Social Network Analysis for Computer Scientists

Frank Takes

LIACS, Leiden University
https://liacs.leidenuniv.nl/~takesfw/SNACS

Code review session
In the next weeks ...

- Finish writing code
- Run experiments
- Evaluate results
- Write remaining sections of the paper
- Dec 9: project deadline
- Report any questions, issues, difficulties or problems
Code review

- **Peer review**: evaluation of work by one or more individuals with similar competence
- “Pair programming”
- Four eyes see more than two
- Go beyond your current knowledge and skills
- Output: list of “best practices”
Today

- Explain your work to the other team
- Mention what you have done and not yet done
- Introduce the other team to your code
- Ask questions about the other team’s code
- Explain to the other team positive and less positive constructive points about their work
- Together, derive useful “best practices” and add them to the Google Doc (see website)
Evaluation criteria

- Correctness guarantees
- Time and memory constraints
- Are input and output data validated for consistency?
- Is the output easily reusable for result tables or diagrams?
- Is there a pipeline of experiments to run different algorithms on different datasets?
About the Data and Experiments

- Is the data relevant and sufficient?
- Is the data “diverse” in relevant dimensions?
- What do you measure in each experiment?
 Quality, running time, error?
- Why is this data good for these experiments?
- Is the data possibly biased and how may this affect the experiments?
Remember ...
Team pairs

<table>
<thead>
<tr>
<th>Sampling methods</th>
<th>Resilience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closeness centrality 1</td>
<td>Closeness centrality 2</td>
</tr>
<tr>
<td>Network embeddings 1</td>
<td>Community detection 4</td>
</tr>
<tr>
<td>Neighborhoods</td>
<td>Community detection 1</td>
</tr>
</tbody>
</table>

Community detection 2	Community detection 3
Anomaly detection	Influence spread 2
Link prediction	Signed link prediction
Influence spread 1	Network de-anonymization

Betweenness centrality 1	Network data errors
Visualization 2	Motifs in temporal networks
Shortest paths 1	Shortest paths 2
Motifs in multilayer networks	Motifs in networks
TBD	Personalized PageRank