Determining the Diameter of Small World Networks

Frank W. Takes & Walter A. Kosters

Leiden University, The Netherlands

CIKM 2011 — October 27, 2011 — Glasgow, UK

NWO COMPASS project (grant #612.065.92)
Overview

- Introduction
- Preliminaries
- Problem statement
- Related work
- Algorithm
- Results
- Conclusion
- Future work
Introduction

- Small world networks
- Power law degree distribution, giant component, low average pairwise distances
- Examples: social networks, webgraphs, communication networks, collaboration networks, information networks, protein-protein interaction networks, citation networks, etc.
- **Diameter**: length of longest shortest path in a graph
Diameter Example

Figure: Graph with diameter 6. Numbers denote node eccentricity
Preliminaries

- Graph $G = (V, E)$ with $|V| = n$ nodes and $|E| = m$ edges
- Distance $d(u, v)$: length of shortest path between $u, v \in V$
- Undirected: $d(u, v) = d(v, u)$ for all $u, v \in V$
- One connected component: $d(u, v)$ is finite for all $u, v \in V$
- Neighborhood $N(u)$: set of nodes connected to u via an edge
- Degree $\deg(u)$: number of edges connected to node u
Problem statement

- Consider a connected undirected graph $G = (V, E)$
- Our aim is to compute in large small-world graphs $(1,000 \leq n \leq 100,000,000, \bar{d}(u, v) \approx 6$ for all $u, v \in V)$:
Problem statement

- Consider a connected undirected graph \(G = (V, E) \)
- Our aim is to compute in large small-world graphs \((1,000 \leq n \leq 100,000,000, \bar{d}(u, v) \approx 6 \text{ for all } u, v \in V)\):
 - **Eccentricity** \(e(v) \): length of a longest shortest path from \(v \):
 \[e(v) = \max_{w \in V} d(v, w) \]
 - **Diameter** \(D(G) \): maximal distance (longest shortest path length) over all node pairs:
 \[\max_{v, w \in V} d(v, w) \]
Problem statement

Consider a connected undirected graph $G = (V, E)$

Our aim is to compute in large small-world graphs ($1,000 \leq n \leq 100,000,000$, $d(u, v) \approx 6$ for all $u, v \in V$):

- **Eccentricity** $e(v)$: length of a longest shortest path from v: $e(v) = \max_{w \in V} d(v, w)$
- **Diameter** $D(G)$: maximal distance (longest shortest path length) over all node pairs: $\max_{v, w \in V} d(v, w)$
- **Diameter** $D(G)$ (alternative definition): maximal eccentricity over all nodes: $\max_{v \in V} e(v)$
Problem statement

- Consider a connected undirected graph $G = (V, E)$
- Our aim is to compute in large small-world graphs $(1,000 \leq n \leq 100,000,000, \bar{d}(u, v) \approx 6$ for all $u, v \in V$):
 - **Eccentricity** $e(v)$: length of a longest shortest path from v:
 $e(v) = \max_{w \in V} d(v, w)$
 - **Diameter** $D(G)$: maximal distance (longest shortest path length) over all node pairs:
 $\max_{v, w \in V} d(v, w)$
 - **Diameter** $D(G)$ (alternative definition): maximal eccentricity over all nodes:
 $\max_{v \in V} e(v)$
 - **Radius** $R(G)$: minimal eccentricity over all nodes:
 $\min_{v \in V} e(v)$
 - Eccentricity distribution: (relative) frequency $f(x)$ of each eccentricity value x
 $$f(x) = \frac{|\{u \in V \mid e(u) = x\}|}{n}$$
Figure: Relative eccentricity distribution of five large graphs
Diameter Applications

- Router networks: what is the worst-case response time between any two machines?
- Social networks: in how many steps does a message released by a single user reach everyone in the network?
- Biological interaction networks: which proteins are likely to not influence each other at all?
- Information networks (i.e., Wikipedia): how do I change the conversation topic to a maximally different subject? ;-)
- Eccentricity has been suggested as a worst-case measure of node centrality: the relative importance of a node based on the graph’s structure
Naive Algorithm

- Diameter is equal to the largest value returned by an All Pairs Shortest Path (APSP) algorithm.
- Brute-force: for each of the n nodes, execute a Breadth First Search (BFS) run in $O(m)$ time to find the eccentricity, and return the largest value found.
- Time complexity $O(mn)$
- Problematic if $n = 8$ million and $m = 1$ billion. Then one BFS takes 6 seconds on a 3.4GHz machine. That results in 1.5 years to compute the diameter . . .
Related work

