
Converting Weakly Dynamic Programs to
Equivalent Process Network

Specifications

Todor Stefanov

Converting Weakly Dynamic Programs
to Equivalent Process Network Specifications

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 14 December 2004
te klokke 15.15 uur

door

Todor Stefanov
geboren te Samokov, Bulgaria

in 1974

Samenstelling promotiecommissie:

promotor Prof.dr.ir. Ed Deprettere
co-promotor Dr.ir. Bart Kienhuis
referent Prof.dr. Shuvra S. Bhattacharyya (University of Maryland, USA)

overige leden: Prof.dr. Stamatis Vassiliadis (Technische Universiteit Delft)
Prof.dr.-ing. Jürgen Teich (Universität Erlangen-Nürnberg, Duitsland)
Prof.dr.ir. Angel Popov (Technical University of Sofia, Bulgaria)
Prof.dr. Doug DeGroot
Prof.dr. S.M. Verduyn Lunel
Dr.ir. Erwin de Kock (Philips Research, Eindhoven)
Dr. Andy Pimentel (Universiteit van Amsterdam)

The work in this thesis was carried out in the Artemis project supported by PROGRESS/STW.

Converting Weakly Dynamic Programs to Equivalent Process Network Specifications
Todor Plamenov Stefanov. -
Thesis Universiteit Leiden. - With index, ref. - With summary in Dutch
ISBN 90-9018629-8

Copyright c
2004 by T. Stefanov, Leiden, The Netherlands.
All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilized in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system, without permission
from the author.

Printed in the Netherlands

To my wife Stefka, and my lovely daughter Eva

Contents

Acknowledgments xi

1 Introduction 1

1.1 Problem Statement . 3

1.2 Solution Approach . 6

1.2.1 Kahn Process Network model of computation 7

1.2.2 Parallel Compiler Techniques (COMPAANDYN approach) 8

1.2.3 Algorithmic Transformation Techniques (MATTRANSFORM) 15

1.3 Related Work . 18

1.4 Research Contributions . 22

1.5 Dissertation Outline . 23

2 Deriving Process Networks from Weakly Dynamic Programs 25

2.1 Dynamic Single Assignment Code . 26

2.1.1 Fuzzy Array Dataflow Analysis (FADA) 26

2.1.2 Dynamic Change of Values of Parameters introduced by FADA . . . 34

2.1.3 Generating Dynamic Single Assignment Code 37

2.2 Approximated Dependence Graph . 38

2.2.1 Definitions . 39

2.2.2 Deriving ADG from dSAC . 40

2.2.3 Examples . 41

viii Contents

2.3 Schedule Tree . 45

2.3.1 Definition . 45

2.3.2 Deriving STree from dSAC . 45

2.3.3 Example . 46

2.4 Process Network Synthesis . 46

2.4.1 Notations . 48

2.4.2 ADG transformations . 49

2.4.3 The Process Network (PN) model 50

2.4.4 Creating the PN topology . 52

2.4.5 Creating the PN behavior . 59

2.4.6 Code Generation . 76

2.4.7 Discussion and Conclusions . 78

3 Algorithmic Transformation Techniques 83

3.1 Introduction . 84

3.2 Application Transformation Layer . 85

3.3 Unfolding Transformation . 87

3.3.1 General Idea . 87

3.3.2 Formal Procedure . 89

3.3.3 Example . 89

3.4 Plane Cutting Transformation . 93

3.4.1 General Idea . 93

3.4.2 Formal Procedure . 95

3.4.3 Example . 96

3.5 Skewing Transformation . 99

3.5.1 General Idea . 100

3.5.2 Formal Procedure . 102

3.5.3 Example . 103

3.6 Merging Transformation . 106

3.6.1 General Idea . 107

3.6.2 Example . 109

Contents ix

3.7 Discussion and Conclusions . 112

4 Case Studies 113

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 113

4.1.1 Introduction . 113

4.1.2 M-JPEG and the Platform Architecture 116

4.1.3 The Mapping . 117

4.1.4 Experiments and Results . 126

4.1.5 Conclusions and Discussion . 128

4.2 Exploring the Performance of Alternative Application Instances realized on
a FPGA: a QR Case Study . 130

4.2.1 Introduction . 130

4.2.2 The QR-decomposition Algorithm 132

4.2.3 Using an Extended Y-chart Environment in the QR exploration 133

4.2.4 Experiments and Results . 134

4.2.5 Conclusions . 141

5 Summary and Conclusions 143

Bibliography 149

Index 157

Samenvatting 159

Curriculum Vitae 161

Acknowledgments

The research presented in this dissertation has been supported by PROGRESS, the embedded
systems and software research program of the Dutch Technology Foundation STW, under the
project ARTEMIS (Project number AES 5021).

This dissertation is the result of work conducted at the Leiden Institute of Advanced Com-
puter Science (LIACS), Leiden University in co-operation with researchers from Delft Uni-
versity of Technology, University of Amsterdam, and Philips Research. I would like to thank
all the people who guided and supported me at these various places.

I would like to thank all the people with whom I worked in the context of the ARTEMIS
project: Georgi Kuzmanov and Stamatis Vassiliadis from TU-Delft; Andy Pimentel, Simon
Polstra, Cagkan Erbas, Joe Coffland, Barry van Halderen, and Frank Terpstra from University
of Amsterdam; Paul Lieverse, Pieter van der Wolf, and Erwin de Kock from Philips Research.
Many thanks to all of you for the successful co-operation and interesting scientific and non-
scientific discussions we had during the course of the project.

I would like to thank the following fellow Ph.D. students from LIACS at Leiden University
with most of whom I have shared room 122: Alexandru Turjan, Claudiu Zissulescu, Vladimir
Zivkovic, Laurentiu Nicolae, Sylvain Alliot, Ioan Cimpian, Hristo Nikolov, Dmitry Chere-
siz, and Mihai Cristea. You have made my four years at Leiden University a very pleasant
experience. I always will remember the long and very interesting discussions we had about
our research work and social life in The Netherlands as well as the social events we have
organized together in order to relax. I also want to thank the secretaries of the LERC group
at LIACS for helping me and my wife to settle in The Netherlands and for their excellent
administrative assistance.

Several people with whom I worked in Bulgaria have contributed for building my knowledge
and experience at a level which gave me the confidence to start a Ph.D. research. I would
like to thank them for this. In particular, I want to thank Angel Popov and Peter Manoilov
from TU-Sofia for encouraging me to do a Ph.D. research. With them, as my mentors, I made
my first steps in the research field as a Master student and I wrote and published my first
research paper. Also, I want to thank all my former colleagues at Innovative MicroSystems

xii Acknowledgments

Ltd. (currently Fabless Ltd.) for the engineering experience they shared with me when I was
working there. This experience helped me a lot during my Ph.D. research.

Finally, I would like to thank my family and my close relatives and friends for supporting me
in my Ph.D. Especially, I want to express my greatest gratitude to my wife Stefka for here
love and patience. She always helped me when I had difficult moments in the past four years
by constantly showing interest in my work and by showing understanding when again I had
to come late at home.

Todor Stefanov
Leiden, September 30, 2004

Chapter 1
Introduction

In the recent years as well as in the future, Embedded Systems-on-Chip (SoC) can/will be
found in many small, mobile, and ergonomic devices that provide information, entertain-
ment, and communication capabilities to consumer electronics, industrial automation, retail
automation, and medical markets. These Embedded SoCs require complex electronic design
and system integration delivered in short time frames because of the time-to-market pressure.
Currently, we are experiencing major complexity problems in Embedded Systems-on-Chip
design because today’s design approaches follow the traditional path of low-level design, sim-
ulation, and prototyping using the well known tools provided by electronic design automation
(EDA) companies like Cadance and Synopsis. Prototyping may lead to high non-recurrent
engineering costs that cannot be recovered from expected product sales. Moreover, there is a
tendency that the users are getting more and more - and faster - very demanding in terms of
applications diversity, complexity, and services that the Embedded Systems-on-Chip have to
support.

Existing design methodologies and tools can no longer keep up with this trend because they
cannot deal with such complex and highly flexible systems. These design methodologies and
tools have been conceived and delivered in the past when applications were survivable and
long-lasting, and the implementations - whether in programmable processors or in dedicated
hardware - were not too complex. All this is changing rapidly: transistor densities grow
exponentially whereas the traditional processors are not scalable, and applications grow more
complex whereas the way in which they are specified is not at all impartial to traditional
implementations. We believe that there is a way to overcome these problems though, be it
that it implies completely new design methodology concepts and approaches:

� First, the on-chip architectures have to become heterogeneous networked multiproces-
sors. The current state-of-the-art is a first step in that direction: a CPU with one or
more co-processors. Next will come a set of autonomous processing units that interact
asynchronously over some sort of interconnection network. Then will come the chip
containing mainly (possibly identical) copies of this architecture all embedded in what

2 Introduction

has become known as a Network-on-Chip (NoC) [1].

� Second, the sequential imperative languages widely used to specify applications will
no longer match the increasing amount of parallelism that will be enforced by the
emerging architectures. There is thus a need for a parallel language and/or a translator
to take sequential specifications to parallel specifications.

� Third, to reduce non-recurrent engineering costs and time-to-market delays, architec-
tures have to be flexible enough that a variety of related applications can be mapped
onto them. The implication of this constraint is that these architectures have to pos-
sess highly desirable properties, among which are re-usability (IPs), separation of
concerns (computation vs. communication), standardization (interfaces), and last but
not least scalability. The architectures will have to be instances of architecture tem-
plates (parameterized architectures, that is), which in turn will have to be versions
of platforms. This has become know as Platform-based Design [2]. A platform is
application-domain specific and has to be defined through domain analysis. Roughly
speaking, a platform consists of two parts: One that concerns processing elements, and
one that encompasses a communication and storage infrastructure. This partitioning
is compliant with the computation vs. communication separation of concerns rule [3].
The processing elements are taken from a library - often as intellectual property (IP)
components - and the communication and storage infrastructure is obeying certain pre-
defined construction and operation rules. Specifying a platform is presently still more
an art than a science.

� Fourth, System-level design methodologies have to be developed to master the com-
plexities of the emerging applications and platforms. System-level Design is a radically
new concept that is challenging many researchers all over the world [2–7].

The combination of System-level Design and Platform-based Design is a promising new ap-
proach to master the ever growing complexity of Embedded Systems-on-Chip. Although it is
still not clear how this is to be materialized, we believe that the following is agreed upon in
the system design community:

� element 1: Applications have to be specified in some parallel language and modeled
at a high level of abstraction. Currently, applications are specified using sequential
programming languages like C or Matlab. The lack of appropriate methodology and
tool support for extracting and modeling of concurrency in its various forms is an es-
sential limiting factor in commonly used programming languages to express design
complexity and to exploit parallelism available in applications.

� element 2: Architectures have to be specified in a parameterized form and modeled
at a high level of abstraction. Today, designers are familiar with working at levels of
abstraction that are too close to implementation. So, sharing design components and
verifying designs before prototypes are built is nearly impossible. For most designers
the highest level of abstraction of their design (architecture) is the register transfer level
(RTL). The RTL level is clearly too low for complex architecture design.

1.1 Problem Statement 3

� element 3: Methods have to be provided to map application models onto architecture
models. This includes techniques and tools to explore alternative mappings at a high
level of abstraction in order to find optimal system solutions in terms of system perfor-
mance and cost in relatively short amount of time. Also, techniques and tools have to
be developed to gradually refine the optimal mappings to implementations.

The three main elements of the emerging System-level Platform-based Design approach, pre-
sented above, are closely related and equally important. Each and every element has its own
specific problems that have to be solved. The problems further discussed in this dissertation
and the solutions we propose are related to element 1. The dissertation focuses on methods,
techniques, and tools to derive a set of parallel (concurrent) 1 specifications for an applica-
tion (i.e. alternative application instances) in order to allow exploration and transparent and
systematic mapping of these specifications onto heterogeneous multiprocessor architectures.

This chapter is further organized as follows. In Section 1.1, we provide the motivation be-
hind this work by stating the actual problem we want to solve. A high-level sketch of the
approach and the techniques we have developed to solve this problem is given in Section 1.2.
Section 1.3 gives a brief overview of related work and Section 1.4 summarizes the main
contributions of this dissertation. Section 1.5 describes the organization of this dissertation.

1.1 Problem Statement

The emerging Embedded Systems-on-Chip platforms are increasingly becoming heteroge-
neous multi-processor architectures. An example of a heterogeneous architecture is shown in
the bottom part of Figure 1.1. This architecture is composed of fully programmable compo-
nents (CPUs), reconfigurable components (RPUs), and dedicated hardware blocks (IP cores).
Typically, these components are linked via some kind of communication structure, e.g., high-
speed bus, multiple buses, or programmable network. To satisfy the performance needs of
applications, these emerging platforms must be programmed in such a way that all the com-
ponents that comprise the multi-processor architecture execute as concurrently as possible.
This implies that the task-level parallelism available in an application must be revealed and
exploited efficiently.

We believe that programming multi-processor architectures efficiently is a key challenge in
the emerging system-level and platform-based design methodologies. System designers ex-
perience significant difficulties because the way an application is specified by the application
developer does not match the way multi-processor architectures operate. We observe today
that most of the applications are typically specified by application developers as sequential
programs using imperative programming languages like C/C++ or Matlab - see Figure 1.1.
Specifying an application as a sequential program is relatively easy and convenient for appli-
cation developers because they have been doing this for years and they understand very well
the imperative model of computation. Moreover, there exist very mature tools for building,
testing, and debugging applications specified as sequential programs.

1In this dissertation we use the terms parallelism and concurrency interchangeably. However, we are aware that
there is a slight difference.

4 Introduction

for j = 1:1:N,

end
[x(j)] = Source1();

end

for i = 1:1:K,
[y(i)] = Source2();

end

for i = 1:1:K,
[Out(i)] = Sink(y(i));

end

for j = 1:1:N,
for i = 1:1:K,

end
[y(i), x(j)] = F(y(i), x(j));

IP
 C

o
res

...
R

P
U

s

C
P

U
s

M
em

o
ries

Application Specification
Sequential Set of Parallel

Application Specifications

EASY to specify: DIFFICULT to specify:

to map:DIFFICULT

S1 SinkS2

P1 P2

P3 P4

Communication Structure SYSTEMATIC
and

EXPLORATION

mapping:

How to close
the Specification Gap?

Application

Heterogeneous Multiprocessor Architecture

Figure 1.1: The main problem.

