Social Network Analysis for Computer Scientists

Frank Takes

LIACS, Leiden University
https://liacs.leidenuniv.nl/~takesfw/SNACS

Week 13 — Code review

Where are we? ...

- Now in 2nd course phase the course project (60% of final grade)
 - Course project paper (including programming work)
 - Course project presentation (done!)
- Preliminary course project papers have been processed;
 a lot of good progress, and very nice project ideas.

Where are we? ...

- Now in 2nd course phase the course project (60% of final grade)
 - Course project paper (including programming work)
 - Course project presentation (done!)
- Preliminary course project papers have been processed;
 a lot of good progress, and very nice project ideas.
 Also: ChatGPT-generated full paragraphs with zero meaning and no substantial content. Please don't.

Where are we? ...

- Now in 2nd course phase the course project (60% of final grade)
 - Course project paper (including programming work)
 - Course project presentation (done!)
- Preliminary course project papers have been processed;
 a lot of good progress, and very nice project ideas.
 Also: ChatGPT-generated full paragraphs with zero meaning and no substantial content. Please don't.
- Upcoming sessions and deadlines
 - Dec 5 (today): code review session and lab session
 - Dec 12 (next week): no lecture, last lab session
 - Dec 14 (AoE): course project deadline (submit via Brightspace)
 No submission or late? Retake deadline is Jan 31

← Tweet

Just leaving Twitter HQ code review

Tweet vertalen

10:28 a.m. · 19 nov. 2022 · Twitter for iPhone

3 / 9

Code review

- Peer review: evaluation of work by one or more individuals with similar competence
- Code review: peer review of programming code
- "Pair programming"
- Four eyes see more than two
- Go beyond your current knowledge and skills

Possible code evaluation criteria

- Correctness guarantees, time and memory constraints
- Are input and output data validated for consistency?
- Is there a pipeline? is output suitable for tables or diagrams?
- Is the code readable, reusable and sufficiently modular?

About the data and experiments

- Is the data relevant and sufficient?
- Is the data "diverse" in relevant dimensions?
- What do you measure in each experiment? Quality, running time, error?
- Why is this data good for these experiments?
- Is the data possibly biased, and how may this affect the results?

Today

- Explain your project programming work to the other team
- Mention what you have done and not yet done
- Introduce the other team to your code
- Read, understand, evaluate, ask questions, . . .
- Explain to the other team positive and less positive, yet constructive points about their work
- Together, derive useful "best practices" and add them to the collaborative document
- Reorganize the document where needed

Collaborative learning — Today

- 1 9:15 Do the code review (here, computer rooms, or seminar rooms)
- 2 10:10 Contribute to collaborative document with best practices: is.gd/snacs2025codereview (return to BM 1.33)
- 3 10:20 Jointly arrive at a set of best practices for the entire class
- 4 10:40 Complete the course questionnaire (BM 1.33)

Please be constructive. Good luck!

1	&	2	=	Anomaly detection (B)	&	Anomaly detection (C)
3	&	4	=	Anomaly detection (C)	&	Anomaly detection (A)
5	&	8	=	Anonymity in networks (B)	&	Anonymity in networks (A)
6	&	7	=	Anonymity in networks (C)	&	Anonymity in networks (A)
9	&	11	=	Centrality estimation (B)	&	Centrality estimation (C)
10	&	12	=	Centrality estimation (A)	&	Centrality estimation (B)
13	&	15	=	Community detection (C)	&	Community detection (A)
14	&	16	=	Community detection (B)	&	Community detection (A)
17	&	18	=	Core/periphery structure (A)	&	Core/periphery structure (B)
19	&	20	=	Core/periphery structure (C)	&	Core/periphery structure (A)
21	&	22	=	Graph compression (A)	&	Graph compression (C)
23	&	41	=	Graph compression (B)	&	Sampling from networks (A)
25	&	26	=	Influence spread and virality (B)	&	Influence spread and virality (C)
27	&	28	=	Influence spread and virality ©	&	Influence spread and virality (A)
29	&	32	=	Link prediction (A)	&	Link prediction (C)
30	&	31	=	Link prediction (B)	&	Link prediction (C)
33	&	34	=	Network motifs (A)	&	Network motifs (B)
35	&	36	=	Network motifs (C)	&	Network motifs (B)
37	&	40	=	Network embeddings (B)	&	Network embeddings (C)
38	&	39	=	Network embeddings (A)	&	Network embeddings (C)
42	&	43A	=	Sampling from networks (B)	&	Sampling from networks (A)
43	&	44	=	Sampling from networks (C)	&	Sampling from networks (A)
45	&	47	=	Shortest paths (C)	&	Shortest paths (B)
46	&	48	=	Shortest paths (B)	&	Shortest paths (A)
49	&	52	=	Visualization algorithms (A)	&	Visualization algorithms (C)
50	&	51	=	Visualization algorithms (B)		Visualization algorithms (C)