx, int posy)i{;’__l(__)__
ABSTRACT *MakeNewMenu(char *name, ABSTRACT *parentmenu).............................:3_1_1_
void *malloc(UnSIgNEd iNt SIZE)........ccccviiiiiiii 314
int max_element(IMAGE *in, VAR_OBJECT *result, int whole, int dimension)315;
int maximum_cost_path(IMAGE *input, VAR_OBJECT *output, int markov, int circular)316
int maximum_im(IMAGE *in1, IMAGE *in2, IMAGE *OUL)..........cccceeueveveeerrereerereenseneenn 317
int maximum_trace(MAGE *input, IMAGE *output, int startx, int starty, int dir, int avglen,
int length, int minedge, double minval, VAR_OBJECT *table)........c.ccceovveiririninininieicicienee '318;
LIST *measure(IMAGE *grey, IMAGE *binary, int garb, int inter, unsigned long shape,
unsigned long dens, int print_it, char *file)..........c.ccccovviiiiiiiciiiiccccccccceeeeee 0 3203
void *memchr(void *S, iNt C, INE N) ..c.cueurririeireeee et SO
int mememp(void *s, VOIid *t, INEN).....coceiinicii s OO
void *memcpy(Void *S, VOIA *1, INt N)..courverneeereeereeesneessneessessseneessenesssessssnesssesssssessssnned 321!
void *memmove(void *S, VOId ¥, INt N) ... OO
void *memset(void *S, INt C, INt N) ... OO
int merge(IMAGE *in, IMAGE *out, int direct |nt|ter)§_2_g
int merge_horizontal IMAGE *in, IMAGE *0ut, INt ITEr)......ccooiivieiiniiiereeeeseees 1322:
int merge_vertical(IMAGE *in, IMAGE *0ut, iNt iter)c.ccovmnirnnniinnicinec s 323!
int message_line_info(int code, Char ¥BUF)rewerreeeresneeesneessesssssesessssessesensd 3241
int min_element(IMAGE *in, VAR_OBJECT *result, int whole, int dimension).................315:
int minimum_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)..........coourveerreenreesneeessnese 325!
int mirror(IMAGE *in, IMAGE *out, int dir€Ct).........ccooviiiiinnicinieseen 0 320
int mirror_horizontal (IMAGE *in, IMAGE *0UL)ccccoeinninniinenseseesseseseenneee et 32§
int mirror_vertical (IMAGE *in, IMAGE *OUL)cccooiiiiieieniccccsceceeeeee e d G2 |
int mix(IMAGE *in, IMAGE *out, long thres, long val1, long val2, long val3)....................328:
int mix_filter(IMAGE *inl, IMAGE *in2, IMAGE *sum, IMAGE *diff, IMAGE*aIpha)L3_2_9_
time_t MKEME(SLIUCE tM *1).....eeieeeeciece et re e e nre] 27
unsigned long mmops3x3(IMAGE *X, IMAGE *Y, IMAGE *M, int S, int T, int opcode, int
(=0 (01 ISR SUPROPTURR:

int MOdal_iNPUL(DUTO, ...) «oeiiiiie e SO
double modf(double X, dOUDBIE *IP)ciiieeeee ettt

int modulo_im(IMAGE *inl, IMAGE *in2, IMAGE *out)

552

SCIL_Image 1.4 — Reference Manual

MOFE [SEAt],[ENG] ...vuieereieeeeiie e 1287
int MoUSEMOVE(IM_EVENT MOUSE _BVENL)covveeeeeerereeesiseseeesesesisesssssssssssssssssssssssssssssnnns 336!
int MoUSEPIesS(IM_EVENT MOUSE BVENL)ccovvveeeeeerereeeseseseeesesesssessssssssssssssssssssssssssssnnns 337!
int MouseRelease(IM_EVENT MOUSE_BVENE)rvemrurmmrriirieeiensessesssssssessessesssesss | 330,
int mul_complex(IMAGE *in, double real _part, double imaginary_part, IMAGE*out)........Ll}i
int mul_float(IMAGE *in, double constant, IMAGE *OUL)..........c.cccocvnnnnnnnnnnnnnnnnn i12)
int mul_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)........ccccoviurueririnieeneseneseseseeesse e i13;
int mul_int(IMAGE *in, int constant, IMAGE *OUL)c.cccoeneieisiiiiieieisiscie e i1
int natural_ Window_SIZE(IMAGE IM) ..o s sttt sasssssnnns 339;
int nearest_int(IMAGE *in, IMAGE*out)340
int negation_im(IMAGE *in, IMAGE *out) 340
int next_plane(IMAGE *im, INE NUM)ccovurrvreeneeseeeeeeeesesssssesssessesssssssessessessesssesss -S4
LIST *object_contour(IMAGE *mask, LIST *liNK)c..oervvrevrreiressiessissssessssessseenn 341
int object_dens meas(IMAGE *grey, IMAGE *mask, LIST *link, unsigned long bitmap).342
int object_freeman _meas(IMAGE *mask, LIST *link, unsigned long bltmap)...................lgﬂ
int object_ moment_meas(IMAGE *mask, LIST *link, unsigned long bltmap)345
int object_rect_to_silo(SILOPTR siloptr, int silo_key, IMAGE *srcimage, LIST *link).....:346:
int object_shape meas(IMAGE *mask, LIST *link, unsigned long bltmap)347
int objectSiZE(IMAGE *iN, IMAGE *OUL)coeeieiieie ettt §_Z_lé_3
double od_Mean(LIST *1iNK).......cccoiiiiiiiiii s 1220
double 0d_StdeV(LIST *[INK)ccreiriiiriciri e 1223;
double 0d_SUM(LIST *IINK).....cccoiiirieiriieeneseseeesese e L 222K
int odd_fsizes ok(int fX, int fy, int fMaX)ccoccermerrneerrrinrrersensesssseesseeeseee - 349
int 0dd_oK(iNt VAlUE, Char ¥LEXL)cccuevereereereeseessersssssssssssssssssesssessessssssssssssssesssssssesss - 300
int open(char *Name, iNt MOE)cocovriniiiiii s '@_5__1_
SILOPTR open_silo(char *SIHONAIME)..........ccueiieieciesecie e 1351
int opening3x3(IMAGE *in, IMAGE *out, int iter, int con, int bound)...........c.ccceveieneee. 1352:
int or_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)........cc.ccouvniiiniiiicnceeeses 1352:
FPI overload_func(char *name, IMAGE *iM)..........cccooiriniiiinicnccce 11 303
FPI overloadable_func(char *name, IMAGE *iM)........cccoueueererrneeemreersneeseeserseesesssees - 303
int palette2col Or(IMAGE *in, IMAGE ¥ OUL)........ccccieieiiecieesie e :@__5{1_
int parabolic_closing(IMAGE *in, IMAGE *out, double rh0).........cccccceveeveeieceece e 1355
int parabolic_dilation(IMAGE *in, IMAGE *out, double rho)...........ccccoveiiiiiciiiiciens 1355:
int parabolic_erosion(IMAGE *in, IMAGE *out, double rho)...........ccccveeneiniiinciiee 1355;
int parabolic_opening(IMAGE *in, IMAGE *out, double rho)cccccceeveiriciciniinene.. 13550
|nt part_| from sHo(SILOPTR siloptr |ntS|I0 key, IMAGE*dstlmage |ntleft |nt top)....... ;3_5_7_',

|ntszey)§_5_§_
int perc_to_pixel(IMAGE *in, int top, int mode, int slicenr, double perc) .ff_@_l_
int percentile(IMAGE *in, IMAGE *out, int fx, int fy, int nUM)c.ccccovvnrinrirriirerinnn. i 358
AOUDIE PEXT(LIST *1INK) ..ot sssssssssenessse £ 3OO]
VOI PEITON(CNAN *S) covvuvrreereriseeiseeeseesssesssess sttt ssssesssssssssssssssesssssssssssessnes - OOk
int phase IM(IMAGE *in, IMAGE *OUL)ccceoiuiiieie ettt §_@_1
double pix_abs SUM(IMAGE *iN).....cccocevevieerereeeeeeesieteeseeseeseses s sesess s ssseses s s sesessssnaes 1361
long PiIX_COUNE(IMAGE *iN, INt VaAl) ..ovueiieieiriieiseirceseeee ettt 1362:
int pix_maxval (IMAGE *in, VAR_OBJECT *result, int whole, int dimension)..................;363:
int pix_minval (IMAGE *in, VAR_OBJECT *result, int whole, int dimension) ;363
int pix_sum(IMAGE *in, VAR_OBJECT *SUM)........cecvrurvrrrrsrerrsresenseseessssssssssnssssssseenens . SO

