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Assignment feedback

Please study and utilize detailed assignment feedback

Grade < 5.0: insufficient; compensate with extra assignment

m 5.0 < Grade < 5.5: insufficient, unless compensated with
Assignment 2 to average of two assignments > 5.5
Grade > 5.5: sufficient

Questions? Ask your grader during the upcoming lab session (name
or initials present on your graded work)
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Assignment feedback

Please study and utilize detailed assignment feedback

Grade < 5.0: insufficient; compensate with extra assignment

m 5.0 < Grade < 5.5: insufficient, unless compensated with
Assignment 2 to average of two assignments > 5.5

Grade > 5.5: sufficient

Questions? Ask your grader during the upcoming lab session (name
or initials present on your graded work)

Please stay away from plagiarism.
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Today

Recap

Temporal networks

Network models

Network dynamics and evolution
Data science lab

Structure of the web

Network science challenges
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Recap
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Networks
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Notation

Concept Symbol
m Network (graph) G=(V,E)
m Nodes (objects, vertices, ... ) 74
m Links (ties, relationships, ...) E
m Directed — EC V x V — "links"
m Undirected — "edges”
m Number of nodes — |V/| n
m Number of edges — |E]| m
m Degree of node u deg(u)
m Distance from node u to v d(u,v)
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Real-world networks

Sparse networks density
Fat-tailed power-law degree distribution degree
Giant component components
B Low pairwise node-to-node distances distance
Many triangles clustering coefficient

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution



Real-world networks

Sparse networks density
Fat-tailed power-law degree distribution degree
Giant component components
B Low pairwise node-to-node distances distance
Many triangles clustering coefficient

m Many examples: communication networks, citation networks,
collaboration networks (Erdos, Kevin Bacon), protein interaction
networks, information networks (Wikipedia), webgraphs, financial
networks (Bitcoin) ...
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Advanced concepts

Assortativity, homophily
Reciprocity

Power law exponent
Planar graphs

Complete graphs
Subgraphs

Trees

Spanning trees
Diameter, eccentricity
Bridges

Graph traversal: DFS, BFS
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Centrality measures

closeness and betweenness centrality

Figure: Degree

by Claudio Rocchini, Wikipedia File:Centrality.svg
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Centrality measures: PageRank




Centrality measures

m Distance/path-based measures:

m Degree centrality O(n)

m Closeness centrality O(mn)

m Betweenness centrality O(mn)

m Eccentricity centrality O(mn)
m Propagation-based measures:

m Hyperlink Induced Topic Search (HITS) O(m)

m PageRank O(m)
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Network projection

- (D
¢ 5% °
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Network projection
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Temporal networks
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Temporal network analysis

m Graphs evolve over time

m Social networks: users join the network and create new friendships

m Webgraphs: new pages and links to pages appear on the internet

m Scientific networks: new papers are being co-authored and new
citations are made in these papers

m Interesting: small world properties emerge and are preserved during
evolution!
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Temporal networks

m Graph G' = (V' EY)
m Timewindow 0<t<T
m Usually at t = 0, either
m V% = and a new edge may bring new nodes, or
m V% = VT and only edges are added at each timestamp
m Timestamp on node v € V:
T(v) € [0; T]
m Timestamp on edge e € E:
7(e) € [0; T], or as common input format:
e=(u,v,t) with u,v e Vand t €0, T]
u v t as line contents of an edge list file
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Two schools

m Synthetic graphs model-driven
m Model or algorithm to generate graphs from scratch
m Tune parameters to obtain a graph similar to an observed network
m Statistical analysis

m Real-world graphs data-driven
m Obtain data from an actual network
m Compute and derive properties and determine similarity with other

networks

m Computational analysis
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Three models

m Random graphs (Erdds-Rényi)
m Bardbasi-Albert model

m Watts-Strogatz model

Frank Takes — SNACS — Lecture 5 — Network dynamics and evolution



Random graphs (1959)

m Initially, n nodes and 0 edges
m Add edges at random

m Edgar Gilbert / Erd6s-Rényi: a random graph G(n, p) has n nodes
and each undirected edge exists with probability 0 < p < 1. Expected
m=p-in(n—1) edges

m Erd6s-Rényi: a random graph G(n, m) has n nodes and m edges,
and this graph is chosen uniformly random from all possible graphs
with n nodes and m edges

m Result does not really resemble real-world graphs
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Erdos-Rényi

http://barabasi.com/networksciencebook/chapter/3
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Bardbasi-Albert model (1999)

m “Rich get richer”

m Preferential attachment: nodes with a high degree more strongly
attract new links

m An edge (u, v) is added between a new node u and a non-random
node v with probability:

