Social Network Analysis for Computer Scientists

Frank Takes

LIACS, Leiden University https://liacs.leidenuniv.nl/~takesfw/SNACS

Lecture 2 — Advanced network concepts and centrality

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality

Recap

Networks

Notation

Concept	Symbol
 Network (graph) 	G = (V, E)
 Nodes (objects, vertices,) 	V
Links (ties, relationships,)	E
 Directed — E ⊆ V × V — "links" Undirected — "edges" 	
■ Number of nodes — <i>V</i>	п
■ Number of edges — <i>E</i>	т
Degree of node <i>u</i>	deg(u)
Distance from node <i>u</i> to <i>v</i>	d(u, v)

Real-world networks

1	Sparse networks	density	
2	Fat-tailed power-law degree distribution	degree	
3	Giant component	components	
4	Low pairwise node-to-node distances	distance	
5	Many triangles	clustering coefficient	
	 Many examples: communication networks, citation networks, collaboration networks (Erdös, Kevin Bacon), protein interaction 		

networks, information networks (Wikipedia), webgraphs, financial networks (Bitcoin) . . .

Advanced concepts

Advanced concepts

- Assortativity
- Reciprocity
- Power law exponent
- Planar graphs
- Complete graphs
- Subgraphs
- Trees
- Spanning trees
- Diameter
- Bridges
- Graph traversal

Assortativity

Assortativity: extent to which "similar" nodes attract each other Value close to -1 if dissimilar nodes more often attract each other Value close to 1 if similar nodes more often attract each other

Assortativity

- Assortativity: extent to which "similar" nodes attract each other Value close to -1 if dissimilar nodes more often attract each other Value close to 1 if similar nodes more often attract each other
- Degree assortativity: nodes with a similar degree connect more frequently
- Attribute assortativity: nodes with similar attributes attract each other
- Influence on connectivity of network, spreading of information, etc.
- Social networks: homophily
- Complex networks: mixing patterns

Degree assortativity

Figure: Degree assortativity (left) and degree disassortativity (right)

Image: Estrada et al., Clumpiness mixing in complex networks, J. Stat. Mech. Theor. Exp. P03008 (2008).

Attribute assortativity

Figure: Attribute assortativity

Image: Moya-García, A. et al. Identification of New Toxicity Mechanisms ... Genes, 13(7), 1292, 2022.

Reciprocity

- Reciprocity: measure of the likelihood of nodes in a directed network to be mutually linked
- Let *m*_{<->} be the number of links in the directed network for which there also exists a symmetric counterpart:

$$m_{<->} = |\{(u, v) \in E : (v, u) \in E\}|$$

Reciprocity *r* is then the fraction of links that is symmetric:

$$r=\frac{m_{<->}}{m}$$

Measures the extent to which relationships are mutualUseful to compare between networks

Power law degree distribution

Source: http://konect.cc/networks/citeseer/

Power law exponent in undirected networks

The probabibility p_k of a node having degree k depends on the power law exponent γ:

$$p_k \sim k^{-\gamma}$$

This means that

$$\log p_k \sim -\gamma \log k$$

And as such, the straight line in log-log scale plots is observed.

- \blacksquare In real-world networks, γ has a value of around 2 to 3
- Useful to compare between similar networks

Power law exponent in directed networks

Source: A. Barabasi, Network Science, 2016.

Planar graphs

Planar graphs can be visualized such that no two edges cross each other

Image: Zafarani et al., Social Media Mining, 2014.

Complete graphs

In complete graphs, all pairs of nodes are connected
 The number of edges *m* is equal to ¹/₂ ⋅ *n* ⋅ (*n* − 1)

Figure: Complete graphs of size 1, 2, 3 and 4

Image: Zafarani et al., Social Media Mining, 2014.

Ego network

Figure: The **ego network** of a given node in a network consists of the set of nodes containing that node ("Ego") and its direct neighbors ("Alters"), and all edges present between the nodes in this set

Image: Wikipedia "Egocentric network.png", accessed 2022.

Trees

- A tree is a graph without cycles
- A set of disconnected trees is called a forest
- A tree with *n* nodes has m = n 1 edges

Image: Zafarani et al., Social Media Mining, 2014.

