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Abstract. Data that involves some sort of relationship or interaction
can be represented, modelled and analyzed using the notion of a network.
To understand the dynamics of networks, the link prediction problem is
concerned with predicting the evolution of the topology of a network over
time. Previous work in this direction has largely focussed on finding an
extensive set of features capable of predicting the formation of a link,
often within some domain-specific context. This sometimes results in
a “black box” type of approach in which it is unclear how the (often
computationally expensive) features contribute to the accuracy of the
final predictor. This paper counters these problems by categorising the
large set of proposed link prediction features based on their topological
scope, and showing that the contribution of particular categories of
features can actually be explained by simple structural properties of the
network. An approach called the Efficient Feature Set is presented that
uses a limited but explainable set of computationally efficient features
that within each scope captures the essential network properties. Its
performance is experimentally verified using a large number of diverse
real-world network datasets. The result is a generic approach suitable for
consistently predicting links with high accuracy.

1 Introduction

Many real-world phenomena, structures and interactions can be described by
networks. Examples include links on the web, social interactions through online
media, co-authorship of scientific papers, connectedness of physical devices and
the spread of diseases. The field of network science [15] (or social network
analysis [24]) is concerned with mining patterns and structures in these networks.
Dynamic networks uncover a new property of networks to study: the process
of their evolution. Is it possible to predict which links will form between pages
on the web, to estimate the probability of two researchers co-authoring a paper
in the future, to predict whether a friendship between users in a social network
will at some point be formed; or to say which links are missing on Wikipedia?
In short: can we predict how a network will evolve in the future? In this paper,
we specifically consider the link prediction problem: based on the topology of a
network at a certain time, we want to predict exactly which links will form in the



future. We wish to do so for real-world networks representing actual interactions,
relations or communication within a real system or environment [25]. Although
the underlying data of these networks is diverse, it is well-known that they
have a common structure: there is a power law degree distribution (they are
scale-free), there is a substantially higher than random number of closed triangles
(measured by the clustering coefficient) and the average distance between two
nodes is very low, typically between four and eight. This is altogether frequently
referred to as the small-world property of real-world networks [13]. To ensure
the generalisability of a link prediction technique across real-world networks, we
consider generic methods that can be defined for any type of real-world network
and are thus only based on the structure (topology) of the network.

In previous work, a number of topological measures have been proposed for
predicting whether links will form between two nodes in a network. We refer
to these measures as features: properties of the network that can be used to
predict whether a link will form. Link prediction then becomes a supervised
learning task: develop a classifier, trained on features derived from the current
network, able to predict which links will form in the future. The goal is not to
compare different supervised learning algorithms. Instead, we want to provide a
suitable alternative for the “black box” type of approach resulting from simply
reusing the large number of (often computationally expensive) features proposed
in previous work [2,7,16,17,18,19,21,23]. Therefore, we propose a categorization of
existing and new link prediction features into sets of features operating at distinct
topological scopes of the network, followed by an experimental assessment of
their performance. As a result, we are able to choose a much smaller subset of
useful features: the Efficient Feature Set. It provides a number of advantages in
terms of explainability, efficiency, consistency and general applicability.

The remainder of this paper is structured as follows. We explain how we
approach the link prediction problem in Section 2, followed by outlining previous
work in Section 3. We elaborate on link prediction features in Section 4, after
which we introduce the proposed Efficient Feature Set in Section 5. In Section 6
we conduct experiments on real-world dynamic network data to test our method.
Conclusions and suggestions for future work are given in Section 7.

2 Problem statement

In an undirected, unweighted network or graph G = (V, E), we have a set of
nodes V and a set of links E, where {u,v} € E denotes whether a link exists
between nodes u,v € V. In the case of a directed network, the nodes of a link are
ordered pairs and (u,v) € E denotes that there is a directed link from node u to
v, but not necessarily that there is a link from v to u. For brevity, we henceforth
refer to the number of nodes |V| as n and the number of edges |E| as m. For
undirected networks, m denotes the number of undirected edges. In weighted
networks, each link is assigned a weight. We denote this weight as w,,,, for a link
(u,v) € E. In undirected networks, one weight is assigned to each undirected link
such that wy, = Wy, for all links {u,v} € E.



