

Business Intelligence & Process Modelling

Frank Takes

Universiteit Leiden

Lecture 6 — Network Analytics

- Business Intelligence: anything that aims at providing actionable information that can be used to support business decision making
 - Business Intelligence
 - Visual Analytics
 - Descriptive Analytics & Predictive Analytics
 - Network Analytics
- Process Modelling (April and May)

Overview

- Context
- Network science
- Real-world networks
- Centrality
- Case: criminal networks
- Community detection
- Case: corporate networks
- Network flow: offshore financial centers

Context

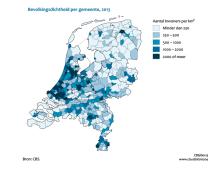
Context: Data

- Data: facts, measurements or text collected for reference or analysis (Oxford dictionary)
 - Unstructured data: data that does not fit a certain data structure (text, images, audio, video, a list of numeric measurements)
 - Structured data: data that fits a certain data structure (table, graph/network, tree, etc.)

Context: Data

- Data: facts, measurements or text collected for reference or analysis (Oxford dictionary)
 - Unstructured data: data that does not fit a certain data structure (text, images, audio, video, a list of numeric measurements)
 - Structured data: data that fits a certain data structure (table, graph/network, tree, etc.)
- Data mining: extracting information/knowledge from data

Data evolution



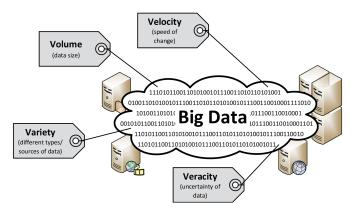
Census data (60s)

Transaction data (80s)

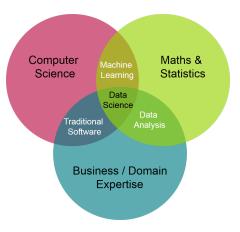
- Micro event data (00s)
- Social data (10s)

Figure : Census data

Context: Big data



Context: Data science



Source: Forbes, A Very Short History of Data Science, May 28, 2013.

Context: Social media

Social media mining

- Social media platforms: Facebook, Twitter, LinkedIn, Reddit, YouTube, Blogger, ...
- Platforms generate enormous amounts of (un)structured data
- Social Media Mining: analyzing this data in order to get insight in user(s), trends, usage patterns, the platform itself, ...
 - Sentiment Mining
 - Trend Analysis
 - Social Network Analysis

Network Science

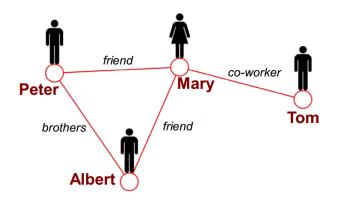
Networks

- Objects/entities/nodes/vertices
- Relationships/ties/links/edges
- **Network**/graph: objects and relationships between objects
- Data attributes are annotations on the nodes and the edges
- Examples:
 - Online social networks
 - Scientific citation and collaboration networks
 - Webgraphs
 - Biological networks
 - Communication networks
 - Financial networks
 - Corporate networks

Notation

Concept	Symbol
 Network (graph) 	G = (V, E)
 Objects (nodes/vertices) 	V
 Relations (links/edges) 	E
 Directed — $E \subseteq V \times V$ Undirected 	
■ Number of nodes — V	п
• Number of edges — $ E $	т

Networks



Source: http://web.stanford.edu/class/cs224w

Types of graphs

- Directed vs undirected graphs
 - Reciprocity/Symmetry: extend to which directed links are mutual
- Weighted vs. unweighted graphs
 - Unweighted: weight of 1 for computational reasons
 - Signed networks: positive and negative weights
- Labeled (annotated) vs. unlabeled graphs
 - Labels on nodes and/or edges
- One-mode (homogenic) vs. two-mode networks
 Or: multi-mode (heterogenic) networks
- Static vs. dynamic (temporal) networks
 - Timestamps on nodes and/or edges

Representation

- (Undirected) Edge List
 - 1 3
 - 23
 - 26
 - 34
 - 35
 - 36

Commonly used as an input format

• O(2m) memory



Figure : n = 6 and m = 6

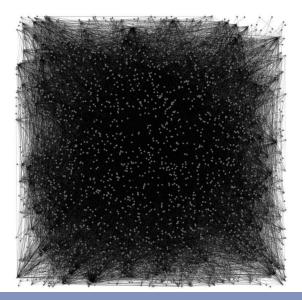
Network science

- Network science: understanding data by investigating interactions and relationships between individual data objects as a network
- Networks are the central model of computation

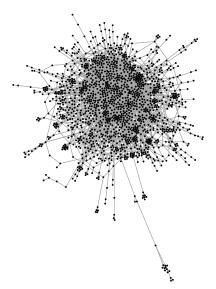
Network science

- Network science: understanding data by investigating interactions and relationships between individual data objects as a network
- Networks are the central model of computation
- Branch of data science focusing on network data
- Method in complexity research
- Complex systems approach: the behavior emerging from the network reveals patterns not visible when studying the individuals

