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Abstract The main topic of this paper is the discovery of motifs in multiplex corpo-
rate networks. Network motifs are small subgraphs occurring at significantly higher
numbers than in similar random networks. They can be seen as the building blocks
of a complex network. In real-world network data, multiple types of (possibly over-
lapping) relationships may be present among the nodes, forming so-called multi-
plex networks. Detecting motifs in such networks is difficult, as existing subgraph
enumeration algorithms are not directly applicable to multiplex network data. In
addition, the selection of a proper multiplex null model to test the significance of
the enumerated subgraphs is nontrivial. This paper addresses these two problems,
resulting in three contributions.
First, we present a method based on layer encoding for adequately handling the mul-
tiplex aspect in subgraph enumeration. Second, a null model is proposed that is able
to preserve the relationship between the different types of links, taking into account
that a particular link type may be the result of a projection from a bipartite net-
work. Finally, we perform experiments on corporate network data from Germany,
in which around 75000 nodes represent corporations and roughly 195000 links rep-
resent connectedness of firms based on shared board members and ownership. We
demonstrate how incorporating the multiplex aspect in motif detection is able to
reveal new insights that could not be obtained by studying only one type of rela-
tionship. Furthermore, results uncover how the financial sector is over-represented
in the more complex motifs, hinting at a surprisingly prominent role of the financial
sector in the largely industry-oriented corporate network of Germany.
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1 Introduction

The structure of networks, in which nodes represent objects that are connected
through particular relationships, is frequently analyzed [3]. Typically, network anal-
ysis deals with trying to understand how links at the micro (object and its rela-
tionships) level result in a particular system behavior at the macro (network) level.
For example, in social systems, friendships between people at the micro level result
in a network of friendships exhibiting small world properties such as low average
distances at the macro level. In this paper we are concerned with the intermediate
level, the so-called meso level of networks. At this level, we consider network mo-
tifs; small building blocks of a handful of nodes and edges that are characteristic for
the particular system that is considered [2, 20].

The main network data considered in this paper is that of corporate networks.
In these networks, nodes represent corporations and links between nodes indicate
that the two firms have a particular economic relationship. The key element here is
that there is usually more than one type of relationship that binds two firms. In our
case, we have data on ownership relations, where a firm owns a significant portion
of another firm, allowing this firm to exert control over the other. In addition, we
know the compositions of the boards of directors, i.e., we know who serves as a
senior level director at which firm. As many directors hold more than one position,
so-called board interlock links are formed, connecting firms if they share one or
more senior level directors. Both types of links have been shown to be extremely
relevant. Ownership networks reveal for example which firms have control in our
global economy [25] and how network structures via particular countries are used
for tax evasion [10]. Board interlock networks have important consequences for
corporate governance [19] and have been instrumental in revealing the community
structure of a business elite governing larger corporations across the globe [14].

The observation that nodes in a complex network are connected through mul-
tiple types of links has resulted in ample studies on so-called multiplex networks,
sometimes also called multi-layer networks [15]. The aim of these studies is often
to take advantage of the multiple types of relationships that exist, obtaining insights
that could not be discovered if only one type of relationship was considered. Here,
we aim to do this in light of the discovery of network motifs. In our corporate net-
work data, multiplex motifs may shed new light on the organization of businesses
in networks, and how firms exert power and control over other firms.

However, enumeration of motifs in a multiplex network provides methodolog-
ical challenges, as state-of-the-art methods for efficient subgraph enumeration are
not directly applicable to multiplex networks [21, 22, 26]. Furthermore, in order to
test if a particular pattern is significantly more frequently occurring and thus not ran-
dom, the results need to be quantitatively compared against a null model. Another
challenge in multiplex motif detection is that there is typically interlayer assorta-
tivity [8], meaning that layers of the network are not randomly connected, but ac-
cording to some pattern of assortativity in which nodes with similar properties (e.g.,
degree) are more likely to connect to each other in multiple layers. Our research
is furthermore complicated by the fact that the board interlock relationships actu-
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ally result from a projection from underlying bipartite network data, which further
complicates the combination of different layers of the network into a null model.

This paper addresses the aforementioned difficulties by providing three contri-
butions. First, we describe a novel adaptation of an existing subgraph enumeration
algorithm based on layer encoding, which allows the multiplex subgraphs to be enu-
merated. The second contribution is a suitable null model that is able to handle both
interlayer assortativity and the fact that networks are projected variants of bipartite
networks. Third, using data on the largest firms in Germany, we demonstrate how
multiplex motif detection is able to reveal new insights, in particular with regards to
the involvement of particular economic sectors in more complex motifs.