Although specifying an application as a sequential program is convenient and relatively easy,
such specification does not reveal parallelism due to its inherent sequential nature. This fact
makes the mapping of an application onto a parallel multi-processor architecture very dif-
ficult. Let us consider as a simple example the sequential program and the multi-processor
architecture shown in Figure 1.1. In the program, the order of execution of the function calls
is sequential, i.e., we have a single thread of control. Also, the function calls communicate
data via shared variables located in a single global memory. On the other hand, the multi-
processor architecture has components that run concurrently, i.e, the control is distributed
over the components, and the architecture has several memory banks, i.e., distributed mem-
ory. So, the single memory and the single thread of control in the sequential program used
for application specification are contradictory to the need of distributed control and memory
for the architecture. Precisely this contradiction makes the mapping of sequential application
specification onto multi-processor architecture very difficult and in most cases inefficient.

Instead, we believe that a much more appropriate way of specifying an application is to use
a parallel model of computation (MoC). If an application is specified using a parallel MoC
then the mapping of this application can be done in a systematic and transparent way using
a disciplined approach [8]. An example of a parallel application specification is shown in
the right part of Figure 1.1. This specification consists of several concurrent tasks making
the task-level parallelism available in the application explicit. Also, the data dependencies
and the communication between the tasks is explicit via distributed memory buffers. So,

1.1 Problem Statement 5

these properties of the parallel model of computation match very well the need of distributed
control and distributed memory in order to map an application onto a parallel multi-processor
architecture in a systematic and efficient way.

Although a parallel model of computation is very suitable for multi-processor architecture
mapping, specifying an application using a parallel MoC is difficult, not well understood
by application developers, and a time consuming process. The application developers have
to study an application in order to identify possible task-level parallelism that is available
and to reveal it. Moreover, testing and debugging of a parallel application specification is
notoriously difficult because several threads of control, one for every concurrent task, have to
be considered and synchronized properly.

The facts discussed above and visualized in Figure 1.1 reveal that there is a gap between the
way applications are currently specified (as sequential programs) and the way they should
be specified (using a parallel model of computation) when a parallel multi-processor system
has to be designed. This gap we call Specification Gap. Indeed, on the one hand
application developers still prefer to specify an application as a sequential program using
imperative programming languages because it is easy. On the other hand, system design-
ers need an application specified using a parallel model of computation because this model
is suitable for a systematic mapping of an application onto a parallel multi-processor archi-
tecture. Therefore, the Specification Gap has to be closed when designing a parallel
multi-processor system by migrating from a sequential application specification (given by an
application developer) to a parallel application specification (needed by a system designer).
A challenging problem is How to close the Specification Gap in a systematic and automated
way. By solving this problem, the following three issues have to be addressed:

� issue1: What should the parallel model of computation (MoC) be for parallel applica-
tion specification? Many parallel MoCs exist [9], each of them with its own specific
characteristics. The choice of a parallel MoC depends on the targeted application do-
main and architecture. There is not a universal parallel MoC which fits nicely to what-
ever application domain and architecture. Therefore, a parallel MoC is selected after
detailed analysis of the application domain under consideration and after the architec-
ture is selected and characterized;

� issue2: After selecting a parallel MoC for parallel application specification, a system-
atic approach is needed that allows automatic derivation of task-level parallel applica-
tion specification from a sequential application specification using the selected MoC.
A systematic approach will lead to a correct-by-construction derivation process of a
parallel specification that can be easily automated. The automation will reduce sig-
nificantly the design time of a system as well as possible errors in deriving parallel
specifications will be eliminated;

� issue3: Techniques which allow automatic derivation of a set of alternative parallel
specifications for the same sequential application specification at task-level are needed
to extend the systematic approach. It is very important to research and develop such
techniques because many parallel specifications for an application exist that are func-
tionally equivalent but the degree of exploited parallelism is different. A set of alter-
native parallel specifications for an application gives a system designer an opportunity

6 Introduction

to select a parallel specification from the set that maps best onto the designed system
architecture.

In this dissertation we give a particular solution of closing the Specification Gap by
addressing the three issues above in a specific way. An overview of our solution is presented
in the next section.

1.2 Solution Approach

In this section we give an overview of the solution approach and the techniques we have
developed to close the Specification Gap described in Section 1.1. Figure 1.2 shows
a high-level sketch of our approach.

for j = 1:1:N,

end
[x(j)] = Source1();

end

for i = 1:1:K,
[y(i)] = Source2();

end

for i = 1:1:K,
[Out(i)] = Sink(y(i));

end

for j = 1:1:N,
for i = 1:1:K,

end
[y(i), x(j)] = F(y(i), x(j));

Set of Alternative Process Networks

Application Specification
in C or Matlab

+
Algorithmic Transformations

Parallel Compiler

S1S2

P1 P2

KPN_1

S1 SinkS2

P1 P2

KPN_4

KPN_5

SinkS2

P1 P3 P4P2

KPN_3
S1

S2 SinkP

S1 SinkS2

P1 P2

P3 P4

KPN_2

Sink

S1

Figure 1.2: Our solution.

Our approach is based on Algorithmic Transformation techniques and Parallel Compiler tech-
niques. These techniques form an application transformation layer. This layer derives, in a
systematic and automated way, a set of alternative task-level parallel specifications called
Kahn Process Networks (KPN) [10] for an application specified as a weakly dynamic sequen-
tial program in languages like C or Matlab. Our approach, depicted in Figure 1.2, addresses
and solves the three issues described at the end of Section 1.1 in the following specific way:

� Our approach uses the Kahn Process Network (KPN) model of computation for parallel
application specification. Our choice of this model is motivated in Section 1.2.1;

1.2 Solution Approach 7

� We have developed a systematic and automated approach for deriving a KPN specifi-
cation from an application specified as a weakly dynamic program. The term weakly
dynamic program and the approach are explained in Section 1.2.2. Also, in this section
we give an introduction to the main Parallel Compiler techniques that underlie this
approach;

� We have developed Algorithmic Transformation techniques that in combination with
the Parallel Compiler techniques allow automatic derivation of a set of KPN specifi-
cations from a weakly dynamic program. These KPN specifications are functionally
equivalent to the input weakly dynamic program but the degree of exploited parallelism
is different. We introduce the Algorithmic Transformation techniques in Section 1.2.3.

1.2.1 Kahn Process Network model of computation

As discussed in Section 1.1, the choice of parallel model of computation (MoC) to be used
for parallel application specification depends on the targeted application domain. There is
no universal parallel MoC which fits nicely to arbitrary application domains. The research
described in this dissertation was performed in the context of the Artemis project [11]. The
application domains targeted by this project were multimedia and signal processing applica-
tions such as JPEG codecs, MPEG codecs, Adaptive Digital Beam-forming, Smart Camera,
Software Radio, etc. The main characteristic of these applications is that they are data-flow
oriented applications, i.e., large streams of data have to be processed.

Our choice of parallel MoC is based on the application domains described above. Although,
many parallel models of computation exist [9] [12], we have chosen the Kahn Process Net-
work model of computation [10] [13] because its operational semantics are simple, yet gen-
eral enough, to specify conveniently stream-oriented data processing that fits nicely with
the application domain we are interested in - multimedia and signal processing applications.
Moreover, for this application domain research work described in [14] [15] [16] [17] rein-
forces further the applicability of the Kahn Process Network (KPN) mode for specifying
and mapping systematically and efficiently applications onto ”large-grain parallelism” multi-
processor architectures.

The KPN model of computation assumes a network of concurrent autonomous processes
that communicate in a point-to-point fashion over unbounded FIFO channels (buffers), us-
ing a blocking-read synchronization primitive. Each process in the network is specified as
a sequential program that executes concurrently with other processes. The key character-
istic of the KPN model is that it expresses an application in terms of distributed control
and distributed memory. These key characteristics allow us to take advantage of the paral-
lel resources available in multi-processor architectures. A KPN has the following favorable
characteristics:

� The KPN model is deterministic, which means that irrespective of the schedule chosen
to evaluate the network, the same input/output relation always exists. This gives a
lot of scheduling freedom that can be exploited when mapping process networks onto
multi-processor architectures;

8 Introduction

� The processes in a KPN are self-scheduling. The inter-process synchronization is done
by a blocking read. This is a very simple synchronization protocol that can be realized
easily and efficiently in both hardware and software;

� The control in a KPN is completely distributed to the individual processes. There-
fore, there is no global scheduler present. As a consequence, partitioning a KPN over
multiple components is a simple task;

� The exchange of data among processes in a KPN is distributed over the FIFOs. There
is no notion of a single global memory that has to be accessed by multiple processes.
Therefore, resource contention does not occur.

1.2.2 Parallel Compiler Techniques (COMPAANDYN approach)

In this section we present our systematic approach to derive a KPN specification from an
application specified as a weakly dynamic program. We call our approach COMPAANDYN.
Also, we give a high-level introduction of the parallel compiler techniques integrated in COM-
PAANDYN as well as we explain the main novelties in the COMPAANDYN approach.

The problem of deriving a KPN specification for an application in a systematic and automated
way has been addressed in the Compaan research work. The Compaan work presented in [18]
[19] [20] [21] [22] [23] reports techniques for automatic derivation of Kahn Process Networks
from applications specified as static affine nested loop programs (SANLP). Such programs
are important in Scientific, Matrix Computation and Adaptive Signal Processing applications.
The main property of such programs is that everything about the program execution is known
at compile time. This property has been exploited extensively in Compaan to derive KPN
specifications. A simple example of a SANLP is shown in Figure 1.3. This example shows
that the bounds of loops and the outcome of conditions are known at compile time, i.e., the
program execution is known.

1 for j = 1:1:4,
2 [x(j)] = F1(...);
3 end
4
5 for j = 1:1:4,
6 if j <= 2,
7 [x(j)] = F2(x(j));
8 end
9 [...] = F3(x(j));
10 end

Figure 1.3: Pseudo code of simple Static
Affine Program.

1 for j = 1:1:4,
2 [x(j)] = F1(...);
3 end
4
5 for j = 1:1:4,
6 if x(j) <= 0,
7 [x(j)] = F2(x(j));
8 end
9 [...] = F3(x(j));
10 end

Figure 1.4: Pseudo code of simple
Weakly Dynamic Program.

Many Scientific, Matrix Computation, and Adaptive Signal Processing applications can be
specified as static affine nested loop programs, and the techniques developed in Compaan
can be used to derive KPN specifications for such applications. However, many media ap-
plications such as JPEG codecs, MPEG codecs, Smart Cameras, Software Radio, etc. have
dynamic (data-dependent) behavior which can not be expressed as static affine nested loop

1.2 Solution Approach 9

programs. The Artemis project, the context in which our research has been performed, tar-
gets exactly such applications with dynamic (data-dependent) behavior. Therefore, we have
developed the COMPAANDYN approach that supports automatic derivation of Kahn Process
Networks from applications specified as weakly dynamic programs. COMPAANDYN is an ex-
tension/generalization of the Compaan research work mentioned above. As a consequence,
the techniques in COMPAANDYN extend significantly the class of applications for which
KPN specifications can be derived automatically. For example, COMPAANDYN can handle
not only Scientific, Matrix Computation and Adaptive Signal Processing applications but also
media applications with dynamic (data-dependent) behavior such as JPEG codecs, MPEG
codecs, etc.

Weakly Dynamic Programs

The input of COMPAANDYN is an application specified as a weakly dynamic program (WDP).
We define a WDP as a task-level sequential program where:

� the function calls in the program execute tasks.

� the control structures in the program are: 1) for-loops with upper and lower bounds
as affine functions of iterators of other loops and parameters; 2) if-then-else constructs
with no restrictions on the condition - the condition of the if can be an arbitrary
function of loop iterators and/or data variables.

� the indexing of data variables (arrays) must be an affine function of for-loop iterators
and possible parameters.

The weak dynamics in the above defined program come from the fact that the condition
of if-then-else constructs can be an arbitrary function of data variables which values may
be unknown at compile time, i.e., outcome of conditions in the program may be unknown
at compile time. Notice that if we constrain the condition of if-then-else constructs to be an
affine function of loop iterators and parameters then our WDP reduces to a static affine nested
loop program.

As a simple illustrative, yet non-trivial example consider the WDP shown in Figure 1.4. This
program consists of three function calls2 F1, F2 and F3. These function calls execute tasks
that communicate data via the array x(j). Every element of the array can be anything from
a scalar variable to a very complicated data structure. In this simple example we assume
that every x(j) is a scalar variable. The execution of F2 depends on the condition at line
6. This condition is data-dependent because it depends on the content of variable x(j). The
values of this variable are not known at compile time, i.e., they are not known before the
actual execution of the program. This fact makes the program to have dynamic behavior,
unpredictable at compile time. A challenging problem is how to analyze and transform this
kind of dynamic programs at compile time in order to derive automatically executable Kahn
Process Network specifications. Below, we present COMPAANDYN as a systematic solution
approach to this problem.

2At some places in this dissertation we use the word function instead of function call for the sake of brevity.

10 Introduction

The COMPAANDYN approach

Our COMPAANDYN approach is depicted in Figure 1.5. It consists of three main steps: 1) De-
pendence Analysis; 2) Transformations; 3) Process Network (PN) Synthesis. These steps are
similar to the steps in the Compaan research work but our steps include more general models
and techniques compared to Compaan in order to deal with weakly dynamic programs. The
techniques involved in our three main steps are described in detail in Chapter 2. Below, we
give only an introductory overview.

end
[x(j)] = F1(...);

for j = 1:1:4,

for j = 1:1:4,

[x(j)] = F2(x(j));

end
[...] = F3(x(j));

if x(j) <= 0,

end

for j = 1:1:4

root

it x(j) <= 0

for j = 1:1:4

[0..4]

4
[0..4]

4 4

[0..4][0..4
]

4

dynamic Single Assignment Code
(dSAC)

Kahn Process Network

(STree)
Schedule Tree

Approximated Dependence Graph
(ADG)

STEP1

STEP2

STEP3
S1 SinkS2

P1 P2

P3 P4
F1 F2 F3

F1

F2

F3

in Matlab or C

Dependence Analysis

dynamic SAC

Transformations

ADG STree

PN synthesis

Weakly Dynamic Program

Kahn Process Network

Figure 1.5: COMPAANDYN: a systematic approach to automatically derive an executable
Kahn Process Network specification from a Weakly Dynamic Program.