Large network data

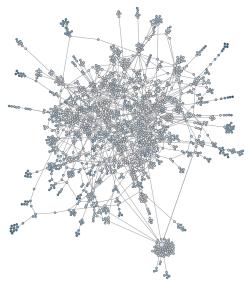


Visualization algorithms

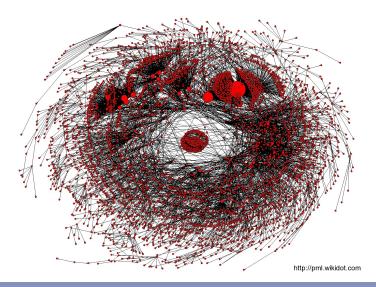


Universiteit Leiden

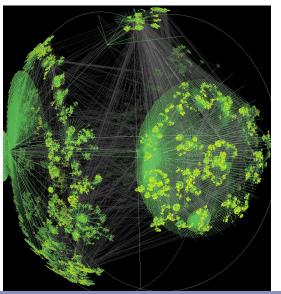
Protein interaction network



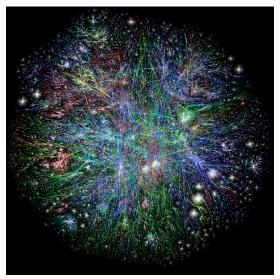
Collaboration network: 10,000 nodes



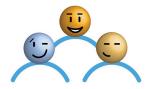
Webgraph: 500,000 nodes



Webgraph: 500,000 nodes



$\operatorname{Hyves:}$ 8,000,000 nodes



- Online Social Network
- Dutch & pre-Facebook
- Full snapshot
- *n* = 8,000,000 (8 million)
- \blacksquare m = 1,000,000,000 (1 billion)

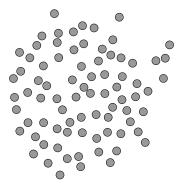
Facebook: 1,000,000,000 nodes

Graph properties

We have seen:

- From 6 to 1,000,000,000 (1 billion) nodes
- From 8 to 120,000,000,000 (120 billion) edges

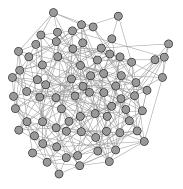
Measuring only number of nodes and edges is too simple



Graph properties

We have seen:

- From 6 to 1,000,000,000 (1 billion) nodes
- From 8 to 120,000,000,000 (120 billion) edges
- Measuring only number of nodes and edges is too simple



Graph properties

We have seen:

- From 6 to 1,000,000,000 (1 billion) nodes
- From 8 to 120,000,000,000 (120 billion) edges
- Measuring only number of nodes and edges is too simple
- Other interesting measures:
 - 1 Density
 - 2 Degree
 - 3 Components
 - 4 Distance
 - 5 Clustering coefficient

Sparse networks

- Maximum number of edges m_{max}
 - $m_{\max} = n(n-1)$ for directed graphs
 - $m_{\max} = \frac{1}{2}n(n-1)$ for undirected graphs
- Sparse graph if $m \ll m_{\max}$
- Measure sparseness using **density**: $\frac{m}{n(n-1)}$
- HYVES: 8 · 10⁶ nodes, at most 64 · 10¹² edges.
 But network has "only" 1 · 10⁹ edges, so density 0.0000156.
- Density is relevant when comparing networks

Degree

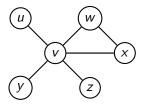


Figure : Undirected graph

Undirected graphs: degree

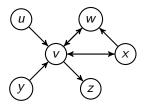


Figure : Directed graph

deg(v) = 5

Degree

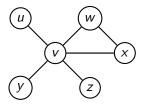


Figure : Undirected graph

- Undirected graphs: degree
- Directed graphs
 - Indegree
 - Outdegree

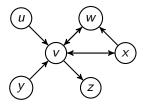


Figure : Directed graph

deg(v) = 5

indeg(v) = 4outdeg(v) = 3

Degree

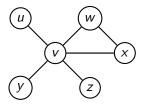


Figure : Undirected graph

- Undirected graphs: degree
- Directed graphs
 - Indegree
 - Outdegree
- Degree distribution: frequency of each degree value. Lognormal or power law distribution with "fat tail"

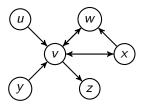
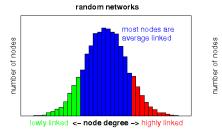


