

Business Intelligence & Process Modelling

Frank Takes

Universiteit Leiden

Lecture 7 — Process Modelling & Petri nets

 Business Intelligence: anything that aims at providing actionable information that can be used to support business decision making

- Business Intelligence
- Visual Analytics
- Descriptive Analytics
- Predictive Analytics

Process Modelling (April and May)

Data & Models

Business Process Management (recap)

- Process: a set of related actions and transactions to achieve a certain objective
- Business process: a sequence of activities aimed at producing something of value for the business (Morgan02)
 - Management processes
 - Operational processes
 - Supporting processes
- Business Process Management: the discipline that combines knowledge from information technology and knowledge from management sciences and applies this to operational business processes (v.d. Aalst)
 - Extension of WorkFlow Management (WFM)

Business Process Modelling (recap)

- Business Process Model: abstract representation of business processes, functionality is:
 - Descriptive: what is actually happening?
 - Prescriptive: what should be happening?
 - Explanatory: why is the process designed this way?
- In practice: formalize and visualize business processes
- Process Discovery: derive the process from a description of activities
- Process Mining: the task of converting event data into process models (discovery, conformance, enhancement)

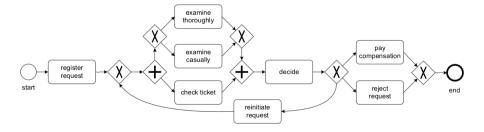
Why Model Processes? (recap)

- insight
- discussion: the stakeholders use models to structure discussions;
- documentation for instructing people or certification purposes
- verification, for example to find errors in systems
- performance analysis
- animation: "play out" different scenarios
- specification: a "contract" between the developer and the end user/management; and
- configuration of a system.

Business Process ... Intelligence?

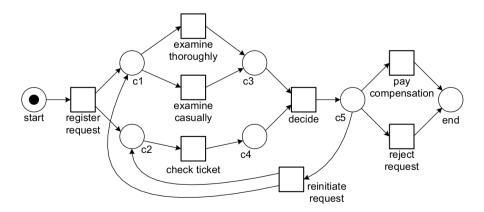
 M. Castellanos et al., Business process intelligence, Handbook of research on business process modeling, pp. 456–480, 2009.

Process Modelling



- Informal models: used for discussion and documentation (process descriptions)
- Formal models: used for analysis or enactment

Petri Nets	PN
Business Process Model Notation	BPMN



Business Process Model Notation

Petri Nets

Event logs (1)

Case ID	Event ID	dd-mm-yyyy:hh.mm	Activity	Resource	Costs
1	35654423	30-12-2010:11.02	register request	Pete	50
1	35654424	31-12-2010:10.06	examine thoroughly	Sue	400
1	35654425	05-01-2011:15.12	check ticket	Mike	100
1	35654426	06-01-2011:11.18	decide	Sara	200
1	35654427	07-01-2011:14.24	reject request	Pete	200
2	35654483	30-12-2010:11.32	register request	Mike	50
2	35654485	30-12-2010:12.12	check ticket	Mike	100
2	35654487	30-12-2010:14.16	examine casually	Sean	400
2	35654488	05-01-2011:11.22	decide	Sara	200
2	35654489	08-01-2011:12.05	pay compensation	Ellen	200
3	35654521	30-12-2010:14.32	register request	Pete	50
3	35654522	30-12-2010:15.06	examine casually	Mike	400
3	35654524	30-12-2010:16.34	check ticket	Ellen	100
3	35654525	06-01-2011:09.18	decide	Sara	200
3	35654526	06-01-2011:12.18	reinitiate request	Sara	200
3	35654527	06-01-2011:13.06	examine thoroughly	Sean	400
3	35654530	08-01-2011:11.43	check ticket	Pete	100
3	35654531	09-01-2011:09.55	decide	Sara	200
3	35654533	15-01-2011:10.45	pay compensation	Ellen	200
4	35654641	06-01-2011:15.02	register request	Pete	50
4	35654643	07-01-2011:12.06	check ticket	Mike	100
4	35654644	08-01-2011:14.43	examine thoroughly	Sean	400
4	35654645	09-01-2011:12.02	decide	Sara	200
4	35654647	12-01-2011:15.44	reject request	Ellen	200

