

Business Intelligence & Process Modelling

Frank Takes

Universiteit Leiden

Lecture 9 — Process Modelling & BPMN & Tooling

 Business Intelligence: anything that aims at providing actionable information that can be used to support business decision making

- Business Intelligence
- Visual Analytics
- Descriptive Analytics
- Predictive Analytics

Process Modelling (April and May)

Process Mining (recap)

Petri Nets (recap)

Simplified event log (recap)

Case ID	Trace
1	$\langle a, b, d, e, h \rangle$
2	$\langle a, d, c, e, g angle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a, d, b, e, h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$

Table : Simplified event log of a support desk handling customer compensations (a = register request, b = examine thoroughly, c = examine casually, d = check ticket, e = decide, f = reinitiate request, g = pay compensation, h = reject request)

Simplified event log (recap)

Case ID	Trace
1	$\langle a, b, d, e, h \rangle$
2	$\langle a, d, c, e, g angle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a, d, b, e, h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$

Table : Simplified event log of a support desk handling customer compensations (a = register request, b = examine thoroughly, c = examine casually, d = check ticket, e = decide, f = reinitiate request, g = pay compensation, h = reject request)

$$\begin{array}{l} \text{In short: } \{ \langle a, b, d, e, h \rangle, \langle a, d, c, e, g \rangle, \langle a, c, d, e, f, b, d, e, g \rangle, \\ \langle a, d, b, e, h \rangle, \langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle, \langle a, c, d, e, g \rangle \} \end{array}$$

Labeled Petri Nets (recap)

- Petri net $N = (P, T, F, A, \ell)$
- P is a finite set of places
- T is a finite set of **transitions**
- $F \subseteq (P \times T) \cup (T \times P)$ is a finite set of directed **arcs** called the **flow relation**
- A is a set of activity labels
- $\ell: T \to A$ is a labeling function

BPMN

Business Process Modelling Notation (BPMN)

- S. White, Business Process Modelling Notation v1.0, Business Process Management Initiative, 2004.
- Maintained by BPMI and later the OMG consortium
- Now at version 2.0.2 (2013)
- 532 pages of specification:

http://www.omg.org/cgi-bin/doc?formal/2013-12-09.pdf

BPMN Example

Corresponding Petri net

Simple BPMN gates

BPMN Example

Figure : Regular vs. dotted arcs

Feature: subprocesses

- Complex processes can be hard to understand
- In large schemas, errors are easily overlooked
- Solution: decomposition (encapsulation)
- Sub-processes in an activity
- Sub-process can be re-used later on

Feature: subprocesses

Feature: multiple instances

BIPM — Lecture 9 — Process Modelling & BPMN & Tooling

Universiteit Leiden

Feature: multiple instances

Feature: loops

Featured BPMN gates

Figure : Loops and multiple instances, plain and as a subprocess

Example exam questions (so far)

- Given an informal process description, draw a Petri net or BPMN diagram
- Given a Petri net, draw the reachability graph
- Given a Petri net, draw the BPMN diagram (or vice versa)
- Play an event log on a Petri net or an BPMN diagram
- Given a Petri net, determine if it adheres to certain properties (e.g., deadlock-free, safe, etc.)

Event logs & Visualization

Model-based analysis

- Limitations of model-based analysis:
 - Verification and performance analysis heavily rely on the availability of high quality models
 - When the models and reality have little in common, model-based analysis does not make much sense
 - There is often a lack of alignment between hand-made models and reality
- Process mining aims to address these problems by establishing a direct connection between the models and actual low-level event data about the process.
- Process discovery techniques allow for viewing the same reality from different angles and at different levels of abstraction.

Event logs

Case ID	Event ID	dd-mm-yyyy:hh.mm	Activity	Resource	Costs
1	35654423	30-12-2010:11.02	register request	Pete	50
1	35654424	31-12-2010:10.06	examine thoroughly	Sue	400
1	35654425	05-01-2011:15.12	check ticket	Mike	100
1	35654426	06-01-2011:11.18	decide	Sara	200
1	35654427	07-01-2011:14.24	reject request	Pete	200
2	35654483	30-12-2010:11.32	register request	Mike	50
2	35654485	30-12-2010:12.12	check ticket	Mike	100
2	35654487	30-12-2010:14.16	examine casually	Sean	400
2	35654488	05-01-2011:11.22	decide	Sara	200
2	35654489	08-01-2011:12.05	pay compensation	Ellen	200
3	35654521	30-12-2010:14.32	register request	Pete	50
3	35654522	30-12-2010:15.06	examine casually	Mike	400
3	35654524	30-12-2010:16.34	check ticket	Ellen	100
3	35654525	06-01-2011:09.18	decide	Sara	200
3	35654526	06-01-2011:12.18	reinitiate request	Sara	200
3	35654527	06-01-2011:13.06	examine thoroughly	Sean	400
3	35654530	08-01-2011:11.43	check ticket	Pete	100
3	35654531	09-01-2011:09.55	decide	Sara	200
3	35654533	15-01-2011:10.45	pay compensation	Ellen	200
4	35654641	06-01-2011:15.02	register request	Pete	50
4	35654643	07-01-2011:12.06	check ticket	Mike	100
4	35654644	08-01-2011:14.43	examine thoroughly	Sean	400
4	35654645	09-01-2011:12.02	decide	Sara	200
4	35654647	12-01-2011:15.44	reject request	Ellen	200

