Ly, Universiteit
*)) Leiden

Competitive Programming

Frank Takes

LIACS, Leiden University
https://liacs.leidenuniv.nl/~takesfw/CP

Lecture 1 — Introduction to Competitive Programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 1/30

https://liacs.leidenuniv.nl/~takesfw/CP

Universiteit
- Leiden

About this course

m Competitive Programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

f x, Universiteit
Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

Ly, Universiteit
) Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

® ...in a competitive context

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

¢, Universiteit
- Leiden

About this course R

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

® ...in a competitive context, i.e., with

m limited CPU time

m limited memory consumption

m a fixed amount of problem solving time (optional)
m others competing with you (more optional)

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

Lé@% Universiteit
C Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

® ...in a competitive context, i.e., with

m limited CPU time

m limited memory consumption

m a fixed amount of problem solving time (optional)
m others competing with you (more optional)

m This is not software engineering, but algorithmic problem solving.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

Universiteit
| Leiden

Course information

m Lectures: Tuesdays, 14:15 to 16:00 in Snellius room 313

m Sometimes including a lab session in room 302-304

m Three 13:15 to 18:00 sessions on Mar 29, Apr 26 and May 17
m Period: February 15 — May 24, 2022; not on February 22

m Prerequisites: Algorithms, Datastructures (bachelor level)

m Required skills: C++ (or Java)

m Course website:
https://liacs.leidenuniv.nl/~takesfw/CP

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 3/30

https://liacs.leidenuniv.nl/~takesfw/CP

Course format

m 13 weeks: presentations by lecturer and students
m No exam

m Book as reference material
m Grade composition

m one individual assighment 20%
m a presentation and report 35%
m three programming contests 3 x 15 = 45%

m All five grades have to be > 5

m Final grades are rounded to nearest element in
{1,2,3,4,5,6,6.5,7,7.5,8,8.5,9,9.5,10}
m 6 ECTS

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 4 /30

Ly, Universiteit
Leiden

Course team

m Lecturer: dr. Frank Takes
f.w.takes@liacs.leidenuniv.nl, room 157b

m Assistants:
m Ludo Pulles MSc
l.n.pulles@umail.leidenuniv.nl
m Hanjo Boekhout MSc
h.d.boekhout@liacs.leidenuniv.nl

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 5/ 30

f.w.takes@liacs.leidenuniv.nl
l.n.pulles@umail.leidenuniv.nl
h.d.boekhout@liacs.leidenuniv.nl

Books

amming

Figure: S. Halim and F. Halim, Competitive Programming 3, Lulu.com, 2013.

Frank Takes Lecture 1 — Introduction to Competitive Programming

\% Universiteit

Before we start . ..

m Deadlines and assignment (retake) deadlines are hard
m Individual assignments must be made alone

m Team work should be balanced

m Plagiarism = instant removal from course

m This is a relatively new course taught for the first time in Spring
2020; this is the 2nd edition and there will still be errors, hickups, etc.

m Please contribute! Feedback is very welcome

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 7 /30

To be made available in the coming two weeks =%

m Individual assignment
m List of topics for presentation and report

m Deadlines for individual assignment and report

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 8 /30

L, Universiteit
- Leiden

Competitive programming

Frank Takes — CP — Lecture 1

fé@% Universiteit
E Leiden

Why competive programming?

Problem solving using algorithms
m Think conceptually and practically about

m Time complexity
m Space complexity
m Data structures

Recognize different problem types

Increase available knowledge of algorithms and programming skills
Learn to think, communicate and discuss about

m algorithmic problems
m specific solutions to these problems
m generic types of solutions

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 10 / 30

Universiteit

Example problem ~r

Consider an algorithm that takes as input a positive integer n. Then,
repeatedly, if n is even, it is divided by 2, and if n is odd, the algorithm
multiplies it by 3 and adds 1. It stops after n has become equal to 1. For
example, the sequence for n = 3 is:

3—-10—-5—-16—+8—4—-2—>1

Input: The only input line contains an integer n with 1 < n < 1,000, 000.
Output: One line, containing the subsequent values of n during the
execution of this algorithm, separated by a space.

Example input:

3

Example output:

3105168421

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 11 / 30

f x, Universiteit

Leiden

Problem structure

Problem description; a little story
Usually at least one example
Constraints on the variables

Example input

Example output

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 12 / 30

‘ﬁ":% En}}ersiteit
Problem structure o O

m Problem description; a little story
m Usually at least one example

m Constraints on the variables

m Example input

m Example output

m Usually, many more testcases than the examples are used to test a
submitted solution.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 12 / 30

4 5 . Universiteit
Leiden

Example solution

#include <iostream>
using namespace std; // (I know.)

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (n % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << nj
} // while
cout << "\n";
return O;

Y // main

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Ff 5 x. Universiteit
@

i8kd Leiden
‘_\ 4

Example solution

#include <iostream>
using namespace std; // (I know.)

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (n % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << nj
} // while
cout << "\n";
return O;

Y} // main
What is wrong?

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Example solution

#include <iostream>
using namespace std; // (I know.)

