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1 Abstract

In recent years there has been a growing interest in the study and analysis of flows of so-called
data streams. Typical examples of such streams include Internet traffic data and continuous
sensor readings. Traditional data mining approaches are not suitable for mining such streams,
because they assume static data stored in a database, whereas streams are continuous, high
speed, and unbounded. Therefore, streams must be analyzed as they are produced and high
quality, online results need to be guaranteed.

Until now, most pattern mining techniques focus either on non-streaming data, or only con-
sider very simple patterns, such as identifying the hot items from one stream, or constantly
maintaining the frequencies in a window sliding over the stream. The challenging task we set
forward in this project is to extend the existing state-of-the-art techniques into two, orthogonal
directions: on the one hand, the mining of more complex patterns in streams, such as sequen-
tial patterns and evolving graph patterns and on the other hand, more natural stream support
measures taking into account the temporal nature of most data streams.

The developed techniques will be tested on real-life data, such as social network data and the
World-Wide Web. Next to those datasets, in the project we will have access to the data streams
generated by a sensor network mounted on a large bridge in The Netherlands.
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2 Composition of the Research Team

Name University Role
T.G.K. Calders, dr. TU Eindhoven Project leader
W. Kosters, dr. U Leiden Project co-promotor
M. Pechenizkiy, dr. TU Eindhoven Collaborator
P.M.E. De Bra, prof. dr. TU Eindhoven Collaborator (Thesis advisor AiO1)
J.N. Kok, prof. dr. U Leiden Collaborator (Thesis advisor AiO2)
A.J. Knobbe, dr. U Leiden Collaborator
H. Blockeel, dr. U Leiden/KU Leuven Collaborator
B. Obladen Strukton Collaborator (Expert Hollandse Brug)
AIO1 (N.N.) TU Eindhoven PhD student
AIO2 (N.N.) U Leiden PhD student

The research team consists of two strong research groups in the area of data mining. The
competencies of the two groups are complementary, and both of crucial importance for the
research project: the Leiden group is especially experienced in the graph mining domain as
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witnessed by the recent PhD dissertations guided by prof. J. Kok in this area by Siegfried
Nijssen [37] and Edgar de Graaf [10], whereas the group in Eindhoven brings in expertise on
condensed representations for pattern mining and concept drift and some preliminary works on
new support measures for for frequent patterns in streams. The official thesis advisors for the
AIOs will be the professors De Bra and Kok.

3 Research School

The research schools involved are, for the TU/e, SIKS (School voor Informatie- en Kennissyste-
men) and, for ULeiden, IPA (Institute for Programming research and Algorithmics).

4 Full Proposal

Description of the Proposed Research

The topic of this research proposal lies at the intersection of data stream processing and data
mining, and aims at the development of complex pattern mining techniques for the growing
domain of stream analysis. We first briefly sketch the relevant related research areas and state
the central problem motivating the project. After that we discuss our proposed approach and
methodology.

Introduction to the relevant research areas

Stream processing [35] In some applications we are confronted with a continuous flow of
data (a data stream) that need to be processed as they arrive (“online”), because either it is
impossible or impractical to store all these data, or because the results of the data processing
are required without delay. Typical examples are data streams generated by monitoring network
traffic, sensor networks in scientific or medical applications, etc. Algorithms for stream processing
must fulfill a number of conditions: they must be fast (to keep up with the incoming data), space-
efficient (memory requirements of a stream processing technique are typically allowed to grow
at most logarithmically in the length of the stream), and any-time (able to produce up-to-date
results whenever requested).

Data mining [19, 43] Data Mining refers to the analysis of typically large amounts of data
with the aim of discovering interesting (ir)regularities in these data. Typical data mining tasks
include classification, clustering, and pattern mining. In this project, we will focus on frequent
pattern mining, where the goal is to discover patterns that occur frequently in the data. Such
a pattern may be the co-occurrence of items (a so-called itemset), a particular subsequence that
frequently re-occurs in a longer sequence, a subgraph that frequently re-occurs in either one large
graph (single-graph setting) or in a database of several graphs, etc.

