Ly, Universiteit
*)) Leiden

Competitive Programming

Frank Takes

LIACS, Leiden University
https://liacs.leidenuniv.nl/~takesfw/CP

Lecture 1 — Introduction to Competitive Programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 1/30


https://liacs.leidenuniv.nl/~takesfw/CP

Universiteit
- Leiden

About this course

m Competitive Programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30



f x, Universiteit
Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30



Ly, Universiteit
) Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

® ...in a competitive context

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30



¢, Universiteit
- Leiden

About this course R

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

® ...in a competitive context, i.e., with

m limited CPU time

m limited memory consumption

m a fixed amount of problem solving time (optional)
m others competing with you (more optional)

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30



Lé@% Universiteit
C Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

® ...in a competitive context, i.e., with

m limited CPU time

m limited memory consumption

m a fixed amount of problem solving time (optional)
m others competing with you (more optional)

m This is not software engineering, but algorithmic problem solving.
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Course information

m Lectures: Tuesdays, 14:15 to 16:00 in Snellius room 313

m Sometimes including a lab session in room 302-304

m Three 13:15 to 18:00 sessions on Mar 29, Apr 26 and May 17
m Period: February 15 — May 24, 2022; not on February 22

m Prerequisites: Algorithms, Datastructures (bachelor level)

m Required skills: C++ (or Java)

m Course website:
https://liacs.leidenuniv.nl/~takesfw/CP
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Course format

m 13 weeks: presentations by lecturer and students
m No exam

m Book as reference material
m Grade composition

m one individual assighment 20%
m a presentation and report 35%
m three programming contests 3 x 15 = 45%

m All five grades have to be > 5

m Final grades are rounded to nearest element in
{1,2,3,4,5,6,6.5,7,7.5,8,8.5,9,9.5,10}
m 6 ECTS
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Course team

m Lecturer: dr. Frank Takes
f.w.takes@liacs.leidenuniv.nl, room 157b

m Assistants:
m Ludo Pulles MSc
l.n.pulles@umail.leidenuniv.nl
m Hanjo Boekhout MSc
h.d.boekhout@liacs.leidenuniv.nl
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Books

amming

Figure: S. Halim and F. Halim, Competitive Programming 3, Lulu.com, 2013.
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Before we start . ..

m Deadlines and assignment (retake) deadlines are hard
m Individual assignments must be made alone

m Team work should be balanced

m Plagiarism = instant removal from course

m This is a relatively new course taught for the first time in Spring
2020; this is the 2nd edition and there will still be errors, hickups, etc.

m Please contribute! Feedback is very welcome
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To be made available in the coming two weeks =%

m Individual assignment
m List of topics for presentation and report

m Deadlines for individual assignment and report
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Why competive programming?

Problem solving using algorithms
m Think conceptually and practically about

m Time complexity
m Space complexity
m Data structures

Recognize different problem types

Increase available knowledge of algorithms and programming skills
Learn to think, communicate and discuss about

m algorithmic problems
m specific solutions to these problems
m generic types of solutions
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Example problem ~r

Consider an algorithm that takes as input a positive integer n. Then,
repeatedly, if n is even, it is divided by 2, and if n is odd, the algorithm
multiplies it by 3 and adds 1. It stops after n has become equal to 1. For
example, the sequence for n = 3 is:

3—-10—-5—-16—+8—4—-2—>1

Input: The only input line contains an integer n with 1 < n < 1,000, 000.
Output: One line, containing the subsequent values of n during the
execution of this algorithm, separated by a space.

Example input:

3

Example output:

3105168421
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Problem structure

Problem description; a little story
Usually at least one example
Constraints on the variables

Example input

Example output
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m Problem description; a little story
m Usually at least one example

m Constraints on the variables

m Example input

m Example output

m Usually, many more testcases than the examples are used to test a
submitted solution.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 12 / 30



4 5 . Universiteit
Leiden

Example solution

#include <iostream>
using namespace std; // (I know.)

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (n % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << nj
} // while
cout << "\n";
return O;

Y // main
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Example solution

#include <iostream>
using namespace std; // (I know.)

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (n % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << nj
} // while
cout << "\n";
return O;

Y} // main
What is wrong?
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Example solution

#include <iostream>
using namespace std; // (I know.)