In the COMPAANDYN approach we start with an application specified as a weakly dynamic
program (WDP) in Matlab or C, and we convert this WDP into a dynamic Single Assignment
Code (dSAC) representation by doing dependence analysis - STEP1 in Figure 1.5. The dSAC
is a program that is functionally equivalent to the input WDP and has the property that: 1)
every variable in the dSAC is written at most once because of the dynamics in the WDP;
2) for some variables, it is not known whether or not they will be written or read before the
actual execution of the dSAC. Because of the property mentioned above, the dSAC reveals all
possible data-dependencies between the functions in the WDP. Some of the data dependencies
in the dSAC are not exactly defined, i.e., they depend on variables having values that are not
known at compile time.

The dSAC generated in STEP1 is a very large and complex data structure to operate on.

1.2 Solution Approach 11

Therefore, in the second step of our approach (STEP2) we transform the dSAC into a more
compact representation that is a formal model. This model consists of two annotated graph
structures, namely Approximated Dependence Graph (ADG) and Schedule Tree (STree). The
ADG and the STree capture all the information that is present in the dSAC in a formal way.
As a consequence, formal operations can be easily defined and applied on the ADG and the
STree instead of the dSAC.

The ADG contains all the information that is related to the data dependencies between the
functions in the dSAC. The data dependencies are approximated, i.e., the exact data depen-
dencies are not known at compile time. The STree contains all the information about the
execution order between the functions in the dSAC. The STree represents one valid schedule
between all these functions that we call the global schedule. From the STree a local schedule
between any arbitrary set of the functions in the dSAC can be obtained by pruning operations
on the STree.

In the final step (STEP 3 in Figure 1.5) of our COMPAANDYN approach, a Kahn Process
Network (KPN) is synthesized. A KPN consists of concurrent processes that communicate
with each other over unbounded FIFO channels. Every process is specified as a sequential
program. The synthesis of this program is based on information derived from the ADG and
the STree. The synchronization between the processes is accomplished by blocking reads. By
default, the computational and communicational workloads are distributed over the processes
and the channels in accordance with the following partitioning rule: 1) for every node in the
ADG a process is generated; 2) for every edge in the ADG a channel is generated. The
workloads distribution can be changed by applying some techniques that will be introduced
in Section 1.2.3. The process network synthesis in STEP3 is not limited to the generation
of Kahn Process Networks only. With small modifications other process networks that have
different inter-process communication and synchronization mechanisms can be generated.

As said before, our COMPAANDYN approach is an extension/generalization of the previous
Compaan work. Below, we explain the main novelties in COMPAANDYN and we give simple
examples (where necessary) for the sake of clarity.

Novelties in the COMPAANDYN approach

The COMPAANDYN approach deals with weakly dynamic programs (WDP). The definition
of a WDP given earlier in this section shows that WDPs are more general class of programs
than the static affine nested loop programs (SANLP) targeted by the Compaan work. Actu-
ally, this definition suggests that a SANLP is a special case of a WDP. Therefore, the COM-
PAANDYN approach relies on the techniques of Compaan when dealing with this special case
of WDPs. For other cases of WDPs we have developed and integrated in COMPAANDYN

techniques that extend or generalize the techniques used in Compaan. An overview of the
novel techniques in the COMPAANDYN approach follows:

1) Advanced Dependence Analysis:

In order to derive a dSAC from a WDP (STEP1 in Figure 1.5) we have to find all possible data
dependencies between the functions in the WDP. A well known and widely used dependence
analysis technique is the exact array dataflow analysis (EADA) [24] [25] [26]. However,

12 Introduction

EADA can not be performed to find data dependencies in WDPs because of dynamic (data-
dependent) control structures that can be present in WDPs. Why dynamic (data-dependent)
control structures are problem for EADA we explain with a simple example.

Let us consider the WDP shown in Figure 1.4 and try to find at which iterations j there is a
data dependence between functions F2 and F3 through variable x(j). Applying EADA for
this example requires that we have to build a linear system of inequalities and/or equalities
and to solve it using parametric integer programming (PIP) [27]. The solution will show
exactly at which iterations j there is a data dependency betweenF2 and F3. For our example,
EADA requires that the linear system must capture the following information: 1) the exact
iterations j at which variable x(j) is written by F2; 2) the exact iterations j at which variable
x(j) is read by F3; 3) the exact iterations j at which variable x(j) at line 7 in Figure 1.4 and
the same variable x(j) at line 9 have equal indexes.

We can not build the linear system described above because information about the exact
iterations j at which variable x(j) is written by F2 can not be obtained from the WDP in
Figure 1.4. The reason for this is the data-dependent if -condition at line 6. The outcome of
this condition is unknown because the values of variable x(j) are unknown at compile time.

The example given above shows clearly that exact array dataflow analysis (EADA) can not be
performed to find data dependencies in WDPs because the dynamic (data-dependent) control
structures in WDPs make some information unknown at compile time. Therefore, in COM-
PAANDYN we perform more advanced dependence analysis using a technique called Fuzzy
Array Dataflow Analysis (FADA) [28] [29]. The main idea is to substitute the unknown
information in a specific parametric way. By doing this we can build linear systems with
parameters and we can solve these systems by PIP. As a result we find approximated data
dependencies because of the specific parameterization. Below, we give an example of how
unknown information is substituted by parameters and captured in a linear system.

Again, let us consider the WDP shown in Figure 1.4. We showed above that an exact array
dataflow analysis (EADA) can not be performed to find if there is data dependency between
functions F2 and F3 because we can not build the linear system EADA requires. The exact
iterations j at which variable x(j) is written by F2 are unknown. The fuzzy array dataflow
analysis (FADA) solves this problem by substituting this unknown information as shown in
Figure 1.6 - see lines a) and b) in the linear system.

a) 1 � jw � 4
b) jw = C
c) 1 � jr � 4
d) jw = jr

Figure 1.6: Example of building a linear system in Fuzzy Array Dataflow Analysis.

The meaning of lines a) and b) is: variable x(j) can be written by F2 in any iteration
jw 2 [1::4]. We do not know exactly at which iterations jw this happens but we assume
that this happens for iterations jw = C where C is a free parameter which values have to
be determined at run time. The rest of the lines in Figure 1.6 capture the information known
at compile time: c) the exact iterations jr at which variable x(j) is read by F3; d) the exact

1.2 Solution Approach 13

iterations j at which variable x(j) at line 7 in Figure 1.4 and the same variable x(j) at line 9
have equal indexes.

2) Dynamic Single Assignment Code:

At STEP1 in Figure 1.5 we use the approximated data dependencies found by FADA to
generate a program that we call Dynamic Single Assignment Code (dSAC). Because of the
approximated data dependencies our dSAC notion is different from the classical single as-
signment code (SAC or SSA) used in the compiler community and systolic array commu-
nity. The classical SAC is defined as a program in which every variable is written only once
whereas our dSAC has the property that every variable is written at most once. This property
implies that some of the variables may not be written at all. This is because of the dynamic
control structures in a WDP where the conditions are data-dependent, i.e., the outcome of the
conditions is not known at compile time. As an example, in Figure 1.7 we give the dSAC we
derive for the simple WDP shown in Figure 1.4.

1 for j = 1:1:4,
2 ctrl(j) = 5;
3 end
4
5 for j = 1:1:4,
6 [x_1(j)] = F1(...);
7 end
8
9 for j = 1:1:4,
10
11 if x_1(j) <= 0,
12 [x_2(j)] = F2(x_1(j));
13 [ctrl(j)] = j;
14 end
15
16 C = ctrl(j);
17 if j = C,
18 [in_0] = x_2(C);
19 else
20 [in_0] = x_1(j);
21 end
22
23 [...] = F3(in_0);
24
25 end

Figure 1.7: Example of Dynamic Single Assignment Code.

We call the code in Figure 1.7 dynamic SAC because if we consider for example line 12
we do not know at compile time at which iteration the elements of the array x 2(j) will be
written. The only thing known is that they will be written at most once. Moreover, for every
execution of function F3 in line 23, its input is not known at compile time. The input has to
be determined at run time by the code lines 17-21. This code lines we derive based on the
solution of the linear system shown in Figure 1.6. Both cases described above never occur in
the classical SAC cases.

Another new feature of our dSAC is the presence of parameters that originate from the data-
dependent control constructs in a weakly dynamic program (WDP). In order to keep the
functionality of the dSAC equivalent to the functionality of the original WDP, the values
of these parameters have to be changed dynamically at run time. We have developed an

14 Introduction

approach to accomplish the dynamic change by introducing, for every such parameter, a
control variable that stores the correct value of the parameter for every iteration. For example,
C in the dSAC shown in Figure 1.7 is a parameter emerging because of the if-statement in
line 6 of the original program shown in Figure 1.4. This if-statement also appears in the
dSAC in line 11. The dynamic change of the value of C is accomplished by the lines 13 and
16 in Figure 1.7. The control variable ctrl(j) in line 13 stores the iterations for which the
data-dependent condition that introduces C is true. Also, the variable ctrl(j) is used in line
16 to assign the correct value to C for the current iteration. The control variable ctrl(j) is
initialized at the beginning in line 2.

3) Approximated Dependence Graph:

In order to capture, in a formal way, all the information about the data dependencies between
the functions in a dSAC we have introduced our formal model called Approximated Depen-
dence Graph (ADG) at STEP2 in Figure 1.5. We have developed the ADG model because
the classical and widely used Dependence Graph (DG) or Polyhedral Reduced Dependence
Graph (PRDG) [19] models are not general enough to capture approximated data dependen-
cies occurring in a dSAC. We explain this observation with a simple example.

1

2

3

4

j

x_1(1)

x_1(2)

x_1(3)

x_1(4)

x_1

x_2

x_1

a) b)

c)

x_1 ctrl

F1

F2

F3

F1

F1

F1

F1

F3

F3

F3

F3

LBSF2 = f j 2 Z j 1 � j � 4
V

x 1(j) � 0 g

Figure 1.8: Examples of Approximated Dependence Graph and Linearly Bounded Set: a)
Classical Dependence Graph cannot be obtained from dSAC; b) Approximated Dependence
Graph; c) Linearly Bounded Set.

Let us consider the dSAC shown in Figure 1.7. If we try to derive a DG based on the informa-
tion in the dSAC we will arrive at the incomplete graph shown in Figure 1.8-a). In this graph
there is a dark spot in the middle indicating that some information is unknown at compile
time. Because of the data-dependent if-statement at line 11 in Figure 1.7 we do not known
at compile time how many times and at which iterations function F2 is executed and from
where function F3 takes its input. Therefore, we conclude that a DG can not be derived at
compile time from a dSAC. Moreover, a PRDG can not be derived as well because a PRDG

1.2 Solution Approach 15

is a folded DG annotated with polyhedrons.

The example above clearly indicates the need for a model that can deal with the unknown
information. The ADG model we have developed is a possible solution. Here, we present
the ADG model by an example. The ADG corresponding to the dSAC shown in Figure 1.7
is depicted in Figure 1.8-b). For every function in the dSAC there is a node in the ADG.
For every variable in the dSAC there is an edge in the ADG that indicates possible data
dependency. As explained above, some information is not exactly known at compile time.
Therefore, we annotate the nodes in the ADG with Linearly Bounded Sets (LBS). We have
developed the notion of LBS in order to approximate the unknown information.

For example, the exact iterations j at which function F2 is executed in the dSAC are not
known at compile time because of the dynamic condition at line 11 in the dSAC (Figure 1.7).
The LBS shown in Figure 1.8-c) approximates the unknown iterations j. The linear bound
of this LBS is the polytope B = f1 � j � 4g that captures the information that we know
at compile time about the bounds of the iterations j. The variable x 1(j) is interpreted as an
unknown function of j called filtering function whose output is determined at run time and
depends on F1 - see the dashed edge between F1 and F2 in Figure 1.8-b). Introducing the
LBS notion in our ADG model to capture the dynamic behavior of the dSAC is to the best of
our knowledge a novel approach.

Because of the semantics of the LBS, described above, we call the graph in Figure 1.8-b)
approximated dependence graph (ADG). Another reason to call it that way is because the
probability that some data dependencies exist can not be decided 100% at compile time.
For example, the edge between F1 and F3 suggests that there might be a data dependency
between F1 and F3 through the variable x 1(j) but this depends on the dynamic condition
at line 11 of the dSAC in Figure 1.7. If this condition is always true at run time the data
dependency between F1 and F3 does not exist.

1.2.3 Algorithmic Transformation Techniques (MATTRANSFORM)

In this section we introduce our algorithmic transformation techniques to derive a set of exe-
cutable KPN specifications from an application specified as a weakly dynamic program. We
call these techniques MATTRANSFORM for short. First, we motivate our work on the MAT-
TRANSFORM techniques by explaining why deriving a set of alternative KPN specifications
is important in system-level design. Then we give an overview of the MATTRANSFORM

techniques. A more elaborate and detailed presentation of the MATTRANSFORM techniques
is given in Chapter 3.

Why is a set of KPN specifications needed?

In Section 1.1 we argued that a system designer needs a parallel application specification
in order to map an application onto a parallel multiprocessor architecture in a systematic
way. Also, in Section 1.2.1 we motivated why in this dissertation we focus on the Kahn
Process Network (KPN) model of computation for parallel application specification. A KPN
specification corresponding to an application describes how this application is partitioned

16 Introduction

into a composition of concurrent processes which communicate via unbounded FIFOs.

An application can be partitioned into a composition of concurrent processes in many differ-
ent ways. Therefore, many KPN specifications that correspond to a single application exist.
We call them application instances. For example, a set of alternative KPN instances of an
application is shown in Figure 1.2. Each application instance differs from the others in the
degree of exploited task-level parallelism.

When a system designer maps an application onto a parallel multiprocessor architecture the
performance of the system (application + architecture) can significantly depend on the ap-
plication instance (KPN specification) that is being mapped. So, a system designer needs
support to derive a set of alternative KPN instances of an application in order to explore and
evaluate the performance of the system and to choose an application partitioning that satisfies
requirements the target system has to meet.

In general, a system designer is able to derive at most a few alternative KPN instances. This
is so because no systematic way to derive a KPN instance, let alone alternatives, from an
application is known, as a result of which heuristic and time consuming approaches are taken
in practice. Nevertheless, many instances of a single application exist that are worth to be de-
rived for exploration. In Section 1.2.2 we presented our systematic COMPAANDYN approach
to derive an executable KPN specification from an application specified as weakly dynamic
program. Below, we introduce algorithmic transformation techniques that we developed and
implemented to extend the COMPAANDYN approach in order to help a system designer to
derive systematically and quickly a set of alternative KPN specifications from an application.
The algorithmic transformations that we present below are not generally applicable in the
sense that the application has to be specified as a weakly dynamic program.