Figure : Directed graph

deg(v) = 5

indeg(v) = 4outdeg(v) = 3

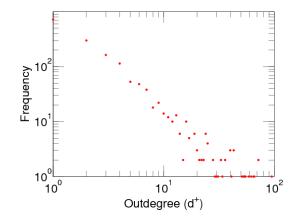
Degree distribution



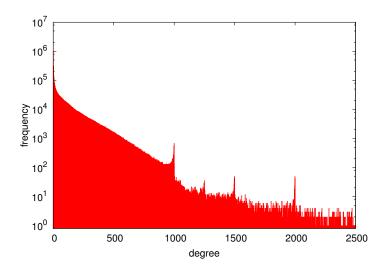
real networks (power-law, scale-free)

BIPM — Lecture 6 — Network Analytics

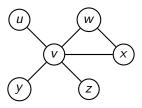
Degree distribution



Hyves degree distribution



Paths



Concept

- Path
- Path length
- Simple path: no repeated vertices
- Shortest path: path of minimal length
- **Distance**: length of shortest path

Example

p = (u, v, z, v, w, x)|p| - 1 = 5p' = (u, v, w, x)sp = (u, v, x)d(u, x) = |sp| - 1 = 2

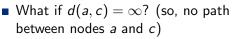
Connected components

■ What if d(a, c) = ∞? (so, no path between nodes a and c)

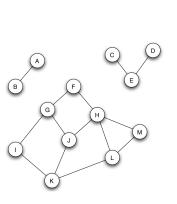
Connected components

- What if d(a, c) = ∞? (so, no path between nodes a and c)
- Undirected Graphs
 - Connected component: subset of nodes (maximal in size) in which each node can form a path to each other node in the set

Connected components



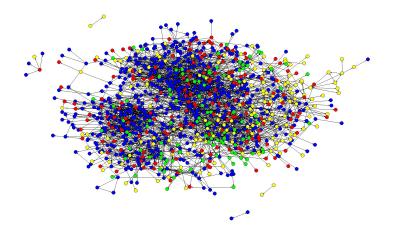
- Undirected Graphs
 - Connected component: subset of nodes (maximal in size) in which each node can form a path to each other node in the set
- Directed Graphs
 - Weakly connected component: subgraph in which there is a path between any pair of nodes, ignoring link direction
 - Strongly connected component: subgraph in which there is a directed path between any pair of nodes



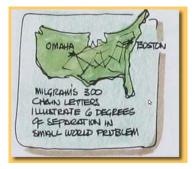
Connected components Image source: D. Easley and J. Kleinberg, "Networks, Crowds, and Markets", 2010

Iniversiteit

Giant component

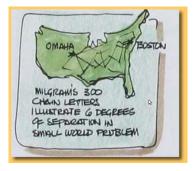


Small world experiment



- Stanley Milgram
- Picked 96 random people in Omaha
- Ask them to get a letter to a stock-broker in Boston by passing it through to closer acquaintance.
- How many steps did it take?

Small world experiment



- Stanley Milgram
- Picked 96 random people in Omaha
- Ask them to get a letter to a stock-broker in Boston by passing it through to closer acquaintance.
- How many steps did it take?
- Letters arrived after on average 5.9 steps
- Total of 18 chains completed

J. Travers and S. Milgram, "An Experimental Study of the Small World Problem", Sociometry 32(4): 425-443, 1969

Yahoo small world experiment

Select Friend > Your Info > Friend's Info > Send Message

Your objective:

Get a message to this person in as few steps as possible.

On the next page, you will be asked to select one of your Facebook friends, to whom you will forward the message

You may only select one friend, so choose carefully.

Here is your assigned Target Person:

Age

City

Gender

State Region

Berlin Germany

32

male

Berlin, Germany

Spouse's Name

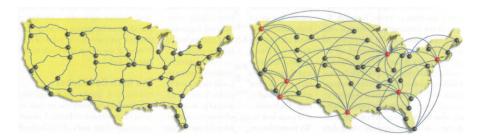
Hometown

Education

School	Grundschule St.Wolfgang		
Name	Landshut		
School	University of Newcastle upon		
Name	Tyrue		
Time Period:	1999 - 2002		

Small world

- Dense core containing many hubs
- Periphery with many nodes with a small distance to the core



Distance

- Average distance $\overline{d} = \frac{1}{n(n-1)} \sum_{v,w \in V} d(v,w)$
- Distribution with a "fat tail"
- Diameter: maximal distance value

Dataset	Nodes	Links	Average degree	Average distance
AstroPhys	17,903	396K	21	4.15
Enron	33,696	362K	10	4.07
Web	855,802	8.64M	10	6.30
YouTube	1,134,890	5.98M	5.3	5.32
FLICKR	1,624,992	30.9M	18	5.38
SKITTER	1,696,415	22.2M	13	5.08
WIKIPEDIA	2,213,236	23.5M	11	4.81
Orkut	3,072,441	234M	76	4.16
LIVEJOURNAL	5,189,809	97.4M	19	5.48
Hyves	8,057,981	871M	112	4.75

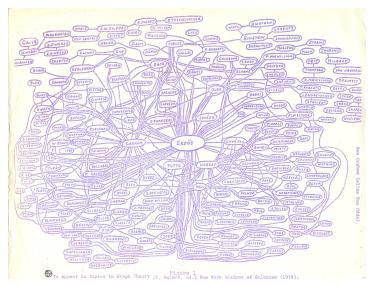
F.W. Takes and W.A. Kosters, Determining the Diameter of Small World Networks, In CIKM, pp. 1191-1196, 2011.