SCIL_Image 1.4 — Reference Manual

char *pix_value_str(IMAGE *im, int X, inty, INt Z)cccooiiiiiniiicc. 304
PIXEL pixval(LIST *IiNK)c.ciiiiiiiiiicic 0, GOO
iINt PI_i0_OK(INt N, INEOUL)ovirieiieciiiircirteieire e SOO)
int plane_oK(iNt PlaNE)ccoeeviiiiiicieiiicciie e GO L
int plane_to_binary(IMAGE *in, int plang, IMAGE *OUL)..........cocueerereeerereeeeesssseesseesnen 30
int planecopy(IMAGE *in, int inplane, IMAGE *out, int outplane)...........cccccceveevereenneennd 368:
int plot_histogram(IMAGE *in, int action, int cllp)§_§2_3_
int point_im(IMAGE **imptr, int *xptr, int *yptr, int *BUtPr).......cccceevieeeececeeeceeeee, :369:
int point_im_display _buf(char *buf, int follow)370
LIST *point_object(IMAGE *image, LIST *list).......c.ccoevvrenniiicciiicccencccccesenn 3 74
int poll_mouse(IMAGEimage.h *image, int *im_x, int *im_y, int *win_Xx |nt*W|n_y)......_§’__7___2___'
iNt Positive_oK(iNt VAlUE, Char *LEXL)vvuureerreesneesseeesneesssessssssessssesssssssssssssssssensssns S 131
iNt POSt_OP(IMAGE *OUL)cvcvevcicicicicicicicicieicrsie s O U4
double pow(double X, double Y)..........ccccciiiiiiiiiiii e 142
int power_im(IMAGE *inl, IMAGE *in2, IMAGE *OUL)cc.ccceeneiinniinnecinnisneinend 3 141
int power_of_2_ok(int value, char *teXt)...........cooueucieiiiiiiecieeiccc e O U D)
int pre_op(IMAGE *first, IMAGE *second, int mode, int first_spec, unsigned long sec | type{@_?_@_
int prefered_model (IMAGE *image, int inout, int model)...........cccccovccninicninncnicniseenn (L
int prewitt_diff IMAGE *in, IMAGE *OUt, iNt MOGE)rveerrreerreesrnereesnnsessnesessnneses i 380!
int prewitt_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag)...........cccccveneee. 381
void print_RGB_matrices(VOId) ..o 430
void print_XY Z_ref_WhIite(VOid)ccoeiiriiirieinicrieeenieeees et DO
INE PrNF(CEN *FOMMEL, ...) ovvvereeererirereieres st esss st eesee OO
int propagation(IMAGE *in, IMAGE *mask, IMAGE *out, int iter, int conn, int edge)......._§_8__§__'
int ps_head(char *filename, iNt PAPErSIZE)............occcvuririiirincii e OO0
int ps_image(IMAGE *image, int orient, int unit, double xpos, double ypos, double xsiz,
double ysiz, int border, char *comment, int teXSIZE)ccocvviiiiiiciiccc e, 386!
INE PS_T8IH(VOI) ..ottt SO
int pseudo(IMAGE *in, IMAGE *OUL)c.cuivriiriininscciscssss e SO0
int psremoval (IMAGE *in, IMAGE *out, int BOUNG)...........cccerieeererineinereeeesessceseesnen: 3888
int put_pixel(IMAGE *im, int X, inty, [int z,] int/doule vall, [int/doubleval2, ...]) fg_Q(_)_i
int put_slice(MAGE *im2d, IMAGE *im3d, int orientation, int slice_no)..............c.c.ccuc...! 204:
int put_xy _into_image(VAR_OBJECT *input, IMAGE *output, int value) 389:
int pUtc(int C, FILE *Sream) ... snene e 390,
INE PULCNAN(INE C) .ottt GO
INE PUES(CNAE) vvvvveevereeeeseeeeseesss st sssss st st sss st sssssssssssssssssessssd GOL
iNt PUEW(INE W, FILE *SIEAM)......ourvermreeseeeseereseeesssessssessssssssssssssssssssssssssssssnsssssssssnsssss i 390!
int qpix(IMAGE *in, char *fname, int zoom, int append)............cccceeviiniiinicciid 3921
void gsort(void *base, size_t n, size_t size, int (*cmp)(void *, void *))....c.ccvevccinniinennn 48
VOId QUIT(VOID) ..o GO
int raise_ WiNdOW(IMAGE *IM)cvuumrrvermrerenreessneesssssesssssesssssssssssssssssssssssssssssssssessssd 390
AT '01e (7o T)OO OT DT OOO PP OOPROPPRTRPRRPR fc <) |
int random_filter(IMAGE *out, double mean, double max, int Symmetric)c.ccuce..... 1304
int random_im(IMAGE *Iim, iNt @lt)cocoeimniiecerce e, 39!
int range_ok(int value, int vmin, int vmaXx, Char *teXt).........cooocnrninnnrnnininnnninnincennennennd 396!
int raster(IMAGE *in, IMAGE *out, int factor, int ratio)............ccceeeveeveereeiereerereerseserensnnnni 397
int read(int fildes, char *DUFfer, iNt NOYEES)...........ccvvuerierrinresierriessiensieeeseessesseseesee 398!
int read_var_object(char *filename, VAR_OBJIECT *ObJECL) ..vvvvveevreeercrreeiecrereereeeeseneeneni 399

554

SCIL_Image 1.4 — Reference Manual

IMAGE *readfile(char *filename, IMAGE *image, int Xpos, int YPOS).........ccccvveveereenueenn. 1400:
int real_im(IMAGE *in, IMAGE *OUL)ccccoiiiiiiii s 1401
int real_time_recognizer(IMAGE *in, IMAGE *out, IMAGE *seg, int thr, int bound)......... ;ﬁ_Q_l_i
void *realloc(void * ptr, unsigned int S|ze)314
int reduce(IMAGE *in, IMAGE *out, int hfact, int vfact, int dfact, int adjust) 402:
FILE *rel_searchfile(char * name, char *envvar, char *pathret)...........ccccceveeieiecceccec, iff_z__l_i
V0T TEMAIK() vttt 1403
int remove(char *filename)............cccviiiii 1404:
int remove_holes(IMAGE *in, IMAGE *OUL)........cc.ccovnevinniinncineineenseesneeseseenneenn 1404
int Removel magelnfo(IMAGE *im, char *Name)............cccevveecinininiicccececie e i
int rename(char *oldname, Char * NEWNAIME)ccovevereevrerreserseresessesesssssssssssnssssssenennn 404
int resample_perp(IMAGE *input, VAR_OBJECT *xy, IMAGE *out, int width, int fitlength,
VAR_OBJECT *data, int threshold)............cccceriiiiiii s '.A_QQ
LIST *retrieve_0bject ISt(VOIA)cceeiuiiieiiee e 1406:
VOId FeWINA(FILE * StrEAM) ..ot tsssessessssessssessssssessssesssssssessesnsse LG
int RGB_clear_ eXtra(lMAGE *IMaQE)........cceurururerieiririsisisesisesinssissssssssssssssssssssssssssssssssssssssnsss i 20
int RGB_gamma_correction(IMAGE *in, IMAGE *out, double r_gamma, double g_gamma,
AOUDIE D_GAMMA)eeoveeveieieiceeeees ettt ssssssssssssesssssssssnensne i 400
void RGB_ref white(int RN, iNt G, iNE BNovueveeeeereeeeeeeeeeeeeseeeseessse e ssessesseseeesseneens 535,
int rhull(IMAGE *in, IMAGE *out, int dist)..........cccocoiiiiiii s 1407:
char *rindex(Char *sS, Char €)cccveiiiiiic e 1487
LIST *rM_IISELIST #IISE) cvvucecercereeeneeneereeeesneeseeseesessseseesessessssssssessesssssssssessessssssesessesssssnei4073
VOId rM_OBJECH(LIST *IINK) covovuvvererirnreenersiensierssessssessssssssesssssesssssessssessssnessssessessesses ;4081
iNt rM_SHO(SILOPTR SHOPET) c..ucvvuerarererereeiseesseesseesseesssssssssssssssssssssssessssssssessessessesssesss: 409
int rm_silo_object(SILOPTR siloptr, int SIHO_KEY)......ccccceiieieiieceee e .ff_QQ_
0017 R 1410:
int roberts_diffIMAGE *in, IMAGE *out, int fsize, int Mode).............ccccoevveiiniciiiiciininns 1410:
int robinson_temp(IMAGE *in, IMAGE *out, IMAGE *direction, int flag)........................;412:
IMAGE *roi_define(char *name, IMAGE *parent, int sx, int sy, int sz, int width, int height,
int depth, BOOL_MASK *MASK).......cuurerrerrmmeeserssessessessesssssssssesssesssssssssssessessssssesss L3
int rotate(IMAGE *in, IMAGE *OUt, INtItEr).......cccoviiiiiiiccs '.il_ff_
U R 1414:
LIST *S_Append(INFO *item, LIST *iSt)......cccovrirriiirsisnsssssssssssssseseseseene 415!
LIST *S BreakLiSt(LIST *liSt)cccuvuiiririiiiirisiissrrssssssssss s 415!
LIST *S_ClOSELISH(LIST *liSt)...cuuverreerierireneeineeisseisessesssssisssssssssessesssssssssssssssessesssnsse 4 10:
LIST *S_COPYLISHLIST *IISt) cvvourverrirrirrrerrriessiessseessesssssssssssessssessssessssessesssnssssnssene i 410
LIST *S_Delete(LIST *item, FREEFUNC Freelnfo)ccoocuevneeenmeereesnceneesnensnsesenenenn i 415:
LIST *S_Findltem(INFO *item, LIST *iSt)......cccoovrriiiiiissssssssssssssssssseene 1415
int S_FreeList(LIST *list, FREEFUNC Freelnfo).........cccocovvvinnnnniissssssssss, 1415:
LIST *S_Insert(INFO *item, LIST *iSt)......cccovvrriiiiisrsrsnssssssss s 415!
iNt'S_LeNGtA(LIST *IiSt) ..ot sissssesssessesssssssssssessssssesssesse s 4101
LIST *S_Prefix(INFO *item, LIST *[iSt)......ccovrurreerreirerierinsrinssineeiseeiessssssssesssseseessesssensen 4101
LIST *S_SortList(LIST *list, COMPAREFUNC COMPAIE)cvrererererercereesereeesneesnees i 415!
AOUDIE SEXIS(LIST *IINK) w.cvvvververaeeceseeeeseeeesseeseseseess st 417!
INt SCANF(CHAI *FOMMEL, ...) . ..vuceeeiieeeci b 1418;
FILE *searchfile(char *name, char *envvar, char *pathret) ... 1421
int set_aio_diSP(INt MOGE)c.curerecreieiireictsee e 422
int set_border(IMAGE *out, double value, int top, int right, int bot, int left, int z_min, int

