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Networks
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Notation

Concept Symbol

Network (graph) G = (V ,E )

Nodes (objects, vertices, . . . ) V

Links (ties, relationships, . . . ) E

Directed — E ⊆ V × V — ”links”
Undirected — ”edges”

Number of nodes — |V | n

Number of edges — |E | m

Degree of node u deg(u)

Distance from node u to v d(u, v)
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Real-world networks

1 Sparse networks density

2 Fat-tailed power-law degree distribution degree

3 Giant component components

4 Low pairwise node-to-node distances distance

5 Many triangles clustering coefficient

Many examples: communication networks, citation networks,
collaboration networks (Erdös, Kevin Bacon), protein interaction
networks, information networks (Wikipedia), webgraphs, financial
networks (Bitcoin) . . .
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Advanced concepts
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Advanced concepts

Assortativity

Reciprocity

Power law exponent

Planar graphs

Complete graphs

Subgraphs

Trees

Spanning trees

Diameter

Bridges

Graph traversal
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Assortativity

Assortativity: extent to which “similar” nodes attract each other
Value close to -1 if dissimilar nodes more often attract each other
Value close to 1 if similar nodes more often attract each other

Degree assortativity: nodes with a similar degree connect more
frequently

Attribute assortativity: nodes with similar attributes attract each
other

Influence on connectivity of network, spreading of information, etc.

Social networks: homophily

Complex networks: mixing patterns
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Degree assortativity

Figure: Degree assortativity (left) and degree disassortativity (right)

Image: Estrada et al., Clumpiness mixing in complex networks, J. Stat. Mech. Theor. Exp. P03008 (2008).
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Attribute assortativity

Figure: Attribute assortativity

Image: Moya-Garćıa, A. et al. Identification of New Toxicity Mechanisms ... Genes, 13(7), 1292, 2022.
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Reciprocity

Reciprocity: measure of the likelihood of nodes in a directed network
to be mutually linked

Let m<−> be the number of links in the directed network for which
there also exists a symmetric counterpart:

m<−> = |{(u, v) ∈ E : (v , u) ∈ E}|

Reciprocity r is then the fraction of links that is symmetric:

r =
m<−>
m

Measures the extent to which relationships are mutual

Useful to compare between networks
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Power law degree distribution

Source: http://konect.cc/networks/citeseer/
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Power law exponent in undirected networks

The probabibility pk of a node having degree k depends on the power
law exponent γ:

pk ∼ k−γ

This means that
log pk ∼ −γ log k

And as such, the straight line in log-log scale plots is observed.

In real-world networks, γ has a value of around 2 to 3

Useful to compare between similar networks
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Power law exponent in directed networks

Source: A. Barabasi, Network Science, 2016.
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Planar graphs

Planar graphs can be visualized such that no two edges cross each
other

Image: Zafarani et al., Social Media Mining, 2014.
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Complete graphs

In complete graphs, all pairs of nodes are connected

The number of edges m is equal to 1
2 · n · (n − 1)

Figure: Complete graphs of size 1, 2, 3 and 4

Image: Zafarani et al., Social Media Mining, 2014.
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Ego network

Figure: The ego network of a given node in a network consists of the set of
nodes containing that node (“Ego”) and its direct neighbors (“Alters”), and all
edges present between the nodes in this set

Image: Wikipedia ”Egocentric network.png”, accessed 2022.
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Trees

A tree is a graph without cycles

A set of disconnected trees is called a forest

A tree with n nodes has m = n − 1 edges

Image: Zafarani et al., Social Media Mining, 2014.
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Trees

Image: M. Lima, Book of trees: Visualizing branches of knowledge, 2014.
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Subgraphs

Given a graph G = (V ,E )

Subgraph G ′ = (V ′,E ′) with V ′ ⊆ V and E ′ ⊆ (E ∩ (V ′ × V ′))
(subset of the nodes and edges of the original network, commonly
used when defining communities or clusters)

