Ly, Universiteit
*)) Leiden

Competitive Programming

Frank Takes

LIACS, Leiden University
https://liacs.leidenuniv.nl/~takesfw/CP

Lecture 1 — Introduction to Competitive Programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 1/30

https://liacs.leidenuniv.nl/~takesfw/CP

Universiteit
- Leiden

About this course

m Competitive Programming

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

;| Leiden

. f Universiteit
About this course ;

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

Ly, Universiteit
) Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

B ...in a competitive context

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

¢, Universiteit
- Leiden

About this course R

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

B ...in a competitive context, i.e., with

limited CPU time

limited memory consumption

a fixed amount of problem solving time (optional)
others competing with you (more optional)

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

Lé@% Universiteit
C Leiden

About this course

m Competitive Programming: problem solving, algorithm selection,
algorithm design, data structure optimization, complexity analysis, ...

B ...in a competitive context, i.e., with

limited CPU time

limited memory consumption

a fixed amount of problem solving time (optional)
others competing with you (more optional)

m This is not software engineering, but algorithmic problem solving.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 2 /30

Course information

m Lectures: Thursdays, 9:15 to 11:00 in Snellius room 408
m Sometimes including a lab session in room 302-304

m Period: February 6 — April 30, 2020; not on April 23

m Prerequisites: Algorithms, Datastructures (bachelor)

m Required skills: C++ (or Java)

m Course website:
https://liacs.leidenuniv.nl/~takesfw/CP

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 3/30

https://liacs.leidenuniv.nl/~takesfw/CP

Course format

m 13 weeks: presentations by lecturer and students
m No exam

m Books as reference material
m Grade composition

m one individual assignment 20%
m a presentation and report 35%
m three programming contests 3 x 15 = 45%

m All five grades have to be > 5

m Final grades are rounded to nearest element in
{1,2,3,4,5,6,6.5,7,7.5,8,8.5,9,9.5,10}
m 6 ECTS

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 4 /30

Course team

m Lecturer: dr. Frank Takes
f.w.takes@liacs.leidenuniv.nl, room 157b

m Assistant: Ludo Pulles BSc
l.n.pulles@umail.leidenuniv.nl

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 5/ 30

f.w.takes@liacs.leidenuniv.nl
l.n.pulles@umail.leidenuniv.nl

Universiteit
Leiden

Antti Laaksonen

Guide to
Competitive

Programming

Learning and Improving Algorithms
Through Contests

&) Springer

Antti Laaksonen, Guide to Steven Halim and Felix Halim,
Competitive Programming, Competitive Programming 3,
Springer, 2017. Lulu.com, 2013.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 6 /30

Lé@% Universiteit
C Leiden

Before we start . ..

m Deadlines and assignment (retake) deadlines are hard set as of next
week

Individual assignments must be made alone
Team work should be balanced

Plagiarism = instant removal from course

This is a brand new course taught for the first time in Spring 2020;
there will be errors, hickups, etc.

m Please contribute! Feedback is very welcome

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 7 /30

ﬁ‘(AR Universiteit
‘x@% eiden
To be announced (before) next week e

Individual assignment
Degree of individual vs. teamwork in contests

List of topics for presentation and report

Deadlines for individual assignment and programming contests

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 8 /30

Universiteit
r)- Leiden

Competitive programming

o Competitive Programmin,

fé@% Universiteit
E Leiden

Why competive programming?

Problem solving using algorithms
m Think conceptually and practically about

m Time complexity
m Space complexity
m Data structures

Recognize different problem types

Increase available knowledge of algorithms and programming skills

Learn to think, communicate and discuss about

m algorithmic problems
m specific solutions to these problems
m generic types of solutions

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 10 / 30

Universiteit

Example problem ~r

Consider an algorithm that takes as input a positive integer n. Then,
repeatedly, if n is even, it is divided by 2, and if n is odd, the algorithm
multiplies it by 3 and adds 1. It stops after n has become equal to 1. For
example, the sequence for n = 3 is:

3—-10—-5—-16—+8—4—-2—>1

Input: The only input line contains an integer n with 1 < n < 1,000, 000.
Output: One line, containing the subsequent values of n during the
execution of this algorithm, separated by a space.