Trees

Image: M. Lima, Book of trees: Visualizing branches of knowledge, 2014.

Subgraphs

- Given a graph G = (V, E)
- Subgraph G' = (V', E') with V' ⊆ V and E' ⊆ (E ∩ (V' × V')) (subset of the nodes and edges of the original network, commonly used when defining communities or clusters)
- Subgraph G' = (V, E') with $E' \subseteq E$

(only edges are left out, commonly used when modelling network evolution)

Special subgraphs: spanning trees

Spanning trees

- A spanning tree is a tree and subgraph of a graph that covers all nodes of the graph
- In weighted graphs, a minimal spanning tree is one of minimal edge weight

Image: Zafarani et al., Social Media Mining, 2014.

Diameter

- Distance d(u, v) = length of shortest path from u to v
- Diameter $D(G) = \max_{u,v \in V} d(u, v) = \max$ distance

Diameter

- Distance d(u, v) = length of shortest path from u to v
- Diameter $D(G) = \max_{u,v \in V} d(u,v) = \max$ imal distance
- Eccentricity e(u) = max_{v∈V} d(u, v) = length of longest shortest path from u
- Diameter $D(G) = \max_{u \in V} e(u) = \max$ eccentricity
- Radius $R(G) = \min_{u \in V} e(u) = \min$ eccentricity

Bridges

- Bridge: an edge whose removal will result in an increase in the number of connected components
- Also called **cut edges**, with applications in community detection

Image: Zafarani et al., Social Media Mining, 2014.

Graph traversal

- Given a network, how can we explore it?
- Specifically: exploration starting from a particular source
- Node adjacency: two nodes are adjacent if there is an edge connecting them
- **Neighborhood**: set of nodes adjacent to a node $v \in V$:

$$N(v) = \{w \in V : (v, w) \in E\}$$

Techniques to iteratively explore neighborhoods: DFS and BFS

Graph traversal: DFS

Image: Zafarani et al., Social Media Mining, 2014.

Graph traversal: BFS

Source: A. Barabasi, Network Science, 2016.

Graph traversal: BFS

- Breadth First Search (BFS)
- Graph traversal in level-order

Image: Zafarani et al., Social Media Mining, 2014.

Graph traversal: BFS

- Breadth First Search (BFS)
- From source node, create a rooted spanning tree of the graph
- Graph traversal in level-order
- Often implemented using a queue
- BFS considers traversing each of the m edges once, so O(m)
- Important for computing various centrality measures

Image: Zafarani et al., Social Media Mining, 2014.

Centrality

Centrality

- Given a social network, which person is most important?
- What is the most important page on the web?
- Which protein is most vital in a biological network?
- Who is the most respected author in a scientific citation network?
- What is the most crucial router in an internet topology network?

Centrality

- Node centrality: the importance of a node with respect to the other nodes based on the structure of the network
- Centrality measure: computes the centrality value of all nodes in the graph
- For all $v \in V$ a measure M returns a value $C_M(v) \in [0; 1]$
- $C_M(v) > C_M(w)$ means that node v is more important than w

GAME OF HRΦNES

Degree centrality

 Undirected graphs – degree centrality: measure the number of adjacent nodes

$$C_d(v) = \frac{deg(v)}{n-1}$$

- Directed graphs indegree centrality and outdegree centrality
- Local measure
- O(1) time to compute

Degree distribution

Not so many distinct values in the lower ranges
Degree centrality

Degree centrality

Closeness centrality

Closeness centrality: based on the average distance to all other nodes
(1)

$$C_c(v) = \left(\frac{1}{n-1}\sum_{w\in V}d(v,w)\right)$$

- Global distance-based measure
- O(mn) to compute: one BFS in O(m) for each of the *n* nodes

Closeness centrality

Closeness centrality: based on the average distance to all other nodes
1

$$C_c(v) = \left(\frac{1}{n-1}\sum_{w\in V}d(v,w)\right)$$

- Global distance-based measure
- O(mn) to compute: one BFS in O(m) for each of the *n* nodes
- Connected component(s)...
- Harmonic centrality: variant of closeness (not normalized)

$$C_h(v) = \sum_{w \in V} \frac{1}{d(w, v)}$$

Sabidussi, G., The centrality index of a graph, Psychometrika 31(4): 581-603, 1966.