SCIL_Image 1.4 — Reference Manual

int set_clut(IMAGE *image, CLUT *clut, int diSp)cooueverneeeenieneenienenicnennenneeeeneennn 423
int set_color(IMAGE *image, int red_val, int green_val, int blue_val)cccccocvinininnn.i423:
int set_color_model (IMAGE *image, int inout, int MOdel)...........ccccovvieiiniiniieee 71
int set_color_model(IMAGE *image, int MOGE)ccovoveeieerieeeireeeeeeeesesesesesesesenene L L
void set_common_linglCOMMON_LINE *com_line, int type, void *data, int X, inty, intz,
int t, int chan, double h_min, double h_max)..........ccccccvvinniiicciicccccn 4241
void set_comp_Mmargin(int SIZe)cccoccveiriiiiiiii e s 429!
int set_complex(IMAGE *im, doublerea _part, doubleimaginaryJJart).............................14_2_5_3_5
void set_cross_dim(int cross X, int Cross Y, INt CrOSS Z)cccceeveveesieeseeseeseeneeseesieesseseens :376:
int set_dialog_pos(int X, iNEY)cvecrini st 420
int set_display _mode(IMAGE *image, int mode, int global, int direct_display)..................E__A_fg__7___5
int set_display_slice(IMAGE *image, int SlHCE)ccovveeereeinneenneinernesneesnessenissssseseesen 4281
int set_dither_mode(IMAGE *image, int mode, int direct_display).......ccccccevvveveeceieennenen. 429
int set_float(IMAGE *im, double constant)............ccccovrvicennniccienneeesneeeeenenen et 430
int set_im_type(IMAGE *im, iNt tYPE)ccevrirrrrrccirrreeresisseeenesesnsneeesesssreneesesenee st 430
void set_image_flag(IMAGE *im, int flag)cccoovvvrnnirncinncsnicsecscsssnnn d 4311
int set_image_interaction(int mode)432
int Set_iNt(IMAGE *im, iNE CONSANE) «....ouuverrrerneeeseeesseeesseesssessseessssesssseesssnsssssnssssenessns - 4334
int set_jpeg_quality(int PErCENtagE)........cccvvererriciniciciciciseteieess s 24 O
void set_line_editor(int MOGE).........ccverrricenrreerreee e s G344
iNt set_MENU_POS(INt X, INEY)..cviirireciirreceeresseeee et OO
int set_rgb_bits(int r_bit, int g_bit, int b_Dit)........cccooiniiie. 0 435
void set_ RGB2XY Z_matriX(int MariX_tYPE)........eveerererreeerrereseresssessesessessssssnssssessensnss s 430
void set RGB2XYZ_mvalues(double m11, double m12, double m13, double m21, double
m22, double m23, double m31, double m32, double M33)ccccvvrrecicnncceeee 436
int set_roi_mask(IMAGE *roi_im, BOOL_MASK *mask).........ccccceevrrrnnininnicninienennn d 438:
int set_roi_parent(IMAGE *roi_im, IMAGE*parent)ff_?iEj
int set_roi_pos(IMAGE *roi_im, int SX, iNt Sy, INt SZ).......cccccoriiiieiiiciee e 1438:
int set_screen_gamma(double gamma)............ccccveiicrneeiinncininnsn s 439;
int set_sigmoid_shape(float slope, float bendlngJoomt)440
void set_start_pos(int x1, int y1, int x2, int y2, int X3, int y3, int X4, iNt Y4coooverreennst 441
void set_start_sizes(int wl, int hl, int w2, int h2, int w3, int h3, int w4, int h4)....................1441:
void set_tiff_compression(int enable)ccoovciiiiiiciiiinc £ 4421
void set_tiff_image_number(int NUMDES).........cccoiiniiiiiieeen 442
int set_var_object_class(VAR_OBJECT *obj, char *class)..........cccccevvivrcicicniiicncnnnnnen. 1 443;
int set_var_object_comment(VAR_OBJECT *obj, char * Comment)............cceeveveerrvrerennn. 443
int set_var_object_data(VAR_OBJECT *obyj, int type, int nr_channels, int nr_dim, int diml1,
intdim2, int dim3, int dimd4, int dimb).........cccoiiiiiinn 4440
int set_var_object_size(VAR_OBJECT *obj, int nr_channels, int nr_dim, int dim1, int dim2,
int dim3, int dim4, int dimb) ...t 44D
int set_var_object_type(VAR_OBJECT *obj, int type_of_data)...Lff_f{f_ﬁ_i__i
int set_window_pos(IMAGE im, it X, INEY) ...uceeeeerrerreeesenseseesssseessssssssssssssssnsessneessd 447"
int set_ window_size(IMAGE *im, int sizex, int sizey) 447
void setbuffer(FILE *stream, char *Duf, int SIZE).........v..reeereeerneeesnnesssssessssssesssssssanns 1448
void SETENV (CONSt Char *StHNQG).......ccvvericecieneniinieeseneseesesessssiesessesssssesessssessssesesnen s 2014
void setlinebuf (FILE * StrEaM)......c.cvovrireciinreceesesseeee e sesnsnesessesnsnene e n 4481
void SetMacFileCreator(10Ng Creator)o vreererreseeieresesisiereeseseseseesesessssssesesessssenese s 450
vOid SEtMECFIIETYPE(I0NG LYPE) ..cvvvvrvrrererrcrereerereesisesssessssessssesssssessesssssssesessesessenees s 400:
VOid SEtPromPL(Char * PrOMPL)cvereeveeeeeeseeseessesseseeseessessssssessssssssssesssssessssnsessssssnesnssnss s 4B

556

SCIL_Image 1.4 — Reference Manual

int setvbuf(FILE * stream, char *buf, int type, int SIZe) ..o 1448:
int sSfp(IMAGE *In, IMAGE *Out, int Orientation, int Background, int Light, int View, int
Excitation, int Emission, int EXtra light).........ccccoeiiiiiniceeseeeseees 1452:

......

int shape(IMAGE *label_im, VAR_OBJECT *label, VAR_OBJECT *xcentre,
VAR_OBJECT *ycentre, VAR_OBJECT *area, VAR_OBJECT *peri, VAR_OBJECT *p2a,

VAR_OBJECT *ccoun, VAR_OBJECT *count, int NOSMOOtN)...........ccccevviininciiiiiiiicie, 1454:
int shift imM(IMAGE *in, IMAGE *out, int NShift)..........cccccoviiiiie e '.Ffl_5_§_i
Vo Lo B g oYY Ao N g (1 (L8181) T 1456
int show_dmode_flagS(IMAGE *IMBJE)..........ccccrruerrimrrmrrnrrincriresisensessnsssssessssssessessseess 496
VOid SNOW_EITOr_StACK(VOIT) ...evvvverrvenrernrirrerseiessiessesssessesssessssessssssssessssssssssssesssneese s 4081
int show_func_overload(char *spec_func, int im_type, char *fiIe_name)............................i_{_l__5___7__5
VOId SNOW_fUNC_SEACK(VOIT) ..o se e eee e e e ne s e eeeee e eseeeeeenees 458,
int show_histogram_info(HISTOGRAM *hiSt0)cruereiurieemirnirernieneeineieeneesesesneeseseeneeer | 2301
void show_image iNfO(IMAGE *IM) ...c.cucucveeereeererereieree e teeete ettt es sttt sttt teesseees 1459;
int show_menu_layout(char *filename, int show_items) 460
int show_statistics(|MAGE *in, int mode, int dlicenr, int lo_limit, int hi_limit)j461:
int show_var_object_info(VAR_OBJECT*obj)...E__A_E_E_S__:_’z_i
int sigma(IMAGE *in, IMAGE *out, int fSIZ€)..........cccovviiiiiiisnsscc, ff_@;%
int SIgN_imM(IMAGE *in, IMAGE *OUL)cccviuernirreeinineinienneinsenssessensssesnessnsesnesneenneee 404
VOI 0 SIO_TISI(SILOPTR SIHOPLI) ...vvvcvcvcecectctctetetete ettt tstetese sttt sssstssesesesesesesesesesesssesans 1465:
int silo_to_comp(SILOPTR siloptr, COMPTR comptr, int startlabel, int endlabel)..............;466:
AOUDIE SIN(AOUDIE X) .vvvvvvvvrcrernrreresesesssesseseesesesss s sessssssssessssesssessssssssssssssessssneenss 40 04
int SIN_iM(IMAGE *in, IMAGE *OUL)couevreereeeeeeineisesssensesessssssssssssessssssessnsnnens 409
int single_pixels(IMAGE *in, IMAGE *out, int bound, int conn, int obj_bkg, int detect re;ljr_li{fj_(_)_
double SINh(AOUDIE X)cciiiiii s 467!
int SINN_iM(IMAGE *in, IMAGE *OUL)cccooiiiiiiiir s 1469:
int skelpoints(IMAGE *in, IMAGE *out, int bound, int opcode, int type).........cccccvevernee. 471
unsigned sleep(unsigned SECONDS)..........ccueiiiiicicieieiniieceie e b4 L 20
int small_object_removal (IMAGE *in, IMAGE *OUL, iNt SIZE)c.ovverrverreerereeereneennn 4121
int sobel_diff(IMAGE *in, IMAGE *OUt, iNt MOE)..........eveemrreerneeernneeeseneesssnssessnneeesent4 03]
void spb_publish(void *obj, int mess, void *data)..........ccccveveieevecie e 474
void spb_subscribe(void *obj, void *id, SPBFUNC subscr, void *cldata)c.cccceue.e.. 475:
void spb_unsubscribe(void *obj, void *id, SPBFUNC SUBSCK)ccceveieeieiie e 475:
it SPIX(IMAGE *in, IMAGE *OUL)........ccoceiiiiiiicieisccenecieeeiee e t4 1O
int split(IMAGE *in, IMAGE *out, int direct, int iter)........ccoeeeveveerererecrseeseessseessnseseennen A7 1
int split_channels(IMAGE *in, IMAGE *outl, IMAGE *out2, IMAGE *out3, IMAGE =~
KOULA) 1. vvvvveeeesseeeeesseesesseeesss st 478!
int split_color_im(IMAGE *in, IMAGE *outl, IMAGE *out2, IMAGE *out3)..................;308;
int split_horizontal IMAGE *in, IMAGE *out, iNt iter)........ccceveiieviiie e 1479
int split_vertica (IMAGE *in, IMAGE *out, int |ter)479
int sprintf(char *s, char *format, ...)cccoeeiiiiiiicc 1 OO
AOUDIE SOIE(AOUDIE X) ...vvvverrirrireerceeiseesess e esssssssssssssesssesssssnssesssnsnest LA2)
int sgrt_ IM(IMAGE *in, IMAGE *0UL)coiieiececeee et ff_@(_)
void Srand(UNSIGNEd iNt SEEA)vucveriirciiereei e 1394:
void Srandom_im(10NG SEE)vuviueiiriieireieieireie ettt 395!
int sscanf(char *s, char *format, ...) ...t 418
int standard_gabor(IMAGE *out, double radia_bandw, double fcentral, double
angular_bandw, double OriENEatiON)..........cc.eveereeererereeeeeresecsesesessesesssssesesssssssessssenssnsessssesses s 309

SCIL_Image 1.4 — Reference Manual

COMPTR start_comp(IMAGE *Im).......cccvriniiiiiiiiicscsseessseeeennd 481
int stat(char *name, Struct Stat * BUF)ccciirriccie e 82
int stereo_view(IMAGE *in, int mode, int view, IMAGE *left, IMAGE *middle, IMAGE
FOUL) oottt s A0
INE SLOP_IENS(VOIT). - veveevereeereeeieeesseeseeesse sttt ssess st ssss st sssss s sssnesssnssssnsssnsd 28D
int strcasecmp(const char *strl, const char *Str2)..........ccceieicicieiceciceee s 1485
char *streat(char *s1, char *S2) ... 480
char *strchr(char *s, Char C).......ccovvviiiii 1 486
int stremp(Char *S1, Char *S2)cccueureriricienenreieeiesesees e essesesesesesesseenes, 480!
char *strepy(char *S1, Char ¥S2)ccvrniciiincsce et 4803
SIZ€_t SICSPN(CHAr *S, CNAE 1) wovvorvvvrceiieeeieenesseesssseessssesssssessssssssssssssssssssssnssssssnens A 48 1
char *Srerror(int €TNUMYc.ovvceeeeeeeee st sssssssssssessesnsssssssssesneensen s 487
size_t stritime(char *s, size_t smax, char *fmt, Struct tm *tp).........ccoevvevivincinsiincnennn 0t
unsigned int SIen(Char *S) ...t 480!
int strncasecmp(const char *strl, const char *str2, Size t NUM)ccccovveciecnnnreccnenenn 14851
char *strncat(char *s1, char *S2, iNt N)......cccviicinice e 486
int strncmp(char *S1, Char *S2, Nt N)...ceeoueeeereeeeeesseessessssssssesssssssssssssssssesssnssesd 486!
char *strncpy(char *S1, char *S2, INE M)c.eoeeereeeeeeneeeneeseseseessseesssessssessssessssensesss - 4861
char *strpbrk(char *s, Char *t)cccccovviiiiiiii 48T
char *strrehr(Char *S, Char €) ..o n A8 1
char *strsave(CoNnst Char *Str) ..ot 48D
Size t Strspn(Char *s, Char *1)ccvcicccseeee et DB T |
char *StrStr(Char *S, CNar *1)ueeceeeceeeeiesiessieessessessssessssessssesssssssssssessessesssesen st 48 1
double Strtod(char *s, Char **EN0P)ceeereeeerreesreesneessseesssessssessseesssesssssssssssssssessssness 30,
char *strtok(char *s, char *t) ... d 487
long strtol(char *s, char **endp, INEDESE)ccveiviiiecece e e :30:
unsigned long strtoul(char *s, char **endp, iNt Dase)cccevveve i :30:
int sub_complex(IMAGE *in, doublereal_part, double imaginary_part, IMAGE *out)........ 11
int sub_float(IMAGE *in, double constant, IMAGE *OUL)ccccceevieieiiereeie e 12!
int sub_iM(IMAGE *in1, IMAGE *iN2, OUL).......ccccoeumiriminininininieiees st 113;
int sub_int(IMAGE *in, int constant, IMAGE *OUL)ccoocvininnininniccscssseseeeeenn 4
void swab(char *from, char *to, int NDYLES)............ccviiciiiiiiciccccc e 4881
int sync_display(Void)........cccccurirrninrr e 489
INt System(Char *String).........cocuueiviieniiiisiss s 489)
int t_morphology(IMAGE *in, IMAGE *out, IMAGE *sg, int thr, int bound).....................lff_g(__)__i
int tan_im(IMAGE *in, IMAGE *OUL)vvermrreererrinneesssnssssssssnesssssssssssssssssssesssnssss i 469;
dOUDIE taNN(AOUDIE X) «..vevoveereeeeseeeseeeeseeeeseeeseeessessssesssssssssessssessssesssssessssssssnesssnsnsssns i 407
int tanh_iM(IMAGE *in, IMAGE *0UL)cccoviiiiiiiiinesee s 469
int taylor_expansion(IMAGE *in, IMAGE *out, double sigma, int order, double accuracy,
double delta_x, double delta_y, doublet) ... 492,
int taylor_polynomial (VAR_OBJECT *out, int order, double delta_x, double delta_y, double
JEILALS) cvvvverrermeessseenes sttt sttt ssns s sns e d DO2)
int taylor_segmentation(IMAGE *in, IMAGE *out, double dscale, int order, doublesmooth_i_4_£__9§:
IMAGE *tcl_readfile(char *filename, IMAGE *image, int Xxpos, int ypos)..........................:49_4_
int tcl_writefile(IMAGE *image, char *filename).............cccoovvicciiiiiccicccccccn 1 495;
loNg Bl (INt FIlAES)......oeii e OO
int threshold(IMAGE *in, IMAGE *0ut, iNt [&VE]).......ccoiiiiieeeeeeeee e 496:
int ti_block(IMAGE *out, int block_size, int forgr, int DaCKGr)........c..ueeveeereeerereerernennenn 497
intti_circle(IMAGE *out, int dist, int rad, int line_w, int forg, int back)............c..ccceeuevuve.... /497

