
Competitive Programming

Frank Takes

LIACS, Leiden University

https://liacs.leidenuniv.nl/~takesfw/CP

Lecture 3 — Problem types

Frank Takes — CP — Lecture 3 — Problem types 1 / 28

https://liacs.leidenuniv.nl/~takesfw/CP

Recap

Frank Takes — CP — Lecture 3 — Problem types 2 / 28

After (the) last (two) week(s) . . .

you are registered for the course,

familiar with competitive programming and the practical skills in C or
C++ to participate in a programming contest,

refreshed your knowledge of data structures and libraries,

refreshed your knowledge of the C++ standard library,

are able to use the Kattis programming contest platform in addition
to DOMjudge,

have practiced with various problems related to search, sorting and
simulation.

Frank Takes — CP — Lecture 3 — Problem types 3 / 28

Data structures and libraries (week 2)

Linear structures: array, vector, bitset, list, stack,

queue, deque

Nonlinear structures: priority queue

Mapping and “hashing”: set, map, multimap, multiset

(and unordered map, unordered set, etc.)

Functions: min, max, sort, binary search, lower bound, etc.

Frank Takes — CP — Lecture 3 — Problem types 4 / 28

Time complexity

Source: http://bigocheatsheet.com

Frank Takes — CP — Lecture 3 — Problem types 5 / 28

http://bigocheatsheet.com

Input size vs. complexity

Input size Expected time complexity
n ≤ 10 O(n!) or O(n6)
n ≤ 20 O(2n)
n ≤ 100 O(n4)
n ≤ 400 O(n3)
n ≤ 103 O(n2 log n)
n ≤ 104 O(n2)
n ≤ 106 O(n log n)
n ≤ 108 O(n), O(log n) or O(1)

Input size is usually ≤ 106 due to I/O constraints

Frank Takes — CP — Lecture 3 — Problem types 6 / 28

Problem types

Sorting

Searching

Brute-force and backtracking

Simulation

Greedy

Graphs

Divide and conquer

Dynamic programming

String processing

Geometry

Mathematics

Frank Takes — CP — Lecture 3 — Problem types 7 / 28

Simulation

Also called ad-hoc

General idea: the solution can be found by just programming
whatever the problem description asks you to do

Example: Week 2 Problem E - (Adding Words); you just needed a
map<string,int>

Tricky part (if any) is usually in edge cases

Usually just ACCEPT or WRONG ANSWER,
TIME LIMIT EXCEEDED is rare

Frank Takes — CP — Lecture 3 — Problem types 8 / 28

Greedy

General idea: solve using some locally optimal decisions

Sometimes requires some sorting

Example: Coin change. Given a target amount V in cents and a list
of coin denominations (1, 2, 5, 10, 20, 50), what is the minimum
number of coins needed to represent amount V ?

Solution: repeatedly select the largest denomination which is not
greater than the remaining amount, and count the number of coins

Greedy can be difficult to recognize; use complete search or DP if
unsure and the input size constraints allow it

Examples: Dijkstra’s algorithm, but also Kruskal’s and Prim’s
algorithm for creating a minimal spanning tree of a weighted graph

Frank Takes — CP — Lecture 3 — Problem types 9 / 28

Greedy

General idea: solve using some locally optimal decisions

Sometimes requires some sorting

Example: Coin change. Given a target amount V in cents and a list
of coin denominations (1, 2, 5, 10, 20, 50), what is the minimum
number of coins needed to represent amount V ?

Solution: repeatedly select the largest denomination which is not
greater than the remaining amount, and count the number of coins

Greedy can be difficult to recognize; use complete search or DP if
unsure and the input size constraints allow it

Examples: Dijkstra’s algorithm, but also Kruskal’s and Prim’s
algorithm for creating a minimal spanning tree of a weighted graph

Frank Takes — CP — Lecture 3 — Problem types 9 / 28

Greedy

General idea: solve using some locally optimal decisions

Sometimes requires some sorting

Example: Coin change. Given a target amount V in cents and a list
of coin denominations (1, 2, 5, 10, 20, 50), what is the minimum
number of coins needed to represent amount V ?