Link prediction problem: given a network G, = (V;, E;), denoting the
network at time 7, predict the newly formed links in the evolved network
G, = (Vo,E.) at time 7" > 7, i.e., predict the contents of E./\E;.

Depending on the considered network, directed or undirected links are predicted.
Note that we always consider predicting whether a link will form, and not what
weight it has when it is formed. To do link prediction as defined above, we must
have at least two observations of the same network at different points in time.
The link prediction problem can then be seen as a supervised binary classification
task, where, given a set of features x, the value of y has to be predicted. Vector x
is the value of particular features we deem suitable for predicting whether a link
(u,v) will be formed at time 7’ (with 7/ > 7) and y is a binary value indicating
whether a link (u,v) has formed (y = 1) at 7/ or not (y = 0). We can then use
metrics common in data mining to assess the quality of some classifier and thus
the accuracy of the performed link prediction task. Ultimately, we aim for a
classifier which satisfies the following properties:

Explainable in its performance based on simple topological network features.
Efficient in terms of computational complexity (and thus running time).
Accurate in providing correct link predictions.

Consistent in its accuracy relative to larger feature sets.

General, yielding reliable results across different real-world networks.

G o=

The five requirements above will be used to validate the performance of different
link prediction feature sets in Section 6.

3 Related work

The roots of link prediction lie in the context of information retrieval [3], focussing
on the prediction or retrieval of missing data elements rather than future network
links. The term “link prediction” [18] was given to describe the problem of
predicting the formation of links and thus the evolution of a network. Early
algorithms focused on single measures, such as the work of Sarukkai using Markov
chains [23]. Later, it was tackled as a supervised learning task, for example using
linear regression, including the work by Popescul et al. [21] and O’Madadhain
et al. [19]. The seminal paper of Liben-Nowell and Kleinman [16] introduced a
large set of features to combine using supervised learning. In fact, many features
used in link prediction stem from other subfields of data mining, including the
popular Katz measure [12] and Adamic/Adar measure [1], both discussed later.

To exploit the large number of features nowadays available, several frameworks
and algorithms have been devised, using existing classifiers from popular data
mining tools [9] combined with domain-independent feature sets. Lichtenwalter
et al. propose a framework in [17] and show that in supervised contexts, existing
methods are less accurate than their proposed PropFlow measure. Several frame-
works specifically focus on easy-to-compute features, see for example [2] or the
excellent extensive overview of further related work provided in [7].

This paper attempts to distinguish itself from previous work by aiming to
satisfy each (rather than a subset) of the five goals explained in Section 2.



4 Link prediction methods and approaches

The link prediction methods proposed in literature (e.g. [7,16]) and throughout
this section are formulated as topological features of the network. We distinguish
between node features, neighbourhood features, and path features. Each feature
assigns a score S(u,v) to a candidate pair (u,v), which can be used by a classifier
to determine the probability of a link forming between source u and target v.

For convenience in the following definitions, for directed networks, we define
I'v) ={ueV:(uv) € EV(v,u) € E} as the neighbourhood of v. We
can then also define the out-neighbourhood and the in-neighbourhood of v as
Iout(v) ={w €V : (v,w) € E} and Iy(v) = {u € V : (u,v) € E}, respectively.
For undirected networks, we define I'(v) = {v € V : {u,v} € E}. The degree d(v)
of a node is simply the size of its neighborhood: d(v) = |I'(v)|. The in-degree
and out-degree for a directed network are then respectively di, (v) = |Iin(v)| and
dout (V) = [LTout(v)|. Below, to improve readability, where applicable, we choose
not to formally define the trivial extension of each measure to the equivalent in-
and out-measures for directed networks.

4.1 Node features

Node features are derived from the properties of a node and its links, only
considering the node currently under evaluation.

— Degree: The node degree feature simply uses d(u) and d(v), i.e., the degree
of source node u and target node v.

— Volume: The node volume measures the total weight of all incoming or
outgoing links (or both) of both the source and the target node. For source

w it is defined as > ws. The target node volume is defined analogously.
tel(u)

4.2 Neighbourhood features

Neighbourhood features also consider patterns and relations of the direct neigh-
bours of the source and target node.

Total neighbours: This measure counts the total number of distinct neighbours

that exist for the candidate pair and is defined as [I"(u) U I'(v)].