558

SCIL_Image 1.4 — Reference Manual

int ti_fractal IMAGE *out, double dim)..........coueuiiriiinneiieneeeesee s 1498:
intti_hlines(IMAGE *out, int dist, int start_p, int line_w, int forg, int back)..................... '.A_QS_J_E
int ti_ifr(IMAGE *0ut, dOUDIE SIOPE)cvcveveeeeeeeeriseeses st 498!
intti_lines(IMAGE *out, int dist, int start_p, int line_w, int forg, int back)500
int ti_Ishading(IMAGE *out, double top _r, double top |, double bot _I) 500
int ti_points(IMAGE *out, int dist, int start_p, int width, int forg, int back)c...c......... i§_Q_1_E
int ti_gshading(IMAGE *out, int cval, int tOP 1) ...cceeeeeieeieeececeeecee e 1501
intti_vlines(IMAGE *out, int dist, int start_p, int line_w, int forg, int back)..................... '@_Qg_i
IMAGE *tiff_readfile(char *filename, IMAGE *image, int Xpos, int Ypos)..........ccccevervenen. =.§_Q§_i
int tiff_writefile(IMAGE *image, char *fllename)504
tiME SCOMMEBNES ..ottt sssssssessss s s sssessss: D00
tIME_ tIME(LIME L ¥ D) rvvvreeerrerereeeseeeseeeeseessseeesssesssssess st essssesssssenssssesssnessssnssssesssssnce i1
FILE *IMPFIEMVOIT) 1. vvererersneesseesesssesesseessss sttt sttt 507,
char *tmpnam(char [L_tMPNamM])........ccceiiieiieii e :159.7_5
QL e[= (] L) OSSP 508!
INE EOUPPEN(IME C) oottt essesssessss | DOO
double trans_ MEAN(LIST *[INK)ccreereerrrierieririncriseeisesssesissssseseseessessessssssssssesssessse i 220,
double trans SIAEV(LIST *HINK)cvcuveeeeeeeeeeieeeeeseseseeestesestesssses st sesssssssssssssssnssses s 220,
int tri_state_threshold(IMAGE *in, IMAGE *out, int thresh, int val1, int fl1, int val2, int |2,
INEVEIB, INEFIB) e 509
int truncate_IM(IMAGE *in, IMAGE *0UL)ccccoiriiiiieirisee s 510;
int TWACQUIFE(IMAGE *IMBJE)........cceverirererrireiiereeeisssesesssesessesesessesesssssessssessssssesessense DL
int TWAcquireArea(IMAGE *image, double res, double xleft, double ytop, double xright,
YDOLLOM, ML EYPE) ...vvvovrneerieieeeeesess ettt essssssessssesssessessessssssesssnsssnnssDLLL
FPI type overload func(char *name, int type).§_5_§_
FPI type overloadable func(char *name, int type)cccceeveeieiieiecie e 1353
int unequal O_ok(int value, char *LEXL) ... 1512:
int ungetc(char *C, FILE *Stream).........cccciiiiiiiciiciceess e} 513
int uniform(IMAGE *in, IMAGE *out, int filtx, int filty, int filtz)..................cccc.coo......i514
int uniform_round(IMAGE *in, IMAGE *out, int fSize, int NOrm)...........ccccoseenevereeerneeneni D14
LIST *UPAAIE(LIST *IISL)..uuvverrmeeesseessreessneeessssessssessssssssssssssssssssssssssssssnsssssnssssssnssssser D15
int upper_gskeleton(IMAGE *in, IMAGE *g_out, IMAGE *b_out, int metric, int border, int
ENODIXEN)...ovoevvvveee e 1303
int val_check(IMAGE *image, int axis, int VAlUE)cccoevvvreiineiinniinncincccseseennennn 9161
VAR_OBJECT *var_object(char *name, char *class, int type, int nr_channels, int nr_dim, int
dimi, int dim2, int dim3, int dimd, int dimB)cccoeunerneeeeeessesessesseessene DL
VAR_OBJECT *var_object_by_name(char *name, int case_Sensitive)..............coeceveenennn 118!
int var_object_convert(VAR_OBJECT *source, VAR_OBJECT *destination, int out type)519§
int var_object_copy(VAR_OBJECT *obj1, VAR OBJECT*obJ2).....................................;5_1_9_:
int var_object ok(VAR_OBJECT *Var_ObJECE)......ccccciviieieeiecieseere e 1520:
int var_object_to_image(VAR_OBJECT *object, IMAGE *image, int type of _image).....;521:

int vfuzzy derivative(IMAGE *in, IMAGE *out, double sigmax, double sigmay, double
sigmaz, int derix, int deriy, int deriz, double accx, double accy, double accz, int fwidthx, int

fwidthy, int fWIdthZ)..........cooii L L8
int vgauss(IMAGE *in, IMAGE *out, double sigmax, double sigmay, double sigmaz, double
accx, double accy, double accz, int fwidthx, int fwidthy, int fwidthz)ccoc.coeeveererennn.. i 1921
int vkuwahara(IMAGE *in, IMAGE *out, int fSize, int Vari)........ccccoeveineneinienceesene 1 D231
INEVIGPIACE(IN, OUL) c.vvvvvvvrrerceesereisensiessssessisesse st essssessssessssessssssssessssssnssesssssessses sl
int viinear(IMAGE *in, IMAGE *filter, IMAGE *OUL)........cccocveernvererrerecsseessnsssenesnessenennen 024

SCIL_Image 1.4 — Reference Manual

int vmedian(IMAGE *in, IMAGE *out, int fSIZ€)...........ccccoeviiiiniiciiiiceen 9291
int vpercentile(IMAGE *in, IMAGE *out, int perc)§_2_§
int vsobel (IMAGE *in, IMAGE *out, int weight_factor)............cccuevnninniinccneseene 1526
int warp_image(IMAGE *in, IMAGE *OUL)........ccccocniriimnininnisccss st 920
INEWIGEN(LIST *INK) cooocvoreeeeneeeseeeeseeeseeeeseessseesssssesssssesssssssssssssssssssssssssssssssssssssssensssnst D21
int win_to_comp(COMPTR comptr, IMAGE *image, int |eft, int top, int sizex, int sizey) .EFE_S_Z_E_B_
int wrap(IMAGE *in, IMAGE *out, int hdispl, int vdispl, int zdispl).........ccccocevviivieennnen. 1528
unsigned int write(int fildes, char *buffer, int NDYLES) ..., 1529
int write var_object(VAR_OBJECT *object, char *fllename)530
int writefile(MAGE *image, char *filename, int fileformat)............ccccovevneererrenirsnennnnnn D311
int xor_im(IMAGE *inl1, IMAGE *in2, IMAGE *OUL).........cccoovmmiiniinnnn s 1534
void XY Z_ref_white(double Xn, double Yn, double Zn)..........ccccoceveinnniccnnniicrennnn . 535
int z_planes(IMAGE *in, IMAGE *out, int start, int number, int border, int value)538:
int zcross(IMAGE *input, IMAGE *output, double threshold)............c.ccecveeeereevecrreeneeennni 538!