Erdös number

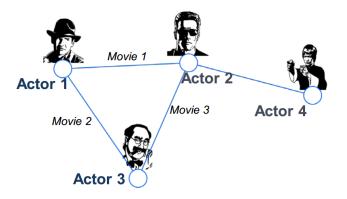
- Scientific collaboration network
- Edges between scientists who wrote a paper together
- Erdös number: the distance of a scientist (node) to Erdös
- http://www.ams.org/mathscinet/ collaborationDistance.html

Figure : Paul Erdös (1913-1996)

Erdös



Movie actor network



Source: http://web.stanford.edu/class/cs224w

Six degrees of Kevin Bacon

- Collaboration network based on co-starring actors
- Variant of "Six degrees of Separation"
- Edges between actors indicate they played in a movie together

Figure : Kevin Bacon (1958)

The Wiki Game

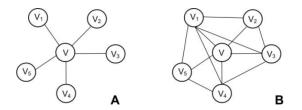
Triangles

Network	Nodes	Edges	Expected	Real	Difference
Facebook (WOSN)	63,731	817,035	2,809	3,500,542	1,246×
Epinions	75,879	508,837	402	162,448	$404 \times$
Amazon (TWEB)	403,394	3,387,388	789	398,6507	$5,049 \times$
Baidu	415,641	3,284,387	658	14,287,651	$21,718 \times$
Youtube links	1,138,499	4,942,297	109	3,049,419	$27,957 \times$
Flickr	2,302,925	33,140,017	3,973	837,605,842	$210,806 \times$
LiveJournal links	5,204,176	49,174,464	1,125	310,876,909	276,367×
Twitter (MPI)	52,579,682	1,963,263,821	69,410	55,428,217,664	798,565 \times

Table : Expected vs. real triangle counts in real-world networks.

Expected triangles: $(8m^3/n^6)(n^3/6) = \frac{4}{3}(m/n)^3$

Node clustering coefficient



Situation A: v has a clustering coefficient of 0
 Situation B: v has a clustering coefficient of ¹⁴/₂₀ = ⁷/₁₀ = 0.7
 C(v) = ^{2 ⋅ edges between neighbors of v}/_{maximum number of such edges}

Image: G.A. Pavlopoulos et al., "Using graph theory to analyze biological networks", in BioData Mining 4(1), 2011.

Small world networks

1	Sparse networks	density
2	Fat-tailed power-law degree distribution	degree
3	Giant component	components
4	Low pairwise node-to-node distances	distance
5	Many triangles	clustering coefficient

Small world networks

1	Sparse networks	density
2	Fat-tailed power-law degree distribution	degree
3	Giant component	components
4	Low pairwise node-to-node distances	distance
5	Many triangles	clustering coefficient

Many real-world networks: communication networks, citation networks, collaboration networks (Erdös, Kevin Bacon), protein interaction networks, information networks (Wikipedia), webgraphs, financial networks (Bitcoin) ...

Other topics

- Virality, contagion and outbreak detection
- Diffusion of information and innovation
- Link prediction
- Visualization Algorithms
- Privacy, Anonymity and Ethics
- Centrality
- Community Detection

Centrality

Centrality

- Given a social network, which person is most important?
- What is the most important page on the web?
- Which protein is most vital in a biological network?
- Who is the most respected author in a scientific citation network?
- What is the most crucial router in an internet topology network?

Centrality

- Node centrality: the importance of a node with respect to the other nodes based on the structure of the network
- Centrality measure: computes the centrality value of all nodes in the graph
- For all $v \in V$ a measure M returns a value $C_M(v) \in [0; 1]$
- $C_M(v) > C_M(w)$ means that node v is more important than w

GAME of HRONES

BIPM — Lecture 6 — Network Analytic

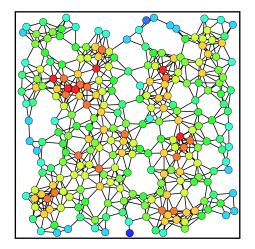
Degree centrality

 Undirected graphs – degree centrality: measure the number of adjacent nodes

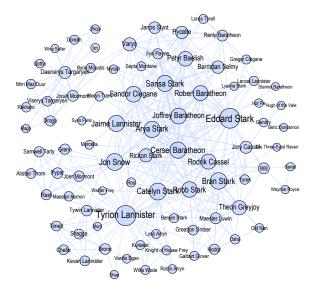
$$C_d(v) = \frac{deg(v)}{n-1}$$

- Directed graphs indegree centrality and outdegree centrality
- Local measure
- O(1) time to compute