Table : Event logs of a helpdesk handling customer compensations

- A process consists of cases
- A case consists of events such that each event relates to precisely one case
- Events within a case are **ordered**.
- Events can have attributes, e.g.: activity, time, costs and resource

Event log attributes

Resource-based Social Network

Extracting event logs

- From data to event log (ETL-like process)
- Not just a syntactical issue
- Different views are possible
- Important:
 - Selecting the right instance notion
 - Ordering of events
 - Selection of events
- \blacksquare Tool support: e.g., XESAME

Challenges when extracting event logs

- **Correlation**: events in an event log are grouped per case. Challenging, as it requires event correlation, i.e., events need to be related to each other
- Timestamps: events need to be ordered per case. Typical problems: only dates, different clocks, delayed logging
- Snapshots: cases may have a lifetime extending beyond the recorded period, e.g., a case was started before the beginning of the event log
- **Scoping**: how to decide which tables to incorporate?

- XES (eXtensible Event Stream)
- http://www.xes-standard.org
- Adopted by the IEEE Task Force on Process Mining
- Predecessors: MXML and SA-MXML.
- \blacksquare The format is supported by tools such as ProM

XES specification

XES header

ses.version="1.0" xes.features="nested-attributes" openxes.version="1.0RC7">	
<extension name="Concept" prefix="concept" uri="http://code.deckfour.org/xes/concept.xesext"></extension>	
<extension name="Semantic" prefix="time" time"="" uri="http://code.deckfour.org/xes/time.xesext"></extension>	extensions
<extension name="Organizational" prefix="org" uri="http://code.deckfour.org/xes/org.xesext"></extension>	loodod
<extension name="Lifecycle" prefix="lifecycle" uri="http://code.deckfour.org/xes/lifecycle.xesext"></extension>	Ioaueu
- <global scope="trace"></global>	
<string ;-<="" key="conceptname" td="" value="hvvALD"><td>every trace</td></string>	every trace
- <global scope="event"></global>	nas a name
<string key="conceptname" value="INVALID"></string>	
<string key="lifecycle:transition" value="complete"></string> CVCI	ry event has a
	and a transition
<classifier keys="conceptname lifecycle.transition" name="MXML Legacy Classifier"></classifier>	
<classifier a="" an="" and="" losses"="" name="Event Name" se<="" second="" td=""><td></td></classifier>	
<classifier classifier="r</td" instance)="" name="Resour start of trace (i.e.</td><td></td></tr><tr><td><string key=" process="" source"="" value=""><td>name + transition</td></classifier>	name + transition
<string d_more_data.zip"="" instance;="" key="concept.nam" process=""></string>	
<string <="" key="lifecycle:model" td=""><td></td></string>	
<string key="de-impuon" value="Simulated process"></string> name	of trace
- <trace></trace>	
<string key="conceptname" value="1"></string>	
<string key="description" value="Simulated process instance"></string>	ce
- <event></event>	00
<string key="orgresource" value="Mike"></string>	
<date key="time:time:timestamp" value="2006-01-01T00:00:00.000+01:00"></date>	
<string key="conceptname" value="invite reviewers"></string> timest	amp
<string key="lifecycle:transition" value="start"></string>	
	ont
- <event></event>	ent
<pre><string 000+01-00"="" 11-06t00-00-00="" key="orgrese transition (activity na)</pre></td><td>me)</td></tr><tr><td><date key=" time-time"=""></string></pre>	,

XES events

Dotted Chart Analysis

- Visualization of cases
- Colors indicate the same event within a case
- Horizontal axis indicates time
- Cases along the vertical axis
- Absolute or relative time
- Attributes can be added as labels

Dotted charts

Dotted charts (absolute)

Dotted charts (absolute)

Dotted charts (relative)