The remainder of this paper is organized as follows. First, in Section 2 we discuss
relevant previous and related work. Next, Section 3 introduces the necessary termi-
nology to formulate the formal problem statement. Then in Section 4 we describe
our network dataset and its layers, after which the main approach of multiplex motif
detection is outlined in Section 5. In Section 6 we test the approach on our data,
resulting in a number of conclusions and suggestions for future work in Section 7.

2 Previous work

Here we discuss related work on motifs, corporate networks and multiplex networks.
Motif recognition has been applied in a number of domains, such as biological

networks [18], brain networks [16, 4] and social networks [6]. It is interesting from
a computational perspective, because enumerating subgraphs is a #P-hard task [21],
as each subset of nodes in a graph has to be compared against all known (possibly
isomorphic) subgraphs. Therefore any motif recognition algorithm must be provided
with a small enough input, or give an approximation [21]. Some algorithms address
this complexity problem by requiring the user to provide input on which subgraphs
should be counted or what threshold the frequency of the motif should pass [12].
Other motif recognition algorithms work around the computational limitations by
only finding a specific subset of patterns, such as dense subgraphs [13]. Methods
like G-TRIES [21], FANMOD [26], and SUBENUM [22] find only induced sub-
graphs, the type of subgraphs that we also consider in this paper. Apart from motif
enumeration, research has also been done on motif counting [6], in which the goal
is to count all motifs of a particular type without iterating over all subgraphs con-
sisting of that motif. Although counting algorithms are typically faster, ultimately
we are interested in what insights the discovered motifs provide, meaning we need
to know their composition. Therefore, our focus is on motif enumeration.

Corporate networks have extensively been analyzed in terms of network topol-
ogy [25], centrality [24] and community detection [14]. Yet, little to none of this
work deals with detecting motifs. In [20], interfirm relationships of materials and
services exchanged are analyzed up to patterns of size three, counting V-shaped and
triangle-shaped structures. However, to the best of our knowledge there are no stud-
ies of (larger) motifs in corporate networks based on ownership and/or interlocks.
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Multiplex networks such as our corporate networks in which multiple types of
interaction take place, have extensively been studied and classified, see [15] for an
overview. Important to note is that we focus on networks in which the same set of
nodes that may be connected by different and possibly overlapping types of relation-
ships. These networks are sometimes also called multi-relational, multi-dimensional
or multi-layer networks. A good overview of these naming conventions and defini-
tions can be found in [7]. Importantly, the goal of multiplex network analysis is
to not lose information by aggregating the layers of the network, taking advantage
of the insights that result from the multiple types of interaction [8]. In this light, a
number of multiplex network characteristics and methods at the micro and macro
level have been devised, including community detection and centrality [23]. This
work contributes to the field of multiplex network analysis by means of a method of
analysis at the meso level: multiplex motif recognition.

3 Terminology and problem statement

This section introduces formal definitions of network motifs and multiplex net-
works, leading to the precise specification of multiplex motif detection.

3.1 Networks and motifs

A graph or network G = (V,E), consists of a set of nodes V = V (G) (also called
objects or vertices) and a set of directed edges E = E(G)⊆V ×V (also called rela-
tionships or links). Nodes are identified using some unique identifier (ID) or label.
We assume that there are no parallel edges or self-loops. A graph g is a subgraph
of graph G if and only if E(g) ⊆ E(G) and V (g) ⊆ V (G), where all nodes incident
with an edge in E(g) occur in V (g). A subgraph g is an induced subgraph of G if
for any pair of nodes u,v ∈ V (g), it holds that if (u,v) ∈ E(G) then (u,v) ∈ E(g).
We only consider connected induced subgraphs in which all nodes are (indirectly)
linked through edges, ignoring link direction. The size k of a subgraph g is its node
count, i.e., k = |V (g)|.

