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Assignment feedback

Please study and utilize detailed assignment feedback

Grade < 5.0: insufficient; compensate with extra assignment

5.0 ≤ Grade < 5.5: insufficient, unless compensated with
Assignment 2 to average of two assignments ≥ 5.5

Grade ≥ 5.5: sufficient

Questions? Ask your grader during the upcoming lab session (name
or initials present on your graded work)

Please stay away from plagiarism.
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Today

Recap

Temporal networks

Network models

Network dynamics and evolution

Data science lab

Structure of the web

Network science challenges
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Recap
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Networks
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Notation

Concept Symbol

Network (graph) G = (V ,E )

Nodes (objects, vertices, . . . ) V

Links (ties, relationships, . . . ) E

Directed — E ⊆ V × V — ”links”
Undirected — ”edges”

Number of nodes — |V | n

Number of edges — |E | m

Degree of node u deg(u)

Distance from node u to v d(u, v)
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Real-world networks

1 Sparse networks density

2 Fat-tailed power-law degree distribution degree

3 Giant component components

4 Low pairwise node-to-node distances distance

5 Many triangles clustering coefficient

Many examples: communication networks, citation networks,
collaboration networks (Erdös, Kevin Bacon), protein interaction
networks, information networks (Wikipedia), webgraphs, financial
networks (Bitcoin) . . .
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Advanced concepts

Assortativity, homophily

Reciprocity

Power law exponent

Planar graphs

Complete graphs

Subgraphs

Trees

Spanning trees

Diameter, eccentricity

Bridges

Graph traversal: DFS, BFS
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Centrality measures

Figure: Degree, closeness and betweenness centrality

Source: ”Centrality”’ by Claudio Rocchini, Wikipedia File:Centrality.svg
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Centrality measures: PageRank
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Centrality measures

Distance/path-based measures:

Degree centrality O(n)
Closeness centrality O(mn)
Betweenness centrality O(mn)
Eccentricity centrality O(mn)

Propagation-based measures:

Hyperlink Induced Topic Search (HITS) O(m)
PageRank O(m)
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Network projection

→

Image: http://toreopsahl.com
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Temporal networks
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Temporal network analysis

Graphs evolve over time

Social networks: users join the network and create new friendships
Webgraphs: new pages and links to pages appear on the internet
Scientific networks: new papers are being co-authored and new
citations are made in these papers

Interesting: small world properties emerge and are preserved during
evolution!
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Temporal networks

Graph G t = (V t ,E t)

Time window 0 ≤ t ≤ T

Usually at t = 0, either

V 0 = ∅ and a new edge may bring new nodes, or
V 0 = V T and only edges are added at each timestamp

Timestamp on node v ∈ V :
τ(v) ∈ [0;T ]

Timestamp on edge e ∈ E :
τ(e) ∈ [0;T ], or as common input format:
e = (u, v , t) with u, v ∈ V and t ∈ [0,T ]
u v t as line contents of an edge list file
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Two schools

Synthetic graphs model-driven

Model or algorithm to generate graphs from scratch
Tune parameters to obtain a graph similar to an observed network
Statistical analysis

Real-world graphs data-driven

Obtain data from an actual network
Compute and derive properties and determine similarity with other
networks
Computational analysis
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Three models

Random graphs (Erdös-Rényi)

Barábasi-Albert model

Watts-Strogatz model
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Random graphs (1959)

Initially, n nodes and 0 edges

Add edges at random

Edgar Gilbert / Erdös-Rényi: a random graph G (n, p) has n nodes
and each undirected edge exists with probability 0 < p < 1. Expected
m = p · 1

2n(n − 1) edges

Erdös-Rényi: a random graph G (n,m) has n nodes and m edges,
and this graph is chosen uniformly random from all possible graphs
with n nodes and m edges

Result does not really resemble real-world graphs
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Erdös-Rényi

http://barabasi.com/networksciencebook/chapter/3
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Barábasi-Albert model (1999)

“Rich get richer”

Preferential attachment: nodes with a high degree more strongly
attract new links

An edge (u, v) is added between a new node u and a non-random
node v with probability:

p(v) =
deg(v)∑

w∈V deg(w)

(Plus some dampening based on the age of the node and correction
for links between high-degree nodes)