_ deg(v)
PU) = 5=~ dea(w)

m (Plus some dampening based on the age of the node and correction
for links between high-degree nodes)

m Result: giant component and power-law degree distribution: the
scale-free property
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Bardbasi-Albert model (1999)
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Random vs. scale-free

(a) Random network (b) Scale-free network

B. Svenson, Complex networks and social network analysis in information fusion
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Watts-Strogatz model (1998)

® Input number of nodes n, average degree k and parameter p
m Constructs undirected graph with n nodes and % -n- k edges

m Start with “circle-shaped” graph connecting each node to its k
nearest neighbors

m Until each edge has been considered, in clock-wise order,
Rewire each node's edge to a closest neighbor, to a random node
with probability p

m Result: low distances, giant component, high clustering
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Watts-Strogatz




Discussion of models
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REGULAR SMALL-WORLD  RANDOM

@
L ]
[ ]
L
®
®

L
L ]
o
.
°
g

Increasing randomness

http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/bgc-sci.jpg
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Discussion of models

m Many generative more models exist: configuration model,
stub-matching model, ...

m ERGM, SAOM, REM, stochastic block models, ...
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Discussion of models

m Many generative more models exist: configuration model,
stub-matching model, ...

ERGM, SAOM, REM, stochastic block models, . ..

Better understanding of system'’s evolution

Compare real-world structure with model structure

Investigate system’s complexity
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Discussion of models

m Many generative more models exist: configuration model,
stub-matching model, ...

m ERGM, SAOM, REM, stochastic block models, ...

m Better understanding of system’s evolution
m Compare real-world structure with model structure

m Investigate system’s complexity

m Model is never perfect

m Not all small-world properties are captured
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Network evolution
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Levels of evolution

= Microscopic (local)

m Macroscopic (global)
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Microscopic evolution

Node-based investigation of evolution

Analysis of four online social networks: DELICIOUS, FLICKR,
LINKEDIN and YAHOO! ANSWERS

m Other than degree, preferential attachment (assortativity) can also be
based on node age and the number of hops (distance before link is
created)

m Derive model based on these properties

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Datasets

Network | T N E E, E. Ea % p K
FLICKR (03/2003-09/2005) | 621 584207 3,554,130 2594078 2257211 1475345 6563 132 144
DELICIOUS (05/2006-02/2007) | 292 203,234 430,707 348,437 348,437 96387 2766 1.15 081

ANSWERS (03/2007-06/2007) 121 598,314 1,834,217 1,067,021 1,300,698 303,858 2336 125 092
LINKEDIN (05/2003-10/2006) | 1294 7,550,955 30,682,028 30,682,028 30,682,028 15,201,596 4955 1.14 1.04

Table 1: Network dataset statistics. E, is the number of bidirectional edges, F', is the number of edges in undirected network, Fx is
the number of edges that close triangles, % is the fraction of triangle-closing edges, p is the densification exponent (E(t) o< N(t)"),
and « is the decay exponent (E;, o exp(—xh)) of the number of edges E), closing h hop paths
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Frank Take:

Edge probability, ps(d)

Edge probability, pg(d)

Preferential attachment: degree
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Preferential attachment: age
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Triadic closure
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Frank Takes

Preferential attachment: hops
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Microscopic evolution model

= Node arrival and lifetime determined using function (based on derived
exponential distribution)

m Node goes to sleep for a time gap, length again sampled from a
derived distribution

m Node wakes up to create an edge using (adjusted) triangle closing
model and goes to sleep

m Sleep time gets shorter as the degree of a node increases

m Node dies after lifetime is reached

Leskovec et al., Microscopic Evolution of Social Networks, in Proceedings of KDD, pp. 462-470, 2008.
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Link prediction

m Predict “next friendship” to be formed

Time T Time T+1

Liben-Nowell et al., The Link Prediction Problem for Social Networks, in Proceedings of CIKM, pp. 556-559, 2003.
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Levels of evolution

= Microscopic (local)