Degree centrality



Degree centrality



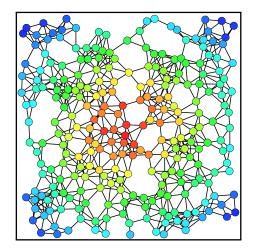
Closeness centrality

 Closeness centrality: the average distance to each other node in the network

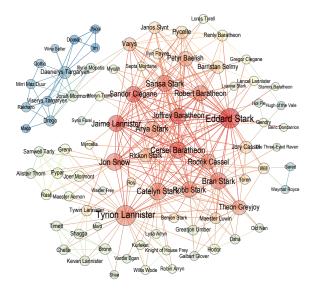
$$C_c(v) = \left(\frac{1}{n-1}\sum_{w\in V} d(v,w)\right)^{-1}$$

- Global distance-based measure
- Connected component(s)...
- O(mn) to compute: one BFS in O(m) for each of the *n* nodes

Closeness centrality



Degree vs. closeness centrality



Betweenness centrality

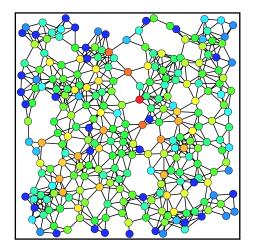
Betweenness centrality: measure the number of shortest paths that run through a node; i.e., its involvement as a broker

$$C_b(u) = \sum_{\substack{v,w \in V \\ v \neq w, u \neq v, u \neq w}} \frac{\sigma_u(v,w)}{\sigma(v,w)}$$

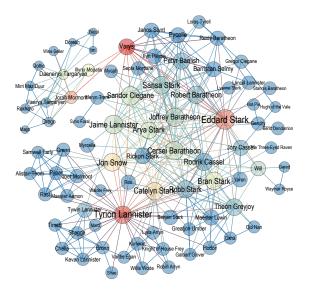
- $\sigma(v, w)$ is the number of shortest paths from v to w
- $\sigma_u(v, w)$ is the number of such shortest paths that run through u
- Divide by largest value to normalize to [0; 1]
- Global path-based measure
- O(2mn) time to compute (two "BFSes" for each node)

U. Brandes, "A faster algorithm for betweenness centrality", Journal of Mathematical Sociology 25(2): 163-177, 2001

Betweenness centrality



Degree vs. betweeness centrality



Centrality measures compared

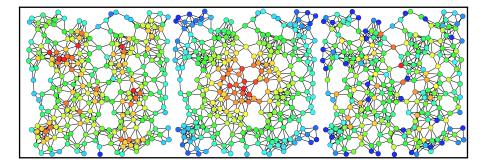


Figure : Degree, closeness and betweenness centrality

Source: "Centrality"' by Claudio Rocchini, Wikipedia File:Centrality.svg

Centrality measures compared

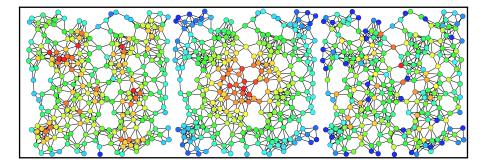
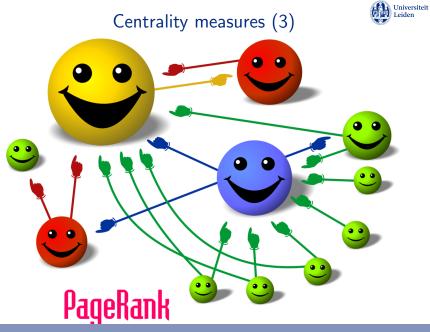