Result: giant component and power-law degree distribution: the
scale-free property
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Barábasi-Albert model (1999)
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Random vs. scale-free

B. Svenson, Complex networks and social network analysis in information fusion
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Watts-Strogatz model (1998)

Input number of nodes n, average degree k and parameter p

Constructs undirected graph with n nodes and 1
2 · n · k edges

Start with “circle-shaped” graph connecting each node to its k
nearest neighbors

Until each edge has been considered, in clock-wise order,
Rewire each node’s edge to a closest neighbor, to a random node
with probability p

Result: low distances, giant component, high clustering
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Watts-Strogatz

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440-442.
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Discussion of models

http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/bgc-sci.jpg
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Discussion of models

Many generative more models exist: configuration model,
stub-matching model, . . .

ERGM, SAOM, REM, stochastic block models, . . .

Better understanding of system’s evolution

Compare real-world structure with model structure

Investigate system’s complexity

Model is never perfect

Not all small-world properties are captured
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Network evolution
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Levels of evolution

Microscopic (local)

Macroscopic (global)
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Microscopic evolution

Node-based investigation of evolution

Analysis of four online social networks: Delicious, Flickr,
LinkedIn and Yahoo! Answers

Other than degree, preferential attachment (assortativity) can also be
based on node age and the number of hops (distance before link is
created)

Derive model based on these properties

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Datasets
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Preferential attachment: degree
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Preferential attachment: age
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Triadic closure
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Preferential attachment: hops
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Microscopic evolution model

Node arrival and lifetime determined using function (based on derived
exponential distribution)

Node goes to sleep for a time gap, length again sampled from a
derived distribution

Node wakes up to create an edge using (adjusted) triangle closing
model and goes to sleep

Sleep time gets shorter as the degree of a node increases

Node dies after lifetime is reached

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Link prediction

Predict “next friendship” to be formed

Liben-Nowell et al., The Link Prediction Problem for Social Networks, in Proceedings of CIKM, pp. 556-559, 2003.
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Levels of evolution

Microscopic (local)

Macroscopic (global)

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 39 / 87



Macroscopic evolution

Look at evolution of network as a whole

Observe different characteristic graph properties

Devise model that incorporates these properties

Leskovec et al., Graph Evolution: Densification and Shrinking Diameters, in TKDD 1(1): 2, 2007

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 40 / 87



Enron
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Macroscopic patterns

Densification: density increases over time

Giant component grows asymptotically

Shrinking average distance: d ∼ log(n) does not hold over time

Shrinking effective diameter

Effective diameter δ0.9: path length such that 90% of all node pairs are
at distance δ0.9 or less
Diameter: longest shortest path length
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Effective diameter
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Effective diameter
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Giant component
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Densification
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Community evolution

Slightly different: user-defined communities

DBLP: scientific collaboration network where communities are
conferences that authors visit

LiveJournal: online social network with explicit groups based on
common interest

What motivates nodes to join a community?

What causes nodes to switch between communities?

When do communities grow?

Backstrom et al., ”Group formation in large social networks: membership, growth, and evolution”,
in Proceedings of KDD, pp. 44–54, 2006.
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Community evolution (LiveJournal)
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Community evolution (DBLP)
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Features
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Decision tree (LiveJournal)
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Decision tree (LiveJournal)
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Community evolution patterns

Number of friends already in a community correlates with decision to
join a community

Using various features, decision trees can predict community behavior

In most models, parameters are specific for considered network

Challenge: do not flatten data, but use actual network and
community structure, perhaps even parameter-free?
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Apple collaboration network

http://www.kenedict.com/apples-internal-innovation-network-unraveled/

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 54 / 87

http://www.kenedict.com/apples-internal-innovation-network-unraveled/


Network contraction

Example: social network losing members to competitor

Deletion of nodes (and its edges)

Deletion of edges (and ultimately nodes)

Merging nodes (a corporate network in which companies merge)

What happens when you remove a hub?

How about reversing existing models?
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Data Science Lab
http://rel.liacs.nl/labs/dslab
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Structure of the web
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Webgraph

Webgraph: directed unweighted network G = (V ,E )

Nodes V are webpages

Links E are “hyperlinks” to other pages

Many dense subgraphs . . .

because pages (nodes) may belong to the
same domain

Alternative: draw webgraph with only (sub)domains as nodes,
referred to as host graph

Idea: search engine ranks webpages using the structure of the
webgraph

Centrality measures
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The web

http://www.cheswick.com/ches/map/gallery/index.html
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Why study the webgraph?