The pattern of a (sub)graph is its abstract representation without particular iden-
tifiers or labels. All isomorphic (sub)graphs thus have the same pattern. Let I denote
the collection of all patterns. We define Si(G) as the set of subgraphs of pattern i ∈ I
in graph G. The frequency of pattern i ∈ I, denoted |Si(G)|, is the number of occur-
rences of pattern i in graph G. A motif is a pattern that is considered significant ac-
cording to a particular frequency-based comparison or metric (as further discussed
in Section 5.2). The set of all motifs of size k in graph G is denoted Mk(G), and
M(G) = ∪k Mk(G).
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3.2 Multiplex networks and motifs

A multiplex graph (or network), denoted G = (V,E,J), is a graph that contains mul-
tiple types of edges. The collection of edge types is called J. We use E j(G ) with
j ∈ J to refer to the set of edges of type j. There is at most one edge of a certain
type in the same direction between any two nodes, meaning that if there are multiple
edges between two nodes, they are of different types. In a multiplex induced sub-
graph g it holds that for any pair of nodes u,v∈V (g) in subgraph g and for each type
of edge j ∈ J that if (u,v)∈ E j(G ) then (u,v)∈ E j(g). Following similar definitions
for patterns and frequency as in Section 3.1 (e.g., introducing Si(G )), a multiplex
motif is a multiplex pattern that is considered significant according to a particu-
lar frequency-based comparison (as further discussed in Section 5.2). The set of all
motifs of size k in multiplex graph G is denoted Mk(G ), and M (G ) = ∪k Mk(G ).

3.3 Problem statement

The goal of this paper is, given as input a multiplex graph G and motif size k,
computing the set of multiplex motifs Mk(G ). This problem consists of two tasks:
enumerating multiplex subgraphs (as discussed in Section 5.1) and motif signifi-
cance testing (as elaborated on in Section 5.2). Important to note is that we are not
only interested in counting the frequency of motifs, but in enumerating them. The
advantage of enumeration is that that we can observe which nodes in the empirical
network are involved in the motifs, actually allowing the patterns to be interpreted.

4 Data

The data used in this paper originates from Bureau van Dijk’s Orbis database
(http://orbis.bvdinfo.com). Orbis is a frequently used corporate database,
compiled from official country registrars and other collection agencies, often identi-
fied as one of the most reliable and complete sources of corporate data [11, 14, 25].
In November 2015 we extracted all active German companies for which ownership
and/or board information was available. We also extracted each firm’s economic
sector. In addition, we extracted all significant ownership relations between these
firms with a share of at least 5%, a common threshold at which a stake is consid-
ered significant. These relations together form a directed network Ga in which a
link (u,v) ∈ Ea indicates that firm u owns a part of firm v and is thus able to ex-
ert control over it. We also extracted for all firms their top executives (chiefs and
directors), forming a bipartite network in which directors are connected to firms if
the director serves at the board of that firm. This bipartite network can be projected
onto an undirected one-mode network Gb in which links {u,v} ∈ Eb indicate that u
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Table 1: Network statistics

Network Nodes Edges Density Clustering

Ownership 37 724 31 506 2.25 ·10−5 0.033
Board interlock 61 209 175 108 4.67 ·10−5 0.384
Multiplex 75 224 195 073 1.72 ·10−5 0.277

Table 2: Division of firms over economic sectors

Sector Ownership Board interlock Multiplex

Bank 474 1.25% 865 1.41% 972 1.29%
Financial 4 648 12.32% 6 250 10.21% 8 338 11.08%
Foundation/Research 55 0.14% 51 0.08% 88 0.12%
Industrial 32 350 85.75% 53 767 87.84% 65 484 87.05%
Insurance 19 0.05% 26 0.04% 34 0.05%
Mutual & Pension Fund 112 0.30% 175 0.29% 213 0.28%
Private Equity 29 0.08% 30 0.05% 37 0.05%
Public Authority 22 0.06% 31 0.05% 41 0.05%
Venture Capital 15 0.04% 14 0.02% 17 0.02%

and v share at least one director. We now have a multiplex network G with a layer
of directed ownership links Ea and a layer of undirected board interlock links Eb.

Table 1 reports basic network statistics such as the number of nodes, links (which
are symmetric for the board interlock network), density, and average local clustering
coefficient of our corporate network dataset. See [3] for definitions of these metrics.
There is significant overlap in the different layers of the multiplex network; 23,709
nodes (32% of the nodes in the multiplex network) is involved in both ownership
and board interlock links. Similarly, 11,541 edges are what we call multiplex edges;
connecting nodes with both an ownership link and a board interlock, constituting
37% of the ownership links, 6.7% of the board interlocks and in total 5.9% of the
multiplex network. Finally, the division of firms over economic sectors is shown in
Table 2, demonstrating the prominent role of German industrial sector.