MATTRANSFORM

MATTRANSFORM is a transformation toolbox that consists of four algorithmic transforma-
tions, namely Unfolding, Skewing, Plane Cutting, and Merging. We developed these trans-
formations in a specific way in order to efficiently exploit the parallel compiler techniques in
COMPAANDYN when deriving alternative Kahn Process Network (KPN) specifications from
an application specified as a weakly dynamic program (WDP). This means that the trans-
formations are meaningful only when they are used in combination with COMPAANDYN to
extract task-level parallelism and to increase or decrease the degree of task-level parallelism
exploited in a KPN specification. In Figure 1.9 we present the transformations by separat-
ing them in two main groups depending on their ability to increase or decrease task-level
parallelism.

If no transformation is selected to be applied then the COMPAANDYN approach derives an
executable KPN specification from a WDP, where the computational workload of the WDP
is distributed over several processes in accordance with the following partitioning rule: ev-
ery function call (task) in the WDP is wrapped in a process that controls the execution of
the function call. In some cases this partitioning rule gives sufficient degrees of task-level
parallelism in the generated KPN specification. However, in many other cases the expressed
task-level parallelism may not be the preferred one.

1.2 Solution Approach 17

NO transformation
More Parallelism:

− Skewing
− Unfolding

− Plane Cutting

transformation
transformation

transformation

Less Parallelism:
− Merging transformation

More Resources
High Performance

+

NO parallelism FULL parallelism

Less Resources
Better Workload Balance

CompaanDyn Approach

P2

P3

P4

P5

P1P2

P3

P1

P2P1

in Matlab or C
Weakly Dynamic Program

Algorithmic Transformations

Figure 1.9: MATTRANSFORM: Algorithmic Transformation Techniques toolbox that allows
systematic derivation of a set of alternative KPN specifications bounded by a KPN where NO
parallelism is exploited to a KPN where FULL task-level parallelism is exploited.

For example, a system designer may want to increase the task-level parallelism in a KPN
specification because his target multi-processor architecture has more parallel resources that
can be exploited but the KPN specification does not have enough concurrent processes.
Therefore, as shown in Figure 1.9, one of the transformations Unfolding, or Skewing, or
Plane Cutting can be applied as well as any combination of them to increase the number of
the concurrent processes in the KPN. This means more task-level parallelism in the generated
KPN and higher performance when mapping this KPN onto the target architecture.

As another example, a situation may occur where a system designer wants to decrease the
number of concurrent processes in a KPN specification. In Figure 1.9 we show that in such
situation the Merging transformation can be applied. A reason to apply this transformation
can be to generate a KPN with better workload balance between the processes by grouping
N less computationally intensive functions (tasks) of the WDP in M concurrent processes,
where N > M . Another reason can be that the multi-processor architecture onto which the
KPN specification is to be mapped has less parallel resources than concurrent processes the
KPN has.

In general, a large number of KPN specifications exist that are functionally equivalent to a
single WDP. Two extreme KPN specifications bound this large number:

1. KPN specification that consists of one process where NO parallelism is exploited;

18 Introduction

2. KPN specification that consists of M concurrent processes, M > 1, where FULL
task-level parallelism available in the WDP is exploited.

Using our algorithmic transformations and any possible combination of them together with
the COMPAANDYN approach, a set of KPN specifications can be derived. This set includes
the two extreme KPNs described above and many other KPNs in between in which the degree
of exploited task-level parallelism is different.

1.3 Related Work

The work presented in this dissertation is directly related to a previous work on automatic
derivation of Process Networks initiated by Rijpkema et al. [19] [18] and further developed
by Turjan et al. [30]. This previous work called COMPAAN focuses on deriving Kahn Pro-
cess Network (KPN) specifications from applications specified as static parameterized affine
nested loop programs. In contrast, our COMPAANDYN approach presented in this disserta-
tion deals with a more general class of applications, i.e., applications described as weakly
dynamic programs from which KPN specifications are derived in a systematic and automated
way. The main novelties in our COMPAANDYN approach that make our approach more gen-
eral than the COMPAAN work have been introduced in Section 1.2.2.

First, in the context of automatic parallelization of sequential programs research has been
done on approaches to convert a nested loop program to an equivalent program which is in a
single-assignment form, i.e., a program in which every memory cell is written at most once.
Such program is easier to be analyzed and parallelized efficiently. The work of Knobe and
Sarkar [31] and the work of Feautrier et al. [32] on this topic are directly related to the first
step in our COMPAANDYN approach presented in this dissertation. This is because in this
step we propose an approach to convert a weakly dynamic program (WDP) into a single-
assignment form which we call dynamic Single Assignment Code (dSAC). The relations are
explained below.

Knobe and Sarkar [31] proposed an approach to convert a nested loop program to a single-
assignment form that they call Array Static Single Assignment (ASSA). Their approach is
more general than our approach in the sense that the class of nested loop programs which
they can convert to their ASSA includes our class of weakly dynamic programs (WDPs)
which we can convert to our dSAC. However, when WDPs are considered, our approach
is more efficient compared to their approach in the sense that our dSAC is a more efficient
single-assignment form in terms of code lines and memory usage compared to their ASSA
form. This is because in our approach a dependence analysis is performed at compile-time
before the corresponding dSAC is generated. This compile-time dependence analysis, called
fuzzy array data-flow analysis (FADA), allows an efficient code generation. The approach of
Knobe and Sarkar does not perform any dependence analysis at compile-time. Instead, the
dependence analysis is performed at run-time by placing a special code called � functions and
@ arrays in their ASSA, thereby making their approach more general. The � functions and
@ arrays introduce significant code overhead because in many cases unnecessary � functions
and @ arrays are placed in the ASSA, thereby making the ASSA form very inefficient in

1.3 Related Work 19

terms of code lines and memory usage compared to our dSAC.

The work of Feautrier et al. in the context of the PAF parallelizer [32] describes an ap-
proach to convert nested loop programs similar to our WDPs into a single-assignment form
called SA. Their approach is based on performing a fuzzy array data-flow analysis (FADA)
at compile-time before generating the SA. The result of this FADA analysis is implemented
by � functions placed in their SA during code generation. The � functions depend on param-
eters whose values have to be set dynamically at run-time in order to preserve the original
data-flow when the control flow cannot be predicted at compile-time. The work of Feautrier
et al. lacks a general approach to set the values of the parameters at run-time. The work
described above relates to our approach for converting a WDP to a dSAC in the sense that
we also perform a FADA analysis at compile-time and we also place a code with parameters
in our dSAC similar to the � functions but our code is more efficient. Also, the difference is
that we have developed a very simple general approach to set the values of the parameters at
run-time. This approach is presented in Section 2.1.2.

In the context of the IMEC’s Data Transfer and Storage Exploration (DTSE) methodology
a technical report by Vanbroekhoven et al. [33] sketches, in terms of examples only, two
ways to transform a program to a single-assignment form that they call Dynamic Single
Assignment (DSA). This work relates to our approach for converting a WDP to a dSAC in
the sense that the programs they consider in their report are the same as our WDPs. However,
from the examples they show it is not possible to determine how general, systematic, and
efficient their approach is if data-dependent ”if”-statements are present in a program. This
fact does not allow us to make a real comparison between their approach and our general and
systematic approach presented in this dissertation. The only thing which is clear about their
approach is that they do not perform any array data-flow analysis, whereas in our approach
we perform fuzzy array data-flow analysis at compile-time.

Substantial work has been done on the formal modeling of the behavior of nested loop pro-
grams in the area of regular array design. Although our work does not deal with regular array
design, there is a relation in the sense that we also have developed and used formal models
to capture and model the behavior of our weakly dynamic programs (WDPs). This is done
in the second step of our COMPAANDYN approach presented in this dissertation. Below we
mention some of the formal models used for regular array design and compare them with our
models which we translate to executable Kahn Process Network specifications.

In [34] the Reduced Dependence Graph (RDG) model and a system of uniform recurrence
equations (URE) are introduced and used to model and specify affine nested loop programs
in the context of automatic generation of systolic arrays. In [35] Thiele introduces piece-wise
regular dependence graphs and reduced piece-wise regular dependence graphs annotated with
linearly bounded lattices to represent the behavior of so-called piece-wise regular programs.
Using such graphs Teich and Thiele have proposed in [36] [37] a systematic mapping of
piece-wise regular algorithms onto processor arrays. In [38] Swaaij et al. introduce a model
called Polyhedral Dependence Graph (PDG) where every node is annotated with conditional
affine recurrence equations. They synthesize systolic arrays from the PDG model. All the
work mentioned above is only capable of modeling the behavior of nested loop programs that
are static, i.e., programs whose behavior is completely known at compile-time. In contrast,
our Approximated Dependence Graph (ADG) model annotated with Linearly Bounded Sets

20 Introduction

(LBS) has been introduced and developed in this dissertation in order to enable the capturing
and modeling of our weakly dynamic programs, i.e., programs whose exact behavior is not
known at compile-time.

In this dissertation we present our set of algorithmic transformations that we have developed
to facilitate the systematic and automated derivation of alternative KPN specifications from
a weakly dynamic program. Our set of transformations has been introduced in Section 1.2.3.
Our Unfolding and Skewing transformations are related to the loop unrolling and loop skew-
ing techniques used in compiler design [39] [40].

The relation between our unfolding transformation and the well known compiler transfor-
mation loop unrolling [39] is in that both transformations aim at enhancing parallelism in a
sequential program. However, loop unrolling enhances instruction level parallelism by copy-
ing a loop body several times and re-indexing the variables in the body, thus creating more
parallel instructions and reducing the loop control overhead. A prologue or epilogue is gen-
erated to guarantee that the unrolled version executes the correct number of iterations of the
original loop. In contrast, our unfolding transformation enhances task-level parallelism by
copying a loop body a number of times in such a way that these copies are mutually ex-
clusive, thus these copies can be encapsulated in concurrent processes. Also, our unfolding
transformation does not generate prologue or epilogue code.

The relation between our skewing transformation and the loop skewing transformation used
in the classical high-performance compilers [40] is in that both transformations are enabling
(auxiliary) transformations that are primarily useful in combination with other transforma-
tions to exploit parallelism. However, the classical loop skewing is used in combination with
loop interchange to exploit fine-grain instruction level parallelism by handling so called wave-
front computations. In contrast, our skewing transformation is used in combination with our
unfolding transformation to expose and exploit task-level parallelism by deriving alternative
KPNs.

In [41] Sriram and Bhattacharyya describe two techniques, namely unfolding and re-timing,
that are used for improving block schedules for Homogeneous Synchronous Data Flow (HSDF)
graphs by exploiting inter-iteration parallelism. These techniques are related to our transfor-
mations unfolding and skewing in the sense that our transformations also facilitate the ex-
ploitation of inter-iteration parallelism available in a weakly dynamic program (WDP) when
such program is converted to a set of KPN specifications. The difference is that we have de-
veloped procedures to do these transformations on the source code of a WDP corresponding
to an application, whereas in [41] the transformations are applied on the HSDF graph cor-
responding to an application. More general class of applications can be specified as WDPs
compared to the class of applications that can be specified as HDFGs. Because of this our
transformations have more general applicability compared to the transformations described
in [41].

Our skewing transformation is similar to the re-timing transformation used in the signal-
processing community [42] in that both transformations aim at improving the performance
of an application by changing the time (iterations) at which some computations are executed.
The difference is that re-timing involves manipulating delays in a Signal Flow Graph (SFG),
thereby minimizing critical data paths in a SFG and maximizing clock rates. Our skewing

1.3 Related Work 21

transformation involves manipulating loop bounds and variable indexes in a weakly dynamic
program (WDP), thereby creating independent computations in a loop body that can be ex-
ecuted in parallel or in pipeline. As said earlier, we have developed a procedure to do the
skewing transformation on the source code of a WDP. In [42] the re-timing transformation
is applied to a SFG that can model static nested loop programs only. This fact and the fact
that a WDP can specify a more general class of applications compared to a static nested
loop program implies that our skewing transformation has more general applicability than
the re-timing transformation.

In [43] Parhi and Messerschmitt describe an unfolding transformation developed to be ap-
plied on iterative data-flow programs. This transformation is similar to our unfolding in that
both transformations increase the number of tasks in a program and unravel the hidden con-
currency. However, iterative data-flow programs, as defined in [43], are static which limits
the applicability of the Parhi’s unfolding to static programs. In contrast, our unfolding trans-
formation is developed to be applied on weakly dynamic programs which are more general
than the iterative data-flow programs. This means that our unfolding transformation is more
general than the Parhi’s unfolding.

In [44] Teich and Thiele propose an approach to partition affine dependence algorithms for
mapping onto reduced/fixed size processor arrays. Their approach is based on two trans-
formations called EXPAND and REDUCE. Their work relates to our work presented in this
dissertation in the sense that our approach to generate Kahn Process Networks (KPNs) using
our Unfolding and Plane cutting transformations is also an approach to partition algorithms.
However, there are some important differences. First, our approach deals with a more general
class of algorithms, i.e., algorithms described as weakly dynamic programs. Second, the re-
sult of the partitioning, i.e., the generated KPNs are suitable for mapping onto heterogeneous
multi-processor platforms. Third, by using our Unfolding and Plane cutting transformations
to generate KPNs we do a reverse partitioning compared to the approach of Teich and Thiele.
They start with a dependence graph (DG) representation of an algorithm which is the par-
titioning of an algorithm that exploits the maximum parallelism available in an algorithm.
Then they apply tiling (grouping) on the DG representation to obtain a desired partitioning in
which less parallelism is exploited. In contrast, we start with a WDP where no parallelism is
exploited and by unfolding or plane cutting we partition the computational workload of the
WDP onto several processes, thereby obtaining a desired partitioning in which more paral-
lelism is exploited.

Kahn Process Networks are supported by the Ptolemy II framework [12] and the YAPI envi-
ronment [45] for concurrent modeling and design of applications and systems. The designer
has to specify manually the application as a Kahn Process Network and to give this network
as an input to the Ptolemy II or YAPI simulation and verification engines. In many cases
manually specifying an application as a Kahn Process Network is a very time consuming and
an error prone process. Our work, presented in this dissertation, relates to Ptolemy II and
YAPI in the sense that it can be used as a front-end tool by Ptolemy II or YAPI. This will sig-
nificantly speedup the modeling effort when Kahn Process Networks are used, and modeling
errors will be avoided because our techniques guarantee correct-by-construction generation
of Kahn Process Networks.