— Common neighbours: Here we compute the number of neighbours two nodes
have in common. Formally, we write |I"(u) N I'(v)].

— Transitive common neighbourhood: This is a variation on the common neigh-
bours measure intended for use in directed networks. It determines the number
of neighbours to which u has a link and that have a link to v: [Tyt () N1, (v)].

— Jaccard coefficient: This coefficient proposed in [10] considers the number of

common neighbours two nodes have, relative to the total number of distinct

neighbours they have. Formally, we write |I'(uw) N I'(v)|/| " (uw) U I'(v)].



— Transitive Jaccard coefficient: To capture link direction in directed networks,
we propose to combine the concept of the transitive common neighbourhood
with the Jaccard coefficient: |Iout(w) N Iin (0)]/[Lout(w) U Iin(v)].

— Adamic/Adar: This measure, introduced by Adamic and Adar in [1], considers
properties shared by two nodes, favouring properties that not many other
nodes have. In a network, such a property can be the set of out-neighbours
of u and v. Below, the number of in-neighbours of w signals the same feature,
so we sum these ratios for 4 and v, obtaining: > m

WE (Fout (w)NLout (v))

— Preferential attachment: This concept is used in the well-known Barabasi-
Albert graph generation model [4] to model the creation of a network. It
is based on the observation that nodes that already have a high degree are
more likely to attract new links than nodes with a lower degree. We use this
property in link prediction by computing the product of degrees of the source
and target node. So for the out-degree, it is defined as |Iout(u)| * [Lous (V)]

— Opposite direction link: We consider a feature introduced in [7] for directed
networks, where the probability of a link (u,v) is assumed to be dependent
on the existence of (v,u), captured in a binary feature value of 0 or 1.

4.3 Path features

The entire topology of the network is considered in path features: not only direct
neighbours, but also nodes further away are considered in the evaluation.

— Shortest path length: This measure indicates the length of a shortest path
from the source node to the target node, i.e., the minimal number of edges
that have to be traversed to reach node v starting in node u. This measure
is commonly referred to as the distance, denoted d(u,v).

— Number of shortest paths: This metric proposed in [17] ranks candidate
links based on how many shortest paths of length d(u,v) exist from u to v.
Parameter #y,x defines the maximum distance d(u,v) that is considered. We
denote this measure by paths%;‘f“).

— Restricted Katz measure: Introduced by Katz [12], it awards importance to
the number of paths between two nodes as a predictor of the likelihood of a
link, but exponentially decreases the importance as the path length grows,
determined by the parameter 8 < 1; typical values of 3 are around 0.05 [12].

ZMJ\K
In accordance with [17] we again use fy,x, giving: > Bé|paths£f)v .
=0

— PropFlow: The last measure we utilise is PropFlow, introduced by Lichten-
walter et al. in [17], relating the probability of a link forming between nodes
u and v to the probability that a random walk starting in node u ends up
in node v, considering all walks from u of at most length #,,x. In weighted
networks, it assigns the probabilities for following each link proportional to
their weight. Starting at u, the score update rule for each neighbouring node
t in an iteration is S(u,t) = S(u,t) + S(u, v) * (Wu) /(e r(u) Wua)-



5 Efficient Feature Set

In this section, we explain our approach to selecting features for link prediction,
taking into account the first two quality goals posed in Section 2. As stated before,
one of the problems with gathering a vast number of features and simply using
all of them, is that it does not lead to an explainable method, as the classifier
considers so many features that it becomes impossible to distinguish between well
and poor performing features, and that it is hard if not impossible to understand
exactly how different features use the topological structure of the network to
predict future links. We solve the abovementioned problem by grouping our
features based on their topological scope, explicitly distinguishing between:

— Individual properties (evaluating properties of the source and target node).

— Local properties (considering similarities and differences between the neigh-
bourhoods of the source and target node).

— Global properties (considering paths between the source and target node).

These notions correspond to the different levels at which small world networks
are typically studied: the micro level, meso level and macro level [24]. More
importantly, they coincide with the grouping of features used in Section 4,
namely node features, neighbourhood features and path features. We present the
categorized features in Table 1. The “Compl.” column contains information on
the computational complexity of computing the feature for a single candidate
pair, expressed as a function of the number of nodes n and links m.