5 Approach

First, Section 5.1 explains how an existing state-of-the-art subgraph enumeration
algorithm can be adjusted to handle multiplex network data. Next, in Section 5.2 we
outline a null model that is suitable for multiple link types. Section 5.3 discusses
ways of comparing subgraphs found in the empirical data to the null model.
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5.1 Multiplex subgraph enumeration

We first briefly discuss the SUBENUM [22] algorithm for subgraph enumeration on
which our approach is based, and then make the step to multiplex networks.

SUBENUM The input of SUBENUM is a directed network. The output is a set of
subgraphs and their frequencies. Undirected edges are represented as symmetric di-
rected links. At the basis is the Enumerate Subgraph algorithm (ESU) [26], which
counts subgraphs in directed unweighted graphs. It loops over all nodes starting at
the node with the lowest ID, recursively expanding on every neighboring node with
a higher ID until the set of nodes is of size k. The resulting set of nodes including the
edges that exist between these nodes, is an induced subgraph, which is then given a
canonical label with the Nauty [17] algorithm. This label is guaranteed to be equal
for all isomorphic subgraphs. See Figure 1 for a simple example of this labeling
step. SUBENUM [22] is a parallel variant of the ESU algorithm, solving thread load
balancing issues by performing the aforementioned expanding process on edges in-
stead of nodes. To work round memory limitations, it adjusts the way subgraphs are
checked for isomorphismm, using a two phase isomorphism check where interme-
diate results are stored to disk. For a more detailed description, see [22].

MULTIPLEX SUBENUM The proposed multiplex adaptation is a two step process:
adjusting the subgraph recognition algorithm SUBENUM and adjusting the isomor-
phism detector NAUTY accordingly. Here we exploit the fact that any multiplex
graph G can be expressed as a directed labeled graph G′. Instead of explicitly stor-
ing multiple edge types, the multiplex graph is converted into a directed labeled
graph in which each edge has a label based on the edge types present between the
two nodes that it connects. The label consists of a binary string of length J (the num-
ber of layers), of which the bit at index i is equal to 1 an edge of type i is present
and 0 otherwise (note an ordering is applied to J so an index can be assigned to each
edge type). This binary label can be seen as an edge weight, as illustrated in Fig-
ure 2a and Figure 2b. It should be noted that this conversion to a seemingly weighted
graph G′ does not imply that we are suddenly dealing with a weighted graph; we are
merely encoding layer presence or absence, and summarize this with a number.

Although we now have weights/labels representing the layers, the original ESU
algorithm does not handle labels nor weights. Therefore we propose that when the
algorithm encounters a subgraph, a label is created based on the adjacency matrix

A B

C

(a) Undirected graph


A B C

A 0 1 1
B 1 0 1
C 1 1 0

→ 011101110

(b) Label of Figure 1a

Fig. 1: Pattern labeling in undirected networks.
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A B

C

(a) Multiplex edges

A B

C

11 = 3

01 = 1 10 = 2

(b) From binary labels to
weighted edges

A1 B1

C1

A2 B2

C2

(c) Colored nodes

Fig. 2: From multiplex edges to binary labeled / weighted edges to colored nodes.

with weights representing the layer encoding, as shown in Figure 3. Then, to adapt
SUBENUM to handle weighted graphs, we only have to adapt the label constructor
so that it incorporates the edge weights.

The second step is adjusting NAUTY to handle the weighted graphs, for which
we use node-colored graphs, which have multiple node types (colors). This method
is similar to the suggestion for expressing weighted graphs given in NAUTY’s docu-
mentation [17]. We create a new node-colored graph graph G′′ from G′, which is the
graph with binary labels representing multiplex graph G as discussed above. The
number of node colors is equal to |J|, and each color is used to express a single
edge type, according to the binary label. For each node in V (G′), a set of |J| col-
ored nodes is created in V (G′′). So for every node A∈V (G′), a set {A1,A2, . . . ,A|J|}
with different colors is added to V (G′′). Then, for 1≤ j < |J|, every A j ∈V (G′′) is
connected to A j+1 by adding an undirected edge (A j,A j+1) to E(G′′). This creates
a string of colored nodes for each node in the original network. Then, crucially, an
edge between two nodes A j and B j is used to express the presence of the jth edge
type encoded in the binary label. An example with undirected edges can be seen
in Figure 2c, where the multiplex graph from Figure 2a with two types of edges is
shown rewritten with two types of colored nodes.

