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Introduction

With the nowadays abundantly available amount of data, there is an ever increasing
need to better understand and find patterns in this data. Data objects are usually not
mere individual entities within some dataset, but in fact they interact, communicate or
relate to other data objects. Think of an online social network, in which users (data
objects) interact or form explicit friendships with other users, or how webpages on the
internet are linked by means of the hyperlinks on these pages. Data that has some sort
of relational aspect is typically modeled using the notion of a network, in which nodes
(also called vertices, objects or actors) are linked by means of edges (also called links,
relationships, ties or lines). There is wide interest in analyzing data using the notion of a
network: mathematicians and computer scientists traditionally have a fierce interest in the
underlying mathematical structure of a graph, and “graph mining” is an active research
field working on finding patterns in this type of data. Physicists study network data as
“complex networks”, and people in the social sciences have been studying networks of
interacting people under the umbrella term “social network analysis”. Today, these fields
come together within the field of network science, an interdisciplinary research field with
network data as the common object of study [2].

In this article we focus on the global corporate network, modeling the relationships
that exist between firms, corporations and organizations in our global economy. We live
in a highly connected world, where firms do not operate as individualistic market actors,
but are instead part of a connected network of business. For example because firms trade
with each other, because they own a percentage of one another, or because they lend
money to each other. Here, we focus on social ties between firms. We say that two
firms are connected by an undirected edge if the two firms are governed by at least one
common director or executive board member, resulting in the so-called board interlock
network (see Figure 1 for an example). Directors or CEO’s often have more than one
appointment, and it is well known that their involvement in multiple firms, referred to as a
board interlock, opens up these firms to other firms’s information, resources and expertise,
and in general fosters social cohesion [8]. There is an enormous body of research in the
social sciences about the effects and consequences of board interlocks, dating back more
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Figure 1: A sample of the board interlock network.

than 100 years to (amongst others) Vladimir Lenin’s 1916 book “Imperialism, the highest
stage of capitalism” [7], in which Lenin notes using a case study of Germany that firms
and banks often share directors for a number of reasons and with a number of possible
consequences.

The interdisciplinary CORPNET research group at the University of Amsterdam (see
http://corpnet.uva.nl) takes advantage of recent developments in the field of network
science. It aims to better understand the power-political causes and consequences of the
network of corporate control by studying a large-scale dataset consisting of millions of
firms connected via hundreds of millions of ties based on board interlocks and ownership.

Figure 2: Geographical visualization of the global network of corporate control: around
400, 000 firms and over 1, 700, 000 board interlocks.

2



Since 2013, a sample of this network was studied that consisted of the largest one million
firms across the globe. A geographical visualization of this network is given in Figure 2,
highlighting how in our global economy, firms are densely connected through board in-
terlocks. We will further investigate the structure and patterns in this network in the
remainder of this paper.

Network topology

The considered board interlock network, linking firms if they share at least one senior
level board member or director, consists of 391, 967 firms that form at least one interlock,
in total having more than 1, 711, 968 interlock ties between them. Some properties of the
network are given in Table 1. It turns out that the structure of the global network resem-
bles that of many other real-world networks. Specifically, it is sparse (measured by the
low density), meaning that there are very few links compared to the theoretically maximal
number of links. Furthermore, there is a power law degree distribution (see Figure 3),
meaning that the number of nodes with very few connections is large, whereas there are
a smaller number of hub-like nodes with a very high number of connections. Here, the
tail of this distribution is the result of a few (note the logarithmic axes) firms having
a large number of economic entities between which all directors are shared. Moreover,
nodes densely cluster together, forming a larger than random number of closed triangles
of connections, as measured by the clustering coefficient of 0.76. A randomly generated
network with the same degree distribution would have a clustering coefficient of less than
1.0× 10−6. Not all firms are directly or indirectly connected, but there is one giant com-
ponent of size 238, 859 connecting the majority of the nodes. The vast majority of the
smaller components (all with 60 nodes or less, distribution in Figure 4) represent simple
“parent/subsidiary”-structures from the same country that do not share directors with

Table 1: Global network properties.

Global corporate network

Nodes (firms) 391, 967
Edges (interlocks) 1, 711, 968

Density 2.229 · 10−5

Average degree 8.746
Connected components 55, 616

Giant component

Nodes (firms) 238, 859 nodes (60.9%)
Edges (interlocks) 1, 533, 030 (89.5%)

Density 5.374 · 10−5

Average degree 12.83
Clustering coefficient 0.751

Average distance 7.775
Radius 18

Diameter 34
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Figure 3: Degree distribution.
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Figure 4: Component size distribution.

the giant component. Going from the full network to the giant component, the number of
edges drops only by 10%, indicating that the majority of interlocking activity is captured
in the 90% of edges that reside within the giant component, which is why the main focus
of our study is on this giant component.