The second goal that we achieve with EF'S deals with efficiency. We hypothe-
sise that, when constructing a set of features for training a classifier, choosing
features whose category is already sufficiently represented in the feature set will

Table 1: List of candidate pair features, categorized by topological scope.

Node features Neighbourhood features
Feature Variant Compl. EFS Feature Var. Compl. EFS
Degree (source) - O(1) v Total neighbours - O(m/n)
Degree (source) din O(1) Total neighbours I3, O(m/n)
Degree (source) dout o(1) Total neighbours I,y O(m/n)
Degree (target) - O(1) v Common neighbours - O(m/n) v
Degree (target) din o(1) Common neighbours I, O(m/n)
Degree (target) dout O(1) Common neighbours oy O(m/n)
Volume (source) - O(m/n) Trans. comm. neigh. - O(m/n)
Volume (source) din O(m/n) v Jaccard Coeff. - O(m/n) v
Volume (source) doug O(m/n) v Jaccard Coeff. I, O(m/n)
Volume (target) - O(m/n) Jaccard Coeff. Iy O(m/n)
Volume (target) din O(m/n) v Trans. Jacc. Coeff. - O(m/n) v
Volume (target) dous O(m/n) ' Adamic/Adar - O(m/n)
Path features Pref. attachment - O(1)
Feature Param. Compl. EFS Pref. attachment I3, O(1)
Shortest path length - O(m+n) v Pref. attachment I'hyy O(1)
Num. shortest paths £y, =3 O(m + n) Opp. direction link - o(1) v
Restricted Katz y.x = 3, O(m + n)
B =0.05

PropFlow lyux =3 O(m+n) Vv




only marginally increase prediction accuracy, whereas computation time may
increase substantially. Based on this, we construct a subset of features in which
we sufficiently represent each feature group. We propose the Efficient Feature Set
(EFS), which is constructed by choosing a small subset of features that captures
the widest variety of topological properties possible. To do so, we first split the
full feature set along the first variety dimension: topological scope (as explained
above). From each category, we then select the features that exhibit a high degree
of diversity within the second dimension: the balance between undirectedness vs.
directedness, weighted vs. unweighted and absolute vs. relative counts.

From the node features, we therefore include in EFS the degree and the in-
and out-volume of both the source and the target node. For the neighbourhood
features, we wish to capture both the absolute and the relative size of the joined
neighbourhood. So, we include the transitive Jaccard coefficient to further support
directed networks and the opposite direction link feature as a direct indicator of
reciprocation. From the path features, we capture general propagation properties
of the network by using the undirected shortest path length, and finally we capture
properties of weighted and directed graphs by using PropFlow. In Table 1, the
column “EFS” summarizes the selected features. In terms of efficiency, EFS
attains an immediate speed-up of two or more in each category. We performed
experiments to empirically verify the contribution and performance of the three
proposed feature categories. For space and readability reasons, these results are
presented in Section 6.3, followed by the results of using only EFS in Section 6.4.

6 Experiments and results

In this section, we discuss the considered network datasets in Section 6.1, after
which we outline preprocessing steps followed by the encountered class imbalance
problem. Next we explain the experimental setup in Section 6.2 before evaluating
the results in Section 6.3 and Section 6.4.

6.1 Network datasets

An overview of the considered networks is given in Table 2, listing the network
name, source, type and network properties such as the number of nodes, the

Table 2: Characteristics of network datasets used for testing.

dataset Type Nodes Links CC Type Dist 3
digg [6] news communication 30,398 86,404 0.01 + D 4.68 45%
fb-links [26] social friendship 63,731 817,035 0.22 - U 4.31 88%
fb-wall [26] social communication 46,952 274,086 0.11 + D 5.71 61%
infectious [11] disease spread 410 2,765 046 +U 3.57 83%
liacs scientific collaboration 1,036 4,650 0.84 + U 3.86 100%
lkml-reply [14] email communication 27,927 242,976 030 +D 519 99%
slashdot [8] web communication 51,083 131,175 0.02 + D 4.59  75%
topology [27] network topology 34,761 107,720 0.29 +U 3.78 97%
ucsocial [20] social communication 1,899 20,296 0.11 +D  3.07 99%
wikipedia [22] information network 100,312 746,114 0.21 -D 3.83 89%