Table : Event logs of a helpdesk handling customer compensations

Event logs (2)

Case ID	Event ID	dd-mm-yyyy:hh.mm	Activity	Resource	Costs
5	35654711	06-01-2011:09.02	register request	Ellen	50
5	35654712	07-01-2011:10.16	examine casually	Mike	400
5	35654714	08-01-2011:11.22	check ticket	Pete	100
5	35654715	10-01-2011:13.28	decide	Sara	200
5	35654716	11-01-2011:16.18	reinitiate request	Sara	200
5	35654718	14-01-2011:14.33	check ticket	Ellen	100
5	35654719	16-01-2011:15.50	examine casually	Mike	400
5	35654720	19-01-2011:11.18	decide	Sara	200
5	35654721	20-01-2011:12.48	reinitiate request	Sara	200
5	35654722	21-01-2011:09.06	examine casually	Sue	400
5	35654724	21-01-2011:11.34	check ticket	Pete	100
5	35654725	23-01-2011:13.12	decide	Sara	200
5	35654726	24-01-2011:14.56	reject request	Mike	200
6	35654871	06-01-2011:15.02	register request	Mike	50
6	35654873	06-01-2011:16.06	examine casually	Ellen	400
6	35654874	07-01-2011:16.22	check ticket	Mike	100
6	35654875	07-01-2011:16.52	decide	Sara	200
6	35654877	16-01-2011:11.47	pay compensation	Mike	200

Table : Event logs of a support desk handling customer compensations

Simplified event log

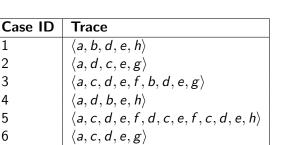


Table : Simplified event log of a support desk handling customer compensations (a = register request, b = examine thoroughly, c = examine casually, d = check ticket, e = decide, f = reinitiate request, g = pay compensation, h = reject request)

Universiteit

Simplified event log

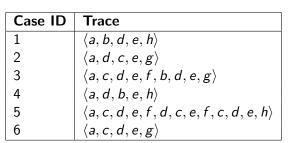
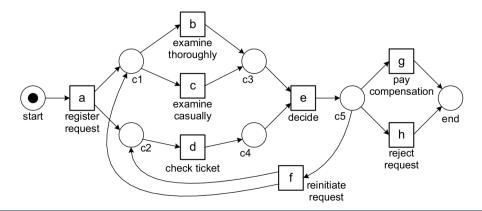


Table : Simplified event log of a support desk handling customer compensations (a = register request, b = examine thoroughly, c = examine casually, d = check ticket, e = decide, f = reinitiate request, g = pay compensation, h = reject request)


$$\begin{array}{l} \mbox{In short: } \{ \langle a, b, d, e, h \rangle, \langle a, d, c, e, g \rangle, \langle a, c, d, e, f, b, d, e, g \rangle, \\ \langle a, d, b, e, h \rangle, \langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle, \langle a, c, d, e, g \rangle \} \end{array}$$

Universiteit

Example (1)

Case ID	Trace
1	$\langle a, b, d, e, h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a, d, b, e, h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$

Example (2)

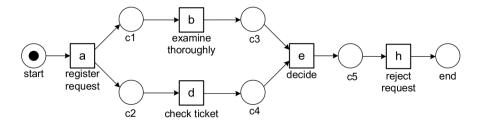
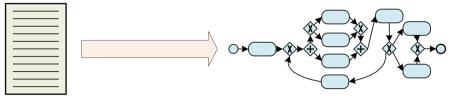
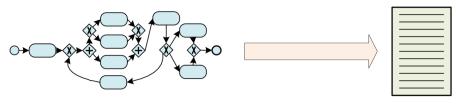



Figure : Petri net based on event log $\{\langle a, b, d, e, h \rangle, \langle a, d, b, e, h \rangle\}$

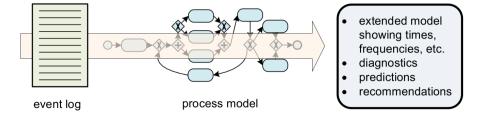
Play in



event log

process model

Play out



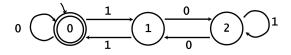
process model

event log

Replay

Replay

- Connecting models to real events is crucial
- Possible uses
 - Conformance checking
 - Repairing models
 - Extending the model with frequencies and temporal information
 - Constructing predictive models
 - Operational support (prediction, recommendation, etc.)