Stream mining [14, 15] The classical pattern mining algorithms do not fulfill the constraints
imposed on stream processing algorithms, as they require too much space and time and assume a
static database. Mining data streams, or stream mining, is therefore a challenging task. It gained
a lot of interest in the research literature. The most popular techniques that have been developed
so-far are randomization and approximation, sampling, sketches, and summaries. Randomization
and approximation techniques render stream mining algorithms sufficiently fast, at the expense
of no longer guaranteeing exactness. Sampling implies that a small sample of the data stream
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Figure 1: Comparison between the different measures for item support

is taken, and costly algorithms are run on the sample. Sketches and summaries help in dealing
with the abundance of data. Instead of storing the complete data stream, which is infeasible, a
summary of the relevant features is kept. This summary allows for answering queries about the
stream approximately.

The important tasks studied in stream mining include the detection of change (or concept
drift) in a stream [20, 24, 9, 42]. By detecting change, we can detect anomalies in the stream,
for example attacks in a network.

The other stream mining tasks can roughly be divided into two groups: searching for local
patterns and finding global models. The first category is the most relevant one for this project
proposal and recent work includes the mining of frequent items [8, 34] and sets of items [33, 17].
Different variations of this problem have been studied, based on how the frequency of an item(set)
is counted. These measures can roughly be divided into three categories: sliding window models
[12, 18, 21, 22, 32, 45, 11], time fading models [31], and landmark models [21, 22, 46]. In the
time-fading model, the entire stream is taken into account when counting frequency, but more
recent transactions contribute more than older ones. This is achieved by introducing a decay
factor 0 < d < 1. The closer to 1 the decay, the more the history is taken into account. In the
sliding window model, at every time point only the data in the most recent window of a fixed
length is considered, whereas in the landmark model, particular time points, called landmarks,
are fixed. The second category of mining problems over streams; i.e., finding global models
[16, 39, 40] for classification, clustering or prediction is of less relevance for this proposal.

Shortcomings of the Current State-of-the-Art Techniques

We do, however, identify the following two important shortcomings in the current works:

1. The sequential and temporal nature of the stream is taken into account in a rather crude
way: only the last entries of the stream are considered to be important, and older entries
are either completely discarded, or their influence diminishes very rapidly. The stream
is actually considered as if it is a regular database, constantly being updated; entries
leaving the window are deleted, entries entering the window are added to the database.
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As a result, the time aspect is treated similarly for all items in the stream. In many
situations, however, different items behave quite differently and have different life-spans.
For example, different products in a store may behave very differently over time; some may
show recurring patterns bounded to time of the day (e.g., newspapers), to days of the week
(e.g., magazines), whereas others to seasons or holidays (e.g., ice-cream). As such it is not
possible to select one unique best window length for all items.

For more complex data types, this difference becomes even more prevalent; e.g., for large
sequences of items, it makes sense to consider a larger horizon than for smaller sequences.
With the current methods, making such distinctions is not possible. In Figure 1 different
support measures have been illustrated for item a in a stream with 10,000 timepoints. The
item a is produced at random with the probability given by the bottom line. As can be
seen, the actual value of support highly depends on the exact parameter setting.

2. The current methods cover the discovery of frequent items or itemsets, but only few works
[13, 2, 29] consider the discovery of more complex patterns such as sequences or subgraphs.
In many settings, however, it is natural to consider time-changing graphs where edges are
constantly being deleted or added. For example, the World-Wide Web can be seen as
a constantly evolving graph where links are being added and deleted. Another example
are social networks where the structure of the network is changing as new people enter
the network while others leave, and constantly new links are being created. To study the
evolution of such networks, dynamic graph patterns need to be considered.

