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= Networks

m Nodes are firms
m Edges/links indicate for example:

m trading

m borrowing/lending
= ownership

m (board) interlocks

m Aim is to understand:

m Corporate control
m Economy at a macro level
m Corporate elites
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Figure: Board interlock network of 30 firms.
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Board interlocks

m Board interlock: there is a relationship between
firms because they share a board member or director
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Board interlocks

m Board interlock: there is a relationship between
firms because they share a board member or director

m Vladimir I. Lenin, Imperialism, The Highest Stage of
Capitalism, 1916.

‘

m “... a personal union, so to speak, is established between
the banks and the biggest industrial and commercial
enterprises, the merging of one with another through the
acquisition of shares, through the appointment of bank
directors to the Supervisory Boards (or Boards of
Directors) of industrial and commercial enterprises, and
vice versa."”
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Board interlocks E

m Causes of interlocks:
m Collusion
m Cooptation and monitoring
m Legitimacy
m Career advancement
m Social cohesion

m Consequences of interlocks:

m Corporate control
m Economic performance
m Access to resources
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Board interlocks

m Causes of interlocks:
Collusion

m Cooptation and monitoring
m Legitimacy
|
|

Career advancement
Social cohesion

m Consequences of interlocks:

m Corporate control
m Economic performance
m Access to resources

M. Mizruchi, What do interlocks do? An analysis, critique, and assessment of research on interlocking directorates, in
Annual review of Sociology 22: 271-298, 1996.

CORPNET — LCN2 7/ 61



coor st | o wrafSHBEPETR
N Lo
covrcmtuaston Sgponaay
e s
TAILF PNV, / REFRESCIURLOING 8.V, b
\ A v soranonas
AN - e T gy
STICHTING NEDERL PusE GIRGER b e EbERANOCASINE N
seumemereossy |\ T\ Lo = o
s oleoy EM:‘ Viss] ool RIS ververoonoun
wenzoravpgpameny s [EER—
s onVERRKERNG Ly ¥ ol y [ handyle o
s 3 o bt scy@eensamc v
E [ ootz
/ i fSoeLenLofes
o S, VAN [erd 5 A T
[ e i e
L b s [
g, e
TENNET | V] W
Y S| VAN, L T—
g ! \ i o LY nsev.
I
\BOBANK N iy LA i\ - ERGY
HAVENBEDRI e /, it o JUIDEN B.V.
s / = g
oG A -
e i
4 . ”~ e oS TNB R SRR
X oo
) ) S e
s B ; IS
. DA e e igremony
Woeaocag Ko = o oy s
o 5 S, T, o
s A T, of (P o Sl o
v - ¢ 2 i
\ oy, .
oncum ARG s croes. (E— e - S\ N
e & 5 Py \
. Lol ek i croce . [ ——
—— s 3 o \
{ —
SO
oo w < \congere
e oEugicnoss Zedn e
[ " N
TN
r——" B s i —
- 2 DN
[
HREER Y [ N
e



Hb Universiteit
&) Leiden
I

Corporate networks

400,000 largest firms globally, plotted based on latitude/longitude.
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Corporate networks

Global corporate network: over 1,000,000 board interlocks.
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CORPNET

m CORPNET — Corporate Network Governance: Power, Ownership
and Control in Contemporary Global Capitalism

m What are the features, origins and power political consequences
of corporate governance networks in modern economic life?

m Nature: map and analyze the network
m Origins: uncover generating mechanisms
m Power: understand how it operates
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m CORPNET — Corporate Network Governance: Power, Ownership
and Control in Contemporary Global Capitalism

m What are the features, origins and power political consequences
of corporate governance networks in modern economic life?

m Nature: map and analyze the network
m Origins: uncover generating mechanisms
m Power: understand how it operates

= Work with Eelke Heemskerk and Javier Garcia-Bernardo

CORPNET

University of Amsterdam

European Research Council
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Corporate network analysis

Apply techniques from (social) network analysis to corporate data

Nodes represent around firms across the globe
Edges denote different relationships:

= (Undirected) board interlocks: shared senior level directors
u (Directed) ownership ties based on shareholder information

m Node attributes: country, sector, performance indicators, number
of employees, ...