Petri Nets

Automata (remember?)

- Finite automaton $FA = (Q, \Sigma, q_o, A, \delta)$
 - Q is a finite set of states
 - Σ is a finite alphabet of input symbols
 - $q_o \in Q$ is the initial state
 - $A \subseteq Q$ is the set of accepting states
 - $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

Automata (remember?)

- Finite automaton $FA = (Q, \Sigma, q_o, A, \delta)$
 - Q is a finite set of states
 - Σ is a finite alphabet of input symbols
 - $q_o \in Q$ is the initial state
 - $A \subseteq Q$ is the set of accepting states
 - $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

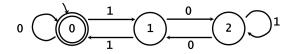
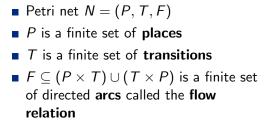
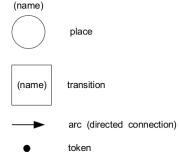
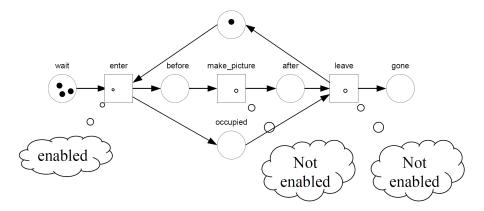




Figure : Deterministic Finite Automaton for the function $x \mod 3 = 0$

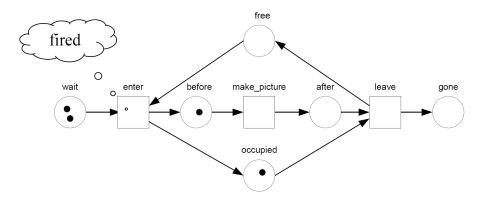
Petri Nets

Labeled Petri Nets



- Petri net $N = (P, T, F, A, \ell)$
- *P* is a finite set of **places**
- T is a finite set of **transitions**
- $F \subseteq (P \times T) \cup (T \times P)$ is a finite set of directed **arcs** called the **flow relation**
- A is a set of activity labels
- $\ell: T \to A$ is a labeling function

Enabling


 A transition is enabled if each of its input places contains at least one token

Firing

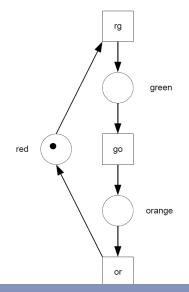
An enabled transition can fire (i.e., it occurs), consuming a token from each input place and producing a token for each output place.

Petri Nets

- Connections are directed
- No connections between two places or two transitions
- Places may hold zero or more tokens
- At most one arc between nodes (for now)
- Firing is atomic
- Multiple transitions may be enabled, but only one fires at a time
- During execution, the number of tokens may vary if there are transitions for which the number of input places is not equal to the number of output places
- The network is static

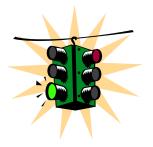
Petri net for a traffic light

- Petri net for a traffic light
- **States**: red, orange and green

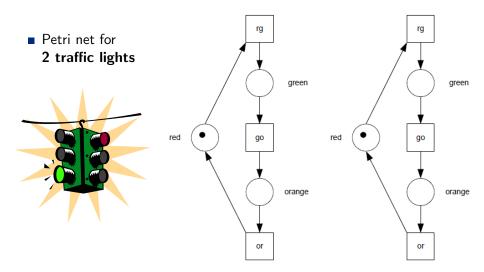


- Petri net for a traffic light
- States: red, orange and green
- Transitions from red to green, green to orange, and orange to red

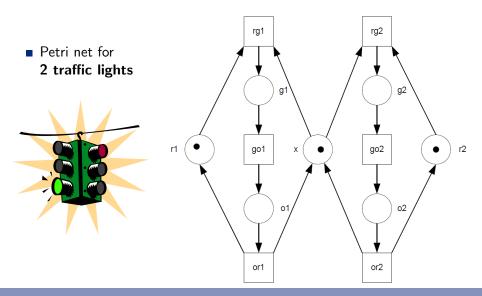
Example (1)