Figure : Degree, closeness and betweenness centrality

Source: "Centrality"' by Claudio Rocchini, Wikipedia File:Centrality.svg



Periodic table of centrality

1	1 IA 8000 1979 DC Degree 224 1971 BC Betweeness	2 11A 239 2008 EBC Endpoint BC									13 IIIA 26 1999 kPC Math C.	14 IVA 275 2002 EGO Ego	15 VA 51 2004 HYPER Hypergraphs	16 VIA 279 1997 AFF Atiliation C.	17 VIIA 399 2 001 α-C	18 VIIIA 518 1989 IC Information C 178 1995 ECC Eccentricity		
3	942 1966 CC Closeness	239 2008 PBC Proxy BC	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	9068 1999 HITS Hubs/Authority	573 2006 g-kPC geodesic kPath	296 1999 GROUP Groups/Classes	80 2006 HYPSC Hyperg. SC	34 2010 t-SC 1-Subgraph	116 1998 RAD Radiality
4	1279 1972 EC Eigenvector	239 2008 LSBC	224 1971 EBC Edge BC	53 2009 CBC Commun. BC	236 2007 <u> <u> </u> </u>	S 2010 MDC MD Cees.	0 2015 EYC Entropy C.	2 2013 CAC Comm. Ability	56 2007 EPTC Entropy PC	281 1971 CCoef	42 2012 PeC	427 2007 BN Bottleneck	43 2009 El Exentiality I.	573 2006 e-kPC e-disjoint kPC	573 2005 v-kPC v-disjoint kPC	505 2010 WEIGHT Weighted C.	17 2013 TCom	116 1993 INT
5	1306 1953 KS Katz Status	239 2008 DBBC DBounded BC	979 2005 RWBC RWalk BC	477 1991 TEC Total Effects	42 2009 LI Lobby Index	11 2008 MC Mod Cent.	0 2004 COMCC Community C	45 2012 ECCoef ECCoef	0 2015 SMD Super Mediat.	1 2004 UCC United Comp.	4 2012 WDC WDC	119 2008 MNC MNC	43 2009 KL Clique Level	179 2005 BIP Bipartivity	426 1988 GPI GPI Power	116 1991 kRPC Reachability	58 2007 SCodd odd Subgraph	SB6 2004 RWCC RWalk CC
6	8053 1999 PR Page Rank	239 2008 DSBC DScaled BC	291 1953 <i>C</i> Stress	477 1991 IEC Immediate Eff.	1 2014 DM Degree Mass	10 2012 LAPC Laplacian C.	0 2012 ABC Attentive BC	1699 2001 STRC Straightness C	0 2015 SNR Silent Node R.	15 2011 HPC Harm. Prot.	26 2011 LAC Local Average	119 2008 DMNC DMNC	3 2013 LR Lurker Rank	2457 1987 β-C β Cent.	x x HYP Hyperbolic C.	27 2012 kEPC k-edge PC	13 2007 FC Functional C.	0 2014 HCC Hierar. CC
7	484 2005 SC Subgraph	613 1991 FBC Flaw BC	14 2012 RLBC RLimited BC	477 1991 MEC Mediative Eff.	69 2020 LEVC Leverage Cent.	35 2010 TC Topological C.	x x SDC Sphere Degree	15 2030 ZC Zoral Cert.	14 2013 CI Collab. Index	11 2013 CoEWC CoEWC	45 2012 NC NC	108 2010 MLC Moduland C.	X X RSC Resolvent SC	1 2014 SWIPD SWIPD	36 2009 XXXX LisComb	0 2014 BCPR BCPR	0 2014 TPC Tunable PC	0 2015 EDCC Effective Dist.
(C)David Schoch (University of Konstanz))	8008 1979 Protestaan Conceptual 2065 1934 Moreno Historic	942 1965 Sabidussi Axiomatic 1546 1950 Bavelas Historic	573 2006 Borgatti/Everett Conceptual 780 1948 Bavelas Historic	1138 2005 Boganti Conceptual 1475 1951 Leawitt Historic	24 2014 Baldi/Vigna Asiomatic 297 1992 Bargatti/Everett Conceptual	252 1974 Nieminen Asiomatic 3649 2001 Jeong et al. Empirical	6 1981 Kiahi Axion atic 4167 1998 Teal/Ghoshal Empirical	3 2012 Kitti Asiomatic 961 1993 Ibarra Empirical	3 2009 Garg Asiomatic 71 2008 Valente Empirical		Betw Fried Misco Path Speci		sures s vork Type ed	

Example: Criminal networks

- Data science project with Dutch National Police
- Gain insight in social networks of soccer fans, group formation and organization
- Dataset: all entries in police systems of law violations of a particular group of people involved in soccer violence



RISK Explorer

Deze experimentele applicatie stelt de gebruiker in staat om personen betrokken bij voetbalvandalisme te bekijken. Daarnaast kunnen relaties tussen deze personen worden gevisualiseerd.

Het RISK-project is een samenwerking tussen o.a

Deze applicatle werkt op een moderne standards compliant browser zoals Chrome of Firefox.

Criminal networks

Person ID	Incident ID	Incident Type
P000001	X00011	Straatroof/diefstal
P000001	X00014	Eenv. Mishandeling
P000002	X00011	Straatroof/diefstal
P000002	X00012	Eenv. Mishandeling
P000003	X00012	Eenv. Mishandeling
P000003	X00016	Bedreiging
P000004	X00012	Eenv. Mishandeling
P000004	X00017	Eenv. Mishandeling
P000005	X00013	Bedreiging
P000005	X00014	Eenv. Mishandeling
P000005	X00015	Straatroof/diefstal
P000006	X00013	Bedreiging
P000007	X00013	Bedreiging
P000008	X00013	Bedreiging
P000009	X00015	Straatroof/diefstal
P000010	X00016	Bedreiging
P000010	X00017	Eenv. Mishandeling
P000011	X00016	Bedreiging