Patterns in a graph may be identified at different levels. There may be correlations between
nodes of the graph at the same point in time, for instance: when the output of any sensor
x of type A is high, that of sensors of type B connected to x tends to be low. We call these
static patterns, as they refer to a particular state of the graph. But also the short-term
evolution of these graphs may be important, for instance: when a certain graph pattern
P occurs at time point t, some other pattern P ′ will occur in the neighborhood of P at
time t + 1. (Think of a truck driving over a bridge, and imagine sensors simply measure
the vibrations of the road surface: if a sensor measures the passing-by of the truck, nearby
sensors will measure the same event at a later time point; which sensors these are depends
on the direction in which the truck is driving, and the time difference depends on the speed
of the truck). This type of patterns we call dynamic graph patterns, and they may be
represented as sequences of subgraphs, partial orders over nodes, ... Finally, the long-term
evolution of both static and dynamic graph patterns (which we can refer to as “concept
drift”) is relevant. In Figure 2 two hypothetical examples of very simple, unlabeled graph
patterns have been given. In a social network context where the nodes represent people
and the edges friendship ties, these two patterns could be interpreted as: “A new person
entering the social network connecting to a person who is part of a group of friends is likely
to connect to the other persons in the group as well at a later time” (top one) and “If, in
a group of friends, the ties between two persons are broken, it is likely that the group falls
apart” (bottom one.)

Notice that similar problem settings have been considered in [13, 2, 29]. But, the solutions
proposed there are insufficient as these works either consider only small subproblems which
can be reduced to classical data mining techniques [13], or, the patterns to be discovered
are either periodical occurrences of the same pattern [29]; i.e., there is no graph evolution,
or the window in which a pattern needs to occur is fixed [2].
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Problem Statement

In the project we want to tackle these two problems, and try to push frequent pattern mining
on streams beyond the current state-of-the-art techniques, by providing a better handling of
the sequential and temporal nature of the streams, without treating all items similarly and by
extending these methods so that they cover more complex patterns. The result of this research
project will be the introduction of new support measures for sequences and evolving graphs in
data streams, algorithms to mine all patterns that are frequent according to this new frequency
measure, and implementations of these algorithms. In order to allow verification of the results, the
implementations will be made freely available for the research community and the performance
will be tested on freely available benchmark data sets, allowing for verification and reproducibility
of the results by the research community. Furthermore, the practical relevance will be illustrated
by comparing traditional techniques with the newly developed techniques for a practical case,
Hollandse Brug (see also Section 6b: Application Perspective).

Solving these two problems will enable new applications for analyzing dynamic graph patterns.
Such patterns are becoming increasingly more important with the ever growing availability of
large social networks data and sensor networks. In Section 6b: Application Perspective some
concrete examples are given where the techniques developed within the project can help.

Approach

Subprojects We identify two major sub-projects:

1. Redefine pattern mining tasks to make them more appropriate and feasible for the stream
mining domain. More concretely, this involves the development of new frequency measures
for patterns such as sequences and graphs that take into account the sequential and tem-
poral nature of data streams, and that allow for different patterns to be evaluated against
different time horizons. In [3, 4] a promising new frequency measure for frequent item sets
was introduced. This new measure is able to find sudden bursts in data streams, while
still taking into account the history of the data stream. It will be extended to other types
of patterns as well, with frequent sequential patterns as first candidate. To give a rough
idea of how the support measure could be applied for, e.g., scoring sequences in a stream,
suppose the following stream arrived (abc denotes that items a, b, and c arrived at the
same time): 〈 a, b, b, a, ab, ac, a, bc, abc, c 〉
What is the frequency of a followed by b? The most traditional answer would be to divide

Figure 2: Two examples of potential graph patterns.
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the stream into windows of fixed length and count the number of windows in which a fol-
lowed by b occurs. But how does one need to set this length? And, also, depending on the
items in the stream, other window lengths might be more appropriate. Hence, following
a similar strategy as in [3, 4], we could decide to take as a division the one that would
maximize the frequency of the sequence, whence, giving it “the benefit of the doubt.” Al-
though this might seem counter-intuitive, for itemsets it turned out to be quite effective
and computationally tractable [3, 4].