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (n % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << nj
} // while
cout << "\n";
return O;

} // main
What is wrong? int n should be long long n, as possibly n > INT_MAX

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Solution structure

m Usually, the first variable is the number of testcases t
m Then for each test case, read one or more variables

m You may need to store the input data

m Output typically goes on a new line for each testcase

m Be careful with extra whitespace ...
int main() {
int t, n, m;
cin >> t;
while(t--) { // for each of the t testcases...
cin >> n > m; // read dimensions of the problem

// do some computation here

cout << "Your solution, however complex or simple." << endl;
} // while
return O;

Y // main

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 14 / 30

Ff 5 x. Universiteit
@

i8kd Leiden

Realistic solution

#include <iostream>
using namespace std;

int main() {
int t;
long long n;
cin >> t;
while(t--) {
cin >> n;
cout << nj;
while (n != 1) {
if (m % 2 ==0)

n /= 2;
else
n=mns*3+1;
cout << " " << nj
} // while
cout << "\n";

} // while

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

é Y. Universiteit
AEHE): Leiden

Testing (1)

in.txt

3
8
42
15

out.txt

8421
42 21 64 32 16 84 2 1
15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 16 / 30

Universiteit

Testing (2) e

takesfw@takes$ g++ -Wall -02 mysolution.cpp
takesfw@takes$./a.out < in.txt

8421

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
takesfw@takes$

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 17 / 30

Testing (2)

takesfw@takes$ g++ -Wall -02 mysolution.cpp
takesfw@takes$./a.out < in.txt

8421

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
takesfw@takes$

takesfw@takes$./a.out < in.txt > myout.txt
takesfw@takes$ diff myout.txt out.txt
takesfw@takes$

(no output = no difference = correct on testcase)

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 17 / 30

Understanding contraints

m Input size is given
e.g., a puzzle on an array of length n where the goal is to find some
element.
What can you do if:
mn=238
m n=100
= n = 100,000
= n = 10,000,000

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 18 / 30

Operations

Big-O Complexity Chart
(Forribte] (Bad][Fair] [ood) [EREaTESRR]

Elements

Source: http://bigocheatsheet.com

http://bigocheatsheet.com

Sorting algorithms

https://www.youtube.com/watch?v=2ZuD6iUe3Pc

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 20 / 30

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

f:% Un}'versiteit
Problem types S e
m Straightforward
m Simulation
m Greedy
m Brute-force
m Divide and conquer
m Searching
m Sorting
m Graph, network flow
m Dynamic programming
m String processing
m Geometry

m Mathematics

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 21 /30

Universiteit
Leiden

DOMjudge

DOMjudge: software for running a programming contest
Users are members of teams

Teams can compete in contests

Contests have an associated problemset

A problemset contains multiple problems

Each problem is of the form as discussed before

DOM"

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 22 /30

Possible results

& Universiteit
Leiden

CORRECT: the submission passed all tests, problem solved!
COMPILER-ERROR: you can catch this before submitting
TIMELIMIT: use a less complex approach, check for infinite loops

RUN-ERROR: seg-faults, divide by 0, tried to allocate too much
memory, no “return 0;"" at the end, etc.

NO-OUTPUT: your program did not generate any output or did not
use the standard input/output

OUTPUT-LIMIT: your program generated more output than the
allowed limit (and was thus wrong)

WRONG-ANSWER: go find the bug in your code ...
TOO-LATE: you submitted when contest had ended

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

Contest element

Fixed amount of time; 5 hours

Work in teams; 2 or 3 people

Solve as many of the ca. 12 problems in the problemset as possible
Work in teams, on one computer

More problems solved is better

Ties are determined by sum of time to CORRECT over all solved
problems; penalty for WRONG ANSWER

Nice: be the first to solve a problem

Scoreboard of all teams

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

UKIEPC 2018 final standings

Tean mﬁ‘.o 50 co‘no o] so‘ ‘n‘.o‘m‘u Lo‘
(canbisgeUnusty Triniceratops

1 1104
Univerity of Gambridge
m

Treenity
University of Cambridge
Prime Goal
Unwersty of Cambrioge
Me[#]talci
Univorsiy of Gambricge

(UNGEGOMSE Los Patrons
8 73

Unversty of Ontor

ey Big Dawge Seclety | | o
i
: eiestin Sl --- -- - - -
sty o ot

‘Spare team OX
Unversty of Oford
FakeMaths
Unwersiy o Cambrisge

w(lBY GERGH U= (Elchee (3] (liggina —

Dubin Gity Universay

Robert); DROP TABLE teams;—
Univorsty of Oxiord

AKSLOP-7991

Unwersity of Cambrioge

‘Spaghetti Coders

uUnwersiy of Gamioge

Slope Party

Universty of Gambidge

Unwvorsty of Eainourgn
Edu-hoc 7 984

University of Ednburgh

(UnesivjoiGsion) Team
AT
Unvesay of Gasgow
‘220 e 204

®AAWona's ZFFF LMEFAE

Universiteit
Leiden

Programming contests

m Leids Kampioenschap Programmeren (LKP)

Benelux Algorithm Programming Contest (BAPC)
North-Western European Regional Contest (NWERC)
International Collegiate Programming Contest (ICPC)

Online: Topcoder, HackerRank, Codeforces, AtCoder, CodeChef,
USACO, ICPC Live Archives ...

BAPC

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

Universiteit
Leiden

Lab session: Domjudge introduction

In Snellius room 302/304
Navigate to https://domjudge.liacs.nl

Register an account

Familiarize yourself with the domjudge team manual at
https://www.domjudge.org/docs/team-manual . pdf

Submit solutions to the three (toy example) assignments in C++
m Try to at least once get WRONG ANSWER and TIMELIMIT

m Finish by submitting a CORRECT solution to all three assignments
(at least before next week's lecture)

m Sign up and play around with real problems at “Kattis":
https://open.kattis.com

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

https://domjudge.liacs.nl
https://www.domjudge.org/docs/team-manual.pdf
https://open.kattis.com

Credits

This course, in particular these slides, are largely based on:
m Antti Laaksonen, Guide to Competitive Programming, Springer, 2017.

m Steven Halim and Felix Halim, Competitive Programming 3,

Lulu.com, 2013.
Where applicable, full credit for text, images, examples, etc. goes to the

authors of these books.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 30/ 30