The work presented in [14] [15] [16] [46] uses Kahn Process Networks to model applica-

22 Introduction

tions and to explore the mapping of these applications onto multi-processor architectures.
This work clearly indicates that the application modeling is done manually starting from a
sequential C code and that significant amount of time (a few weeks) is spent by designers on
correctly transforming the sequential C code into Kahn Process Networks. This fact slows
down the design space exploration process. The work presented in this dissertation gives a
solution for systematic and automatic derivation of Kahn Process Networks from sequential
code that will contribute to faster design space exploration.

1.4 Research Contributions

The work presented in this dissertation focuses on the derivation of a set of executable Kahn
Process Network specifications from an application specified as a weakly dynamic program.
The main contributions are:

� development of an approach (called COMPAANDYN) that allows derivation of a
Kahn Process Network specification from a Weakly Dynamic Program in a sys-
tematic and automated way [47]:
Many system-level design flows and application modeling and exploration approaches
reported in the literature use the Kahn Process Network (KPN) model of computation
for a concurrent application specification [11] [12] [14] [15] [16] [45] [48] [49] [50].
The derivation of a KPN specification is based on heuristic and time consuming ap-
proaches because no systematic way to derive a KPN specification from an application
has been known. Recently, the work presented in [19] proposed an approach to derive a
KPN specification from a static affine nested loop program (SANLP). In contrast, this
dissertation presents a systematic approach to derive a KPN specification from an ap-
plication specified as a weakly dynamic program (WDP) that can be easily automated.
A WDP is a more general program class where a SANLP is a special case of WDP.
Therefore, the work presented in this dissertation extends significantly the class of ap-
plications from which KPN specifications can be derived in a systematic and automated
way.

� new notions such as Dynamic Single Assignment Code, Approximated Depen-
dence Graph and Linearly Bounded Sets have been introduced in order to capture
and model weakly dynamic behavior in a WDP [47]:
A lot of work has been done in capturing and modeling the behavior of nested loop
programs in research fields such as regular array design, automatic parallelization, ad-
vanced parallel compilers. The main focus of this work is restricted to modeling static
nested loop programs, thereby limiting the expressive power of the models. Such mod-
els are Static Single Assignment Code (SAC or SSA), Reduced Dependence Graph
(RDG) annotated with uniform recurrence equations (URE) [34], Polyhedral Depen-
dence Graph (PDG) annotated with conditional affine recurrence equations [38], Poly-
hedral Reduced Dependence Graph (PRDG) annotated with Z-polyhedra or periodic
lattice polyhedra [19], and Reduced Piece-wise Regular Dependence Graph (RPRDG)
annotated with linearly bounded lattices [35]. The weakly dynamic programs (WDPs),
this dissertation deals with, can be non-static nested loop programs that have dynamic

1.5 Dissertation Outline 23

(data-dependent) behavior, unpredictable at compile time. The models described above
can not be applied to model the behavior of WDPs. Therefore, we have developed our
own models, namely Dynamic Single Assignment Code and Approximated Depen-
dence Graph annotated with Linearly Bounded Sets - see Section 1.2.2 and Chapter 2.

� task-level algorithmic transformations (called MATTRANSFORM) have been de-
veloped to derive a set of alternative KPN specifications from a WDP [51]:
Deriving a set of alternative KPN specifications from an application is very important
in System-level design, because it gives system designers an opportunity to perform
design space exploration and to select a KPN specification that meets best the sys-
tem requirements. In this dissertation we present several algorithmic transformations
which we have developed to facilitate a systematic derivation of alternative KPN spec-
ifications from a WDP. These KPN specifications are behaviorally equivalent to the
input WDP but the degree of exploited task-level parallelism is different. To the best
of our knowledge our algorithmic transformations together with our COMPAANDYN

approach provide for the first time a systematic and fast approach to derive alternative
KPNs from an application specified as a WDP.

� validation of the presented approach and transformations with real-life industrial
relevant applications [17] [47] [51]:
Case studies and experiments have been performed during the course of the research
work presented in this dissertation to validate the techniques and methods we have
developed. The case studies and experiments have shown that the result of our research
work can be applied successfully in real-life applications. The case studies and some
of the experiments as well as the obtained results are presented in this dissertation.

� prototyping the presented approach (COMPAANDYN) and transformations (MAT-
TRANSFORM) in software:
To automate and verify the approach and transformations presented in this dissertation
the following software has been developed on top of the Compaan tool: 1) some of the
techniques in COMPAANDYN have been prototyped and tested as software procedures.
There is work in progress for the complete implementation of COMPAANDYN in soft-
ware; 2) the presented algorithmic transformations are implemented in a software tool
called MATTRANSFORM.

1.5 Dissertation Outline

The remaining part of this dissertation is organized as follows. Chapter 2 presents our 3-
step approach for deriving an executable Kahn Process Network (KPN) specification from an
application specified as a Weakly Dynamic Program (WDP). The chapter describes in great
details the models, methods, and techniques we have developed and used in the approach.
First, we describe the techniques and procedures involved in the conversion of a WDP to
our dynamic Single Assignment Code (dSAC). Second, we define our two formal models,
namely Approximated Dependence Graph (ADG) and Schedule Tree (STree) as well as the
conversion from a dSAC to an ADG and a STree is described. Third, we present how the
ADG and the STree models are translated to a Process Network model, thereby synthesizing

24 Introduction

an executable KPN specification. The KPN synthesis is decomposed in several sub-steps that
are described as well.

In Chapter 3 we present a set of four algorithmic transformations, namely unfolding, plane
cutting, skewing, and merging that we have developed for a systematic derivation of alterna-
tive application instances (Kahn Process Networks) from an application specified as a weakly
dynamic program. First, we explain how these transformations are encapsulated in an appli-
cation transformation layer on the top of a Y-chart exploration environment in order to fa-
cilitate system designers in exploring alternative instances of an application mapped onto an
architecture template. Next, we describe in detail each transformation in the set by explaining
the general idea behind the transformation, and the formal procedure to do the transformation,
and we give an example that illustrates the formal procedure.

In Chapter 4 we present two case studies that we conducted in order to validate and eval-
uate our approach presented in Chapter 2 and our algorithmic transformations presented in
Chapter 3 on real-life, industrially relevant applications. We report and analyze the results
we obtained in these case studies.

Finally, in Chapter 5 we conclude this dissertation with a summary of our research work
presented in the dissertation, interlaced with some concluding remarks.

Chapter 2
Deriving Process Networks from
Weakly Dynamic Programs

In Chapter 1 we argued that Kahn Process Networks are simple, yet powerful enough for the
targeted application domain, parallel processing models which match the emerging multi-
processor architectures in the following sense: 1) KPNs specify applications as a composition
of concurrent processes where the computation, control, and memory are distributed; 2) the
multi-processor architectures have components that run concurrently, i.e, the computation
and control are distributed over the components, and the architecture has several memory
banks, i.e., distributed memory. Because of 1) and 2), the mapping of Kahn Process Net-
work (KPN) specifications of applications onto multi-processor architectures can be done in
a systematic and transparent way. Also, we argued that a systematic approach to derive KPNs
from sequential programs is needed because the application developers continue to specify
applications as sequential programs.

In this chapter we present our systematic approach COMPAANDYN for deriving executable
Kahn Process Network specifications from applications specified as Weakly Dynamic Pro-
grams (WDP). We have introduced briefly the main steps in COMPAANDYN in Chapter 1
- Section 1.2.2. Here, we elaborate, in more details, on the models and techniques we have
developed and integrated in every step in COMPAANDYN. Figure 1.5 shows our 3-step COM-
PAANDYN approach. We start with a WDP and transform it into dynamic single assignment
code (dSAC) - STEP1 in Figure 1.5. In Section 2.1, we describe our approach to derive
dSAC by presenting in detail the main techniques and procedures involved in the derivation.
An example is given as well.

The second step in our approach is to convert the dSAC into a formal model. This model
consists of two annotated graph structures, namely Approximated Dependence Graph (ADG)
and Schedule Tree (STree). The ADG and the STree capture all the information that is present
in the dSAC in a formal way. As a consequence, formal operations can be easily defined and
applied on the ADG and the STree instead of the dSAC. In Section 2.2, we give a formal

26 Deriving Process Networks from Weakly Dynamic Programs

definition of the ADG. Also, we describe our procedure to derive an ADG from a dSAC and
show an example. In Section 2.3 we define the STree and describe how it is obtained from a
dSAC. Also, we give an example.

In the final step (STEP 3 in Figure 1.5) of our approach, a Kahn Process Network (KPN) is
synthesized. Our synthesis approach is mainly a translation of the ADG model and the STree
model into a Process Network model. This translation is done in several sub-steps that are
presented in Section 2.4.

2.1 Dynamic Single Assignment Code

The Dynamic Single Assignment Code (dSAC) derived from a WDP program is a func-
tionally equivalent program in which every variable is written at most once. This property
suggests that some of the variables may not be written at all. This is because of the dynamic
”if”-statements in the input WDP where the conditions are data-dependent, i.e., the outcome
of a condition is not known at compile time. Our dSAC notion is different from the classical
single assignment code (SAC or SSA). The differences were outlined in Section 1.2.2. In
order to derive a dSAC from a WDP we have to do the following: 1) find all possible data
dependencies between the functions in the WDP. Below, in Section 2.1.1, we give the formal
procedure we adapted from [28] to do the data-dependence analysis, and we illustrate it with
an example; 2) The data-dependence analysis procedure is necessary but not sufficient to
generate a complete dSAC suitable for our final goal of deriving KPNs. Therefore, we have
developed an additional procedure in order to generate an executable dSAC which complies
with our final goal. This procedure is explained in Section 2.1.2

2.1.1 Fuzzy Array Dataflow Analysis (FADA)

Because of the appearance of dynamic (data-dependent) ”if”-statements in a WDP, an exact
array dataflow analysis [24] can not be performed to find data dependencies. This observation
was illustrated in Section 1.2.2 with an example. The approach we follow to find the data
dependencies in case of a WDP is based on parametric integer programming (PIP) [27]. We
use the same technique as in the exact array dataflow analysis for building a PIP system
and add to this system constraints with parameters for the dynamic ”if”-statements in the
WDP. By introducing additional constraints with parameters in a PIP system we ”mask”
the information that is not known at compile time. Because of this we find approximated
data dependencies. The approach described above is known in the literature as Fuzzy Array
Dataflow Analysis (FADA) [28].

Notations

Before we give our procedure to do dependence analysis based on FADA we give the nota-
tions we will use to describe the procedure:

2.1 Dynamic Single Assignment Code 27

� WDP denotes an arbitrary weakly dynamic program in accordance with the definition
given in Section 1.2.2. An example of WDP is given in Figure 2.1;

� hF; IF i denotes an arbitrary function call in WDP , where IF is the iterator vector of
F , i.e., the vector built from the iterators of the loops surrounding F . For example in
Figure 2.1 the function call at code line 23 is denoted as hF3; IF3i;

� IF [k] denotes the k-th iterator from IF . IF [k::l] denotes the sub-vector built from
iterators k to l. If k > l then this is by convention the vector of dimension 0;

� d denotes the depth of a construct in WDP . Or in other words, d is the number of
loops surrounding a construct. A construct can be a for-loop, an if-statement, or a
function call. For example, the for-loop at line 15 in Figure 2.1 has depth d = 0. The
if-statement at line 21 has depth d = 1. The function call at line 22 has depth d = 1;

� hFi; IFii � hFj ; IFj i �
WN

p=0 hFi; IFii �p hFj ; IFj i defines when Fi precedes
Fj lexicographically with respect to nest depths p, 0 � p � N , where
– N is the number of loops surrounding both Fi and Fj ;
– for 0 � p < N :
hFi; IFii �p hFj ; IFj i , (IFi [1::p] = IFj [1::p]) ^ (IFi [p+ 1] < IFj [p+ 1]);

– for p = N :
hFi; IFii �N hFj ; IFj i , (IFi [1::N] = IFj [1::N]) ^ T , where T is a boolean

which is true iff Fi precedes Fj in the program code of WDP .

For example, let us take function calls F2 and F4 in Figure 2.1. We say that F2
precedes F4 lexicographically, denoted as
hF2; IF2i � hF4; IF4i �

W1
p=0 hF2; IF2i �p hF4; IF4i, if one of the following

hold:
hF2; IF2i �0 hF4; IF4i , (0 = 0) ^ (IF2[1] < IF4[1])) IF2[1] < IF4[1]
hF2; IF2i �1 hF4; IF4i , (IF2[1] = IF4[1]) ^ (T = true)) IF2[1] = IF4[1];

� D(hF; IF i) denotes the linear bound of the iteration domain of function call F . The
linear bound of the iteration domain is the set of values that the iterator vector IF can
take, satisfying the following constraint A:IF � b. A is an m� n integral matrix and
b is an integral vector. The values of A and b are determined by: 1) the lower and
upper bounds of iterators of the loops surroundingF in WDP ; 2) the conditions of the
”if”-statements surrounding F in WDP that are affine functions of loop iterators.

For example, let us consider function call F3 in Figure 2.1. This function call is sur-
rounded by only one ”for”-loop (code line 15) with iterator i, thus the iterator vector
IF3 = i. The lower and upper bounds of i are 1 andN , respectively. The ”if”-statement
at code line 21 also surrounds F3 but we ignore this statement because its condition is
not an affine function of loop iterator i. So, the linear bound of the iteration domain of
F3 is determined only by the ”for”-loop bounds as follows:

D(hF3; IF3i) = fi 2 Z j A:i � bg where A =

�
1
�1

�
and b =

�
1

�N

�
.

28 Deriving Process Networks from Weakly Dynamic Programs

Procedure

Let an arbitrary weakly dynamic program WDP be given where a number of function calls
are executed and these function calls communicate data through arrays of variables. If a
variable is an input argument of a function call or it is used in an ”if”-condition then we call
this variable a right-hand-side (RHS) variable. If a variable appears as an output argument
of a function call then we call this variable a left-hand-side (LHS) variable. A RHS variable
and a LHS variable which have the same name form a RHS–LHS pair. Such pair may be a
potential cause for a data dependency between the function call or the ”if”-condition to which
the RHS variable belongs and the function call to which the LHS variable belongs. Below,
we give a 4-step procedure that finds approximated data dependencies between function calls
or between function calls and ”if”-conditions in WDP by analyzing every RHS-LHS pair
that appears in WDP :

STEP1: Find all RHS-LHS pairs in WDP ;

STEP2: For every RHS-LHS pair build a system of linear inequalities and equalities and
solve it by parametric integer programming (PIP) [27]. If a solution exists than there is a data
dependency between the function calls that correspond to the RHS-LHS pair. Moreover, the
solution shows at which iterations the data dependency exists.