560

SCIL_Image 1.4 — Reference Manual

......

abort 5

abs6

abs imi7 o
abs_pathname:37.

......

add_applic exposure func9
add_applic_win_input_func: 10:
add_complex:11:

add_im13
add_inti14;
Addlmagel nfo 15

anchor skeleti_1__9_i
and_im:20:

angle:20
angle_detection:21;
applic_exposurei22;
applic_win_input:. 23
apply spatial bank_2_4_
arbit_dilation: :25:
arbit_erosion: 126

...........

atan | |m 469
atan2: 467

atexit: 29

atof: 30

atoi 30

atol 30
auto_display 32
auto_plane:3 33
auto_point: 34
averagei3b,

B

back_proj ect_36_i

bangle:36:;
bank_frequency_response:. 24
base_name:37:

beskel 37

bcdist:38

bclose:38

bdilai39:
bdisti39;
bdskel 39

......

binary to grey 4§)
binary_to_planei43;
bit_ok:44;

blabel :44;

blifei44:

bline: 45

blow45;

bmayj 45;

bopen:46;
box_dimensioni46;
bperc:: 47

561

SCIL_Image 1.4 — Reference Manual

......

calc_greyvalue; 52)
callbrated denS|tyL5_3_i

......

canny::! 54
cd 522 539
cdens 55
ce|I 146

...........

chai ncode to _image:! 56!
chai ncode to XY 57

channel _bi threshold 59
chdir: 60

check _image_integrity: 61
check_status: 62

clear | |m 63

......
......

clear_var_object 5_6_3_4_5
clearerr: 65

clip: 66

clock:27:

close; 66
close_compi67
close sloi67:

clos ng3x3 68
cmp_pixels; 70:
cnvo:70:

color_get_model_sizei71:

color_set_color_model; 715

com_dialog; 72
compact slo: 73
complex_im: 73
complx: 74
compute_clut: 745
con_ok: 75
con6_ok! 76!

conjugate_im:76;

562

conjugate_mul_im:77:
constr_distance;78;
contour: 79

contrast_: dretch: 79
convert: 80

convert_cmodel 81

copy_ clut! 84

copy_ hlstogram 92
copy_im:84:
copy_masked_part:86;
copy_object85;
copy_part_imagei86
cos 467

L----

.......

covmatrix: 87
covplanematrix: 88

cri 88

creat: 89

create clut: 90

create | dlff Wi ndow 95

create_i mage-9_4_'
create | I|ve window: 95
create silo 95
ctime:27;

cube view: 97

D
decrement_im: 98
default |mages 199

...........
......
..........

...........

SCIL_Image 1.4 — Reference Manual

......

dilation3x3:110;
dir_maximumi111:

.......
...........
......

dist_average 115;
dist_skelet:116:
distance:117:

div_complex:11:
div_floati12:
div_imi13;
div_int:14;
do_alerti119;

dump_histogrami235;
dump_var_object:122:

......

......

............

............

...........

......

......

......
...........
brrrrs

____ e -4

......
......

fg_grab_image 162;
fg_grab_nexti163:

S e Ermm

......

563

SCIL_Image 1.4 — Reference Manual

...........
............
......

fg_setoffset 160
fo_setres 172
fg_setroi:173:
fg_settypei174;

et

fgr_execi155;
for_freeze 161

......
......

...........

k-
......

for_setdepth:171;
fgr_setgaini156;
fgr_setoffset 169;

fgr_setres172:

............

Pyt bt
ety

e N S
.......
......

[Wiy

ek

............

fuzzy derivative: 188:

..... | M

......

..........
............
......
et

...........
............

=
......

...........

......

......

SCIL_Image 1.4 — Reference Manual

.........
........
Eaanai
'

......
..........
.........

glr_greynonuniformity:214:
gir_longrunemphasis214:
glr_nonuniformity:214:

...........

...........

......

e

help 228;539;
hide_object:229;
hide_object_ati229
hild_skelet:230:

.......

............

............

holt_skelet:238;
homomorphic;: 239:

hull: 240:

hypot: 241

............
............
......
LRy
............
......
..........

............

565

SCIL_Image 1.4 — Reference Manual

init_func_overload:264:

..... |y ydieb)

......
......

isalnumi270
isalpha 270;
i sascii:270:

iscntrl:270:

............
Yrrors
......
......
......

...........

kirsch_temp:279;
kuwahara: 280:

|dexp; 180:;
lens 285:

............

............
A)

.......

...........

...........

......

.......

logon 301;:539:

..... ot

lookup:302:

[Aeghydm R
“drrr-e

......

...........

make_gabor:309:

heeeas

make_image:310:

Lecccennaa

MakeNewMenu: 311:

...........

maximum_im:317;

maximum _trace318;

.......

SCIL_Image 1.4 — Reference Manual

memchri321:
memcmp;32L:
memcpy:321;
memmove; 321

eeokEpo-t

............

mirvi32g
mix:328:

............

modulo;335]

more 287;:539} _
MouseM ove: 336

e

............
......

mul_im 1§ N
mul_int:14;

N

........

......

brrrrs

jummdemnas

......

obj ect_shquﬂmeasi@é?}
objectsizei348
od_mean:220:

......
............
...........
........
...........

bemrrra .-

..........
berrrdaa
.........

..........
o L N T

567

SCIL_Image 1.4 — Reference Manual

power_of_2_oki375; Removel magelnfoi15;
pre_op:376: . renameid04i
prefered_color_model ;71 resample_perp:405;
prewd:379; retrieve_object_listi406:
prewitt_diff:380: rewind;186: o
prewitt_temp:381: RGB_clear_extra52:
prewti382 RGB_gamma_correction:406;
print_RGB_matrices436; RGB_ref_white:535:
print_XYZ_ref_white{535; rhull:407;
printfi3e3 rindex486:
propagation; 385; rm_listi407;
ps_head:386: rm_object:408;
ps_image'386; m_sloid0%
ps_tail:336; rm_silo_objecti409
pseudo:388: rmvar 410;:539:
psremoval :388; roberts_diff:410;
puti38% robgi4lli
put_pixel:200: robinson_temp:412:
put_slice204 roi_definei413
put_xy_into_imagei389 rotatel414;
putci390: run 414;:539;
putchar:390;
puts:391: S
putw:390; S_Append:415:
pwd 522;:539: S _BreekList:415:

"""" S CloseListi415!

Q S CopyList415
gpix:392; S Delete415;
asorti48; S_Finditem:415;
quit; 392! S Freelisti415;

S Insert:415:

R . S Lengthi4i5;
raise_window;393; S _Prefixi415:
rand:394: SortList:415!
random_filter:394: saxisdi7:
random_im:395; scanfi418:
range_ok:396; searchfilei421!
raster; 397 seti433
read:398: set_aio_dispi422;
read_var_object:399: set_borderi422;
readfile{400; set_cluti423]
real_im401; , set_color423;
real_time recognizer:401; set_color_model 71
realloc;314: set_common_line'424:
reducei402: set_comp_margin:425:
rel_searchfilei421; set_complexi425;
remark:403: set_cross dimi376!
removeid04: set_dialog_pos 426:
remove_holes 404 et display. moded37

568

SCIL_Image 1.4 — Reference Manual

R I T

set_jpeg_quality:276;
set_line_editor:434:
set_menu_pos 435:

.........

...........

............

...........

...........

.........

show_error_stacki458!
show_func_overload:457:

[R

cmmakmmmns

............

e e

...........

split_color_im:308:

split_horizontal:479:

split_vertical:479;

e mmmmm-
cemmEpm-

...........

m =TT hammma

strchri486;

(At

strftimei27;

569

SCIL_Image 1.4 — Reference Manual

...........

strpbrk:486:

strrchr:486:

strspn; 486;

strstr:486:

strtod 30

strtol 30,
strtoul :30;
sub_complex:11:

............