- Petri net for a traffic light
- States: red, orange and green
- Transitions from red to green, green to orange, and orange to red

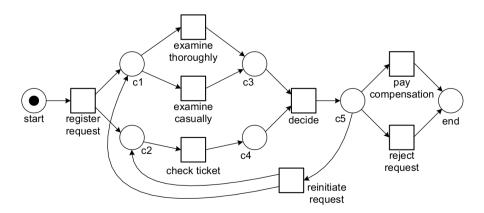


Petri net for
2 traffic lights

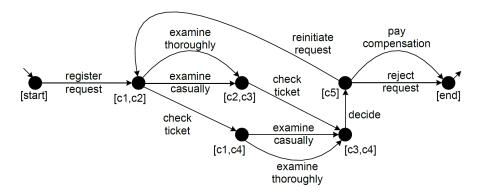

Example (2)

Example (3)

Marked Petri nets


- Marking: the distribution of tokens over places in a Petri net
- Marked Petri net (*M*, *N*):
 - Petri net N = (P, T, F)
 - Marking $M \in \mathbb{B}(P)$ is a multi-set over P indicating the marking of N, denoted for example by $[c1^2, c2, c3^4]$
- Net behavior: set of all possible state sequences

Reachability graph


Reachability graph

Reachability graph

Different types of states

- Initial state: initial distribution of tokens.
- **Reachable state**: reachable from initial state.
- **Final/dead state**: no transition is enabled.
- Home state/marking: it is always possible to return (i.e., it is reachable from any reachable state).

Roles in Modelling

- Place: passive element
- **Transition**: active element
- Arc: causal relation
- **Token**: elements subject to change

Role of a token •

- a **physical object**, for example a product, a part, a drug, a person;
- an information object, for example a message, a signal, a report;
- a collection of objects, for example a truck with products, a warehouse with parts, or an address file;
- an indicator of a state, for example the indicator of the state in which a process is, or the state of an object;
- an **indicator of a condition**: the presence of a token indicates whether a certain condition is fulfilled.

Role of a place \bigcirc

- a type of communication medium, like a telephone line, a middleman, or a communication network;
- **a buffer**: for example, a depot, a queue or a post bin;
- a geographical location, like a place in a warehouse, office or hospital;
- a possible state or state condition: for example, the floor where an elevator is, or the condition that a specialist is available.

Role of a transition \Box

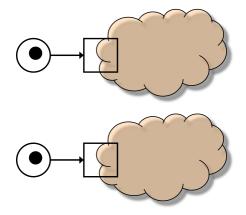
- an event: for example, starting an operation, the death of a patient, a change seasons or the switching of a traffic light from red to green;
- a transformation of an object, like adapting a product, updating a database, or updating a document;
- transport of an object: for example, transporting goods, or sending a file.

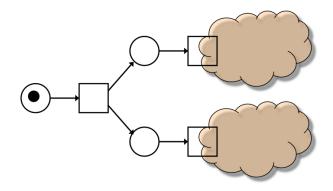
Typical net structures

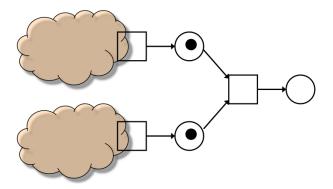


Causality

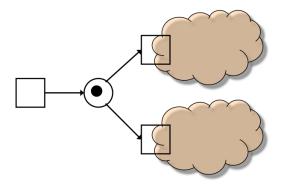
- Parallelism (AND-split, AND-join)
- Choice (XOR-split, XOR-join)
- Iteration (XOR-join, XOR-split)
- Capacity constraints
 - Feedback loop
 - Mutual exclusion
 - Alternating