number of links and the clustering coefficient (in the “CC” column). The “Type”
column indicates the directedness (D for directed, U for undirected) and weighting
of the network (- for unweighted, + for weighted). Finally, the average shortest
path length is listed in the “Dist” column. The diverse real-world network datasets
cover a range of different networks (see the sources listed in Table 2 for details).
We generated the liacs weighted scientific collaboration network from raw data
on co-authorship of researchers involved with the computer science institute
LIACS in the period 2005-2014, a link denoting the joined publication count.

For each network, we choose 7 (see Section 2) such that 95% of the links
were formed before time 7. This is because we are predicting individual links as
opposed to macroscopic evolution, and thus require a relatively developed state
of the network for training.

The number of candidate pairs for which we could give a prediction is very
large: with n nodes and m directed links at time 7, potentially (n-(n —1)) —m
links could be formed at time 7/. The number of links that are actually formed
between 7 and 7’ is in practice only a tiny fraction. Calculating features for all
possible node pairs would be infeasible in terms of computation time. To address
this, we look at column “3I"™ of Table 2, showing the percentage of nodes formed
between nodes at distance 3 or less. In our networks, on average 84% of all
newly formed links were at undirected distance 3 of one another, so we limit our
predictions to candidate pairs at that distance. This results in the omittance of a
substantial portion of the node pairs where no links are formed while retaining
a large majority of all positive instances. As the considered networks are all
small-world networks in which the average pairwise distance is very low, we
further reduce the class imbalance by randomly removing negative instances as
extensively discussed and suggested in [7].

From preliminary experiments we found that shifting the ratio between the
number of negative and positive class instances did not significantly influence
classification performance. From this range of acceptable balances, we have chosen
a class balance of nine negative instances for each positive instance.

6.2 Experimental setup

To determine the accuracy, we want to capture the relation between true positive
and false positive rates, so we use the well-known ROC-curves, plotting these two
rates against each other. The area under the ROC-curve (AUROC) can be used
to assess the quality of the predictor. As explained before, our work focuses on
the comparison between different feature sets to obtain a robust classifier, and not
on the comparison of supervised learning algorithms. Therefore we use random
forests, which are repeatedly and consistently identified as well-performing general
purpose supervised learning algorithms, see for example the discussion in [5]. We
use the implementation of [9] with an ensemble of 50 random decision trees. Along
similar lines, we abstract away from specific hardware and software, comparing
the efficiency of different feature sets based on the computational complexity as
listed in Table 1.



6.3 Results — Topological scopes

The ROC-curves of the predictions of the three feature sets discussed in Section 5
are depicted in Figure 1, and the corresponding AUROC values are listed in
Table 3. The variance in the performance of the single feature class predictors
underlines the degree to which the performance of these feature sets alone is
significant, justifying the construction of EFS in Section 5. For instance, in Figure 1
we see that for the wikipedia dataset, the set of node features outperforms all
other individual feature sets, whereas it is outperformed by all other feature sets in
the 1liacs dataset. Trivially, we find that the full feature set is the best predictor
in terms of accuracy and consistency, performing well across all datasets. We note
that in one case (ucsocial), the set of node features outperformed the set of all
features by 0.007, likely due to the randomness in the random forest classifier
(an optimization step beyond the interest and scope of this paper). Below, we
discuss the main results for each of the feature sets, relating their performance
at the particular topological scope to the considered network datasets.

Node features. The node features appear to perform better than might be
expected from such local metrics. An interesting observation is the exceptionally
good performance on the networks modelling online conversations (1kml-reply,
ucsocial, slashdot and digg). This might be because users who are active in
replying to messages and receiving replies to their messages are likely to remain
active in the future. As expected, the performance of node features appears
negatively correlated with the mean distance in the graph: as this distance grows,
the node features classifier performance decreases.