Let us take an arbitrary pair < x(g(IFn)) , x(f(IFm)) > from WDP . Variable x(g(IFn))
is the RHS variable where g is an affine index function. This RHS variable appears as an
input argument of function call hFn; IFni. Variable x(f(IFm)) is the LHS variable where
f is an affine index function. This LHS variable appears as an output argument of function
call hFm; IFmi. Function call hFn; IFni is data dependent on function call hFm; IFmi if the
following three conditions hold:

1. g(IFn) = f(IFm) - this condition says that the function calls must reference the same
variable;

2. IFm � IFn - this condition says that the iteration at which hFm; IFmi writes to the
variable must precede the iteration at which hFn; IFni reads the variable;

3. IFm is the lexicographical largest iteration satisfying the first two conditions.

To find at which iterations the above three conditions hold, a system that consists of the
following four groups of inequalities and/or equalities has to be built and solved by PIP:

� Existence Predicate group: This group defines at which iterations the LHS variable
x(f(IFm)) is written by the function call hFm; IFmi, i.e., at which iterations hFm; IFmi
is executed.

If hFm; IFmi is surrounded by dynamic (data-dependent) ”if”-statements then this
group consists of the following inequalities and equalities:

D(hFm; IFmi) ^ IFm [1::d] = C

where d is the depth of the inner most dynamic (data-dependent) ”if”-statement which
surrounds hFm; IFmi. The parameter vector C is introduced because we do not know

2.1 Dynamic Single Assignment Code 29

exactly, due to the dynamic (data-dependent) ”if”-statements, at which iterations (for
which values of the iterator vector IFm) variable x(f(IFm)) is written. The parameter
vector C ”masks” the unknown information.

If hFm; IFmi is not surrounded by dynamic (data-dependent) ”if”-statements then this
group consists of:

D(hFm; IFmi)

In this case we know exactly at which iterations variable x(f(IFm)) is written, there-
fore the parametric equality IFm [1::d] = C is not necessary;

� Conflicting Access group: This group defines at which iterations the RHS variable
x(g(IFn)) and the LHS variable x(f(IFm)) have equal indexes, i.e., at which itera-
tions function calls hFn; IFni and hFm; IFmi reference the same variable. This group
consists of the equality:

g(IFn) = f(IFm);

� Sequencing Condition group: This group defines at which iterations the LHS variable
x(f(IFm)) is written before the RHS variablex(g(IFn)) is read, i.e., at which iterations
function call hFm; IFmi is executed before hFn; IFni:

hFm; IFmi � hFn; IFni;

� Environment group: This group defines at which iterations the RHS variable x(g(IFn))
can be read, i.e., at which iterations the function call hFn; IFni can be executed. This
group consists of the following inequalities and equalities :

D(hFn; IFni).

The four groups above define the following system which has to be solved with IFn and C as
free variables:

Q(IFn ; C) = f IFm j IFm 2 D(hFm; IFmi) ^ IFm [1::d] = C ^

g(IFn) = f(IFm) ^

hFm; IFmi � hFn; IFni ^

IFn 2 D(hFn; IFni) g

(2.1)

The system above can not be solved by PIP because the sequencing condition
hFm; IFmi � hFn; IFni is not an affine inequality or equality. However, from the notations
given at the beginning of this section we know that
hFm; IFmi � hFn; IFn i �

WN

p=0 hFm; IFmi �p hFn; IFni, so the system Q can be
represented as the following set of systems with respect to possible depths p:

Qp(IFn ; C) = f IFm j IFm 2 D(hFm; IFmi) ^ IFm [1::d] = C ^

g(IFn) = f(IFm) ^

hFm; IFmi �p hFn; IFni ^

IFn 2 D(hFn; IFni) g

(2.2)

Now, every predicate �p is an affine inequality and/or equality (see the notation section
above) thus every system Qp is a polyhedron. Therefore, every system Qp can be solved by

30 Deriving Process Networks from Weakly Dynamic Programs

PIP. The PIP solution at depth p we denote as Sp<Fn;Fm;x>(IFn ; C) and it gives the lexico-
graphically largest iteration IFm that satisfies the system Qp, i.e., Sp<Fn;Fm;x>(IFn ; C) =

max Qp(IFn ; C). For every possible depth p we obtain a solution Sp<Fn;Fm;x>(IFn ; C) by
PIP. The obtained solutions form a solution set that defines at which iterations the function
call hFn; IFni is data dependent on hFm; IFmi via the variables with a name x that form the
RHS–LHS pair. The set of solutions depends on the parameter vectorC which values are not
known at compile time and have to be changed dynamically at run time. Therefore, the set
of solutions is approximated (not exact) and we call the corresponding data dependency also
approximated. If a solution is not found for all Qp, i.e., the set of solutions is empty then
the function calls are independent with respect to the variables with a name x that form the
RHS–LHS pair.

STEP3: Group the RHS-LHS pairs in sets where in every set the RHS-variables are the
same, i.e, the RHS-variables are one and the same input argument of a function call or the
RHS-variables are used in one and the same ”if”-condition;

STEP4: For every set generated in STEP3 which has more than one RHS-LHS pair, combine
the solutions found in STEP2 that correspond to the RHS-LHS pairs in the set. The combined
solution for every set can be found by using the procedures implemented in MATPARSER [52]
or by applying the rules defined in [28].

Example

Here, we illustrate the behavior of the procedure described above by an example. Let us take
the weakly dynamic program shown in Figure 2.1. In this program, we have four arrays x, y,
t, and z of variables that may define data dependencies. Now let us apply the four steps of
the procedure to find these data dependencies:

STEP1: We have to find all RHS-LHS pairs of variables. Our example program has seven
RHS-variables:

RHS1: x(i) which is the input argument of function call F1;
RHS2: y(i) which is the input argument of function call F2;
RHS3: t(i) which is the input argument of function call F3;
RHS4: y(i+ 1) which is the first input argument of function call F4;
RHS5: z(i) which is the second input argument of function call F4;
RHS6: z(i) which is in the if-condition at line 17;
RHS7: x(i) which is in the if-condition at line 21;

Also, the program has nine LHS-variables:
LHS1: x(i) which is the output argument of function call Source x();
LHS2: y(i) which is the first output argument of function call Source yt();
LHS3: t(i) which is the second output argument of function call Source yt();
LHS4: z(i) which is the output argument of function call Source z();
LHS5: x(i) which is the output argument of function call F1;
LHS6: y(i+ 1) which is the output argument of function call F2;
LHS7: t(i) which is the output argument of function call F3;
LHS8: y(i+ 1) which is the first output argument of function call F4;

2.1 Dynamic Single Assignment Code 31

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 [x(i)] = _Source_x();
5 end
6
7 for i = 1:1:N+1,
8 [y(i), t(i)] = _Source_yt();
9 end
10
11 for i = 1:1:N+2,
12 [z(i)] = _Source_z();
13 end
14
15 for i = 1:1:N,
16
17 if z(i) = 0,
18 [x(i)] = F1(x(i));
19 end
20
21 if x(i)*x(i) > 100,
22 [y(i+1)] = F2(y(i));
23 [t(i)] = F3(t(i));
24 end
25
26 [y(i+1), z(i+2)] = F4(y(i+1), z(i));
27
28 end

Figure 2.1: Pseudo code of a Weakly Dynamic Program.

LHS9: z(i+ 2) which is the second output argument of function call F4;

The RHS-variables and the LHS-variables form the following RHS-LHS pairs:
pair1: < x(i) ; x(i) > defined by RHS1 and LHS1;
pair2: < x(i) ; x(i) > defined by RHS1 and LHS5;
pair3: < y(i) ; y(i) > defined by RHS2 and LHS2;
pair4: < y(i) ; y(i+ 1) > defined by RHS2 and LHS6;
pair5: < y(i) ; y(i+ 1) > defined by RHS2 and LHS8;
pair6: < t(i) ; t(i) > defined by RHS3 and LHS3;
pair7: < t(i) ; t(i) > defined by RHS3 and LHS7;
pair8: < y(i+ 1) ; y(i) > defined by RHS4 and LHS2;
pair9: < y(i+ 1) ; y(i+ 1) > defined by RHS4 and LHS6;
pair10: < y(i+ 1) ; y(i+ 1) > defined by RHS4 and LHS8;
pair11: < z(i) ; z(i) > defined by RHS5 and LHS4;
pair12: < z(i) ; z(i+ 2) > defined by RHS5 and LHS9;
pair13: < z(i) ; z(i) > defined by RHS6 and LHS4;
pair14: < z(i) ; z(i+ 2) > defined by RHS6 and LHS4;
pair15: < x(i) ; x(i) > defined by RHS7 and LHS1;
pair16: < x(i) ; x(i) > defined by RHS7 and LHS5;

STEP2: For every RHS–LHS pair described above we have to build a set of systems as
defined by Equation (2.2) and to solve it using PIP. Here as an example, we show how a set
of systems is build for pair9 and what the final PIP solution for this set is.

For pair9 function call F2 writes in the LHS variable y(i + 1) and function call F4 reads

32 Deriving Process Networks from Weakly Dynamic Programs

from the RHS variable y(i + 1) - see code lines 22 and 26, respectively. The iterations i at
which F4 is data dependent on F2 via pair9 is determined by the set of systems given below:

Qp(IF4; C) = f IF2 j IF2 2 D(hF2; IF2i) ^ IF2[1::d] = C ^

g(IF4) = f(IF2) ^

hF2; IF2i �p hF4; IF4i ^

IF4 2 D(hF4; IF4i) g

(2.3)

where:

� 0 � p � 1 because F2 and F4 are surrounded by only one common ”for”-loop which
determines two possible depths p - see the program in Figure 2.1. The common ”for”-
loop is at depth p = 0. F2 and F4 are at depth p = 1;

� IF4 = iF4 because F4 is surrounded by only one loop with iterator i;

� IF2 = iF2 because F2 is surrounded by only one loop with iterator i;

� IF2 2 D(hF2; IF2i) ^ IF2[1::d] = C form the existence predicate group that
defines at which iterations the LHS variable y(i + 1) is written by F2. The function
F2 - line 22 in Figure 2.1 - writes the variable y(i+ 1) in the following iterations:

IF2 2 D(hF2; IF2i)) 1 � iF2 � N and IF2[1::d] = C) iF2 = c

NOTE: The functionF2 is surrounded by the dynamic (data-dependent) ”if”-statement
at line 21 in Figure 2.1. It is not known at compile time at which iterations iF2 the
condition of this ”if”-statement is true implying that it is not known at which iterations
variable y(i + 1) is written by F2. Therefore, the constraint iF2 = c is needed to
define the unknown iterations in a parametric way. The meaning is that we do not
know exactly at which iterations the data dependent condition in line 21 is true but
we assume that this happens for iterations iF2 = c where c is a free parameter which
values are not known at compile time.

� g(IF4) = f(IF2) is the conflicting access group that defines at which iterations the
RHS variable y(i+1) and the LHS variable y(i+1) have equal indexes. For pair9 we
have:

iF4 + 1 = iF2 + 1

� hF2; IF2i �p hF4; IF4i form the sequencing conditions group that defines at which
iterations the LHS variable y(i+1) is written before the RHS variable y(i+1) is read.
According to the lexicographical order given by the program in Figure 2.1 we have:

hF2; IF2i �0 hF4; IF4i) iF2 < iF4
or

hF2; IF2i �1 hF4; IF4i) iF2 = iF4

2.1 Dynamic Single Assignment Code 33

� IF4 2 D(hF4; IF4i) is the environment group that defines at which iterations the
RHS variable y(i + 1) is read. Also, some constraints for the parameter N in the
program in Figure 2.1 can be specified:

IF4 2 D(hF4; IF4i)) 1 � iF4 � N ^ 8 � N � 16

According to the specific information described above the Equation (2.3) can be represented
as the following two PIP systems:

Q0(iF4; c) = f iF2 j 1 � iF2 � N;

iF2 = c;

iF4 + 1 = iF2 + 1;

iF2 < iF4;

1 � iF4 � N;

8 � N � 16 g

Q1(iF4; c) = f iF2 j 1 � iF2 � N;

iF2 = c;

iF4 + 1 = iF2 + 1;

iF2 = iF4;

1 � iF4 � N;

8 � N � 16 g

For the system Q0(iF4; c) a solution does not exist. We denote this as:

S0<F4;F2;y>(iF4; c) = ?

For system Q1(iF4; c) PIP gives the following solution:

S1<F4;F2;y>(iF4; c) = (if iF4 = c then c else ?) (2.4)

In the context of the program shown in Figure 2.1 this solution means that function F4 in
line 26 is dependent on function F2 in line 22 via array y. This data dependency exists for
iterations iF4 = c where the first argument of function F4 is produced by function F2 and
has to be taken from array element (variable) y(c). We call this dependency approximated
because: 1) the value of the parameter c is not a constant for every iteration i, i.e., c is a data
dependent parameter; 2) how c changes its value is not known at compile time.

Above we showed how PIP solutions are found for pair9. In the same way solutions have to
be found for the rest of the pairs specified in STEP1.

STEP3: We have to group the RHS-LHS pairs in sets such that in every set the RHS-variable
is the same. For our example we have the following sets:

set1: consists of pair1, and pair2;
set2: consists of pair3, pair4, and pair5;
set3: consists of pair6, and pair7;
set4: consists of pair8, pair9, and pair10;
set5: consists of pair11, and pair12;
set6: consists of pair13, and pair14;
set7: consists of pair15, and pair16;

STEP4: For every set given above we have to combine the solutions corresponding to the
pairs in the set because in every set the RHS variable is the same. Here, as an example, we
show the combined solution for set4. This set consists of:

34 Deriving Process Networks from Weakly Dynamic Programs

� pair8 - applying STEP2 for this pair the following set of solutions is found:
S0<F4; Source yt;y>(iF4) = (iF4 + 1)

� pair9 - applying STEP2 for this pair the following set of solutions is found:
S0<F4;F2;y>(iF4; c) = ?

S1<F4;F2;y>(iF4; c) = (if iF4 = c then c else ?)

� pair10 - applying STEP2 for this pair the following set of solutions is found:
S0<F4;F4;y>(iF4) = ?

S1<F4;F4;y>(iF4) = ?