2. Constructing algorithms for more complex patterns, such as sequential patterns, partial
orders or general graph structures, given the new definitions and notions developed in
subproject 1. While many results already exist on finding frequent subgraphs, frequent
subsequences, etc., the kind of graph patterns that we are looking for is much more complex,
as it generalizes over static subgraphs as well as sequences of items or itemsets. We are
interested in finding graph patterns that extend over several time points, and of which
sequences of graphs, partial orders over nodes, graph grammars, etc. are special cases.

Based on algorithms for graph theory and operations research, we can formulate the search
for patterns as an optimization problem under constraints. For linear or quadratic opti-
mization functions efficient optimization under linear constraints is possible using mathe-
matical programming techniques, such as linear and quadratic programming, as long as the
domains are real-valued. We plan to use submodular optimization, which can be conceived
as a discrete analogue of convex optimization. For the complex problems, we will also
incorporate local methods.

There is currently no research on discovering this kind of graph patterns. The Leiden group
has expertise on multi-relational mining [25, 26] and the mining of static graph patterns
[36, 41], and is currently performing research on discovery of graph grammars, which may
describe graph evolution [1]. Moreover, the group is well-connected with the research lab
of professor Luc De Raedt in Leuven, Belgium, where methods for mining sequences of
complex data are studied [44, 23, 30].

Solving the Problems Approximately One of te main challenges we are confronted with
in this project is to deal with the contradicting requirements of having streaming data which
requires fast processing of the data on the one hand, and the complexity of mining the numer-
ous graph patterns in the stream. To make this discovery of patterns more efficient, condensed
representations [6] will be considered. For the itemset domain this was applied successfully [7].
For the other pattern types, recently an extension of the so-called Non-Derivable Itemset based
representations [5] towards the sequence domain was proposed [38]. Next to exact condensed rep-
resentations, we will also have to consider qualitative approximate solutions, based on maximally
informative itemsets and pattern teams [27, 28]. There already exists very efficient summary-
based models for mining frequent items in a stream with high accuracy. These are often based
on maintaining a remarkably small summary of the stream that yet allows for making highly
accurate estimations of the frequencies of the top-K items in the stream [35].

Methodology We start the project into two parallel directions. The first one is the develop-
ment of the new support measures and in the second one it will be explored how pattern mining
on streams can be performed efficiently. In order to assess the usefulness of the new definitions,
with controlled experiments it will be shown that the new measures are able to capture patterns
where other measures fail to spot them. Then, new algorithms will be developed for mining on
streams with the new support measures, joining again the two parallel tracks. Simultaneously
with the development of new algorithms for mining all patterns, condensed representations will
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be developed for them. The mining algorithms will then be refined using the newly developed
condensed representations. Because of the delicate interleaving of the subtasks, apart from the
electronic contacts, the teams of TU/e and ULeiden will frequently meet to discuss the progress
of the project. In order to test the developed algorithms, implementations will be made and
will be tested on publicly available datasets such as the stream of page and link additions and
deletions on the World-Wide Web or social network data. Next to the publicly available datasets,
in the project we will have access to the “Hollandse Brug dataset” which will allow validation
by domain experts of the usefulness of the new algorithms.

Dissemination All implementations will be made freely available for the research community
in order to stimulate both validation of the results as well as to encourage dissemination. We aim
for publishing the results of this research in high-level data mining conferences, such as ACM
SIGKDD, IEEE ICDM, ECML/PKDD, SIAM DM, and data mining journals, e.g., DAMI, KAIS,
and ACM TKDD.
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Application Perspective

Figure 3: The Hollandse Brug. Left: a weather station. Middle: sensors in the top layer of the
bridge. Right: cables for transporting the signals below the bridge.

