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IP Viking map

http://map.norsecorp.com
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Recap

Business Intelligence: anything that aims at providing actionable
information that can be used to support business decision making

Business Intelligence
Visual Analytics
Descriptive Analytics
Predictive Analytics

Process Modelling (April and May)
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Visual Analytics
(“last week’s leftovers” or:

“how it’s not done”)
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Visualization

Visualization: mapping data properties to visual attributes

Good visualization: “proper” mapping of data attributes to visual
attributes and properly “balancing” the number of data properties
and visual attributes used

Bad visualization:

False data input
Misleading visual attributes
Abusing human background knowledge
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“Unbiased” data
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Rainbow colors

http://poynter.org/uncategorized/224413
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Parts and sums

https://hbr.org/2014/12/vision-statement-how-to-lie-with-charts
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2D bars and icons
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2D bars explained

http://en.wikipedia.org/wiki/Misleading_graph
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3D pies

http://en.wikipedia.org/wiki/Misleading_graph
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3D pies
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Color-coding geographic regions

https://hbr.org/2014/12/vision-statement-how-to-lie-with-charts
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Axis ranges

https://hbr.org/2014/12/vision-statement-how-to-lie-with-charts
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Axis ranges

https://hbr.org/2014/12/vision-statement-how-to-lie-with-charts

BIPM — Lecture 3 — BI & Descriptive Analytics 15 / 84

https://hbr.org/2014/12/vision-statement-how-to-lie-with-charts


Who understands?

http://www.multimension.com/project/upgrading-clinical-infographics/
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Data Mining in a BI context
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Overview

Data warehouse

Data preparation

Data mining theory recap

Data mining case studies

Data mining evaluation techniques
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Data warehouse

Data warehouse: a copy of transaction data specifically structured
for query and analysis (R. Kimball)

Data warehouse: a system used for reporting and data analysis
(Wikipedia)

Data warehouse: a subject oriented, integrated, nonvolatile,
timestamped collection of data designed to support management’s
decision support needs (B. Inmon)
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Data warehouse data

In a data warehouse, data is organized around subjects
(whereas information systems are organized around applications)

Data is collected from heterogeneous sources and may already be
aggregated (for example from an ERP or CRM system)

Data is timestamped

Data is nonvolatile
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Data warehouse

http://savis.vn/
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Transactional system vs. Data warehouse

Transactional System

Holds current data

Detailed data

Volatile data

High transaction frequency

Oriented on daily operations

Support for daily decisions

Many operational users

Availability very important

Data storage focus

Data warehouse

Current and historic data

Detailed and aggregated data

Nonvolatile data

Medium-low frequency

Oriented on data analysis

Support for strategic decisions

Few decision-making users

Availability not so important

Information acquisition focus

https://www.fer.unizg.hr/ (Business Intelligence)
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Data mining

Data mining: the computational process of discovering patterns in
large data sets involving methods at the intersection of artificial
intelligence, machine learning, statistics, and database systems
(Wikipedia)

Data mining: the practice of examining large pre-existing databases
in order to generate new information (Oxford)

Data mining: knowledge discovery from data (or information) in an
automated way (DIKW pyramid)
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DIKW Pyramid
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DIKW Gaps

ZPR FER Zagreb - Business Intelligence 20113
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Data mining . . .

KDD: Knowledge Discovery in Databases

Data archeology

Information harvesting

Knowledge extraction

Machine learning

Big data techniques?

Data science?

Business intelligence?
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Data mining

http://blogs.sas.com/content/subconsciousmusings/2014/08/22
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KDD

Knowledge Discovery in Data is the

non-trivial process of identifying
valid,
novel,
potentially useful
and ultimately understandable

patterns in data.

Fayyad et al., Advances in knowledge discovery and data mining,
MIT press, 1996.
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KDD
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Why data mining now?

Data flood / data explosion

Cloud computing power

Cheap storage

Algorithms have matured

Software is available

Competition is killing
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Data mining in businesses

Process management

Market basket analysis

Marketing

Customer loyalty

Fraud detection

Trend analysis
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Data mining in practice

1 Learn about the problem domain

2 Data selection

3 Data, cleaning, preprocessing and reduction

4 Data mining

5 Interpretation of information

6 Apply knowledge in domain
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Data preprocessing

Sampling

Normalization

Missing data

Data conflicts

Duplicate data

Ambiguity in data
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Guidelines for successful data mining

The data must be available

The data must be relevant, adequate and clean

There must be a well-defined problem

The problem should not be solvable by means of ordinary query or
OLAP tools

The results must be actionable
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Successful data mining in businesses

Use a small team with a strong internal integration and a loose
management style

Carry out a small pilot project before a major data mining project

Identify a clear problem owner responsible for the project, e.g., from
sales or marketing

Try to realize a positive return on investment within 6 to 12 months

Have top management back the project up
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Break?
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Data attribute types

Categorical attributes: discrete

Nominal attribute: has no logical ordering
(e.g., colors or names)
Ordinal attribute: has ordering
(e.g.: bad, OK, good, perfect)

Numerical attributes continuous
(e.g., 4.815m and EUR 162 342)
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Data quality

Accuracy

Completeness

Consistency (uniformity)

Validity

Timeliness

Data cleaning, data cleansing, data scrubbing, . . .
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Data quality

http://www.hicxsolutions.com/supplier-management-programmes/
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Example: Corporate data quality
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Data quality

ORBIS database (Bureau van Dijk, http://orbis.bvdinfo.com)

Aggregates data from Chambers of Commerce across the world

Snapshot from September 2015

Extracted all firms (including meta-data such as operating revenue,
employees, assets and market capitalization)