Subgraph G ′ = (V ,E ′) with E ′ ⊆ E
(only edges are left out, commonly used when modelling network
evolution)

Special subgraphs: spanning trees
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Spanning trees

A spanning tree is a tree and subgraph of a graph that covers all
nodes of the graph

In weighted graphs, a minimal spanning tree is one of minimal edge
weight

Image: Zafarani et al., Social Media Mining, 2014.
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Diameter

Distance d(u, v) = length of shortest path from u to v

Diameter D(G ) = maxu,v∈V d(u, v) = maximal distance

Eccentricity e(u) = maxv∈V d(u, v) = length of longest shortest path
from u

Diameter D(G ) = maxu∈V e(u) = maximal eccentricity

Radius R(G ) = minu∈V e(u) = minimal eccentricity
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Bridges

Bridge: an edge whose removal will result in an increase in the
number of connected components

Also called cut edges, with applications in community detection

Image: Zafarani et al., Social Media Mining, 2014.

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality 23 / 77



Graph traversal

Given a network, how can we explore it?

Specifically: exploration starting from a particular source

Node adjacency: two nodes are adjacent if there is an edge
connecting them

Neighborhood: set of nodes adjacent to a node v ∈ V :

N(v) = {w ∈ V : (v ,w) ∈ E}

Techniques to iteratively explore neighborhoods: DFS and BFS
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Graph traversal: DFS

Depth First Search (DFS)

Image: Zafarani et al., Social Media Mining, 2014.
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Graph traversal: BFS

Source: A. Barabasi, Network Science, 2016.

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality 26 / 77



Graph traversal: BFS

Breadth First Search (BFS)

Graph traversal in level-order

Image: Zafarani et al., Social Media Mining, 2014.
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Graph traversal: BFS

Breadth First Search (BFS)

From source node, create a rooted spanning tree of the graph

Graph traversal in level-order

Often implemented using a queue

BFS considers traversing each of the m edges once, so O(m)

Important for computing various centrality measures

Image: Zafarani et al., Social Media Mining, 2014.
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Centrality
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Centrality

Given a social network, which person is most important?

What is the most important page on the web?

Which protein is most vital in a biological network?

Who is the most respected author in a scientific citation network?

What is the most crucial router in an internet topology network?
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Centrality

Node centrality: the importance of a node with respect to the other
nodes based on the structure of the network

Centrality measure: computes the centrality value of all nodes in
the graph

For all v ∈ V a measure M returns a value CM(v) ∈ [0; 1]

CM(v) > CM(w) means that node v is more important than w
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Degree centrality

Undirected graphs – degree centrality: measure the number of
adjacent nodes

Cd(v) =
deg(v)

n − 1

Directed graphs — indegree centrality and outdegree centrality

Local measure

O(1) time to compute
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Degree distribution
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Degree centrality
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Degree centrality
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Figure: Character co-occurence network. Node size based on degree.
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Closeness centrality

Closeness centrality: based on the average distance to all other
nodes

Cc(v) =

(
1

n − 1

∑
w∈V

d(v ,w)

)−1

Global distance-based measure

O(mn) to compute: one BFS in O(m) for each of the n nodes

Connected component(s). . .

Harmonic centrality: variant of closeness (not normalized)

Ch(v) =
∑
w∈V

1

d(w , v)

Sabidussi, G., The centrality index of a graph, Psychometrika 31(4): 581–603, 1966.
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Closeness centrality
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Degree vs. closeness centrality
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Figure: Node size based on degree, color based on closeness centrality.
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Betweenness centrality

Betweenness centrality: measure the number of shortest paths that
run through a node

Cb(u) =
∑

v ,w∈V
v 6=w ,u 6=v ,u 6=w

σu(v ,w)

σ(v ,w)