Edge attributes: number of interlocks, type of shares, number of
shares, ultimate share percentage, ...

m Data source: ORBIS database
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Three topics

Network topology & centrality large-scale
Community detection large-scale
Data quality very-large-scale
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Network topology & centrality

Based on: F.W. Takes and E.M. Heemskerk, Centrality in the Global Network of Corporate Control, forthcoming, 2016.




Dataset

» ORBIS database (Bureau van Dijk)

Firms listed as “large” or “very large”, and “active”

Personal interlocks at senior management and board level
Snapshot from December 2013

Two-mode network of 971,891 firms and 3,272,523 top executives
579,924 firms did not have any interlocks
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Dataset

» ORBIS database (Bureau van Dijk)

Firms listed as “large” or “very large”, and “active”

Personal interlocks at senior management and board level
Snapshot from December 2013

Two-mode network of 971,891 firms and 3,272,523 top executives
579,924 firms did not have any interlocks

The remaining 391,967 nodes form the nodes in the one-mode
global firm-by-firm network
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Topological properties

Global network
Nodes 391,967
Edges 1,711,968
Density 2.229-1073
Average degree  8.746
Clustering coefficient  0.755
Degree assortativity  0.260
Components 55,616
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Topological properties

Giant component
Nodes 238,859 nodes (60.9%)
Edges 1,533,030 (89.5%)
Density 5.374-10—°
Average degree  12.83
Clustering coefficient  0.751
Degree assortativity ~ 0.202
Average distance  7.775
Radius 18
Diameter 34

Global network
Nodes 391,967
Edges 1,711,968
Density 2.229-1073
Average degree  8.746
Clustering coefficient  0.755
Degree assortativity  0.260
Components 55,616
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Topological distributions

froquency

34

distance s

01

2

5678 9101112131415161718192021222324252627 28293031 323334,

distance.
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National networks

Country Nodes Density Clust. coeff. Degree assort. Avg. dist. Transnat. factor
GB 32,962 0.00067 0.356 0.845 6.63 0.26
us 24,802 0.00024 0.228 0.741 6.71 0.48
ES 11,102 0.00143 0.156 0.849 6.30 0.25
NO 8,963 0.00130 0.173 0.613 5.69 0.40
FR 8,896 0.00083 0.170 0.445 6.13 0.77
MY 7,878 0.00398 0.115 0.785 4.50 0.07
DE 7,224 0.00142 0.320 0.799 8.15 0.63
SE 6,656 0.00166 0.430 0.829 6.40 0.79
NL 6,083 0.00271 0.225 0.785 7.61 0.84
IN 5,911 0.00173 0.047 0.332 4.72 0.20
CA 5,439 0.00146 0.072 0.352 5.20 0.52
DK 4,517 0.00229 0.163 0.549 5.61 0.78
IT 4,483 0.00125 0.198 0.524 7.57 0.88
BE 3,264 0.00254 0.123 0.416 5.17 1.57
RU 2,939 0.00263 0.102 0.556 6.57 0.08
KR 2,802 0.00174 0.124 0.356 5.83 0.05
Fl 2,626 0.00294 0.174 0.539 5.52 1.11
JP 2,605 0.00119 0.113 0.208 7.20 0.21
IE 2,497 0.01479 0.178 0.747 5.78 0.39
AT 2,142 0.00440 0.273 0.670 5.58 0.79
PT 2,120 0.00488 0.138 0.620 5.45 0.56
AU 1,897 0.00382 0.085 0.414 4.94 0.58
LU 1,484 0.00705 0.196 0.720 6.72 1.55
SG 1,472 0.00709 0.080 0.421 4.14 0.90
VN 1,393 0.00558 0.090 0.501 4.44 0.01
CH 999 0.00620 0.077 0.316 4.78 1.63
CN 891 0.00475 0.132 0.465 5.80 1.18
KY 642 0.00693 0.098 0.387 5.40 3.90
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Findings

= Small world phenomenon
m Average node-to-node distance

m Global network: 7.775
= National networks: 5.692 (average) or 6.188 (weighted average)

m National footprints still visible?
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Findings

m Small world phenomenon
m Average node-to-node distance

m Global network: 7.775
= National networks: 5.692 (average) or 6.188 (weighted average)

m National footprints still visible?