We combine the solutions above by applying the rules described in [28] or by applying the
procedures Grafting and Pruning defined in [53]. The combined solution is:

S<F4;y>(iF4; c) = (if iF4 = c then c else iF4 + 1) (2.5)

The solution above defines the complete approximated data dependencies for function call
F4 in Figure 2.1-line 26 via array y as follows: 1) F4 is dependent on F2 via array y. This
data dependency exists for iterations iF4 = c where the first argument of function F4 is
produced by function F2 and has to be taken from array element (variable) y(c); 2) F4 is
dependent on Source yt via array y. This data dependency exists for iterations iF4 6= c
where the first argument of function F4 is produced by function Source yt and has to be
taken from array element (variable) y(iF4 + 1).

2.1.2 Dynamic Change of Values of Parameters introduced by FADA

In the previous section we showed how all possible data dependencies between function calls
in a WDP can be found by FADA. For every RHS-LHS pair FADA finds the data dependen-
cies as PIP solutions in one of the following two forms: 1) Sp<Fn;Fm;x>(IFn ; C) if Fm is
surrounded by dynamic (data-dependent) ”if”-statements; 2) Sp<Fn;Fm;x>(IFn) if Fm is not
surrounded by dynamic (data-dependent) ”if”-statements. The PIP solutions can be easily
converted to a corresponding program code, thereby generating non-executable single as-
signment code. This code will be non-executable because the PIP solutions does not contain
information how the values of the parameter vectors C, appearing in some solutions, have
to be set dynamically. Therefore, finding the data dependencies is not sufficient to generate
complete executable dSAC which we need in our approach to derive executable KPN spec-
ifications. To overcome this problem we have developed a procedure which generates very
simple and efficient additional code. This code sets the values of the parameters introduced by
FADA at run time (dynamically) thereby making our dSAC code executable and functionally
equivalent to the input WDP. The procedure is described below followed by an example.

General Procedure

Let us consider an arbitrary RHS-LHS pair < x(g(IFn)) , x(f(IFm)) > that appears in a
WDP. Variable x(g(IFn)) is the RHS variable where g is an affine index function. This RHS

2.1 Dynamic Single Assignment Code 35

variable appears as an input argument of function call hFn; IFni. Variable x(f(IFm)) is the
LHS variable where f is an affine index function. This LHS variable appears as an output
argument of function call hFm; IFmi. Let us assume that by applying the dependence analysis
procedure described in Section 2.1.1 we obtain the PIP solutions Sp<Fn;Fm;x>(IFn ; C) that
depend on the unknown parameter vectorC. The following code has to be generated in order
to set the values of this vector correctly at run time:

1. For the given RHS-LHS pair < x(g(IFn)) , x(f(IFm)) > create an array BC of con-
trol variables. Every control variable BC(f(IFm)) of array BC has a corresponding
variable x(f(IFm)) of array x. A control variable BC(f(IFm)) is used to identify the
most recent iteration at which its corresponding variable x(f(IFm)) of array x is writ-
ten by function call hFm; IFmi. At the beginning, every control variable BC(f(IFm))
of array BC is initialized with value ?. The value ? is a unique value indicating that
the corresponding variable x(f(IFm)) has not been written yet. Such value ? can be
equal to max(IFm) + 1 because value max(IFm) + 1 is never written in any vari-
able BC(f(IFm)) - see the next step. Place the initialization code for array BC at the
beginning of the dSAC;

2. Place the code line BC(f(IFm)) = IFm immediately after the code line where the
function call hFm; IFmi is executed and a value is written in variable x(f(IFm)). By
doing this the control variable BC(f(IFm)) always keeps the most recent iteration at
which the LHS variable x(f(IFm)) is written by hFm; IFmi;

3. Place the code line C = BC(g(IFn)) immediately before the code corresponding
to the PIP solution Sp<Fn;Fm;x>(IFn ; C). By doing this the correct value is assigned
to the parameter vector C for the current iteration IFn . This value is the most re-
cent iteration IFm at which the RHS variable x(g(IFn)) was written by function call
hFm; IFmi. However, other functions may have written x(g(IFn)) in other iterations
as well. Therefore, the PIP solution using the parameter vector C and iteration IFn
will determine the function call which wrote most recently variable x(g(IFn)) and the
iteration when this writing happened.

The three steps described above have to be applied on every RHS-LHS pair which has a PIP
solution that depends on unknown parameters introduced by FADA.

Example

Let us consider pair9:< y(i + 1) ; y(i + 1) > from the example in Section 2.1.1. This
RHS-LHS pair belongs to the program shown in Figure 2.1. The PIP solution for the pair is
Equation (2.4) which depends on the unknown parameter c. In Figure 2.2 we show a piece of
the dSAC derived from the program in Figure 2.1 that is related to pair9. In this piece of the
dSAC we have code lines 20 till 22 which are generated based on the Equation (2.4). Since
we have unknown parameter c we have to use the procedure described in the previous section
to generate additional code which sets the values of c at run time (dynamically).

36 Deriving Process Networks from Weakly Dynamic Programs

1 %parameter N 8 16;
2
3
4
5
6 ...
7 for i = 1:1:N+1,
8 [y_1(i), ...] = _Source_yt();
9 end
10 ...
11 for i = 1:1:N,
12 ...
13 if ...,
14 [y_2(i)] = F2(...);
15
16 ...
17 end
18 ...
19
20 if i = c,
21 [in_0] = y_2(c);
22 else
23 [in_0] = y_1(i+1));
24 end
25 ...
26 [...] = F4(in_0, ...);
27
28 end

Figure 2.2: Piece of the dSAC related to
pair9. The values of parameter c, intro-
duced by the FADA analysis of pair9, are
unknown.

1 %parameter N 8 16;
2
3 for i = 1:1:N,
4 [BC2(i+1)] = N+1;
5 end
6 ...
7 for i = 1:1:N+1,
8 [y_1(i), ...] = _Source_yt();
9 end
10 ...
11 for i = 1:1:N,
12 ...
13 if ...,
14 [y_2(i)] = F2(...);
15 BC2(i+1) = i;
16 ...
17 end
18 ...
19 c = BC2(i+1);
20 if i = c,
21 [in_0] = y_2(c);
22 else
23 [in_0] = y_1(i+1));
24 end
25 ...
26 [...] = F4(in_0, ...);
27
28 end

Figure 2.3: Piece of the dSAC related to
pair9 with additional code which sets the
values of parameter c at run time (dynam-
ically).

1. For pair9we create an arrayBC2 of control variables. Every control variableBC2(i+
1) of array BC2 is initialized with the value N + 1 in accordance with the formula
max(IF2) + 1. The initialization code is placed at the beginning of the dSAC as
shown in Figure 2.3 - code lines 3 till 5;

2. The code BC2(i+1) = i is placed immediately after the function call F2 is executed
- see code line 15 in Figure 2.3. Note that the indexing of variable BC2(i + 1) is the
same as the indexing of the LHS variable y(i+ 1);

3. The code c = BC2(i + 1) is placed just before the value of c is needed - see code
line 19 in Figure 2.3. Note that the indexing of variable BC2(i+ 1) is the same as the
indexing of the RHS variable y(i+ 1).

The example in Figure 2.3 shows that our general way of setting the unknown parameters at
run time results in a very small and efficient additional code - see the lines in bold - which
does not introduce significant overhead. In our example the array BC2 is indexed in the
same way at code lines 15 and 19 just because the indexing functions of the RHS variable
and the LHS variable in pair9 are the same. Because of this we may do further optimization
by replacing the arrayBC2 with a scalar variable. In general, such optimization is not always
possible because for other pairs the indexing functions may be different.

2.1 Dynamic Single Assignment Code 37

2.1.3 Generating Dynamic Single Assignment Code

Our procedure to generate the dSAC is an extended/modified version of the procedure imple-
mented in MATPARSER [52]. The main extensions/modifications we make are:

� we replace the classical array dataflow analysis with the more advanced FADA analysis
outlined in Section 2.1.1;

� we add and use our procedure, described in Section 2.1.2, for dynamic change of pa-
rameters introduced by FADA in order to make the functionality of the dSAC equiva-
lent to the original WDP;

� the data dependent ”if”-conditions are evaluated in separate functions in the dSAC. The
outcome of these functions is substituted back as conditions in the ”if”- constructs.

We explain the effect of the extensions/modifications described above by the dSAC shown
in Figure 2.4. This dSAC corresponds to the program shown in Figure 2.1. First, because
we use FADA for dependence analysis, two additional parameters appear in the dSAC that
were not present in the original WDP. These parameters are u and c. The code lines that use
these parameters are generated based on FADA as well. For example, consider the lines 76 to
85 in the dSAC. They are generated in accordance with the result obtained from our FADA
example shown in Section 2.1.1 - see Equation (2.5).

Second, in order to keep the functionality of the dSAC equivalent to the functionality of
the original WDP, the values of the parameters u and c have to be changed dynamically.
Therefore, our procedure to accomplish the dynamic change introduces for every parameter
an array of control variables that store the correct values of the parameter for every iteration.
The dynamic change of the value of u is accomplished by the code lines 41 and 44 using the
array BC1. The dynamic change of the value of c is accomplished by the code lines 67 and
75 using the arrayBC2. The two arraysBC1 andBC2 are initialized at the beginning of the
dSAC. The initialization code for BC1 and BC2 is shown in lines 3-5 and 7-9, respectively.

Third, we explain how the data dependent conditions in the original WDP are represented in
the dSAC. As an example we use the data dependent condition in line 21 of the original WDP
shown in Figure 2.1. The corresponding code in the dSAC is given in Figure 2.4-lines 44 to
58. The data dependent condition x(i) � x(i) > 100 is transformed to x(i) � x(i)� 100 > 0
by moving all the terms from right to left. The expression x(i) � x(i) � 100 is computed in
the dSAC by the function if x(in 0) in line 55 and the output of this function is checked in
line 58. Lines 44-53 assign the correct value of x(i) to in 0. In general, every data dependent
condition is encapsulated and computed in a separate function in the dSAC.

Finally, the dSAC we generate contains functions called ipd and opd. These functions just
propagate the value of its input to its output and they play a role in the conversion of a dSAC
into an approximated dependence graph (ADG) presented in the next section.

38 Deriving Process Networks from Weakly Dynamic Programs

1 %parameter N 8 16;

for i = 1:1:N,
BC1(i) = N+1;

5 end

for i = 1:1:N+1,
BC2(i) = N+1;

end
10

for i = 1 : 1 : N,
[out_0] = _Source_x();
[x_1(i)] = opd(out_0);

end
15

for i = 1 : 1 : N+1,
[out_0, out_1] = _Source_yt();
[y_1(i)] = opd(out_0);
[t_1(i)] = opd(out_1);

20 end

for i = 1 : 1 : N+2,
[out_0] = _Source_z();
[z_1(i)] = opd(out_0);

25 end

for i = 1 : 1 : N,
if i-3>= 0,
[in_0] = ipd(z_2(i-2));

30 else %% if -i+2 >= 0
[in_0] = ipd(z_1(i));

end
[out_0] = if_z(in_0);
[cond_1(i)] = opd(out_0);

35
[cond_1(i)] = ipd(cond_1(i));
if cond_1(i) = 0,
[in_0] = ipd(x_1(i));
[out_0] = F1(in_0);

40 [x_2(i)] = opd(out_0);
[BC1(i)] = opd(i);

end

[u] = ipd(BC1(i));
45 if -u+i>= 0,

if u-i>= 0,
[in_0] = ipd(x_2(u));

else %% if -u+i-1 >= 0

49 [in_0] = ipd(x_1(i));
end

else %% if u-i-1 >= 0
[in_0] = ipd(x_1(i));

end
[out_0] = if_x(in_0);

55 [cond_2(i)] = opd(out_0);

[cond_2(i)] = ipd(cond_2(i));
if cond_2(i) > 0,
if i-2>= 0,

60 [in_0] = ipd(y_3(i-1));
else %% if -i+1 >= 0
[in_0] = ipd(y_1(i));

end

65 [out_0] = F2(in_0);
[y_2(i)] = opd(out_0);
[BC2(i+1)] = opd(i);

[in_0] = ipd(t_1(i));
70

[out_0] = F3(in_0);
[t_2(i)] = opd(out_0);

end

75 [c] = ipd(BC2(i+1));
if -c+i>= 0,
if c-i>= 0,

[in_0] = ipd(y_2(c));
else %% if -c+i-1 >= 0

80 [in_0] = ipd(y_1(i+1));
end

else %% if c-i-1 >= 0
[in_0] = ipd(y_1(i+1));

end
85

if i-3>= 0,
[in_1] = ipd(z_2(i-2));

else %% if -i+2 >= 0
[in_1] = ipd(z_1(i));

90 end
[out_0, out_1] = F4(in_0, in_1);
[y_3(i)] = opd(out_0);
[z_2(i)] = opd(out_1);

95 end

Figure 2.4: Dynamic Single Assignment Code derived from the Weakly Dynamic Program
shown in Figure 2.1.

2.2 Approximated Dependence Graph

In general, our dSAC notion presented in the previous section is a very complex data model to
operate on especially when formal operations have to be defined and applied. Therefore, we
have developed a more compact model called approximated dependence graph (ADG). The
ADG captures, in a formal way, the information related to the data dependencies between the
function calls in the dSAC.

2.2 Approximated Dependence Graph 39

2.2.1 Definitions

Below, we define our approximated dependence graph (ADG) model.

Definition 2.2.1 (approximated dependence graph)
An Approximated Dependence Graph (ADG) is given by a tuple ADG = (Nodes; Edges),
where

� Nodes = fNi j i = 1; 2; :::;Mg is a set of nodes,

� Edges = fEj j j = 1; 2; :::; Pg is a set of edges.

Definition 2.2.2 (node)
A node in the ADG is given by a tuple N = (IN ; ON ; FN ; NDN), where

� IN = fpk j k = 1; 2; :::;Kg is a set of input ports,

� ON = fql j l = 1; 2; :::; Lg is a set of output ports,

� FN is a tuple FN = (F; in; out), where in and out are sets of variables and F :
in ! out is a function,

� NDN is the domain of N defined by a linearly bounded set (LBS - Definition 2.2.6).