σ(v ,w) is the number of shortest paths from v to w

σu(v ,w) is the number of such shortest paths that run through u

Divide by largest value to normalize to [0; 1]

Global path-based measure

O(2mn) time to compute (two “BFSes” for each node)

U. Brandes, ”A faster algorithm for betweenness centrality”, Journal of Mathematical Sociology 25(2): 163–177, 2001
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Betweenness centrality
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Degree vs. betweeness centrality
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Figure: Node size based on degree, color based on betweenness centrality.
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Centrality measures compared

Figure: Degree, closeness and betweenness centrality

Source: ”Centrality”’ by Claudio Rocchini, Wikipedia File:Centrality.svg
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Eccentricity centrality

Node eccentricity: length of a longest shortest path (distance to a
node furthest away)

e(v) = max
w∈V

d(v ,w)

Eccentricity centrality:

Ce(v) =
1

e(v)

Worst-case variant of closeness centrality

O(mn) to compute: one BFS in O(m) for each of the n nodes

Large optimizations possible using lower and upper bounds, see
F.W. Takes and W.A. Kosters, Computing the Eccentricity Distribution
of Large Graphs, Algorithms, vol. 6, nr. 1, pp. 100-118, 2013.
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Eccentricity centrality
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Degree vs. eccentricity centrality
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Figure: Node size based on degree, color based on eccentricity centrality.
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Centrality measures

Distance/path-based measures:

Degree centrality O(n)
Closeness centrality O(mn)
Betweenness centrality O(mn)
Eccentricity centrality O(mn)

(complexity is for computing centralities of all n nodes)

Many more: Eigenvector centrality, Katz centrality, . . .

Approximating these measures is also possible

Also: propagation-based centrality measures like PageRank
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Periodic table of centrality
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3649 2001

Jeong et al.

Empirical

4167 1998

Tsai/Ghoshal

Empirical

961 1993

Ibarra

Empirical

71 2008

Valente

Empirical

“Traditional”
Betweenness-like
Friedkin Measures
Miscellaneous
Path-based
Specific Network Type
Spectral-based
Closeness-like

citations year

C

Name

c©David Schoch (University of Konstanz)

Periodic Table of Network Centrality
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Network projection

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality 49 / 77



Bipartite graphs

In bipartite graphs the set of of nodes V can be split into two node
sets VL and VR such that all edges E of the graph have their
endpoints in different node sets. Specifically:

V = VL ∪ VR

VL ∩ VR = ∅
E ⊆ VL × VR

Also called two-mode networks or heterogenic networks
(as opposed to respectively one-mode networks and homogenic
networks)

Called affiliation networks in a social network context

So, two different types of nodes . . .
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Bipartite graphs

Image: Zafarani et al., Social Media Mining, 2014.
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Projecting networks

Image: http://toreopsahl.com/
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Weighted projection

→

Image: http://toreopsahl.com

Frank Takes — SNACS — Lecture 2 — Advanced network concepts and centrality 53 / 77

http://toreopsahl.com


Weighted projection

→
Image: http://toreopsahl.com
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Projection algorithm

Given a bipartite graph G = (VL ∪ VR ,E ) with E ⊆ VL × VR ,
generate the projected graph G ′ = (VL,E

′)

Initialize G ′ = (VL,E
′) with E ′ = ∅

For each node v ∈ VR , determine its neighborhood N(v) ⊆ VL

For each distinct node pair vi , vj ∈ N(v), add the edge (vi , vj) to E ′

Optionally, assign a weight to edge (vi , vj) based on how often it occurs

Analogously, the projection from G = (VL ∪ VR ,E ) to G ′′ = (VR ,E
′′)

can be made
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Network analysis on (almost) any dataset

Different data objects typically have attributes with identical values

The unique object identifier and the common attribute value are the
two node types in a two-mode network representing the data

The two-mode network can be converted into a one-mode network
based on the common attribute

Many projections of a dataset to a network are possible
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Criminal networks
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Example: Criminal networks