Example input:

3

Example output:

3105168421

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 11 / 30

f x, Universiteit

Leiden

Problem structure

Problem description; a little story
Usually at least one example
Constraints on the variables

Example input

Example output

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 12 / 30

‘ﬁ":% En}}ersiteit
Problem structure o O

m Problem description; a little story
m Usually at least one example

m Constraints on the variables

m Example input

m Example output

m Usually, many more testcases than the examples are used to test a
submitted solution.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 12 / 30

Y, Universiteit
4. Leiden

Example solution

#include <iostream>
using namespace std;

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (m % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << n;
} // while
cout << "\n";
return 0;

Y} // main

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Ff 5 x. Universiteit
@

i8kd Leiden
‘_\ 4

Example solution

#include <iostream>
using namespace std;

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (m % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << n;
} // while
cout << "\n";
return 0;

} // main
What is wrong?

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Example solution

#include <iostream>
using namespace std;

int main() {
int n;
cin >> n;
cout << n;
while (n '= 1) {
if (m % 2 == 0)

n /= 2;
else
n=mn2*3+ 1;
cout << " " << n;
} // while
cout << "\n";
return 0;

} // main
What is wrong? int n should be long long n, as possibly n > INT_MAX

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 13 / 30

Solution structure

Usually, the first variable is the number of testcases t
Then for each test case, read one or more variables

You may need to store the input data

Output typically goes on a new line for each testcase

m Be careful with extra whitespace ...

int main() {
int t, n, m;
cin >> t;
while(t--) { // for each of the t testcases...
cin >> n >> m; // read dimensions of the problem

// do some computation here

cout << "Your solution, however complex or simple." << endl;
} // while
return O;

Y // main

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 14 / 30

’fﬁ 5 x. Universiteit
@

. .) Lo
Realistic solution g Leiden
#include <iostream>
using namespace std;

int main() {
int t;
long long n;
cin >> t;
while(t--) {
cin >> n;
cout << n;
while (n '= 1) {
if m% 2 == 0)

n /= 2;
else
n=mn23+ 1;
cout << " " << n;
} // while
cout << "\n";

} // while

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

é Y. Universiteit
AEHE): Leiden

Testing (1)

in.txt

3
8
42
15

out.txt

8421
42 21 64 32 16 84 2 1
15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 16 / 30

Universiteit

Testing (2) e

takesfw@takes$ g++ -Wall -02 mysolution.cpp
takesfwQtakes$./a.out < in.txt

8421

42 21 64 3216 84 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
takesfw@takes$

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 17 / 30

Testing (2)

takesfwQtakes$ g++ -Wall -02 mysolution.cpp
takesfw@takes$./a.out < in.txt

8421

42 21 64 32 16 8 4 2 1

15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
takesfw@takes$

takesfw@takes$./a.out < in.txt > myout.txt
takesfw@takes$ diff myout.txt out.txt
takesfw@takes$

(no output = no difference = correct on testcase)

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 17 / 30

Understanding contraints

m Input size is given
e.g., a puzzle on an array of length n where the goal is to find some

element.
What can you do if:
mn=2_8
m n =100
= n = 100,000
= n = 10,000, 000

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 18 / 30

Operations

Big-O Complexity Chart
(SRR (noa] 1] [ooos] I

Elements

Source: http://bigocheatsheet.com

http://bigocheatsheet.com

4EAx Universiteit
AW Leiden

Sorting algorithms

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 20 / 30

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

i i
Problem types o
m Straightforward
m Simulation
m Greedy
Brute-force
Divide and conquer
Searching
Sorting
Graph, network flow
Dynamic programming
String processing

Geometry

Mathematics

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 21 /30

Universiteit
Leiden

DOMjudge

DOMjudge: software for running a programming contest
Users are members of teams

Teams can compete in contests

Contests have an associated problemset

A problemset contains multiple problems

DOM"*

Each problem is of the form as discussed before

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 22 /30

Possible results

Universiteit
Leiden

CORRECT: the submission passed all tests, problem solved!
COMPILER-ERROR: you can catch this before submitting
TIMELIMIT: use a less complex approach, check for infinite loops

RUN-ERROR: seg-faults, divide by 0, tried to allocate too much
memory, no “return 0;"" at the end, etc.