Closeness centrality

Degree vs. closeness centrality

Betweenness centrality

Betweenness centrality: measure the number of shortest paths that run through a node

$$C_b(u) = \sum_{\substack{v,w \in V \\ v \neq w, u \neq v, u \neq w}} \frac{\sigma_u(v,w)}{\sigma(v,w)}$$

- $\sigma(v, w)$ is the number of shortest paths from v to w
- $\sigma_u(v, w)$ is the number of such shortest paths that run through u
- Divide by largest value to normalize to [0; 1]
- Global path-based measure
- *O*(2*mn*) time to compute (two "BFSes" for each node)

U. Brandes, "A faster algorithm for betweenness centrality", Journal of Mathematical Sociology 25(2): 163-177, 2001

Betweenness centrality

Degree vs. betweeness centrality

Centrality measures compared

Figure: Degree, closeness and betweenness centrality

Source: "Centrality"' by Claudio Rocchini, Wikipedia File:Centrality.svg

Eccentricity centrality

 Node eccentricity: length of a longest shortest path (distance to a node furthest away)

$$e(v) = \max_{w \in V} d(v, w)$$

Eccentricity centrality:

$$C_e(v) = \frac{1}{e(v)}$$

- Worst-case variant of closeness centrality
- O(mn) to compute: one BFS in O(m) for each of the *n* nodes

Eccentricity centrality

 Node eccentricity: length of a longest shortest path (distance to a node furthest away)

$$e(v) = \max_{w \in V} d(v, w)$$

Eccentricity centrality:

$$C_e(v) = \frac{1}{e(v)}$$

- Worst-case variant of closeness centrality
- O(mn) to compute: one BFS in O(m) for each of the *n* nodes
 - Large optimizations possible using lower and upper bounds, see
 F.W. Takes and W.A. Kosters, Computing the Eccentricity Distribution of Large Graphs, *Algorithms*, vol. 6, nr. 1, pp. 100-118, 2013.

Eccentricity centrality

Degree vs. eccentricity centrality

Centrality measures

Distance/path-based measures:

- Degree centrality
- Closeness centrality
- Betweenness centrality
- Eccentricity centrality

(complexity is for computing centralities of all *n* nodes)

- Many more: Eigenvector centrality, Katz centrality, ...
- Approximating these measures is also possible
- Also: propagation-based centrality measures like PageRank

O(n)O(mn)O(mn)O(mn)