Tool support

Tool support

product name	type	organization
ARIS Process Performance Manager	С	Software AG
		(www.softwareag.com)
Enterprise Visualization Suite	С	Businesscape
		(www.businesscape.no)
Disco	С	Fluxicon
		(www.fluxicon.com)
Genet/Petrify	А	Universitat Politècnica de Catalunya
,		(www.lsi.upc.edu)
Interstage BPME	С	Fujitsu
		(www.fujitsu.com)
OKT Process Mining suite	0	Exeura s.r.l.
ee	-	(www.exeura.com)
Process Discovery Focus	С	Iontas (Verint Systems)
1100000 21000 011 1	-	(www.iontas.com)
ProcessAnalyzer	С	OPR
r toeessi mary sei	e	(www.gpr.com)
ProM	0	process mining group (managed by the
110101	0	AIS group at TU/e)
		(www.processmining.org)
Rbminer/Dbminer	А	Universitat Politècnica de Catalunya
Konnier Bonnier		(www.lsi.upc.edu)
Reflectione	C	Pallas Athena
Reflectione	0	(www.pallas-athena.com)
Reflect	C	Futura Process Intelligence
Reliect	C	(www.futuratech.nl)
ServiceMosaic	Δ	University of New South Wales
ServiceWosare	A	(noo, and uport odu ou)
		(soc.ese.unsw.edu.au)

ProM

$\operatorname{PROM}\nolimits$ visualization

PROM exploration

ProM UITopia								8
ProM 6				\odot			designed by Fluxic	on
excercise7.mxml			Create new) 🌢 🛨		
Dashboard Cashboard Cashboard Inspector Summary 1 d 1 d 2 events 1 3 2 events 1 2 2 events 1 3 2 events 1 3 2 events 1 2 2 events 1 3 2 events	or Fronzen Ex	plorer Log Attribu	treams of triangu	lar events. The	color of even	ts describes their	frequency	

PROM summarization

ProM UITopia			
ProM 6			
excercise7.mx	ml	Create new	
	immary		s
Dashboard			
L	og Summary		
Q	<u> </u>		
Inspector T	otal number of process instances: 100 otal number of events: 2297		
	MXML Legacy Classifier		
Summary	want classes defined by MVML Legacy Cla	veolfior	
A	Ill events	ISSING	
	iotal number of classes: 20		
	Class	Occurrences (absolute)	Occurrences (relative)
	invite additional reviewer+start	399	17.37%
	invite additional reviewer+complete	399	17.37%
	get review X+complete	201	8.751%
	time-out X+complete	198	8.62%
	collect reviews+start	100	4.354%
	decide+start	100	4.354%
	invite reviewers+start	100	4.354%
	collect reviews+complete	100	4.354%

PROM mining

$\operatorname{PROM}\,\operatorname{plugins}$

plug-in	description		
Alpha miner	discovers a Petri net using the α -algorithm, see Section 5.2		
Heuristic miner	discovers a C-net using heuristic mining, see Section 6.2		
Genetic miner	discovers a C-net using genetic mining, see Section 6.3		
Fuzzy miner	discovers a fuzzy model using fuzzy mining, see Sec- tion 13.1.3 and [72]		
Transition system miner	discovers a transition system based on a state representa- tion function and a log, see Section 6.4.1		
Transition system to Petri net	uses state-based regions to create a Petri net based on a transition system, see Section 6.4.2		
Declare miner	discovers a Declare model, see Section 7.3		
ILP miner	discovers a Petri net using language-based regions, see Section 6.4.3		
Simple log filter	filtering a log by answering simple questions, see Fig. 12.6(b)		
Dotted chart analysis	creates a dotted chart showing all events at a glance, see Section 8.2		
Trace alignment	similar to dotted chart, but now events are aligned based on their context rather than time [37]		
Guide tree miner	clusters cases in a tree based on similarities [36]		
Social network miner	creates a social network based on a selected criterion, see Fig. 10.6		
LTL checker	checks a property expressed in terms of LTL [6]		
Fitness	computes fitness of Petri net based on event log		
ETConformance	checks conformance by counting "escaping edges" from the state space of the log to the state space of the model [100]		
Replay log on flexible model	conformance checker based on A* algorithm [25]; can also be applied to Petri nets, C-nets and YAWL models		
PomPom	automatically abstracts from infrequently visited parts of a Petri net, see also Section 13.1.3 showing the same idea using fuzzy models		
Transition system analyzer	creates a model to predict the remaining flow time, see Sec-		

Assignment 3

- Goal: use a tool (PROM) to perform process mining
- Real-world event data from a financial institution
- Visualize the data
- Extract a sensible model
- Compare algorithms for doing so
- Answer some business-related questions
- Focus on high quality report

Lab session April 20

- Practice with Petri nets on paper
- Snellius room 174

Credits

Lecture partially based on (slides of the (previous edition of the)) course book: W. van der Aalst, *Process Mining: Data Science in Action*, 2nd edition, Springer, 2016.