Despite the fact that the network is very sparse, the average distance (i.e., the minimal
number of edges) between two nodes is relatively low, as can be seen in Figure 5. This
is known as the small world property [6], a phenomenon that occurs in a number of real-
world networks, such as (online) social networks, information networks such as Wikipedia
and webgraphs. Indeed, the corporate boards of firms across the globe are on average
connected in 7.775 steps. To put this into context: given that boards of the larger
companies typically meet once every month, it is often anecdotally noted that a deadly
disease among the corporate elite could wipe out the majority of corporate leaders in
little over half a year [3]. However, although the average is low, the extremes are much
higher. The eccentricity of a node indicates the length of a longest shortest path (maximal
distance) from that particular node, and the radius and diameter are the minimal and
maximal eccentricity values (see Table 1 and in particular Figure 6). Given a (too simple)
model in which the disease starts at a random firm in the network and each month
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Figure 5: Distance distribution.
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spreads to all its neighbors, a very tiny (note the logarithmic vertical axis of Figure 6)
number of firms will survive at least 18 months and depending on where the disease
started, at most up to 34 months. There are a number of challenges related computational
complexity involved in computing the toplogical properties, distances and eccentricities
in large networks, and the interested reader may see for example [9, 10].

Community detection

In traditional data mining on tabular data, clustering can be used to find data objects with
similar attributes. In network data, it may very well be that certain groups of nodes are
more connected with each other, than with the rest of the network, resembling attribute
similarity in clustering. Such groups of nodes are called communities, and community
detection algorithms take as input the structure of the network and output a division
of this network into (usually non-verlapping) communities (also called partitions). We
typically then indicate these communities using colors such as is done in Figure 1.

One way of finding communities is by modularity maximization. Modularity is a
number that indicates the quality of a particular division of a network into communities,
where a higher number represents a better division into communities. Well-known heuris-
tic search algorithms such as hill-climbing methods, genetic algorithms or local search,
e.g., the popular Louvain algorithm [1], can then be used to optimize the modularity
value. These algorithms typically start with each node assigned to its own community,
and then iteratively merge two nodes (or a node and a previously merged community)
into the same community (node), as long as the value of the modularity increases. The
iteration at which maximum modularity is attained then gives the optimal number and
division of the network into communities. The algorithm can furthermore take a so-called
resolution parameter that indicates how tough the algorithm should look for communities
(at the sacrifice of the quality of the solution), resulting in more or fewer communities
depending on whether we are considering a high or low resolution.

If we use community detection on the corporate board interlock network, we obtain,
for a particular “low”, “medium” and “high” resolution, the divisions into communities
shown in Figure 7, 8 and 9. Here, we have aggregated the firms into nodes representing
countries, connected through weighted links denoting the number of firms that share
directors between the linked countries. The position of nodes is determined based on the
latitude and longitude of the center of the countries they represent.

In Figure 7, we see how the first communities that “appear”, i.e., are visible at the
lowest resolution, show a clear regional character. There is a Scandinavian/Baltic com-
munity, indicating that apparently, firms in these countries are more connected with each
other than with the rest of the world. There is furthermore a community around China
and other Asian countries, corresponding with the frequently made observation that al-
though now participating in the world-wide economy, Asia is not that well integrated with
the rest of the world. The outlier cases of Bermuda and the Cayman Islands underline
the importance of a sensible interpretation of large-scale network analysis results. These
countries are not per se part of an Asian business community, but upon inspection of the
underlying data appear to be linked via a number of ties to real estate firms in Malaysia.
Indeed, the Cayman Islands have frequently been identified as a tax haven. There is fur-
thermore an African community containing a number of tightly connected former French
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Figure 7: Communities in the aggregated global board interlock network, “low” resolution.

colonies. Yet apparently, France itself has more edges to the western world than to these
countries, so is in a different community.

At a bit higher resolution, Figure 8 shows a more fine-grained division of the network
into communities. Here we see how a central European community forms, and how the
middle East distinguishes itself from the rest of the world in a separate community. A
number of African countries now connects to a large community of mostly western coun-
tries, including the United States, Canada, Ireland and the Benelux countries, but also
Australia, India and New Zealand. Indeed, this community includes most of the former
British commonwealth. Latin America has separated from the rest of South America due
to its strong ties with southern European countries.

In an even more fine-grained division of the network into communities as shown in
Figure 9, southern Europe falls apart into a Russia-oriented and Mediterranean-oriented
community. We furthermore observe strong ties between the US, Canada, Ireland and
the Netherlands, hinting towards a common well-known advantageous fiscal construction.
Although this pattern is interesting, it does not resemble the real social ties between cor-
porations that interlocking directorates research focuses on (as discussed in the beginning
of this paper). Rather, this pattern indicates the influence of administrative ties on the
observed results. This again highlights the importance of sensible interpretation step of
network analysis results.

In summary, we note that although globalization has led to a world-wide connected
economy, the resulting communities have a clear regional character, showing cultural ties
as well as former colonial patterns. Interestingly enough, none of this type of data was
put into the analysis; the only input of the algorithm was the board interlock network.
For a more thorough discussion and interpretation of these results, the reader is referred
to [4, 5].
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Figure 8: Communities in the aggregated global board interlock network, “medium”
resolution.
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Figure 9: Communities in the aggregated global board interlock network, “high” resolu-
tion.
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Concluding remarks

Throughout this article, we have highlighted the results of using network analysis tech-
niques to better understand corporate network data based on board interlocks. Network
analysis reveals a number of patterns that are not evident in the underlying data, but be-
come visible in the network perspective. By modeling the data as a system of interaction
rather than a set of objects, we are able to better understand the dense connectedness of
the “small world” global economy. Futhermore, network community detection discovers
cultural, historical, geographical and financial patterns that are far from visible in the
underlying raw data, demonstrating the added value of network science for extracting
knowledge from large-scale interaction data.
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