m Competing elites
m Globalization

m Let's investigate more complex embeddedness measures!
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= Node centrality: the importance of a node with respect to the
other nodes based on the structure of the network
m Centrality measure: computes the centrality value of all nodes in
the graph
m Degree centrality: number of connections

m Closeness centrality: average distance to all other nodes
um Betweenness centrality: relative number of times a node is on a

shortest path
m But what is the ground truth to verify these measures?
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Centrality

= Node centrality: the importance of a node with respect to the
other nodes based on the structure of the network
m Centrality measure: computes the centrality value of all nodes in
the graph
m Degree centrality: number of connections
m Closeness centrality: average distance to all other nodes
um Betweenness centrality: relative number of times a node is on a
shortest path
m But what is the ground truth to verify these measures?

= Hard to say!
m Correlate with firm prominence (revenue)?

CORPNET — LCN2 23 /61



Figure: Degree, closeness and betweenness centrality

Source: “Centrality” by Claudio Rocchini, Wikipedia File:Centrality.svg
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Global

US AT&T INC.

US 7-ELEVEN INC.

GB ROYAL DUTCH SHELL

GB ERNST & YOUNG EUROPE
KR SAMSUNG ELECTRONICS

GB PRICEWATERHOUSECOOPERS
CH RAIFFEISEN SCHWEIZ

GB KPMG EUROPE

ONOoOO R WN
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Global vs. National centrality

Global Great Britain

1. US AT&T INC. 1. GB ERNST & YOUNG EUROPE

2. US 7-ELEVEN INC. 2. GB PRICEWATERHOUSECOOPERS
3. GB ROYAL DUTCH SHELL 3. GB KPMG EUROPE

4. GB ERNST & YOUNG EUROPE 4. GB ROYAL DUTCH SHELL

5. KR SAMSUNG ELECTRONICS 5. GB DELOITTE

6. GB PRICEWATERHOUSECOOPERS 6. GB JP MORGAN

7. CH RAIFFEISEN SCHWEIZ 7. GB EASYJET

8. GB KPMG EUROPE 8. GB DLA PIPER INTERNATIONAL
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Global centrality

Table: Correlation between centrality measures and with firm prominence
(revenue), n = 238, 8509.

Betweenness Closeness Degree Eigenvector

Betweenness 1.000 0.430 0.521 0.356
Closeness 0.430 1.000 0.495 0.902
Degree 0.521 0.495 1.000 0.498
Eigenvector 0.356 0.902 0.498 1.000
Firm prominence 0.192 0.109 -0.046 0.064
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National centrality
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Figure: Correlation between firm prominence (revenue) and national centrality
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National vs. global centrality L

» Centrality persistence: correlation between global centrality (in
the full network) and national centrality (in a partition)
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Centrality persistence
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Figure: Centrality persistence for the 35 largest countries.
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National vs. global centrality

m Partition ranking dominance: the ranking of a partition within
the full network.
Assume S C V in a graph G = (V, E).
Assume that a node v € S according to some centrality ranking
has rank r(v) € [0, |V/]] in the full ranking of all nodes in V.
Partition ranking dominance pcr(S, V) is then defined as:

EVES r(v)

pcr(S,V)=0.5—
(5:V) ST V]

m value > 0 means the partition is less central than expected
m value < 0 means it is more central than expected
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Partition ranking dominance
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Figure: Partition ranking dominance (based on betweenness centrality).
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Community detection

Based on: E.M. Heemskerk and F.W. Takes, The Corporate Elite Community Structure of Global Capitalism, in New
Political Economy 21(1): 90-118, 2016. dx.doi.org/10.1080/13563467.2015.1041483



dx.doi.org/10.1080/13563467.2015.1041483

Community detection

m Community: set of nodes connected more strongly with eachother
than with the rest of the network
m Community detection algorithms:

m Clique-based methods

m Hierarchical clustering

m Divisive algorithms (centrality-based)
= Modularity maximization algorithms

m Country network: aggregate firms from the same country

CORPNET — LCN2 34 /61



L ;¢ Universiteit

AEIE). Leiden

Community detection

Figure: Communities: node subsets connected more strongly with each other
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Modularity

Modularity: numerical value indicating the quality of a division of
a network into communities

Community: subset of nodes for which the fraction of links inside
the community is higher than expected in a random network
Modularity Q € [0, 1]

Resolution parameter r indicating how “tough” the algorithm
should look for communities