= Macroscopic (global)
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Macroscopic evolution

m Look at evolution of network as a whole
m Observe different characteristic graph properties

m Devise model that incorporates these properties

Dataset Nodes Edges Time DPL exponent
Arxiv HEP-PH 30,501 347,268 124 months 1.56
Arxiv HEP-TH 29,555 352,807 124 months 1.68
Patents 3,923,922 16,522,438 37 years 1.66
AS 6,474 26,467 | 785 days 1.18
Affiliation ASTRO-PH 57,381 133,179 10 years 1.15
Affiliation COND-MAT 62,085 108,182 10 years 110
Affiliation GR-QC 19,309 26,169 10 years 1.08
Affiliation HEP-PH 51,037 89,163 10 years 1.08
Affiliation HEP-TH 45,280 68,695 10 years 1.08
Email 35,756 123,254 18 months 1.12
IMDB 1,230,276 3,790,667 | 114 years 1.11
Recommendations 3,943,084 15,656,121 710 days 1.26

Leskovec et al., Graph Evolution: Densification and Shrinking Diameters, in TKDD 1(1): 2, 2007
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Macroscopic patterns

Densification: density increases over time
Giant component grows asymptotically
Shrinking average distance: d ~ log(n) does not hold over time

Shrinking effective diameter

m Effective diameter dg.9: path length such that 90% of all node pairs are
at distance dg.9 or less
m Diameter: longest shortest path length
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Effective diameter
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Effective diameter

Effective diameter

Effective diameter
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Densification
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Community evolution

Slightly different: user-defined communities

DBLP: scientific collaboration network where communities are
conferences that authors visit

m LIVEJOURNAL: online social network with explicit groups based on
common interest
m What motivates nodes to join a community?

What causes nodes to switch between communities?

m When do communities grow?

Backstrom et al., " Group formation in large social networks: membership, growth, and evolution”,
in Proceedings of KDD, pp. 44-54, 2006.
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Community evolution (LIVEJOURNAL)

Probability of joining a community when k friends are already members
0.025 T T T T T T T

0.02 - b

0.015 -

probability

0.01 —

0.005 .
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Community evolution (DBLP)

Probability of joining a conference when k coauthors are already 'members’ of that conference
0.1 T T T T T T

probability

0.04 b
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Features

Table 1: Features.

Feature Set

Feature

Features related
to the community,
C'. (Edges between
only members of
the community are
Ec CE)

Number of members ([CT).

Number of individuals with a friend in C (the fringe of C) .

Number of edges with one end in the community and the other in the fringe.

Number of edges with both ends in the community, |Ec|.

The number of open triads: |{(u, v, w)|(u,v) € Ec A (v,w) € Ec A (u,w) ¢ Ec Au# w}|.
The number of closed triads: |{(x, v, w)|(n,v) € Ec A (v,w) € Ec A (u,w) € Ec}|.

The ratio of closed to open triads.

The fraction of individuals in the fringe with at least k friends in the community for 2 < k& < 19.
The number of posts and responses made by members of the community.

The number of members of the community with at least one post or response.

The number of responses per post.

Features related to
an individual « and
her set S of friends
in community C.

Number of friends in community (|S]).
Number of adjacent pairs in S (|{(u, v)[u, v € S A (u,v) € Ec}]).

Number of pairs in S connected via a path in Ec.

Average distance between friends connected via a path in E¢.

Number of community members reachable from S using edges in Ec.
Average distance from S' to reachable community members using edges in Ec.
The number of posts and response made by individuals in S.

The number of individuals in S with at least 1 post or response.

Frank Takes — SNACS
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Decision tree (LIVEJOURNAL)

proportion fringe
with 213 friends

<2.0e-4 22.0e-
proportion fringe ratio of closed
with 27 friends to open triads
<2. SV &36 -4 <0% \0.25
0.682 0.421
(593/2442) (1355/3565) (4096/6007) (655/1556)

Figure 5: The top two levels of decision tree splits for predicting
community growth in LiveJournal.

etwork dynamics and evoluti




Decision tree (LIVEJOURNAL)

proportion of friends in community
who are friends with each other

<0.099 >0.09
proportion fringe number of connected pairs
with = 19 friends of friends in community
<1.02e-3 >1.02e-3 / &
3.70e-4 7.222e-4 1.82e-3 4.88e-3

Figure 3: The top two levels of decision tree splits for predict-
ing single individuals joining communities in LiveJournal. The
overall rate of joining is 8.48e-4.
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Community evolution patterns

m Number of friends already in a community correlates with decision to
join a community

m Using various features, decision trees can predict community behavior

m In most models, parameters are specific for considered network

m Challenge: do not flatten data, but use actual network and
community structure, perhaps even parameter-free?
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Apple collaboration network

2007-2008 2009-2010 2011-2012

http://www.kenedict.com/apples-internal-innovation-network-unraveled/
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Network contraction

Example: social network losing members to competitor

Deletion of nodes (and its edges)

Deletion of edges (and ultimately nodes)

Merging nodes (a corporate network in which companies merge)

What happens when you remove a hub?