NO-OUTPUT: your program did not generate any output or did not
use the standard input/output

OUTPUT-LIMIT: your program generated more output than the
allowed limit (and was thus wrong)

WRONG-ANSWER: go find the bug in your code ...
TOO-LATE: you submitted when contest had ended

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

Contest element

Fixed amount of time; 5 hours

Work in teams; 2 or 3 people

[
|
m Solve as many of the ca. 12 problems in the problemset as possible
m Work in teams, on one computer

m More problems solved is better

|

Ties are determined by sum of time to CORRECT over all solved
problems; penalty for WRONG ANSWER

m Nice: be the first to solve a problem

m Scoreboard of all teams

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

UKIEPC 2018 final standings

Tean
(Ganbia@Ues Triniceratops
oty i Gambrcgo

Treenity

[TT—

Prime Goal

University of Cambridge

Me[& Jtalci

sy Camprcge

\UiesHOIOR Los Patrons
sty o Oxora

- antssUs, Big Dawgs' Society

=
ahs Univarsty of Manchester

4

2 Brits and a Dutchman

Unverstyof Oters

‘Spare team OX

Uriversty of Oxors

FakeMaths

Unversiy of Gamtridge

(TR (BusinGiyUvessty. -= [B)ichael [B] [B]iggins =-

Dubtn Ciy Unwersay

Iz e Robert’); DROP TABLE teams;~

Urverstyof Oxors

AKSLOP-7991

Unwversity of Gambrioge

‘Spaghetti Coders

University of Cambridge

Slope Party

Unworsy of Gamerioge

Sz v (Universltyof Edibirgh) Edu-hoc
=

Unversity of Ecinburgn

~

Team 47
University of Glasgow

|~ . UniesiwoiNGinaiam! 7K \Wona's =T F TIA4AE

Universiteit
Leiden

Programming contests

m Leids Kampioenschap Programmeren (LKP)

Benelux Algorithm Programming Contest (BAPC)
North-Western European Regional Contest (NWERC)
International Collegiate Programming Contest (ICPC)

Online: Topcoder, HackerRank, Codeforces, AtCoder, CodeChef,
USACO, ICPC Live Archives ...

BAPC

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

< Universiteit
o - Leiden

Lab session: Domjudge introduction

From 10.15 to 11:00 in Snellius room 302/304
Navigate to http://domjudge.liacs.nl
Register an account

Familiarize yourself with the domjudge team manual at
https://www.domjudge.org/docs/team-manual . pdf

m Submit solutions to the three (toy example) assignments in C++
m Try to at least once get WRONG ANSWER and TIMELIMIT

m Finish by submitting a CORRECT solution to all three assignments
(at least before next week's lecture)

m Sign up and play around with real problems at “ICPC Live Archive":
https://icpcarchive.ecs.baylor.edu

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming

http://domjudge.liacs.nl
https://www.domjudge.org/docs/team-manual.pdf
https://icpcarchive.ecs.baylor.edu

\% Universiteit

Credits R e

This course, in particular these slides, are largely based on:

m Antti Laaksonen, Guide to Competitive Programming, Springer, 2017.

m Steven Halim and Felix Halim, Competitive Programming 3,
Lulu.com, 2013.

Where applicable, full credit for text, images, examples, etc. goes to the
authors of these books.

Frank Takes — CP — Lecture 1 — Introduction to Competitive Programming 30/ 30