Understanding social mechanisms that govern growth

Designing ranking methods

Devising better crawling algorithms

Creating accurate models of the web’s structure
Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Webgraph in 1999

Broder et al., Graph structure in the web, Computer Networks 33(1): 309–320, 2000.
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Webgraph in 1999

Altavista: 200 million nodes

186 million nodes in the weakly connected component (90% of the
links)

56 million nodes in the strongly connected component

Power law degree distribution

Average distance of 16 (if there is a path, 25% of the cases)

Average (undirected) distance of 6.83 (small world!)

Diameter is 28
Broder et al., Graph structure in the web, Computer Networks 33(1): 309–320, 2000.
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Crawling the webgraph in 2012

Crawled by Common Crawl Foundation

First half of 2012

Breadth-first visiting strategy

Heuristics to detect spam pages

Seeded with the list of domains from a previous crawl and a set of
URLs from Wikipedia

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Webgraph in 2012

Page graph

Host graph

PLD graph (Pay-Level Domain (PLD): a subdomain of a public
top-level domain, for which users have to pay. PLDs identify a single
user or organization)

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Degree

Compared to 1999, average degree increased from 7.5 to 36.8

Perhaps due to use of content management systems (they tend to
create dense websites)

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 65 / 87



Centrality in the webgraph

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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WCC of the webgraph

Weakly Connected Component (WCC)

91.8% in 1999, 94% in 2012

Component size distribution

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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SCC of the webgraph

Strongly Connected Component (SCC): 51.3% of the nodes

Computation required 1TB of RAM

Graph compression framework WebGraph was used

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Bow-tie structure in 2012

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Bow-tie structure in 2012

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Distances and diameter

Diameter lower bound: 5, 282

Figure: Distance distribution

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Webgraph conclusions

Measurements on the largest webgraph available to the public

Average degree has significantly increased, almost by a factor of 5

Connectivity has increased, average distance has decreased

Structure of the web appears dependent on the specific web crawl

The distribution of indegrees and outdegrees is extremely different
Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427–431, 2014.
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Making a “better” webgraph

Not just an unweighted unlabeled directed network

Resource Description Framework (RDF): link is a triple
[subject] [predicate] [object]

Link weighting: define a weight for outgoing links (to give hints to
PageRank algorithm)

Link annotation: make more use of the rel="" attribute to describe
the kind of link: alternate, search, next, etc.

Requires new algorithms for ranking . . .
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Network science challenges
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Network science

Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

Networks are the central model of computation

Branch of data science focusing on network data

Method in complexity research

Complex systems approach: the behavior emerging from the network
reveals patterns not visible when studying the individuals

For now assume: network science = social network analysis

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 75 / 87



Network science

Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

Networks are the central model of computation

Branch of data science focusing on network data

Method in complexity research

Complex systems approach: the behavior emerging from the network
reveals patterns not visible when studying the individuals

For now assume: network science = social network analysis

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 75 / 87



Network analysis

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 76 / 87



Micro scale
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Macro scale
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Macro scale
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Network analysis

Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)

Meso scale: analyzing groups of nodes occurring in a particular
configuration (e.g., communities or networks motifs)
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Meso scale: communities
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Meso scale: communities
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Meso scale: motifs

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution 81 / 87



Meso scale: motifs
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Meso scale: motifs
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Meso scale: motifs
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Network (community) dynamics

t=2

t=1

t=0

t=2

t=1

t=0
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Multilayer networks
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Multilevel networks
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Higher-order networks / Simplicial complexes

Battiston et al. ”The physics of higher-order interactions in complex systems.” Nature Physics 17 (2021): 1093–1098.
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Upcoming week

Next week: last lecture; then student presentations start

Be sure you know the following:
Your track letter

Track A: room BW 0.08
Track B: room BW 0.19
Track C: room BW 0.20

Tracks and rooms are fixed; lecturer differs

Presenting? On the Tuesday before your Friday presentation, send
your slides to snacs@liacs.leidenuniv.nl for some feedback, or if
you want, make an appointment the week before with the lecturer
assigned to your room
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