Periodic table of centrality

1	1 IA 8000 1979 DC				F	Periodic	Table	of Net	work C	entralit	y							18 VIIIA 518 1989 IC
2	Degree 224 1971 BC Betweenness	2 IIA 239 2008 EBC Endpoint BC											13 IIIA 26 1999 kPC kPath C.	14 IVA 275 2002 EGO Ego	15 VA 51 2004 HYPER Hypergraphs	16 VIA 279 1997 AFF Atiliation C.	17 VIIA 399 2 001 α-C 0-Cert.	Information C 178 1995 ECC Eccentricity
3	942 1955 CC Closeness	239 2008 PBC Pravy BC	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	9068 1999 HITS Hubs/Authority	573 2006 g-kPC grodesic kPath	296 1999 GROUP Groups/Classes	80 2006 HYPSC Hyperg. SC	34 2010 t-SC t-Subgraph	116 1998 RAD Radiality
4	1279 1972 EC Eigenvector	239 2008 LSBC LacaledBC	224 1971 EBC Edge BC	53 2009 CBC Commun. BC	236 2007 <u> <u> </u> <u> </u> <u> </u> <u> </u> Delta Cent. </u>	5 2000 MDC MD Cent.	0 2015 EYC Entropy C.	2 2013 CAC Comm. Ability	56 2007 EPTC Entropy PC	281 1971 CCoef Clust. Coef.	42 2012 PeC PaC	427 2007 BN Bottleneck	43 2009 El Essentiality I.	573 2006 e-kPC e-disjoint kPC	573 2006 v-kPC v-disjoint kPC	505 2010 WEIGHT Weighted C.	17 2013 TCom Total Comm.	116 1998 INT Integration
5	1306 1953 KS Katz Status	239 2008 DBBC DBounded BC	979 2005 RWBC RWalk BC	477 1991 TEC Total Effects	42 2009 LI Lobby Index	11 2008 MC Mod Cent.	0 2014 COMCC Community C.	45 2012 ECCoef ECCoef	0 2015 SMD Super Mediat	1 2004 UCC United Comp.	4 2012 WDC WDC	119 2008 MNC MNC	43 2009 KL Clique Level	179 2005 BIP Bipartivity	426 1988 GPI GPI Power	116 1991 kRPC Reachability	58 2007 SCodd odd Subgraph	S86 2004 RWCC RWalk CC
6	8053 1999 PR Page Rank	239 2008 DSBC DScaled BC	291 1953 <i>o</i> Stress	477 1991 IEC Immediate Eff.	1 2014 DM Degree Mass	10 2012 LAPC Laplacian C.	0 2012 ABC Attentive BC	1699 2001 STRC Straightness C	0 2015 SNR Silent Node R.	15 2011 HPC Harm. Prot.	26 2011 LAC Local Average	119 2008 DMNC DMNC	3 2013 LR Lurker Rank	2457 1987 β-C β Cent.	X X HYP Hyperbolic C.	27 2012 kEPC k-edge PC	13 2007 FC Functional C.	0 2014 HCC Hierar. CC
7	484 2005 Subgraph	613 1991 FBC Flow BC	14 2012 RLBC RLimited BC	477 1991 MEC Mediative Eff.	69 2010 LEVC Leverage Cent.	35 2000 TC Topological C.	x x SDC Sphere Degree	15 2010 ZC Zonal Cent.	14 2013 CI Collab. Index	11 2013 CoEWC CoEWC	45 2012 NC	108 2010 MLC Moduland C.	x x RSC Resolvent SC	1 2014 SWIPD SWIPD	35 2009 XXXX LinComb	0 2014 BCPR BCPR	0 2014 TPC Tunable PC	0 2015 EDCC Effective Dist.
	citations yra C Name	ŕ				8000 1979 Freeman Conceptual	942 1966 Sabidami Asiomatic	573 2006 Bargatti/Everett Conceptual	1130 2005 Borgatti Conceptual	24 2014 Boldi/Vigna Axiomatic	252 1974 Nieminen Axiomatic	6 1981 Kishi Asiomatic	3 2012 Kitti Asiomatic	3 2009 Garg Axiomatic		Grading Contracts (Contracts)	ditional" eenness- kin Mea ellaneou -based	-like sures s
2016 101 156 100 101 <td>961 1993 Ibarra Empirical</td> <td>71 2008 Valente Empirical</td> <td></td> <td colspan="3">Specific Network Typ Spectral-based Closeness-like</td>									961 1993 Ibarra Empirical	71 2008 Valente Empirical		Specific Network Typ Spectral-based Closeness-like						

Network projection

Bipartite graphs

- In bipartite graphs the set of of nodes V can be split into two node sets V_L and V_R such that all edges E of the graph have their endpoints in different node sets. Specifically:
 - $\bullet V = V_L \cup V_R$
 - $V_L \cap V_R = \emptyset$
 - $E \subseteq V_L \times V_R$
- Also called two-mode networks or heterogenic networks (as opposed to respectively one-mode networks and homogenic networks)
- Called affiliation networks in a social network context
- So, two different types of nodes ...

Bipartite graphs

Image: Zafarani et al., Social Media Mining, 2014.

Projecting networks

Image: http://toreopsahl.com/

Weighted projection

Weighted projection

Image: http://toreopsahl.com

Projection algorithm

Given a bipartite graph $G = (V_L \cup V_R, E)$ with $E \subseteq V_L \times V_R$, generate the projected graph $G' = (V_L, E')$

- Initialize $G' = (V_L, E')$ with $E' = \emptyset$
- For each node $v \in V_R$, determine its neighborhood $N(v) \subseteq V_L$
 - For each distinct node pair $v_i, v_j \in N(v)$, add the edge (v_i, v_j) to E'
 - Optionally, assign a weight to edge (v_i, v_j) based on how often it occurs
- Analogously, the projection from $G = (V_L \cup V_R, E)$ to $G'' = (V_R, E'')$ can be made