......

......
......

............

........

threshol d: 496;
ti_block:497:

ti_circle:497:
ti_fractal:498:

[Whl=g

..........

......

(mpfile537:
tmpnam’507:

tolower:508:

beeeetoaan

...........

...........

ungetc51?’> ______
uniform:514:

...........

......

......
...........

......

vmedian’525; _
vpercentile:525:

............

vsobel:526:

......

......

SCIL_Image 1.4 — Reference Manual

...........

write_var_object:530:
writefile:531:

it Rygopdynys

writf:531:

......

...........

z_planes’53

'
"
-

Zcross 538;

......

571

	Reference Manual Pages
	abort
	abs
	labs
	abs_im
	absd_im
	add_applic_exposure_func
	add_applic_win_input_func
	add_complex
	sub_complex
	mul_complex
	div_complex
	add_float
	sub_float
	mul_float
	div_float
	add_im
	sub_im
	mul_im
	div_im
	add_int
	sub_int
	mul_int
	div_int
	AddImageInfo
	GetImageInfo
	RemoveImageInfo
	aim_readfile
	aio_label
	all_im
	anchor_skelet
	and_im
	angle
	angle_detection
	applic_exposure
	applic_win_input
	apply_spatial_bank
	apply_frequency_bank
	bank_frequency_response
	arbit_dilation
	arbit_erosion
	area
	asctime
	clock
	ctime
	difftime
	gmtime
	localtime
	mktime
	strftime
	time
	atexit
	atof
	atoi
	atol
	strtod
	strtol
	strtoul
	auto_display
	don
	doff
	get_disp_mode
	auto_plane
	auto_point
	average
	b_to_comp
	back_project
	bangle
	base_name
	dir_name
	abs_pathname
	baskel
	bcdist
	bclose
	bcont
	bcount
	bdila
	bdist
	bdskel
	bedge
	bend
	benke
	beros
	bin_disp_colors
	binary_to_grey
	binary_to_plane
	bit_ok
	blabel
	blife
	bline
	blow
	bmaj
	bopen
	box_dimension
	bperc
	bprop
	bpsr
	bremh
	bril
	stop_bril
	bsearch
	qsort
	bskbp
	bskel
	bskep
	bsklp
	bsngl
	buf_from_silo
	buf_to_silo
	calc_greyvalue
	RGB_clear_extra
	calibrated_density
	canny
	cdens
	chain
	chaincode_to_image
	chaincode_to_xy
	change_image_size
	channel_bi_threshold
	chdir
	check_image_integrity
	check_status
	clear_im
	clear_part_image
	clear_var_object
	clearerr
	feof
	ferror
	clip
	close
	close_comp
	close_silo
	closing3x3
	clut_by_name
	clut_ok
	is_clut
	cmp_pixels
	cnvo
	color_get_model_size
	color_set_color_model
	prefered_color_model
	set_color_model
	com_dialog
	compact_silo
	complex_im
	make_complex_im
	complx
	compute_clut
	con_ok
	con6_ok
	conjugate_im
	conjugate_mul_im
	constr_distance
	contour
	contrast_stretch
	convert
	convert_cmodel
	convolution
	cooccur
	copy_channel
	copy_clut
	copy_im
	copy_object
	copy_part_image
	copy_masked_part
	covariance
	covmatrix
	covplanematrix
	cr
	creat
	create_clut
	create_display
	create_histogram
	destroy_histogram
	histo_data
	copy_histogram
	create_image
	create_live_window
	create_diff_window
	create_silo
	cst
	cube_view
	decrement_im
	default_images
	defuz
	bernsen_threshold
	dens
	dens_limits
	density
	destroy_clut
	destroy_image
	destroy_var_object
	dialog_options
	dialog_stay_up
	dialog_wm
	different_ok
	dilation3x3
	dir_maximum
	disp_circle
	disp_draw_mode
	disp_draw_value
	disp_oval
	disp_rect
	disp_srect
	disp_text
	disp_text_font
	disp_vector
	display_image
	dist_average
	dist_skelet
	distance
	dither
	do_alert
	dots
	draw_line
	drawcurve
	dump_var_object
	dyn_link
	dyn_unlink
	eccentr
	ecvt
	fcvt
	gcvt
	edge_average
	edge_object
	edge_ok
	edge_preserve
	edgps
	eigen_segmentation
	eigenfilters
	eigenvectors
	entropy_threshold
	eql
	equal_images
	equalize
	equivalent_im
	eqv
	erosion3x3
	err_report
	eval
	even_ok
	EventType
	exit
	_exit
	exp
	log
	log10
	pow
	sqrt
	exp_im
	exp10_im
	expand
	fabs
	floor
	ceil
	fast_fourier
	fast_hartley
	fblow
	fclose
	fflush
	fft
	fg_buffers
	fgr_buffers
	fg_channels
	fgr_channels
	fg_close
	fgr_close
	fg_depth
	fgr_depth
	fg_maxdepth
	fgr_maxdepth
	fg_exec
	fgr_exec
	fg_gain
	fgr_gain
	fg_setgain
	fgr_setgain
	fg_get_datasize
	fgr_get_datasize
	fg_get_last_error
	fgr_get_last_error
	fg_get_rgb_order
	fgr_get_rgb_order
	fg_getdata
	fgr_getdata
	fg_grab
	fgr_grab
	fg_freeze
	fgr_freeze
	fg_grab_image
	fg_grab_next
	fgr_grab_next
	fg_grab_series
	fgr_grab_series
	fg_init
	fgr_init
	fg_load
	fg_maxwidth
	fgr_maxwidth
	fg_maxheight
	fgr_maxheight
	fg_minwidth
	fgr_minwidth
	fg_minheight
	fgr_minheight
	fg_offset
	fgr_offset
	fg_setoffset
	fgr_setoffset
	fg_set_input_lut
	fgr_set_input_lut
	fg_setdepth
	fgr_setdepth
	fg_setres
	fgr_setres
	fg_setroi
	fgr_setroi
	fg_type
	fgr_type
	fg_settype
	fgr_settype
	fg_width
	fgr_width
	fg_height
	fgr_height
	fgetpos
	fsetpos
	fgreater0_ok
	filter_energy_ratio
	flip
	fmod
	frexp
	ldexp
	modf
	fopen
	freopen
	fdopen
	fpositive_ok
	fraction_im
	frange_ok
	fread
	fwrite
	fseek
	ftell
	rewind
	funequal0_ok
	fuzzy_derivative
	vfuzzy_derivative
	fuz_width
	g_copy_object
	g_copy_object_to
	gauss
	vgauss
	gauss_deblur
	gauss_family
	geo_affine
	geo_rotate
	geo_warp
	get_bool_mask
	get_display_mode
	get_free_entry
	get_image_by_name
	get_image_window_info
	get_pixel
	put_pixel
	get_pixel_range
	get_pixel_size
	get_sizes
	get_slice
	put_slice
	get_super_im
	get_super_clut
	get_super_histo
	getc
	getchar
	fgetc
	getw
	GETENV
	SETENV
	getlogin
	gets
	fgets
	glc_entropy
	glc_contrast
	glc_asymmetry
	gld_mean
	gld_entropy
	gld_contrast
	gld_asymmetry
	glr_nonuniformity
	glr_shortrunemphasis
	glr_longrunemphasis
	glr_greynonuniformity
	glr_percentage
	gravx
	gravy
	greater0_ok
	greduce
	grey_dilation
	grey_erosion
	grey_mean
	trans_mean
	od_mean
	grey_morph_round
	grey_morph_ellipse
	grey_morph_hollow_ellipse
	grey_morph_diamond
	grey_morph_arbit
	grey_stdev
	trans_stdev
	od_stdev
	grey_sum
	trans_sum
	od_sum
	handle_pim
	have_diff
	height
	help
	hide_object
	hide_object_at
	hild_skelet
	hist
	:
	hist2d
	histdata
	histogram
	histogram_by_name
	histogram_ok
	is_histogram
	histogram_comment
	dump_histogram
	list_histograms
	show_histogram_info
	histogram_to_image
	image_to_histogram
	histogram_to_var_object
	hit_or_miss
	holt_skelet
	homomorphic
	hull
	hypot
	cabs
	Ibenke
	ics_readfile
	ics_writefile
	ifft
	IGreyMap
	im_begin_func
	im_end_func
	im_report_error
	im_get_status
	im_debug_stack
	im_from_silo
	im_input_func
	del_im_input_func
	im_exposure_func
	del_im_exposure_func