Solution: repeatedly select the largest denomination which is not
greater than the remaining amount, and count the number of coins

Greedy can be difficult to recognize; use complete search or DP if
unsure and the input size constraints allow it

Examples:

Dijkstra’s algorithm, but also Kruskal’s and Prim’s
algorithm for creating a minimal spanning tree of a weighted graph

Frank Takes — CP — Lecture 3 — Problem types 9 / 28

Greedy

General idea: solve using some locally optimal decisions

Sometimes requires some sorting

Example: Coin change. Given a target amount V in cents and a list
of coin denominations (1, 2, 5, 10, 20, 50), what is the minimum
number of coins needed to represent amount V ?

Solution: repeatedly select the largest denomination which is not
greater than the remaining amount, and count the number of coins

Greedy can be difficult to recognize; use complete search or DP if
unsure and the input size constraints allow it

Examples: Dijkstra’s algorithm, but also Kruskal’s and Prim’s
algorithm for creating a minimal spanning tree of a weighted graph

Frank Takes — CP — Lecture 3 — Problem types 9 / 28

Minimal spanning tree

A spanning tree is a tree and subgraph of a given graph that covers
all nodes of the graph

In weighted graphs, a minimal spanning tree is one of minimal edge
weight

Image: Zafarani et al., Social Media Mining, 2014.

Frank Takes — CP — Lecture 3 — Problem types 10 / 28

Graphs

Frank Takes — CP — Lecture 3 — Problem types 11 / 28

Graphs

Traversal: DFS, BFS, SSSP, APSP, Floyd-Warshall

Weakly connected components: flood fill

Strongly connected components: Kosaraju’s / Tarjan’s algorithm

Articulation points and bridges (increase component count when
removed)

Directed acyclic graph (dag); can be sorted topologically

Bipartite graphs; certain problems are no longer in NP

Trees; no cycles, vertices = edges + 1

Frank Takes — CP — Lecture 3 — Problem types 12 / 28

Graph flow

Frank Takes — CP — Lecture 3 — Problem types 13 / 28

Divide and conquer

Applicable when subproblems are independent of each other

Not often encountered directly in a contest problem

Implicitly part of sorting algorithms and various data structures

Binary search is the most common application

Bisection method: assess for some nontrivial function F (x) for what
value a certain optimum F (x) = y is reached by refining a range
[a..b] using binary search until F ((a + b)/2) = y

Frank Takes — CP — Lecture 3 — Problem types 14 / 28

Bisection method

Bisection method: assess for
some nontrivial function F (x)
for what value a certain
optimum F (x) = y is reached
by refining a range [a..b] using
binary search until
F ((a + b)/2) = y

Frank Takes — CP — Lecture 3 — Problem types 15 / 28

Dynamic programming

Dynamic programming (DP)

Problems not solvable by

greedy approaches, because locally optimal decisions are insufficient
and give WRONG ANSWER
exact search is too slow; TIME LIMIT EXCEEDED
divide and conquer is not applicable as the subproblems are not
independent

Main idea: build final solution from solution to subproblems

Top-down approach: recursively compute the final solution and use
memoization to avoid double work

Bottom-up approach: start by solving subproblems and increase their
“scope” until full problem is solved

Frank Takes — CP — Lecture 3 — Problem types 16 / 28

Top-down DP

long long fib(long long n) {

if(n == 0 || n == 1)

return n;

return fib(n-1) + fib(n-2);

} // fib (recursive)

long long fibs[43] = {0};

long long fib_topdown_dp(long long n) {

if(n > 1 && fibs[n] == 0)

fibs[n] = fib(n-1) + fib(n-2);

return fibs[n];

} // fib in O(n) space

int main() {

fibs[1] = 1;

cout << fib_topdown_dp(40) << endl;

return 0;

} // main

Frank Takes — CP — Lecture 3 — Problem types 17 / 28

Top-down DP

long long fib(long long n) {

if(n == 0 || n == 1)

return n;

return fib(n-1) + fib(n-2);