A B

C

(a) Directed multiplex graph


A B C

A 0 3 1
B 0 0 2
C 0 0 0

→ 031002000

(b) Label of Figure 3a

Fig. 3: Pattern labeling in directed multiplex networks.
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5.2 Null model

A suitable null model for multiplex networks must deal with the dependencies be-
tween the different layers. For example, in our empirical data, 5.9% of all edges
overlap, e.g., there is both an ownership link and a board interlock. A quick calcula-
tion shows that as a result of the low density of the networks of each type (2.25 ·10−5

and 4.67 · 10−5, respectively), merging two separately generated random networks
will have few overlapping edges. Indeed, the concept of interlayer assortativity [8]
is common across different multiplex networks and has to be preserved in the null
model. Therefore, a model which fixes degree sequences of both edge types is re-
quired. Here we build on the stub-matching model [5], which generates networks
with a particular fixed (in and out)degree sequence. To ensure that degree sequences
are fixed for all edge types, each combination of edge types is modeled separately,
fixing the node degrees for each (combination of) edge type(s). Thus, we model in
total 2|J|− 1 different networks. This is a mere three network models in our case,
namely for the ownership links, board interlocks and combined “multiplex edge”.

A second challenge is that the board interlock network is the result of a projection
of the bipartite network linking firms and directors to a firm-by-firm network, linked
based on shared directors. As such, many cliques exist in the empirical network, re-
sulting from directors with three or more positions. To ensure that this property is
preserved, the undirected interlock network is modeled at the bipartite level. For
this, we again employ the stub-matching model [5]. We encode the node type (firm
or director) by enforcing that directors only have a particular outdegree value, and
firms only a particular indegree value. The subsequent conversion to an undirected
network is trivial, after which a regular projection to the one-mode firm-by-firm net-
work can be made. It should be noted that in our case, the same bipartite projection
step should be done for multiplex edges, because part of a multiplex edge is an in-
terlock edge. Finally, the application of this multiplex model allows us to generate
a set Y of networks to which the empirical network data can be compared.

5.3 Evaluation metrics

The significance of a pattern (counted subgraph) and classification as a motif is
determined using two metrics. These two metrics ensure that we determine pattern
significance based on both comparison with the null model, as well as based on the
empirical graph alone among patterns of a similar size.

• The ratio R(i,G ) of a pattern i in graph G given a set of sampled random multi-
plex graphs Y (the null model) is defined as follows:

R(i,G ) = |Si(G )| ·

(
∑H ∈Y |Si(H )|

|Y |

)−1
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Table 3: Patterns and motifs per network

Pattern size Motif size
3 4 5 All 3 4 5 All

Ownership 11 63 391 465 3 4 6 13
Board interlock 2 6 21 29 0 2 10 12
Multiplex 58 1 132 21 858 23 048 14 48 73 135

When the ratio is larger than 1, the probability of pattern i appearing in the empir-
ical network is larger than the probability of i appearing in a random graph [26].

• The concentration C(i,G ) of a pattern i (of size |i|) in graph G is the ratio be-
tween its frequency and frequencies of all patterns of the same size (see [26]):

C(i,G ) =
|Si(G )|

∑ j∈I,| j|=|i| |S j(G )|

6 Experiments

The multiplex motif detection approach explained in Section 5 will be applied to the
corporate network dataset in Section 4. The null model that serves as a baseline for
the significance of obtained results (see Section 5.2) is generated using 1,000 sam-
ples, as suggested in [26]. As for the evaluation metrics proposed in Section 5.3,
we manually set a cut-off value of 5 for the ratio and 0.01 for concentration. Fig-
ure 4a shows how these cut-off values capture only the interesting motifs (note the
asymmetric logarithmic axes of the figure). To keep computation time within rea-
sonable limits, we run the algorithm up to motif size k = 5. An implementation of
the approach as well as an exhaustive list of the motifs can be found at the sup-
plementary material website http://liacs.leidenuniv.nl/˜takesfw/
multiplexmotifs.

Table 3 shows for increasing motif sizes the number of patterns (enumerated
subgraphs) and motifs (significant patterns). The cut-off values of concentration and
ratio reduce the 23048 patterns to only 135 motifs. From these motifs, we highlight
a few with high concentration, ratio and interesting economic sector composition.