Table : Data on suspects involved in incidents

Network formation

Figure : Suspects are nodes

Network formation

Figure : Edges are based on common involvement as a suspect

Network visualization

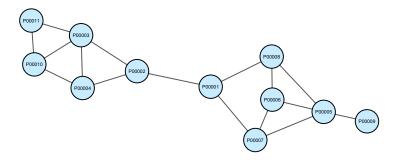


Figure : Force-directed visualization algorithm reveals structure

Network analysis: Centrality

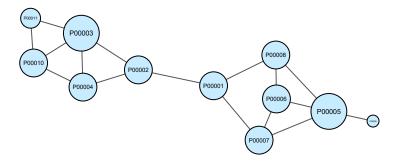


Figure : Degree centrality finds locally important nodes

Network analysis: Centrality

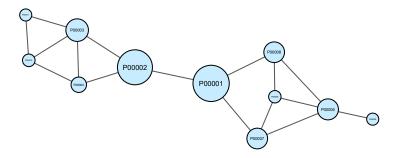


Figure : Betweenness centrality reveals globally important nodes

Network analysis: Community detection

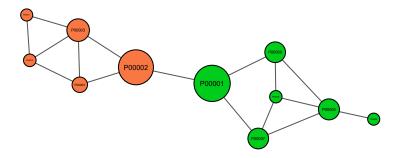
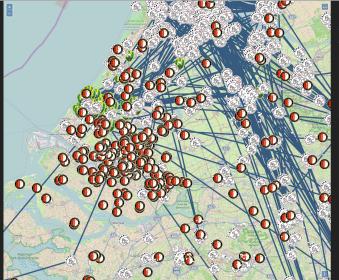


Figure : Community detection finds groups of tightly connected nodes

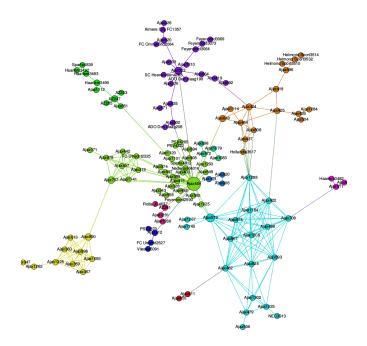


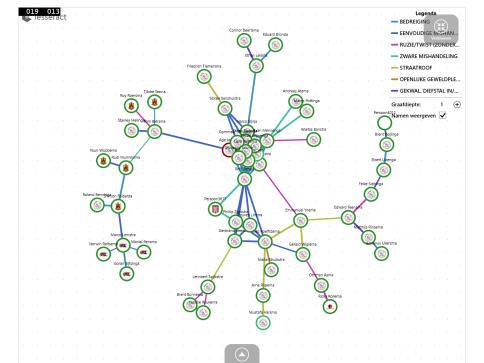
RISK Explorer

Deze experimentele applicatie stelt de gebruiker in staat om personen betrokken bij voetbalvandalisme te bekijken. Daarnaast kunnen relaties tussen deze personen worden gevisualiseerd.

Het RISK-project is een samenwerking tussen o.a

Deze applicatle werkt op een moderne standard: compliant browser zoals Chrome of Firefox.





- **Community**: set of nodes connected more strongly with eachother than with the rest of the network
- Community detection algorithms:
 - Clique-based methods
 - Hierarchical clustering
 - Divisive algorithms (centrality-based)
 - Modularity maximization algorithms

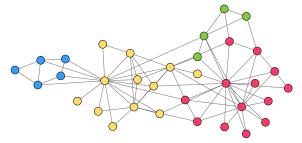


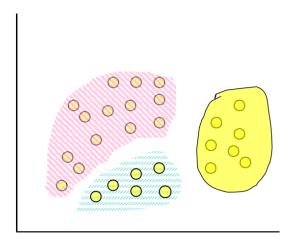
Figure : Communities: node subsets connected more strongly with each other

Modularity

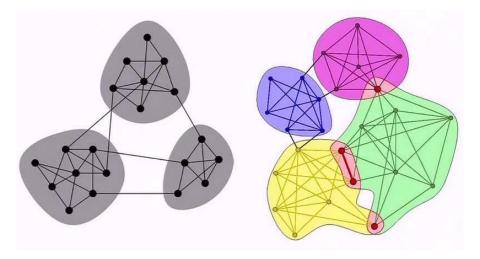
- Modularity: numerical value indicating the quality of a division of a network into communities
- **Community**: subset of nodes for which the fraction of links inside the community is higher than expected in a random network
- Modularity $Q \in [0, 1]$
- Resolution parameter r indicating how "tough" the algorithm should look for communities
- Algorithms optimize the modularity score Q given some r (using hill climbing, heuristics, genetic algorithms and many more optimization techniques)

V.D. Blondel, J-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks in *Journal of Statistical Mechanics: Theory and Experiment* 10: P10008, 2008.