- Approximation algorithms, for example ANF (Palmer et al.)
- Use a random sample of the set of nodes (Mislove et al.)
- Heuristics, for example repeatedly select the farthest node until there is no more improvement (Leskovec et al.)
- Matrix multiplication for APSP in $O(n^{2.376})$ (Yuster et al.)
- Bounds: diameter upper bound is at most two times the lowest found eccentricity value (Magnien et al.)
Social Network Example (1)

- If I am connected to everyone in at most 6 steps, then
 - My direct friend is connected to everyone in at most 7 steps (he reaches everyone through me)
 - My direct friend is connected to everyone in at least 5 steps (I reach everyone through him)

- If I can reach everyone in the network in 6 steps, then
 - There is nobody who can reach everyone in less than 3 steps (or I could have utilized him)
 - There is nobody who needs more than 12 steps to reach everyone (or he could have utilized me)
If a node v has eccentricity $e(v)$, then
- Nodes w at distance $d(v, w)$ needs at most $e(v) + d(v, w)$ steps
 (w reaches every node via v)
- Nodes w at distance $d(v, w)$ needs at least $e(v) - d(v, w)$ steps (v reaches every node via w)

We call this the **Eccentricity bounds**

If a node v can reach every other node in $e(v)$ steps, then
- There is no node that can reach everyone in less than $\lceil e(v)/2 \rceil$ steps (or v could have used that node)
- There is no node that needs more than $e(v) \cdot 2$ steps to reach all other nodes (or that node could have used v)

We call this the **Diameter bounds**
Eccentricity bounds

Theorem

For nodes \(v, w \in V \) we have

\[
\max(e(v) - d(v, w), d(v, w)) \leq e(w) \leq e(v) + d(v, w).
\]

Proof

- **Upper bound** \(e(v) + d(v, w) \): if node \(w \) is at distance \(d(v, w) \) of node \(v \), it can always employ \(v \) to get to every other node in \(e(v) \) steps. To get to node \(v \), exactly \(d(v, w) \) steps are needed, totalling \(e(v) + d(v, w) \) steps to get to any other node.

- **Lower bound** \(e(v) - d(v, w) \): interchanging \(v \) and \(w \) in the previous statement.

- **Lower bound** \(d(v, w) \): the eccentricity of \(w \) is at least equal to some found distance to \(w \).
Diameter bounds

- Let $e_L(v)$ and $e_U(v)$ denote the lower and upper eccentricity bounds derived using the Eccentricity bounds.
- Then we can derive the following **diameter bounds**:
 $$\max_{v \in V} e_L(v) \leq D(G) \leq \max_{v \in V} e_U(v)$$
- Let $D_L(G)$ and $D_U(G)$ denote these lower and upper diameter bounds. $D_L(G) \leq D(G) \leq D_U(G)$
BoundingDiameters Algorithm

Input: Graph G
Output: Diameter of G

\[W \leftarrow V \quad D_\ell \leftarrow -\infty \quad D_u \leftarrow +\infty \]

for \(w \in W \) do
 \[e_\ell[w] \leftarrow -\infty \quad e_u[w] \leftarrow +\infty \]
end for

while \(D_\ell \neq D_u \) and \(W \neq \emptyset \) do
 \(v \leftarrow \text{SELECTFROM}(W) \)
 \(e[v] \leftarrow \text{ECCENTRICITY}(v) \)

 \[D_\ell \leftarrow \max(D_\ell, e[v]) \]
 \[D_u \leftarrow \min(D_u, 2 \cdot e[v]) \]

 for \(w \in W \) do
 \[e_\ell[w] = \max(e_\ell[w], \max(e[v] - d(v, w), d(v, w))) \]
 \[e_u[w] = \min(e_u[w], e[v] + d(v, w)) \]
 if (\(e_u[w] \leq D_\ell \) and \(e_\ell[w] \geq D_u / 2 \)) or
 (\(e_\ell[w] = e_u[w] \)) then
 \(W \leftarrow W - \{w\} \)
 end if
 end for

 \(D_u \leftarrow \min(D_u, \max_{w \in V}(e_u[w])) \)
end while

return \(D_\ell \);
Bounding Diameters Algorithm

- Initialize candidate set W to V
 While $D_L(G) \neq D_U(G)$:
 1. Select a node v from W cf. some Selection strategy
 2. Compute v’s eccentricity, and update $e_L(v)$ and $e_U(v)$ for every node $v \in W$ according to the Eccentricity bounds
 3. Update the diameter bounds $D_L(G)$ and $D_U(G)$
 4. Remove nodes w that can no longer contribute to refining the Diameter bounds