Neighbourhood features. In directed networks, we observe that a high rate of
reciprocity gives good performance, which may be because in many real-world
networks, non-reciprocated links tend to be reciprocated at some point in the
future, captured by the opposite direction link feature. Indeed, in the fb-wall,
ucsocial and lkml-reply networks, each having a reciprocity rate of around
65%, we observe that the neighbourhood features generate an AUROC of 99.2% of
the AUROC of the full feature set against an overall average 97.2% for the neigh-
bourhood features in directed networks. The digg network, having a reciprocity
rate of just 2% yields the second to worst performance. The low performance
of neighborhood features on the infectious network can be explained by its
degree distribution which as opposed to all other networks, does not follow a
power law, but is instead distributed around the average (see Figure 2).

Table 3: AUROC for each network and each set of features.
Features | digg fb- fb- infec- | liacs | lkml | slash-| topo- uc- wiki-
links | wall | tious dot logy | social | pedia
Full | 0.830 | 0.933 | 0.887 | 0.967 | 0.997 | 0.975 | 0.928 | 0.967 | 0.913 | 0.970
Node | 0.827 | 0.700 | 0.710 [ 0.955 | 0.969 | 0.971 | 0.922| 0.949 | 0.911 | 0.941
Neighbourhood | 0.761 | 0.911 | 0.866 | 0.794 | 0.986 | 0.974 | 0.920 | 0.961 | 0.920 | 0.926
Path | 0.632 | 0.897 | 0.819 | 0.579 | 0.979 | 0.925 | 0.777 | 0.940 | 0.673 | 0.827
EFS | 0.825 | 0.930 | 0.876 | 0.958 | 0.995 | 0.973 | 0.921 | 0.965 | 0.910 | 0.967
EFS Performance | 99.4%| 99.6%| 98.8%| 99.1%| 99.8%| 99.8%| 99.2%] 99.8%| 99.7%]| 99.7%
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Fig. 1: ROC curves for the network datasets in Table 2, for each feature set.

Path features. By themselves, the path features are likely too global to
sufficiently capture local network patterns. Nevertheless, they do add value to the
full feature set as well as EFS. Most notably, the performance of path features
increases as the mean path length grows, highlighting the importance of this
feature set in less dense networks.

6.4 Results — EFS

We evaluate our Efficient Feature Set using the five criteria for a link prediction
technique outlined in Section 2. In Section 5, we already elaborated on the
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Fig. 2: Degree distribution of datasets infectious and fb-1links.
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explainability and efficiency of EFS. Here we continue by substantiating the claim
that EFS also meets the accuracy, consistency and generality criteria.

Accuracy. The results in Table 3 show that EFS is able to accurately predict
links, achieving results very similar to the accuracy achieved using the full feature
set. The bottom row of Table 3 shows how on average EFS achieves an AUROC
of a remarkable 99.5% of the AUROC value of the full feature set.

Consistency. Not only did the EFS-based classifier yield very high AUROC
values relative to the full feature set, it did so with a high degree of consistency:
the lowest EFS AUROC measured was 98.8% and the highest AUROC measured
was 99.8% of the full feature set AUROC value.

Generality. We have tested EFS on a broad range of diverse networks, as can
be seen in Table 2. The networks vary in number of nodes and links, clustering
coefficient, diameter, directedness, weightedness and many other properties. The
Efficient Feature Set performs well regardless of these differences in network
properties. Even the absence of a power law in the degree distribution, such as in
the infectious network, does not influence the prediction ability of the Efficient
Feature Set. It is indeed a generic way of predicting links in real-world networks.

7 Conclusion

The proposed Efficient Feature Set (EFS) is a relatively small set of structural
network features, categorized based on the topological scope of the network at
which they each uniquely capture dynamics. Together, the feature categories can
be used in a supervised learning framework to predict future links in real-world
networks in an efficient and explainable way. Experiments show that the approach
reaches over 99% of the accuracy of a much larger and more complex set of
features. EFS is explainable as the contribution of its feature categories can be
linked to the topological properties of the considered networks. Furthermore,
the method shows consistent performance with respect to larger feature sets,
independent of the network size, hinting towards high scalability. EFS works
well independent of network density and type, demonstrating that it is a generic
approach to predict links in real-world network data that is evolving over time.
In future work, we want to investigate the order in which links appear and how
suitable EF'S is for predicting the timestamp of a link. Furthermore, we will look
at whether the same approach could be applied to the removal of links, allowing
not only the expansion but also the contraction of networks to be predicted.
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