Algorithms optimize the modularity score Q given some r (using
hill climbing, heuristics, genetic algorithms and many more
optimization techniques)

V.D. Blondel, J-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks in Journal of
Statistical Mechanics: Theory and Experiment 10: P10008, 2008.
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Community detection
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Figure: Communities: node subsets connected more strongly with each other

m Communities in corporate networks have a regional character and
financial ties are clearly visible

m Historical events and cultural similarities between countries
correlate with interlocks
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Figure: Communities: node subsets connected more strongly with each other

m Communities in corporate networks have a regional character and
financial ties are clearly visible

m Historical events and cultural similarities between countries
correlate with interlocks

m Outliers and effects of randomization
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Computing infrastructure

m Server grade hardware

m Dual high-frequency CPU architecture with
2 x Intel Xeon (Haswell) E5-2643, 6 cores, 12 threads, 3.4GHz

Memory: DDR4-2133 RAM, 24 x 64GB = 1536GB = 1.5TB
Storage: 7TB solid state disk (SDD) storage in RAID6
1GBit uplink to the world

Made possible by the High Performance Computing and Networking (HPCN) fund (summer 2015 call) of the University of
Amsterdam.
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Previous dataset was from September 2013
CORPNET: study all firms

More than 200 million firms

[
[
[
m Are all firms equally important?
m Do we have all the firms?

[

What is the quality of the data?
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Data quality

m Data quality

m Accuracy: the data is true
m Consistency: data remains clear and verifiable over time

m Integrity: data has not suffered from corruption
m Completeness: do we have all the data?

m We “found” that the Spanish market size was ten times larger than
the US market: one outlier in the data.
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Average operating revenue

Figure: Observed average revenue per country for 200 million firms
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Data quality

m Assess firm data quality based on comparing intrinsic factors of
countries using:
m Worldbank data on GDP per capita for each country
m Eurostat data on the number of firms in each county
m Distribution of sum of revenues per country in our data
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Data quality
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Figure: Richer countries have larger firms




Data quality
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Figure: Richer countries have better quality
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Data quality

m Rich countries have higher average revenue, but better quality,
which decreases the observed average (hard to decouple).
m We are interested in the real average (given complete data):

GDP
Real average o o or e

Calculate the effect of intrinsic factors and extrapolate to other

countries
Calculate the quality of our global firm data

CORPNET — LCN2
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Data quality

m The distribution of firm operating revenues follows a lognormal
distribution for 95% of firms, with consistent variance

m Larger firms are well-represented. Richer countries have higher
data quality. Higher quality decreases the observed average.

10 107 10 107
10 107 10 107
Z 0 10* 10 10*
§ 10° 10* 10° 10°
U} 107 10 10
10 10° 10 10°
B T T T e
Company vt s st Compary vt s st Company vt s et Compans e s o

Figure: Lognormal distribution and addition of firms
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Data quality

Figure: Observed average revenue Figure: Estimated average revenue
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Data quality

10°
10°

10*

Observed in database
L)

Predicted observed

Figure: log(predicted observed) =
3.15 log(estimated real) +
log(completeness) — 1.05

Figure: Actual completeness of our data
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Other directions L

Revolving doors
Top income compensation

Firms in occupied territories

Relation with patent networks
Exchange Traded Funds (ETFs)

|

|

|

m Public tender, procurement

|

|

m Analysis of particular national networks

CORPNET — LCN2 59 / 61



Ly Universiteit
Leiden

Conclusion

m Big corporate network data provides interesting insight in firm
power and control across the globe

m Topological properties, centrality analysis and community detection
reveal regional patterns in the global network

m Interpretation of measures is crucial and depends on data quality

m We understand the completeness of our 200 million firm dataset,
now we can assess the effect on the network
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Conclusion

m Big corporate network data provides interesting insight in firm
power and control across the globe

m Topological properties, centrality analysis and community detection
reveal regional patterns in the global network

m Interpretation of measures is crucial and depends on data quality

m We understand the completeness of our 200 million firm dataset,
now we can assess the effect on the network

m CORPNET has a challenging yet exciting time ahead!
Website: http://corpnet.uva.nl

m We are open to sharing data, best practices and ideas!
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Thank you!

m Questions?

http://franktakes.nl
http://corpnet.uva.nl
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