- Worst-case: n iterations, best-case: 2 iterations (investigate v and w with $e(v) = 2 \cdot e(w) = D(G)$)

- To compute the complete eccentricity distribution, stop when: $\forall v \in V : e_L(v) = e_U(v)$

- Selection strategy is important (and discussed later)
What is the diameter of this graph?

\[D_L = -\infty \text{ and } D_U = \infty \]
Example run (1)

Iteration 1: after computing the eccentricity of node F

\[D_L = 5 \text{ and } D_U = 10 \]
Example run (2)

Iteration 2: after computing the eccentricity of node T
\[D_L = 7 \text{ and } D_U = 10 \]
Iteration 3: after computing the eccentricity of node L

\[D_L = 7 \text{ and } D_U = 7 \]
Selection strategy

- Random node ("smart APSP")
- Based on the degree of the node
- Eccentricity bounds difference (1)
- Interchange smallest eccentricity lower bound and largest eccentricity upper bound (2)
- Repeated farthest distance (cf. Leskovec et al.) (3)
Results

1. Eccentricity bounds difference
2. Alternate between smallest eccentricity lower bound and largest upper bound
3. Repeatedly select a node furthest away from the previous node

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nodes</th>
<th>(D(G))</th>
<th>Strat. 1</th>
<th>Strat. 2</th>
<th>Strat. 3</th>
<th>Pruned</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstroPhys</td>
<td>17,903</td>
<td>14</td>
<td>18</td>
<td>9</td>
<td>63</td>
<td>185</td>
</tr>
<tr>
<td>ENRON</td>
<td>33,696</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>61</td>
<td>8,715</td>
</tr>
<tr>
<td>Web</td>
<td>855,802</td>
<td>24</td>
<td>20</td>
<td>4</td>
<td>28</td>
<td>91,965</td>
</tr>
<tr>
<td>YouTube</td>
<td>1,134,890</td>
<td>24</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>399,553</td>
</tr>
<tr>
<td>Flickr</td>
<td>1,624,992</td>
<td>24</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>553,242</td>
</tr>
<tr>
<td>Skitter</td>
<td>1,696,415</td>
<td>31</td>
<td>10</td>
<td>4</td>
<td>19</td>
<td>114,803</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>2,213,236</td>
<td>18</td>
<td>21</td>
<td>3</td>
<td>583</td>
<td>947,582</td>
</tr>
<tr>
<td>Orkut</td>
<td>3,072,441</td>
<td>10</td>
<td>357</td>
<td>106</td>
<td>389</td>
<td>27,429</td>
</tr>
<tr>
<td>LiveJournal</td>
<td>5,189,809</td>
<td>23</td>
<td>6</td>
<td>3</td>
<td>14</td>
<td>318,378</td>
</tr>
<tr>
<td>Hyves</td>
<td>8,057,981</td>
<td>25</td>
<td>40</td>
<td>21</td>
<td>44</td>
<td>446,258</td>
</tr>
</tbody>
</table>

Table: Comparison of three node selection strategies
Pruning

Theorem
Assume $n > 2$. For a given $v \in V$, all nodes $w \in N(v)$ with $\text{deg}(w) = 1$ have $e(w) = e(v) + 1$.

Proof
- Node w is only connected to node v, and will thus need node v to reach every other node in the graph. If node v can do this in $e(v)$ steps, then node w can do this in exactly $e(v) + 1$ steps.
- The restriction $n > 2$ on the graph size excludes the case in which w realizes the eccentricity of v.

(alternative proof is possible, based on graph homomorphism)
Discussion

- **Main result:** in real-world graphs `BOUNDINGDIAMETERS` is much faster than the naive algorithm (a handful vs. n BFSes)
- **Why does it work?** There is always diversity in the eccentricity values of nodes, allowing central nodes to influence the eccentricity of peripheral nodes, and vice versa
- **When does it not work so well?** In graphs with little diversity in the eccentricity values, e.g., circle-shaped graphs
- **Side result:** efficiently computing derived measures such as the radius, center, periphery and even the exact eccentricity distribution is also possible (after some modifications)
Conclusion

- Our algorithm computes the diameter of large real world graphs much faster compared to the naive algorithm.
- Our algorithm improves upon previously suggested techniques, because:
 - we obtain an exact result instead of an approximation
 - it is possible to obtain the actual diameter path
 - information between iterations is not thrown away
 - computation time is very short, even for graphs with millions of nodes
- Future work: optimize the node selection strategy even further and incremental updates as the graph changes over time through the addition and deletion of nodes and edges.
Questions?