In the project we have access to data generated by the Hollandse Brug. The Hollandse
Brug (Holland Bridge) is the connecting bridge between Flevoland and North-Holland, located
at the place where Lake Gooi becomes Lake IJ. Under normal circumstances this bridge is
heavily used by car traffic. At this moment, this bridge is being renovated and broadened by
the combination “Hollandse Brug,” consisting of the construction companies Strukton Civiel BV
and Reef Infra BV and Bouwdienst Rijkswaterstaat (Dutch National body for road maintenance).
These partners are investing in a sensor-network on the bridge. Figure 3 shows a weather station
(left picture) and the implementation of the sensors in the surface of the bridge (middle and
right picture). This construction is a first step towards an intelligent bridge; a bridge constantly
monitoring its conditions, processing the data and communicating with the outside world.

We list a couple of problems identified by the domain experts and sketch how the techniques
developed inside the project might help solving them:

• How can we analyse the data coming from the bridge in an intelligent way; i.e., which
data is important, how can we downsize the amount of information needed to be stored ?
This question is similar the condensed representation problem: a condensed representation
stores only the information really needed and omits infrequent and redundant information.

• What is the influence of the traffic on the bridge, and are there triggers that can be used to
predict an increase in the traffic on the bridge? The influence of the traffic on the bridge
can be described using frequently occurring patterns. By identifying patterns regularly
reoccurring in combination with a starting increase in traffic, future predictions of upcoming
heavy traffic might be made.

• Can we detect, in an early stage, if the construction of the bridge is degrading? This
question is related to the notion of concept drift. We can assume that the degradation of
the bridge will result in a slight shift in the pattern being observed; e.g., one can easily
imagine a scenario in which the presence of microscopic cracks affects the time vibrations
need to travel from one sensor to another or it might even change the frequencies of the
vibrations. The mining of frequent dynamic graph patterns can help in the detection of
this type of drift.

For deploying potential solutions developed in the project in an operational setting, the par-
ticipants plan subsequent or even partly parallel applications for funding at, e.g., STW (Stichting
voor Technologie en Wetenschap—A Dutch fund for supporting application-oriented technical
and scientific research).
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5 Project Planning

Timeline

The following chart indicates the timeline of the project. The blue bars indicate activities carried
out by the AIO at the TU/e, guided by the TU/e team members, whereas the yellow bars indicate
activities carried out in Leiden by the other AIO. Bi-colored bars indicate joint activities.

Subproject 1
- New support measures

Sequences
Graphs
Validating (synthetic)

- Condensed representations

Subproject 2
- Streaming algorithms

Sequences
Graphs

- Implementation

Application
- Data acquisition
- Validation of new techniques

Literature Study
Ph.D. Thesis

AIO TU/e
AIO Leiden
Both

  Year 1    Year 2       Year 3        Year 4

M1

M2

M3

As already pointed out in the Subsection “Approach” of Section “6a: Description of Proposed
Research,” we distinguish two sub-projects:

1. Define new support measures for the pattern mining tasks sequence mining and dynamic
graph mining on streams.

2. Construct algorithms for the more complex patterns types on streams.

The two sub-projects will not be executed sequentially, but in parallel and in close cooperation
between the TU/e and ULeiden. The TU/e members will take the lead for the first subproject,
and the second sub-project will be the responsibility of the ULeiden team. The domain expert
of Strukton will be involved in the tasks “Data Acquisition” and “Validation.” Although every
pattern type studied in the sub-projects has its own peculiarities and will involve its own set of
problems, we reasonably expect to be able to build on the previous results.

The timeline closely follows the chronology of this approach. Both PhD students start their
work with literature study and end the project by writing their PhD dissertations. In between,
three important milestones can be distinguished:

M1 The definition of new support measures for sequences and graphs. This milestone consists
of two subtasks and will be finished at the end of the second year of the project.

M2 The algorithms for mining the more complex graph pattern types in streams are developed
and implemented; half of year 3.
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M3 The end of the project: the developed techniques have been tested and validated in co-
operation with the domain expert. The results of the project are described in two PhD
dissertations.

During the course of the project the following deliverables will be produced:

D1 Implementations of the algorithms developed in the project. These implementations will
be made public and freely available for research purposes.

D2 Dissemination: several publications at high-level conferences and journals.

D3 & D4 Two PhD dissertations.
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