How about reversing existing models?
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Data Science Lab
http://rel.liacs.nl/labs/dslab
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Structure of the web
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Webgraph

m Webgraph: directed unweighted network G = (V, E)
m Nodes V are webpages

m Links E are “hyperlinks” to other pages

m Many dense subgraphs . ..
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Webgraph

m Webgraph: directed unweighted network G = (V, E)
m Nodes V are webpages
m Links E are “hyperlinks” to other pages

m Many dense subgraphs ... because pages (nodes) may belong to the
same domain

m Alternative: draw webgraph with only (sub)domains as nodes,
referred to as host graph

m ldea: search engine ranks webpages using the structure of the
webgraph

m Centrality measures
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The web

http://www.cheswick.com/ches/map/gallery/index.html
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Why study the webgraph?

Understanding social mechanisms that govern growth
Designing ranking methods

Devising better crawling algorithms

Creating accurate models of the web's structure
Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Webgraph in 1999

.- Tendrils:
44 Million nodes

IN
_—— -

ScC

—— -
56 Million nodes

44 Million nodes 44 Million nodes

«C =5
Discoﬁﬁécted components

Broder et al., Graph structure in the web, Computer Networks 33(1): 309-320, 2000.
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Webgraph in 1999

m Altavista: 200 million nodes

m 186 million nodes in the weakly connected component (90% of the
links)

m 56 million nodes in the strongly connected component

m Power law degree distribution

m Average distance of 16 (if there is a path, 25% of the cases)

m Average (undirected) distance of 6.83 (small world!)

m Diameter is 28

Broder et al., Graph structure in the web, Computer Networks 33(1): 309-320, 2000.
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Crawling the webgraph in 2012

Crawled by Common Crawl| Foundation
First half of 2012
Breadth-first visiting strategy

Heuristics to detect spam pages

Seeded with the list of domains from a previous crawl and a set of
URLs from Wikipedia

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Webgraph in 2012

m Page graph
m Host graph

m PLD graph (Pay-Level Domain (PLD): a subdomain of a public
top-level domain, for which users have to pay. PLDs identify a single
user or organization)

| Granularity [ # Nodes in millions | # Arcs in millions |

Page Graph 3563 128 736
Host Graph 101 2043
PLD Graph 43 623

Table 1: Sizes of the graphs

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Degree

m Compared to 1999, average degree increased from 7.5 to 36.8

m Perhaps due to use of content management systems (they tend to
create dense websites)

g frequency dot plot I frequency dot plot
H — best power-law fit N — — best power-law fit
—— Fibonacci binning . —— Fibonacci binning
\,,
gt PRl
s s
g g
s 5o
i 54
5 5
2 2
2
E: &
LR o0z Tev08 Tor00 Tev08 L] 1ev02 o0
indegree outdegree

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Centrality in the webgraph

PageRank

gmpg.org

Indegree

wordpress.org
youtube.com
livejournal.com
tumblr.com
en.wikipedia.org
twitter.com

networkadvertising.org

promodj.com
skriptmail.de
parallels.com
tistory.com
google.com
miibeian.gov.cn
phpbb.com
blog.fc2.com
tw.yahoo.com
w3schools.com
wordpress.com
domains.lycos.com

wordpress.org
youtube.com
gmpg.org
en.wikipedia.org
tumblr.com
twitter.com
google.com
flickr.com
rtalabel.org
wordpress.com
mp3shake.com
w3schools.com
domains.lycos.com
staff.tumblr.com
club.tripod.com
creativecommens.org
vimeo.com
miibeian.gov.cn
facebook.com
phpbb.com

Harmonic Centrality

youtube.com

en.wikipedia.
twitter.com
google.com

org

wordpress.org

flickr.com

facebook.com

apple.com
vimeo.com
creativecommons
amazon. com
adobe . com
myspace.com
w3.org
bbc.co.uk
nytimes.com
yahoo.com
microsoft.com
guardian.co.uk
imdb.com