Data science project with Dutch National Police

Gain insight in social networks of soccer fans, group formation and
organization

Dataset: all entries in police systems of law violations of a particular
group of people involved in soccer violence
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Criminal networks

Person ID Incident ID Incident Type
P000001 X00011 Straatroof/diefstal
P000001 X00014 Eenv. Mishandeling
P000002 X00011 Straatroof/diefstal
P000002 X00012 Eenv. Mishandeling
P000003 X00012 Eenv. Mishandeling
P000003 X00016 Bedreiging
P000004 X00012 Eenv. Mishandeling
P000004 X00017 Eenv. Mishandeling
P000005 X00013 Bedreiging
P000005 X00014 Eenv. Mishandeling
P000005 X00015 Straatroof/diefstal
P000006 X00013 Bedreiging
P000007 X00013 Bedreiging
P000008 X00013 Bedreiging
P000009 X00015 Straatroof/diefstal
P000010 X00016 Bedreiging
P000010 X00017 Eenv. Mishandeling
P000011 X00016 Bedreiging

Table: Data on suspects involved in incidents
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Network formation

P00001

P00002

P00003

P00004

P00005

P00006

P00007

P00008

P00009

P00010

P00011

Figure: Suspects are nodes
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Two-mode criminal network

P000001
X00011

X00014

P000002

X00012 P000003

X00016

P000004

X00017

P000005X00013

X00015
P000006

P000007

P000008

P000009

P000010

P000011
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Network formation

P00001

P00002

P00003

P00004

P00005

P00006

P00007

P00008

P00009

P00010

P00011

Figure: Edges are based on common involvement as a suspect
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Network visualization

P00001

P00002

P00003

P00004

P00005

P00006

P00007

P00008

P00009

P00010

P00011

Figure: Force-directed visualization algorithm reveals structure
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Network analysis: Centrality

P00001

P00002

P00003

P00004

P00005

P00006

P00007

P00008

P00009

P00010

P00011

Figure: Degree centrality finds locally important nodes
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Network analysis: Centrality

P00001

P00002

P00003

P00004

P00005

P00006

P00007

P00008

P00009

P00010

P00011

Figure: Betweenness centrality reveals globally important nodes
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Network analysis: Community detection

P00001

P00002

P00003

P00004

P00005

P00006

P00007

P00008

P00009

P00010

P00011

Figure: Community detection finds groups of tightly connected nodes
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Community detection — very brief introduction
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Related: clustering

Image: KDnuggets - Clustering, 2009.
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Community detection

Community: subset of nodes connected more strongly with
eachother than with the rest of the network

Community detection algorithms:

Clique-based methods
Divisive algorithms (centrality-based)
Label propagation algorithms
Random walk algorithms
Modularity maximization algorithms
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Community detection

Figure: Communities: node subsets connected more strongly with each other
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Modularity

Community (alternative definition): subset of nodes for which the
fraction of links inside the community is higher than expected

Modularity: numerical value Q indicating the quality of a given
division of a network into communities. Higher value of Q means
more links within communities (and fewer between)

Resolution parameter r indicating how “tough” the algorithm should
look for communities

Algorithms optimize (maximize) the modularity score Q given some r
(using local search, heuristics, hill climbing, genetic algorithms or
other optimization techniques)

V.D. Blondel, J-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks in Journal of
Statistical Mechanics: Theory and Experiment 10: P10008, 2008.
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Partitions vs. communities

J. Leskovec, Affiliation Network Models for Densely Overlapping Communities, MMDS 2012.
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Upcoming lab session & Homework for next week

Today: stick around if you are already certain that you will take the
course, and want to find a teammate for the project already

Lab session: Introduction to NetworkX

Work on Assignment 1

“Homework”: Make serious progress with Assignment 1

Make choice of participation in course explicit. Un-enroll if you wish
to drop the course
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