Related: clustering



Partitions vs. communities



J. Leskovec, Affiliation Network Models for Densely Overlapping Communities, MMDS 2012.

Evaluating communities and partitions

- **Communities**: groups of nodes that are more connected amongst each other than with the other nodes of the network
- Partitions: non-overlapping communities
- Compare with groups of nodes based on common attributes
- Human interpretation by hand can suffer from subjective bias

Corporate networks

Nodes are organizations/firms/companies/corporations

Corporate networks

- Nodes are organizations/firms/companies/corporations
- **Links** represent:
 - Trade
 - Loans
 - Ownership
 - Social ties

Corporate networks

Nodes are organizations/firms/companies/corporations

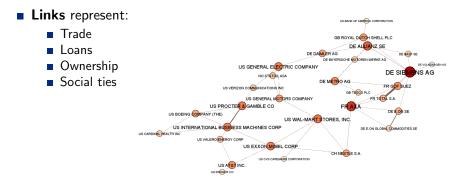
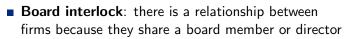
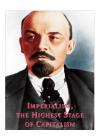


Figure : Board interlock network of 30 firms

 Board interlock: there is a relationship between firms because they share a board member or director



- Vladimir I. Lenin, Imperialism, The Highest Stage of Capitalism, 1916.
- "... a personal union, so to speak, is established between the banks and the biggest industrial and commercial enterprises, the merging of one with another through the acquisition of shares, through the appointment of bank directors to the Supervisory Boards (or Boards of Directors) of industrial and commercial enterprises, and vice versa."



• **Causes** of interlocks:

- Collusion
- Cooptation and monitoring
- Legitimacy
- Career advancement
- Social cohesion
- Consequences of interlocks:
 - Corporate control
 - Economic performance
 - Access to resources

• **Causes** of interlocks:

- Collusion
- Cooptation and monitoring
- Legitimacy
- Career advancement
- Social cohesion
- Consequences of interlocks:
 - Corporate control
 - Economic performance
 - Access to resources

M. Mizruchi, What do interlocks do? An analysis, critique, and assessment of research on interlocking directorates, Annual review of Sociology 22: 271–298, 1996.

Corporate board interlock networks

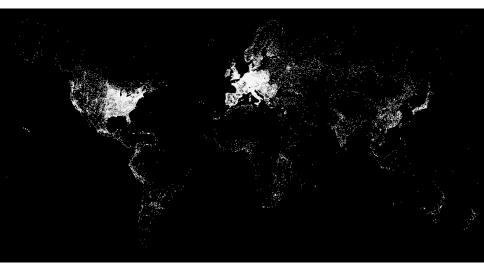
- Nodes are firms, edges represent shared board members
- Power and control
- Globalization
- Influence of countries
- Local or global business groups?



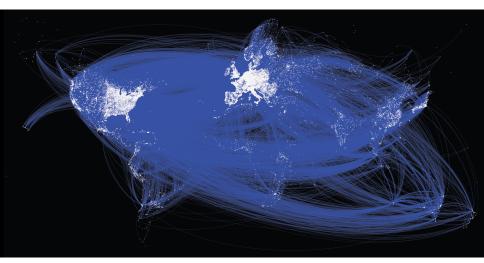
Corporate board interlock networks

- Nodes are firms (world-wide)
- Links are social ties between firms (board interlocks)
- Board interlock: two firms share a senior level director
- 1,068,409 firms
- 3,262,413 interlocks
- 80 countries
- National subgraphs based on country attribute

Corporations



Board interlock network



F.W. Takes and E.M. Heemskerk, Centrality in the Global Network of Corporate Control, *Social Network Analysis and Mining* 6(1): 1-18, 2016.

E.M. Heemskerk and F.W. Takes, The Corporate Elite Community Structure of Global Capitalism, New Political Economy

A1(1) AA 110 AA1C

E.M. Heemskerk, F.W. Takes, J. García-Bernardo and M.J. Huijzer, Where is the global corporate elite? A large-scale network

Lab session March 23

- Finish Python lectures: https://github.com/jrjohansson/scientific-python-lectures
- Master Pandas: http://pandas.pydata.org/pandas-docs/stable/10min.html
- Replicate metrics from Assignment 1 using this toolstack
- Learn Matplotlib, for example via Lecture 4 of https://github.com/jrjohansson/scientific-python-lectures Or http://pandas.pydata.org/pandas-docs/stable/visualization.html
- Replicate visualizations from Assignment 1 using this toolstack
- Start Assignment 2

Credits

Slides on neural networks based on slides from "Social Network Analysis for Computer Scientists" (https://liacs.leidenuniv.nl/~takesfw/SNACS)