} // fib (recursive)

long long fibs[43] = {0};

long long fib_topdown_dp(long long n) {

if(n > 1 && fibs[n] == 0)

fibs[n] = fib(n-1) + fib(n-2);

return fibs[n];

} // fib in O(n) space

int main() {

fibs[1] = 1;

cout << fib_topdown_dp(40) << endl;

return 0;

} // main

Frank Takes — CP — Lecture 3 — Problem types 17 / 28

Bottom-up DP

long long fib_bottomup_dp(long long n) {

if(n == 0 || n == 1)

return n;

long long a = 0;

long long b = 1;

long long c;

for(int i=2; i<=n; i++) {

c = a + b;

a = b;

b = c;

}

return c;

} // fib in O(1) space

int main() {

cout << fib_bottomup_dp(40) << endl;

return 0;

} // main

Frank Takes — CP — Lecture 3 — Problem types 18 / 28

String processing

This is an input string.

(Re-)familiarize yourself with <string> functions

Common problems:

encoding and decoding
frequency counting
parsing input
string comparison
string matching: given a string T of length n, find S of length m
remember how Knuth-Morris-Pratt does this in O(m + n)?
string alignment: edit distance, etc.

Frank Takes — CP — Lecture 3 — Problem types 19 / 28

Geometry

Operations on points, polygons, circles and triangles

Example problems: geometric distance, convex hull, line crossing

Know your “soscastoa”, π and functions in <math.h>

struct Point {

double x, y;

bool operator < (point b) const {

if (fabs(x - b.x) > EPS)

return x < b.x;

return y < b.y;

}

};

Frank Takes — CP — Lecture 3 — Problem types 20 / 28

Mathematics

General idea: solve a mathematical “puzzle”

Sometimes, after solving the puzzle, the problem is trivial

Often the mathematics is part of a larger solution

Number theory: prime numbers, prime factors, factorial, modulo

Combinatorics: Fibonacci numbers, binomial coefficients, Catalan
numbers

Big integers: GCD, modulo, base conversion; use Java or BigInteger
class in C++

Frank Takes — CP — Lecture 3 — Problem types 21 / 28

Programming contests

Frank Takes — CP — Lecture 3 — Problem types 22 / 28

Skills for being competitive

using namespace std; (or not)

Pragmatic programming (when to stop optimizing?)

Typing speed

Finding bugs

Writing extra test cases

Know your language manual

Team manuals

Shorthand code

Frank Takes — CP — Lecture 3 — Problem types 23 / 28

Team manual (example)

Source (newer version): https://github.com/ludopulles/tcr/blob/master/tcr.pdf

Frank Takes — CP — Lecture 3 — Problem types 24 / 28

https://github.com/ludopulles/tcr/blob/master/tcr.pdf

Shorthand code

#define REP(i,n) for(int i=0;i<(n);i++)

#define vi vector<int>

// or:

typedef long long int ll

typedef long double ld

Usually added on top of a team’s “solution template”

Frank Takes — CP — Lecture 3 — Problem types 25 / 28

Collaboration in live contests

Establish problem types and difficulty

Assign problems to people

One computer; use it wisely

Focus moments for progress discussion

Communication

Printing

Teams of two or three students

Frank Takes — CP — Lecture 3 — Problem types 26 / 28

Lab session today and next week

Discuss: python and language manuals

Problems of this week linked on website

Week after that: “soft contest” at 13:15

Frank Takes — CP — Lecture 3 — Problem types 27 / 28

Credits

This course, in particular these slides, are largely based on:

Antti Laaksonen, Guide to Competitive Programming, Springer, 2017.

Steven Halim and Felix Halim, Competitive Programming 3,
Lulu.com, 2013.

T-414-AFLV: A Competitive Programming Course,
https://github.com/SuprDewd/T-414-AFLV

Where applicable, full credit for text, images, examples, etc. goes to the
authors of these books.

Frank Takes — CP — Lecture 3 — Problem types 28 / 28

https://github.com/SuprDewd/T-414-AFLV