Size 3. At the ownership level, several of the discovered size 3 motifs reveal the
existence of crossholdings, i.e., mutual investment in firms to strengthen a country’s
internal economy, a common phenomenon in Germany [1]. Furthermore, the motif
of size 3 in Figure 5a shows how it is common for investment (ownership links) and
control (board interlocks) to go hand in hand. This motif with a ratio of 1032 and
concentration of 0.118 shows how investments could be backed by shared direc-
tors to exercise control, or how shared directors may have facilitated the investment
(recall we do not have temporal information to assess causality).
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Size 4. Interesting to note is the size 4 motif in Figure 5b, with a ratio of 2024 and
concentration of 0.351. The division over economic sectors in Table 2 shows that
87% of the firms is in the industrial sector. Yet, this motif’s links are between 43%
industrial and 56% financial firms. It reflects a common corporate structure of two
joint ventures by the same investors. The size 4 motif with ratio 9 and concentration
0.717 in Figure 5c shows a board interlock and two separate investments. Board
interlocks have been intensively studied, and an important motivation for firms to
establish an interlocks is monitoring. Originally, this was largely done by banks for
reasons of oversight [9, 19], ensuring that their diverse investments were properly
managed. This is reflected by the motif, in which 30% of the links involves a bank,
whereas banks only comprise 1.29% of all firms.

Size 5. Figure 5d shows a motif of size 5 with one of the highest ratio values,
namely 113400. Interestingly, it turns out that “Mutual & Pension Fund” firms are
often involved in this motif. Whereas only 0.28% of the firms in the data is of
this type, 14% of edges in this particular motif involve such a firm. The structure
represents two investments into two firms governed by the same director. Indeed,
it is common for funds not to randomly invest, but to strategically choose firms at
which one knows a particular board member from a previous investment. Interesting
to note is that the size 3 version of this motif, the pattern of investment by one firm in
two firms with shared directors, does not have such an over-representation of these
types of firms. This confirms that the unique aspect is the multiple investments, and
in general shows how looking at larger patterns is able to provide new insights.

Sector composition. Analyzing the composition of motifs in terms of which
economic sectors are involved, provides interesting insights. If corporate structures
were to be organized according to particular motif structures without sectoral pref-
erences, then the division of firms over economic sectors as in Table 2 should be
the same for all motif sizes. However, as Figure 4b shows, when the size of motifs

(a) Ratio (horizontal axis) vs concentration (vertical axis)
for all patterns. Top right box indicates cut-off values.
Patterns of size 3 in blue, size 4 in green and size 5 in red.

Network k =  3 k =  4 k =  5
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Fig. 4: Overall (left) and aggregated per motif size (right) results of experiments.
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1
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(a) Motif of size 3.

1

2 3

4

(b) Motif of size 4.

1

2 3

4

(c) Motif of size 4.

1

2

3 4

5

(d) Motif of size 5.

Fig. 5: Four highlighted motifs from the in total 135 discovered motifs, extracted
from the 23,048 enumerated subgraph patterns.

increases, the involvement of the financial sector and banks increases at the cost of a
decreasing involvement of the industry sector. This suggests that the financial sector
is in general more involved in larger and more complex corporate structures.

7 Conclusion

We have proposed an approach for detecting motifs in multiplex networks by means
of adding a layer encoding scheme to a subgraph enumeration algorithm. Through a
translation of link types into colored nodes, we integrated the multiplex aspect into
the subsequent subgraph labeling step, enabling counting of the frequency of multi-
plex subgraphs. The resulting approach was tested on a corporate network dataset,
and the obtained subgraph frequencies were compared with random networks gen-
erated with a multiplex stub-matching model. Experiments showed how multiplex
networks provide interesting insight in common business structures. It furthermore
highlighted how the financial sector is over-represented in larger constructions.

Whereas this study focused on detecting frequent unweighted multiplex sub-
graphs, in future work it could be interesting to see the effect of edge weight on the
discovered motifs. In corporate networks, this could be used to better distinguish
between majority and minority ownership, and its role in different motifs. Finally, it
could be interesting to test the algorithm on other multiplex network datasets. In par-
ticular, it could be interesting to perform a cross-country comparison, investigating
if the prominent presence of particular sectors is prevalent in other countries.
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