140,087,471 firms found. Is that all?
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Observed data

Figure : Observed average revenue per country (darker is more)
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Completeness per size category
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Figure : Percentage of companies present, segmented by number of employees.
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Assessing completeness

Lognormal distribution for firm revenue in a country

Idea: fix distribution scale based on known high quality countries

Estimate mean revenue for each country using World Bank indicators

Result: GDP per capita ∼ Mean revenue

Mean revenue ∼ Distribution location

Assess completeness by comparing observed average revenue with
estimated average revenue
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Mean vs. standard deviation
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Understanding average revenue

Figure : Observed average revenue Figure : Estimated average revenue
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Low average in rich countries
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Real completeness
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Completeness per country
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Categories of techniques

Machine learning

Supervised learning: learning on labeled data
Semi-supervised learning: partially labeled data
Unsupervised learning: leaning/mining on unlabeled data
Reinforcement learning: agents learning to act in an environment
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Unsupervised learning
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Categories of techniques

Unsupervised learning: leaning/mining on unlabeled data

Supervised learning: learning on labeled data

Semi-supervised learning: partially labeled data

Reinforcement learning: agents learning to act in an environment
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Unsupervised learning

Clustering

Anomaly detection

Pattern recognition

Data summarization
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Clustering

Clustering

Data is unlabeled

Label data: grouping
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Clustering

Clustering

Data is unlabeled

Label data: grouping

Grouping based on similar
attributes: relatively close
“neighbors” in n-dimensional
space
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k-means Clustering

1 k means are randomly placed

2 k clusters are created by assigning each observation to the nearest
mean (according to some distance notion)

3 the centroid of each cluster becomes the new mean

4 steps 1–3 are repeated until convergence
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k-means Clustering
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Hierarchical clustering

1 Define a distance function between objects

2 Assign each object to its own cluster

3 Merge the two nearest clusters (based on distance between its
objects) into one cluster

4 Until there is only one cluster, go to 3

5 Pick a level in the resulting dendogram as the preferred method of
clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering

BIPM — Lecture 3 — BI & Descriptive Analytics 63 / 84



Hierarchical clustering
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Hierarchical clustering
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Clustering validation

Expectation-Maximization (EN) clustering: https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
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Hierarchical vs. k-means clustering

Time complexity (linear vs. quadratic)

Predefined number of clusters

Influence of outliers

Assumption of the presence of a hierarchical structure

BIPM — Lecture 3 — BI & Descriptive Analytics 66 / 84



Case: Anomalies in energy expenditure
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Case: anomalies in energy expenditure

BSc project J. Kalmeijer in cooperation with “Rijkswaterstaat”

Total of 254 objects all over the Netherlands

Energy expenditure over 3 years known for each object

Measurements every 15 minutes:
365 days × 24 hours × 4 measurements ≈ 35.000 yearly
measurements
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Objects

Public lighting or traffic control

Office

Tunnel

Radarpost

Pumping station

Floodgate or weir

Traffic control center

Bridge or dam

Small building
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Goal

Clustering on all data:

Public lighting
All other objects

Clustering to detect object groups

Identify regular energy usage pattern of objects

Objects are of different types

Detect anomalies in energy usage per object type

Data-driven!
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Approach
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A clustering result

Figure : Public lighting objects
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Anomaly detection results

Figure : Outlier in seasonal behavior
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Project results and conclusion

Objects clustered into types based on the data

Some anomalies detected for various types of objects

Correlations between weather and object (types) identified

Data-driven insight!
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Unsupervised learning

Clustering

Anomaly detection

Pattern recognition

Data summarization
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Market basket analysis

Han & Kamber, Data mining: Concepts and techniques, 2006
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Association

X and Y are variables. There are N instances, of which NX

instances have variable X

Derive rules of the form IF(X) THEN Y X ⇒ Y

support(X ⇒ Y ) = NX∧Y /N

confidence(X ⇒ Y ) = NX∧Y /NX

lift(X ⇒ Y ) =
NX∧Y N

NXNY

support: higher is better

confidence: close to 1

lift: factors higher is better
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Association rules

http://www.saedsayad.com
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Unsupervised learning

Clustering

Anomaly detection

Pattern recognition

Data summarization
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Anomaly detection

Supervised: normal/outlier can be learned as a class attribute

Semi-supervised: train on a labeled dataset, determine outliers in
unlabeled data based on likelihood of a deviation

Unsupervised: identify patterns (for example, using clustering) and
then select small clusters or instances that do not logically fall in
any of the large clusters
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Assignment 1

Gaming industry context

Sales log spanning 4 years of sales

Apply and compare BI techniques

Inspect, visualize, aggregate, segment, score . . .

Deliverables:

1 Web-based BI Dashboard
2 Short assignment report in LATEX
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Assignment 1 — Hints

Model: MySQL database containing the data

View: HTML page using Javascript that reads JSON

Controller: PHP outputs relevant data in JSON
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Lab session February 23

Make serious progress with Assignment 1

Continue with dashboard and data integration

Error reporting in PHP and other handy tricks:
http://liacs.leidenuniv.nl/ict

Start thinking about the BI questions

Ask all relevant questions
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Credits

Lecture partially based on (slides of the (previous edition of the)) course book:
W. van der Aalst, Process Mining: Data Science in Action, 2nd edition,
Springer, 2016.

Slides partially based on “From Data Mining to Knowledge Discovery: An

Introduction” by Gregory Piatetsky-Shapiro (KDnuggets.com)
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