.org

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014
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WCC of the webgraph

m Weakly Connected Component (WCC)
m 91.8% in 1999, 94% in 2012

m Component size distribution

. frequency dot plot
\, —— best power-law fit
1 \ —— Fibonacci binning
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Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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SCC of the webgraph

m Strongly Connected Component (SCC): 51.3% of the nodes
m Computation required 1TB of RAM

m Graph compression framework WebGraph was used

\ frequency dot plot
— best power-law fit
—=— Fibonacci binning

1407
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size of strongly connected component

———

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Bow-tie structure in 2012

Tendrils

/ 164m —
4.61%

LSCC
1,828 million
51.28%

Q Disconnected }ubes
O 208m 9.1m
) 5.84% 0.26%

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Bow-tie structure in 2012

Common Crawl 2012 Broder et al.

#nodes | % nodes #nodes | % nodes
Component | (in thousands) (in %) | (in thousands) (in %)
LSCC 1827543 51.28 56 464 27.74
IN 1138869 31.96 43343 21.29
ouT 215409 6.05 43166 21.21
TENDRILS 164 465 4.61 43798 21.52
TUBES 9099 0.26 - -
DISC. 208 217 5.84 16778 8.24

Table 3: Comparison of sizes of bow-tie components

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Distances and diameter

m Diameter lower bound: 5,282

0.10 0.15
L L

fraction of connected pairs
0.05
!

0.00
L

T T T T T T T
1e+00 5e+00 5e+01 5e+02 5e+03

distance
Figure: Distance distribution

Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.

Frank Takes — SNACS — Lecture 5 Network dynamics and evolution




Webgraph conclusions

Measurements on the largest webgraph available to the public
Average degree has significantly increased, almost by a factor of 5
Connectivity has increased, average distance has decreased

Structure of the web appears dependent on the specific web crawl

The distribution of indegrees and outdegrees is extremely different
Meusel et al., Graph Structure in the Web — Revisited, WWW 2014: 427-431, 2014.
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Making a “better” webgraph

m Not just an unweighted unlabeled directed network

m Resource Description Framework (RDF): link is a triple
[subject] [predicate] [object]

m Link weighting: define a weight for outgoing links (to give hints to
PageRank algorithm)

m Link annotation: make more use of the rel="" attribute to describe
the kind of link: alternate, search, next, etc.

m Requires new algorithms for ranking ...
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Network science challenges
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Network science

m Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

m Networks are the central model of computation
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Network science

m Network science: understanding data by investigating interactions
and relationships between individual data objects as a network

Networks are the central model of computation
Branch of data science focusing on network data
Method in complexity research

Complex systems approach: the behavior emerging from the network
reveals patterns not visible when studying the individuals

m For now assume: network science = social network analysis
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Network analysis

=
o
S
>
)
=
®
0
4]
£
]
=
>
©
i~
5
2
2
9]
=
1)
o
g
5
=
9]
9]
—
1]
O
<
=
"
0
4]
X
©
=
i~
=
®
I\
w




Micro scale
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Macro scale




Macro scale




Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)
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Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)

m Meso scale: analyzing groups of nodes occurring in a particular
configuration
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Network analysis

m Micro scale: analyzing the position of individual nodes, based on
their structural position in the network (e.g., node centrality, etc.)

m Macro scale: analyzing the structure of the network as a whole (e.g.,
network diameter, small-world effect, etc.)

m Meso scale: analyzing groups of nodes occurring in a particular
configuration (e.g., communities or networks motifs)
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Meso scale: communities
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Meso scale: communities




Meso scale: motifs




Meso scale: motifs




Meso scale: motifs




Meso scale: motifs
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simulated
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simulated real-world
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static

simulated real-world
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Network (community) dynamics
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Multilayer networks
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Multilevel networks
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Higher-order networks / Simplicial complexes

a Network b Hypergraph c Simplicial complex

Battiston et al. " The physics of higher-order interactions in complex systems.” Nature Physics 17 (2021): 1093-1098.
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Upcoming week

Next week: last lecture; then student presentations start

Be sure you know the following:
m Your track letter
m Track A: room BW 0.08
m Track B: room BW 0.19
m Track C: room BW 0.20

Tracks and rooms are fixed: lecturer differs

Presenting? On the Tuesday before your Friday presentation, send
your slides to snacs@liacs.leidenuniv.nl for some feedback, or if
you want, make an appointment the week before with the lecturer
assigned to your room
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