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (n % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << nj
} // while
cout << "\n";
return O;

} // main
What is wrong? int n should be long long n, as possibly n > INT_MAX

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30



Solution structure

m Usually, the first variable is the number of testcases t
m Then for each test case, read one or more variables

m You may need to store the input data

m Output typically goes on a new line for each testcase

m Be careful with extra whitespace ...
int main() {
int t, n, m;
cin >> t;
while(t--) { // for each of the t testcases...
cin >> n > m; // read dimensions of the problem

// do some computation here

cout << "Your solution, however complex or simple." << endl;
} // while
return O;

Y // main
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Realistic solution

#include <iostream>
using namespace std;

int main() {
int t;
long long n;
cin >> t;
while(t--) {
cin >> n;
cout << nj;
while (n != 1) {
if (m % 2 ==0)

n /= 2;
else
n=mns*3+1;
cout << " " << nj
} // while
cout << "\n";

} // while
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Testing (1)

in.txt

3
8
42
15

out.txt

8421
42 21 64 32 16 84 2 1
15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
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Testing (2) e

takesfw@takes$ g++ -Wall -02 mysolution.cpp
takesfw@takes$ ./a.out < in.txt

8421

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
takesfw@takes$
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Testing (2)

takesfw@takes$ g++ -Wall -02 mysolution.cpp
takesfw@takes$ ./a.out < in.txt

8421

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
takesfw@takes$

takesfw@takes$ ./a.out < in.txt > myout.txt
takesfw@takes$ diff myout.txt out.txt
takesfw@takes$

# (no output = no difference = correct on testcase)
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Understanding contraints

m Input size is given
e.g., a puzzle on an array of length n where the goal is to find some
element.
What can you do if:
mn=238
m n=100
= n = 100,000
= n = 10,000,000
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Operations

Big-O Complexity Chart
(Forribte] (Bad][Fair] [ood) [EREaTESRR]

Elements

Source: http://bigocheatsheet.com


http://bigocheatsheet.com

Sorting algorithms

https://www.youtube.com/watch?v=2ZuD6iUe3Pc
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f:% Un}'versiteit
Problem types S e
m Straightforward
m Simulation
m Greedy
m Brute-force
m Divide and conquer
m Searching
m Sorting
m Graph, network flow
m Dynamic programming
m String processing
m Geometry

m Mathematics
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DOMjudge

DOMjudge: software for running a programming contest
Users are members of teams

Teams can compete in contests

Contests have an associated problemset

A problemset contains multiple problems

Each problem is of the form as discussed before

DOM"
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CORRECT: the submission passed all tests, problem solved!
COMPILER-ERROR: you can catch this before submitting
TIMELIMIT: use a less complex approach, check for infinite loops

RUN-ERROR: seg-faults, divide by 0, tried to allocate too much
memory, no “return 0;"" at the end, etc.

NO-OUTPUT: your program did not generate any output or did not
use the standard input/output

OUTPUT-LIMIT: your program generated more output than the
allowed limit (and was thus wrong)

WRONG-ANSWER: go find the bug in your code ...
TOO-LATE: you submitted when contest had ended
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Contest element

Fixed amount of time; 5 hours

Work in teams; 2 or 3 people

Solve as many of the ca. 12 problems in the problemset as possible
Work in teams, on one computer

More problems solved is better

Ties are determined by sum of time to CORRECT over all solved
problems; penalty for WRONG ANSWER

Nice: be the first to solve a problem

Scoreboard of all teams
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Programming contests

m Leids Kampioenschap Programmeren (LKP)

Benelux Algorithm Programming Contest (BAPC)
North-Western European Regional Contest (NWERC)
International Collegiate Programming Contest (ICPC)

Online: Topcoder, HackerRank, Codeforces, AtCoder, CodeChef,
USACO, ICPC Live Archives ...

BAPC
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Lab session: Domjudge introduction

In Snellius room 302/304
Navigate to https://domjudge.liacs.nl

Register an account

Familiarize yourself with the domjudge team manual at
https://www.domjudge.org/docs/team-manual . pdf

Submit solutions to the three (toy example) assignments in C++
m Try to at least once get WRONG ANSWER and TIMELIMIT

m Finish by submitting a CORRECT solution to all three assignments
(at least before next week's lecture)

m Sign up and play around with real problems at “Kattis":
https://open.kattis.com
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Credits

This course, in particular these slides, are largely based on:
m Antti Laaksonen, Guide to Competitive Programming, Springer, 2017.

m Steven Halim and Felix Halim, Competitive Programming 3,

Lulu.com, 2013.
Where applicable, full credit for text, images, examples, etc. goes to the

authors of these books.
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