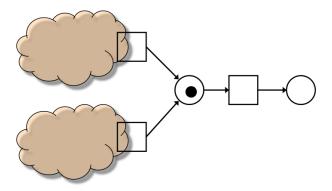

Causality

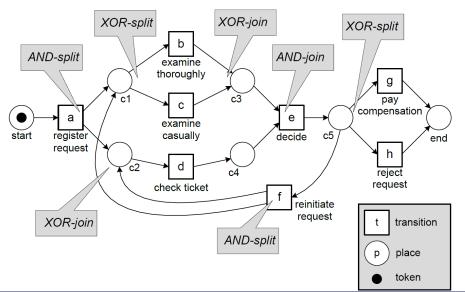

Parallelism



Parallelism: AND-split


Parallelism: AND-join


Choice: XOR-split


Choice: XOR-join

Logic with Petri nets

Iteration: 1 or more times

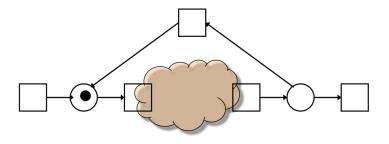


Figure : XOR-join before XOR-split

Iteration: 0 or more times

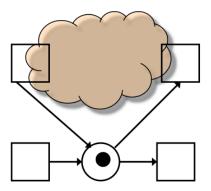


Figure : XOR-join before XOR-split

Capacity constraints: feedback loop

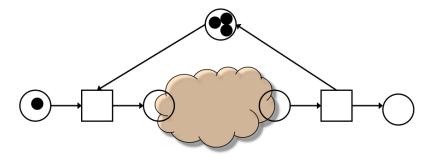


Figure : AND-join before AND-split

Capacity constraints: mutual exclusion

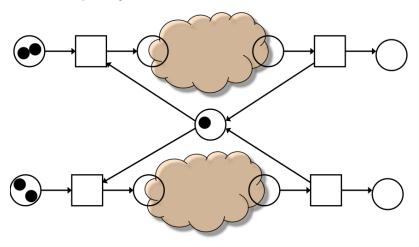
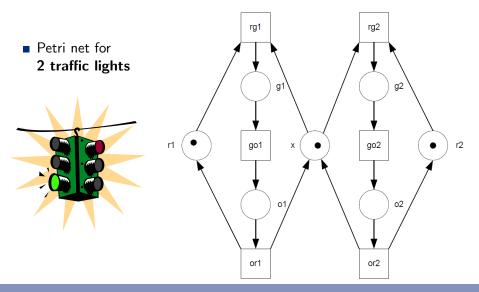
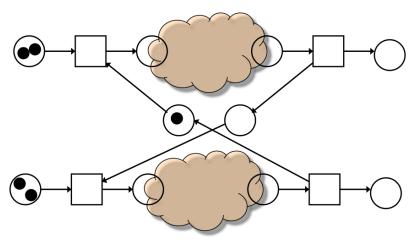
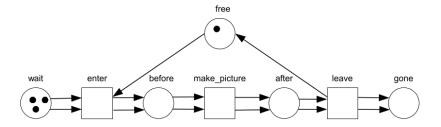



Figure : AND-join before AND-split

Two traffic lights: mutual exclusion

Capacity constraints: alternating




Figure : AND-join before AND-split

Petri nets with multiple arcs

• Petri net N = (P, T, F') with multiple arcs

- P is a finite set of places
- T is a finite set of transitions
- F' is a multiset over F, i.e., $F' \in \mathbb{B}(F)$ or a finite set $F' \subseteq (P \times T \times \mathbb{N}) \cup (T \times P \times \mathbb{N})$

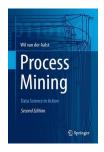
Some properties

- In *k*-bounded Petri nets, no place ever holds more than *k* tokens
- A marked Petri net is safe if it is 1-bounded
- A marked Petri net is deadlock-free if at every reachable marking at least one transition is enabled
- A transition t in a marked Petri net is live if from every reachable marking, it is possible to enable t
- WorkFlow-net (WF-net): Petri net with fixed source i ∈ P (without inputs) and target o ∈ P (without outputs)

Variants and extensions

- Colored Petri nets (K. Jensen)
- Petri nets with inhibitor arcs (realizing Turing completeness)
- Prioritized Petri nets
- Timed Petri nets
- ...and many more!

Lab session April 6



- Assess constructed features
- Create feature correlation plot
- Insert features and target attribute into SCIKIT-LEARN
- Perform final machine learning steps
- Next week: last chance to ask questions

Credits

Lecture partially based on (slides of the (previous edition of the)) course book: W. van der Aalst, *Process Mining: Data Science in Action*, 2nd edition, Springer, 2016.