Network analysis on (almost) any dataset

- Different data objects typically have attributes with identical values
- The unique object identifier and the common attribute value are the two node types in a two-mode network representing the data
- The two-mode network can be converted into a one-mode network based on the common attribute
- Many projections of a dataset to a network are possible

Criminal networks

Example: Criminal networks

- Data science project with Dutch National Police
- Gain insight in social networks of soccer fans, group formation and organization
- Dataset: all entries in police systems of law violations of a particular group of people involved in soccer violence

RISK Explorer

Deze experimentele applicatie stelt de gebruiker in staat om personen betrokken bij voetbalvandalisme te bekijken. Daarnaast kunnen relaties tussen deze personen worden gevisualiseerd.

Het RISK-project is een samenwerking tussen o.a

Deze applicatie werkt op een moderne standardscompliant browser zoals Chrome of Firefox.

Criminal networks

Person ID	Incident ID	Incident Type
P000001	X00011	Straatroof/diefstal
P000001	X00014	Eenv. Mishandeling
P000002	X00011	Straatroof/diefstal
P000002	X00012	Eenv. Mishandeling
P000003	X00012	Eenv. Mishandeling
P000003	X00016	Bedreiging
P000004	X00012	Eenv. Mishandeling
P000004	X00017	Eenv. Mishandeling
P000005	X00013	Bedreiging
P000005	X00014	Eenv. Mishandeling
P000005	X00015	Straatroof/diefstal
P000006	X00013	Bedreiging
P000007	X00013	Bedreiging
P000008	X00013	Bedreiging
P000009	X00015	Straatroof/diefstal
P000010	X00016	Bedreiging
P000010	X00017	Eenv. Mishandeling
P000011	X00016	Bedreiging

Table: Data on suspects involved in incidents

Network formation

Figure: Suspects are nodes

Two-mode criminal network

Network formation

Figure: Edges are based on common involvement as a suspect

Network visualization

Figure: Force-directed visualization algorithm reveals structure

Network analysis: Centrality

Figure: Degree centrality finds locally important nodes

Network analysis: Centrality

Figure: Betweenness centrality reveals globally important nodes

Network analysis: Community detection

Figure: Community detection finds groups of tightly connected nodes

RISK Explorer

Deze experimentele applicatie stelt de gebruiker in staat om personen betrokken bij voetbalvandalisme te bekijken. Daarnaast kunnen relaties tussen deze personen worden gevisualiseerd.

Het RISK-project is een samenwerking tussen o.a

Deze applicatie werkt op een moderne standards compliant browser zoals Chrome of Firefox.

Community detection — very brief introduction

Related: clustering

Image: KDnuggets - Clustering, 2009.

Community detection

- **Community**: subset of nodes connected more strongly with eachother than with the rest of the network
- Community detection algorithms:
 - Clique-based methods
 - Divisive algorithms (centrality-based)
 - Label propagation algorithms
 - Random walk algorithms
 - Modularity maximization algorithms

Community detection

Figure: Communities: node subsets connected more strongly with each other

Community detection

Figure: Communities: node subsets connected more strongly with each other

Modularity

- **Community** (alternative definition): subset of nodes for which the fraction of links inside the community is higher than expected
- Modularity: numerical value Q indicating the quality of a given division of a network into communities. Higher value of Q means more links within communities (and fewer between)
- Resolution parameter r indicating how "tough" the algorithm should look for communities
- Algorithms optimize (maximize) the modularity score Q given some r (using local search, heuristics, hill climbing, genetic algorithms or other optimization techniques)

V.D. Blondel, J-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks in *Journal of Statistical Mechanics: Theory and Experiment* 10: P10008, 2008.

Partitions vs. communities

J. Leskovec, Affiliation Network Models for Densely Overlapping Communities, MMDS 2012.

Upcoming lab session & Homework for next week

- **Today:** stick around if you are already certain that you will take the course, and want to find a teammate for the project already
- Lab session: Introduction to NETWORKX
- Work on Assignment 1
- "Homework": Make serious progress with Assignment 1
- Make choice of participation in course explicit. Un-enroll if you wish to drop the course