	im_set_output_handler
	im_to_silo
	im_val_ok
	im1ps
	im2ps
	im3ps
	im4ps
	image_ok
	image_output
	image_readwrite_ok
	image_text
	image_to_chaincode
	image_to_var_object
	ImageMotionEvents
	images_ok
	imaginary_im
	Imeasure
	increment_im
	init_func_overload
	init_scil_image
	init_silo
	initimage
	interpret
	intlow
	invert_im
	Irectangle
	is_image
	is_var_object
	isalnum
	isalpha
	isascii
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	IsMouseDown
	isodata_threshold
	iter_ok
	IThreshold
	jpeg_readfile
	jpeg_writefile
	set_jpeg_quality
	karhunen_loeve
	im_eigenvectors
	im_principle_component
	KeyPressed
	kirsch_temp
	kuwahara
	kuwahara_round
	label
	laplace
	laxis
	lens
	stop_lens
	life
	list
	more
	list_cluts
	list_label
	list_var_objects
	lmax
	lmin
	ln_im
	load
	local_contrast
	local_glc_entropy
	local_glc_contrast
	local_glc_asymmetry
	local_gld_mean
	local_gld_entropy
	local_gld_contrast
	local_gld_asymmetry
	local_glr_nonuniformity
	local_glr_shortrunemphasis
	local_glr_longrunemphasis
	local_glr_greynonuniformity
	local_glr_percentage
	log10_im
	logon
	logoff
	lookup
	lower_gskeleton
	upper_gskeleton
	lowest_int
	lseek
	tell
	macro
	majority
	make_color_im
	split_color_im
	make_gabor
	standard_gabor
	gabor_bank
	make_image
	MakeNewMenu
	AddToMenu
	ActivateMenu
	malloc
	free
	realloc
	calloc
	max_element
	min_element
	maxelm
	maximum_cost_path
	maximum_im
	maximum_trace
	maxval
	measure
	memchr
	memcmp
	memcpy
	memmove
	memset
	merge
	merge_horizontal
	merge_vertical
	mergh
	mergv
	message_line_info
	minelm
	minimum_im
	minval
	mirrh
	mirror
	mirror_horizontal
	mirror_vertical
	mirrv
	mix
	mix_filter
	mmops3x3
	modal_input
	modulo_im
	MouseMove
	MousePress
	MouseRelease
	muj
	natural_window_size
	nearest_int
	negation_im
	next_plane
	object_contour
	object_dens_meas
	object_freeman_meas
	object_moment_meas
	object_rect_to_silo
	object_shape_meas
	objectsize
	odd_fsizes_ok
	odd_ok
	open
	open_silo
	opening3x3
	or_im
	overload_func
	overloadable_func
	type_overload_func
	type_overloadable_func
	palette2color
	parabolic_dilation
	parabolic_erosion
	parabolic_opening
	parabolic_closing
	part_from_silo
	part_image_display
	part_to_silo
	percentile
	peri
	perror
	errno
	phase_im
	pix_abs_sum
	pix_average_val
	pix_count
	pix_minval
	pix_maxval
	pix_sum
	pix_value_str
	pixval
	pl_io_ok
	plane_ok
	plane_to_binary
	planecopy
	plot_histogram
	point_im
	point_im_display_buf
	point_object
	poll_mouse
	positive_ok
	post_op
	power_im
	power_of_2_ok
	pre_op
	set_cross_dim
	prewd
	prewitt_diff
	prewitt_temp
	prewt
	printf
	fprintf
	sprintf
	propagation
	ps_head
	ps_image
	ps_tail
	pseudo
	psremoval
	put
	put_xy_into_image
	putc
	putchar
	fputc
	putw
	puts
	fputs
	qpix
	quit
	raise_window
	lower_window
	iconify_window
	deiconify_window
	rand
	srand
	random_filter
	random_im
	srandom_im
	range_ok
	raster
	read
	read_var_object
	readfile
	real_im
	real_time_recognizer
	reduce
	remark
	remove
	rename
	remove_holes
	resample_perp
	retrieve_object_list
	RGB_gamma_correction
	rhull
	rm_list
	rm_object
	rm_silo
	rm_silo_object
	rmvar
	roberts_diff
	robg
	robinson_temp
	roi_define
	rotate
	S_Append
	S_BreakList
	S_CloseList
	S_CopyList
	S_Delete
	S_FindItem
	S_FreeList
	S_Insert
	S_Length
	S_Prefix
	S_SortList
	saxis
	scanf
	fscanf
	sscanf
	searchfile
	rel_searchfile
	set_aio_disp
	set_border
	set_clut
	set_color
	set_common_line
	set_comp_margin
	set_complex
	set_dialog_pos
	set_display_mode
	set_display_slice
	set_dither_mode
	set_float
	set_im_type
	set_image_flag
	clear_image_flag
	set_image_interaction
	handle_events
	set_int
	set_line_editor
	set_menu_pos
	set_rgb_bits
	set_RGB2XYZ_matrix
	set_RGB2XYZ_mvalues
	print_RGB_matrices
	set_roi_clean_display
	set_roi_pos
	set_roi_mask
	set_roi_parent
	set_screen_gamma
	set_sigmoid_shape
	set_start_pos
	set_start_sizes
	set_tiff_compression
	set_tiff_image_number
	set_var_object_class
	set_var_object_comment
	set_var_object_data
	set_var_object_size
	set_var_object_type
	set_window_pos
	set_window_size
	setbuf
	setbuffer
	setlinebuf
	setvbuf
	SetMacFileType
	SetMacFileCreator
	setprompt
	sfp
	shape
	shift_im
	show_cur_dir
	show_dmode_flags
	show_func_overload
	show_func_stack
	show_error_stack
	im_clear_func_stack
	im_clear_errors
	get_im_error_stack
	im_get_func_stack_copy
	show_image_info
	show_menu_layout
	show_statistics
	perc_to_pixel
	show_var_object_info
	sigma
	sign_im
	silo_list
	silo_to_comp
	sin
	cos
	tan
	asin
	acos
	atan
	atan2
	sinh
	cosh
	tanh
	sin_im
	cos_im
	tan_im
	asin_im
	acos_im
	atan_im
	atan2_im
	sinh_im
	cosh_im
	tanh_im
	single_pixels
	size
	skelpoints
	sleep
	small_object_removal
	sobel_diff
	sos
	spb_publish
	spb_subscribe
	spb_unsubscribe
	spix
	splih
	split
	split_channels
	join_channels
	split_horizontal
	split_vertical
	spliv
	sqrt_im
	ssum
	start_comp
	stat
	fstat
	stereo_view
	strcasecmp
	strncasecmp
	strsave
	strcat
	strncat
	strcmp
	strncmp
	strcpy
	strncpy
	strlen
	strchr
	strrchr
	index
	rindex
	strspn
	strcspn
	strpbrk
	strstr
	strtok
	strerror
	swab
	sync_display
	system
	t_morphology
	taylor_polynomial
	taylor_expansion
	taylor_segmentation
	tcl_readfile
	tcl_writefile
	threshold
	bi_threshold
	ti_block
	ti_circle
	ti_fractal
	ti_ifr
	ti_hlines
	ti_lines
	ti_lshading
	ti_points
	ti_qshading
	ti_vlines
	ticb
	ticc
	tiff_readfile
	tiff_writefile
	tilh
	tiln
	tils
	tilv
	tipt
	tiqs
	tmpfile
	tmpnam
	tolower
	toupper
	tri_state_threshold
	truncate_im
	TWAcquire
	TWAcquireArea
	txt
	unequal0_ok
	ungetc
	uniform
	uniform_round
	update
	val_check
	var_object
	var_object_by_name
	var_object_convert
	var_object_copy
	var_object_ok
	var_object_to_image
	vi
	$
	ls
	cd
	sh
	pwd
	grep
	vkuwahara
	vlaplace
	vlinear
	vmedian
	vpercentile
	vsobel
	warp_image
	width
	win_to_comp
	wrap
	write
	write_var_object
	writefile
	writf
	xmax
	xmin
	xor_im
	XYZ_ref_white
	RGB_ref_white
	print_XYZ_ref_white
	ymax
	ymin
	z_planes
	zcross

	Command syntax in alphabetical order
	Index
	?
	_ B
	A
	C
	D
	F
	E
	G
	I
	H
	J
	K M
	L
	P
	N
	O
	S
	Q
	R
	T U
	V
	W
	Y
	Z X

	User Manual