Definition 2.2.3 (input port)
An input port is given by a tuple p = (Vp; Ap; IPDp), where

� Vp is an n-dimensional variable associated with the port,

� Ap is a variable that:

– binds the port to the function in the node to which the port belongs if Ap 2 in;

– binds the port to filtering functions of a LBS (Definition 2.2.6) which defines the
domain (NDN) of the node to which the port belongs if Ap =2 in ^ Ap � Vp;

– binds the port to filtering functions of LBSs which define the domains (IPDs) of
other input ports if Ap =2 in ^ Ap 6� Vp;

� IPDp is the domain of p defined by a LBS (Definition 2.2.6).

Definition 2.2.4 (output port)
An output port is given by a tuple q = (Vq ; Aq ; OPDq), where

� Vq is an m-dimensional variable associated with the port,

� Aq is a variable that:

– binds the port to the function in the node to which the port belongs if Aq 2 out;

– is an integral iterator vector I pointing a point in the port domain (OPDq) if
Aq =2 out;

40 Deriving Process Networks from Weakly Dynamic Programs

� OPDq is the domain of q defined by a LBS (Definition 2.2.6).

Definition 2.2.5 (edge)
An edge in the ADG is a triple E = (q; p;M), where

� q = (Vq ; Aq ; OPDq) is an output port,

� p = (Vp; Ap; IPDp) is an input port,

� Vp = Vq , i.e., variables Vp and Vq have same names and equal dimensions,

� M : Ip ! Iq is an affine mapping where Ip 2 IPDp and Iq 2 OPDq .

Definition 2.2.6 (linearly bounded set)
Let be given four sets of functions
S1 = ff1x(I) j x = 1::jS1j; I 2 Z

ng, S2 = ff2x(I) j x = 1::jS2j; I 2 Z
ng

S3 = ff3x(I) j x = 1::jS3j; I 2 Z
ng, S4 = ff4x(I) j x = 1::jS4j; I 2 Z

ng,
an integral m � n matrix A and an integral n-vector b. A linearly bounded set (LBS) is a
set of points
LBS = f I 2 Z

n j A:I � b;
if S1 6� ;) 8 x=1::jS1j; f

1
x(I) � 0,

if S2 6� ;) 8 x=1::jS2j; f
2
x(I) � 0,

if S3 6� ;) 8 x=1::jS3j; f
3
x(I) > 0,

if S4 6� ;) 8 x=1::jS4j; f
4
x(I) < 0 g.

The set of points B = f I 2 Z
n j A:I � b g is called linear bound of the LBS and the set

of functions S = S1 [S2 [S3 [S4 is called filtering set. The functions f jx(I) 2 S are
called filtering functions. Every f jx(I) 2 S can be an arbitrary function of I .

2.2.2 Deriving ADG from dSAC

This section deals with the conversion of a dynamic single assignment code into the approx-
imated dependence graph defined in Section 2.2.1. The relation between the dSAC and the
ADG is the following:

� for every function call [arg] = ipd(var) in the dSAC there exists a corresponding
input port p = (Vp; Ap; IPDp) in the AGD, where Vp = var, Ap = arg and IPDp

is the set of iterations in which the function ipd is executed. The function ipd is an
identity function;

� for every function call [var] = opd(arg) in the dSAC there exists a corresponding
output port q = (Vq ; Aq ; OPDq) in the AGD, where Vq = var, Aq = arg and OPDq

is the set of iterations in which the function opd is executed. The function opd is an
identity function;

� for every pair < [argi] = ipd(vari) , [varo] = opd(argo) > in the dSAC there
exists an edge E = (q; p;M) in the ADG if vari and varo have the same name and
dimension. q is the output port in the ADG corresponding to opd and p is the input

2.2 Approximated Dependence Graph 41

port in the ADG corresponding to ipd. M is an affine mapping that relates iterations
in which the ipd consumes a value to the corresponding iterations in which this value
is produced by opd;

� for every function call [oArguments] = hnamei(iArguments) in the dSAC with
hnamei different than ipd or opd there exists a corresponding node
N = (IN ; ON ; FN ; NDN) = (IN ; ON ; (F; in; out); NDN) in the ADG, where:

For every function [arg] = ipd(var) in the dSAC if arg 2 iArguments then the
corresponding input port p in the ADG belongs to IN . For every function [var] =
opd(arg) in the dSAC if arg 2 oArguments then the corresponding output port
q in the ADG belongs to ON . The elements of FN are related to the dSAC as follows:
F = hnamei, in � iArguments and out � oArguments. NDN is the set of
iterations in which the function hnamei is executed.

The conversion of a dSAC to an ADG is done in two steps: 1) the dSAC is converted to a
syntax tree [54]; 2) the syntax tree is parsed and all the elements of the ADG are created and
specified in accordance with the relations given above. The syntax tree of the dSAC is similar
to the parse tree defined in [19]. The difference is that the expressions in the syntax tree of a
dSAC are not limited to affine expressions of loop iterators. In the dSAC the expressions can
be an arbitrary functions of loop iterators and/or data variables. For more details about the
parse tree and how it can be created we refer the reader to [19] [52].

2.2.3 Examples

Let us consider the dynamic single assignment code shown in Figure 2.4. The corresponding
approximated dependence graph is shown in Figure 2.5. It consists of 9 nodes and 19 edges.
Below, we show examples of how these nodes and edges are constructed in accordance with
the definitions given in Section 2.2.1.

Example of Definition 2.2.1:
The ADG in Figure 2.5 is given by the tuple ADG = (Nodes; Edges), where

� Nodes = fN1; N2; N3; N4; N5; N6; N7; N8; N9g is the set of nodes,

� Edges = fED1; ED2; ED3; ED4; ED5; ED6; ED7; ED8; ED9; ED10;
ED11; ED12; ED13; ED14; ED15; ED16; ED17; ED18; ED19g is the

set of edges.

Every node in the ADG has a corresponding function call in the dSAC. The function call is
shown in round brackets below the name of the node in Figure 2.5. Every edge in the ADG
corresponds to a variable in the dSAC. The variable is shown in round brackets next to the
name of the edge.

Example of Definition 2.2.2:
Consider node N7 in the ADG shown in Figure 2.5. N7 corresponds to function call F2 in
the dSAC. This node is given by the tuple N7 = (IN7; ON7; FN7; NDN7), where

42 Deriving Process Networks from Weakly Dynamic Programs

ED6(cond_1)

ED3(cond_2)

ED
8(

x_
1)

ED9(x_1)
ED5(t_1)

ED10(y_2)

ED12(y_3)

ED13(y_1)

ED14(y_1)

ED15(y_1)

ED19(z_1)

ED
16

(z
_1

)

E
D

17(z_2)

ED18(z_2)

ED
7(x_1)

ED1(x_2)

ED4(cond_2)

(F1)
N5 N8

(F3)

(if_z)
N4

N1
(S_x)

(S_z)

p1

q1

q2
p2 p3

(F4)
N9

(F2)
N7

q1

N2
(S_yt)

N6
(if_x)

N3

q1

q1

q1

q1

q2 p1
p2

p4
p3

p5

p6

ED2(BC1)

ED11(BC2)

Figure 2.5: Approximated Dependence Graph derived from the dSAC shown in Figure 2.4.

� IN7 = fp1; p2; p3g is the set of input ports,

� ON7 = fq1; q2g is the set of output ports,

� FN7 = (F2; fin 0g; fout 0g), where F2 : fin 0g ! fout 0g,

� NDN7 is the domain of N7 defined by the linearly bounded set
LBS = f i 2 Z j 1 � i � N ^ 8 � N � 16; cond 2(i) > 0 g.

NDN7 represents the iterations i at which function call F2 is executed in the dSAC.
These iterations are determined by code lines 1, 27, and 58 of the dSAC in Figure 2.4.
The linear bound of the LBS is determined by code lines 1 and 27 and it is the set of

points B = f I 2 Z
n j A:I � b g = f i 2 Z

1 j

�
1
�1

�
:i �

�
1

�N

�
^ 8 �

N � 16 g = f i 2 Z j 1 � i � N ^ 8 � N � 16 g. The filtering set
of the LBS is determined by the ”if”-condition in code line 58 thus this set is S =
S1 [S2 [S3 [S4 = ; [; [f cond 2(i) g [;.

The exact iterations i at which function call F2 is executed are not known at compile
time because of the dynamic (data-dependent) condition at code line 58 in the dSAC
(Figure 2.4). That is why we introduce the notion of linearly bounded set (see Defini-
tion 2.2.6) by which we approximate the unknown iterations i. The linear bound B of

2.2 Approximated Dependence Graph 43

the LBS defining NDN7 captures the information that we know at compile time about
the bounds of the iterations i. The variable cond 2(i) in code line 58 is interpreted as
an unknown function of i called filtering function whose output is determined at run
time.

Examples of Definition 2.2.3:
Consider the input port p2 of node N7 in the ADG shown in Figure 2.5. p2 corresponds to
function call [in 0] = ipd(y 3(i� 1)) at line 60 in the dSAC. The input port p2 is given
by the tuple p2 = (Vp2; Ap2; IPDp2), where

� Vp2 = y 3(i� 1) is the variable associated with the port,

� Ap2 = in 0 is the variable binding the port to the function F2,

� IPDp2 is the domain of p2 defined by the linearly bounded set
LBS = f ip2 2 Z j 2 � ip2 � N ^ 8 � N � 16; cond 2(ip2) > 0 g. This
LBS approximates the iterations at which the function call [in 0] = ipd(y 3(i�1))
is executed in the dSAC.

Consider the input port p1 of node N7 in the ADG shown in Figure 2.5. p1 corresponds to
function call [cond 2(i)] = ipd(cond 2(i)) at line 57 in the dSAC. The input port p1 is
given by the tuple p1 = (Vp1; Ap1; IPDp1), where

� Vp1 = cond 2(i) is the variable associated with the port,

� Ap1 = cond 2(i) is the variable binding the port to the filtering function cond 2(i)
which defines the domain of node N7 - see Example of Definition 2.2.2 given above,

� IPDp1 is the domain of p1 defined by the linearly bounded set
LBS = f ip1 2 Z j 1 � ip1 � N ^ 8 � N � 16g. This LBS defines the
iterations at which the function call [cond 2(i)] = ipd(cond 2(i)) is executed in the
dSAC. Notice that these iterations are known at compile time. Therefore, in this case
the LBS is actually a polytope.

Consider the input port p2 of node N9 in the ADG shown in Figure 2.5. p2 corresponds to
function call [in 0] = ipd(y 2(c)) at line 78 in the dSAC. The input port p2 is given by
the tuple p2 = (Vp2; Ap2; IPDp2), where

� Vp2 = y 2(c) is the variable associated with the port,

� Ap2 = in 0 is the variable binding the port to the function F4,

� IPDp2 is the domain of p2 defined by the linearly bounded set
LBS = f (ip2; c) 2 Z

2 j 1 � ip2 � N ^ 8 � N � 16; � c+ ip2 � 0; c�
ip2 � 0 g. This LBS approximates the iterations at which function call [in 0] =
ipd(y 2(c)) is executed in the dSAC because the values of c are not known at compile
time. NOTE: The LBS has two filtering functions, namely f11 (ip2; c) = �c+ ip2 and
f12 (ip2; c) = c � ip2 that depend on c which is to be determined at run time. These
functions are binded via c to the input port described below.

44 Deriving Process Networks from Weakly Dynamic Programs

Consider the input port p1 of node N9 in the ADG shown in Figure 2.5. p1 corresponds to
function call [c] = ipd(BC2(i+1)) at line 75 in the dSAC. The input port p1 is given by
the tuple p1 = (Vp1; Ap1; IPDp1), where

� Vp1 = BC2(i+ 1) is the variable associated with the port,

� Ap1 = c is the variable binding this port (p1) to the filtering functions f11 (ip2; c) and
f12 (ip2; c) that define the domain (IPDp2) of port p2 in node N9 - see the example of
port p2 given above,

� IPDp1 is the input port domain of p1 defined by the linearly bounded set
LBS = f ip1 2 Z j 1 � ip1 � N ^ 8 � N � 16g.

Examples of Definition 2.2.4:
Consider the output port q1 of node N9 in the ADG shown in Figure 2.5. q1 corresponds to
function call [y 3(i)] = opd(out 0) at line 92 in the dSAC. The output port q1 is given by
the tuple q1 = (Vq1; Aq1; OPDq1), where

� Vq1 = y 3(i) is the variable associated with the port,

� Aq1 = out 0 is the variable binding the port to the function F4,

� OPDq1 is the domain of q1 defined by the linearly bounded set
LBS = f iq1 2 Z j 1 � iq1 � N ^ 8 � N � 16 g.
NOTE: In this case the LBS is a polytope that defines exactly at which iterations the
function call [y 3(i)] = opd(out 0) is executed in the dSAC.

Consider the output port q2 of node N7 in the ADG shown in Figure 2.5. q2 corresponds to
function call [BC2(i+ 1)] = opd(i) at line 67 in the dSAC. The output port q2 is given
by the tuple q2 = (Vq2; Aq2; OPDq2), where

� Vq2 = BC2(i+ 1) is the variable associated with the port,

� Aq2 = i is the iterator vector pointing to the points in OPDq2, i.e., the vector that
consists of the iterators of the loops surrounding the function call [BC2(i + 1)] =
opd(i),

� OPDq2 is the domain of q2 defined by the linearly bounded set
LBS = f iq2 2 Z j 1 � iq2 � N ^ 8 � N � 16; cond 2(iq2) > 0g.
NOTE: In this case the LBS approximates the iterations at which function call [BC2(i+
1)] = opd(i) is executed in the dSAC.

Example of Definition 2.2.5:
Consider edge ED12 in the ADG shown in Figure 2.5. ED12 corresponds to the variable
y 3 that appears in function calls [in 0] = ipd(y 3(i� 1)) and [y 3(i)] = opd(out 0)
at lines 60 and 92 in the dSAC. The edge ED12 is given by the triple E12 = (q1; p2;M),
where

2.3 Schedule Tree 45

� q1 = (y 3(i); out 0; f iq1 2 Z j 1 � iq1 � N ^ 8 � N � 16 g) is the output
port,

� p2 = (y 3(i�1); in 0; f ip2 2 Z j 2 � ip2 � N ^ 8 � N � 16; cond2(ip2) > 0 g)
is the input port,

� the affine mapping M is given by iq1 = ip2 � 1.

2.3 Schedule Tree

The ADG model presented in the previous section does not capture the information about the
execution order between the function calls that is available in the dSAC. This information is
captured in a formal and compact way by our schedule tree (STree) model described in this
section.

2.3.1 Definition

Below, we give the definition of our STree model.

Definition 2.3.1 (schedule tree)
A Schedule Tree STree = (NS ; ES) is a syntax tree Tree = (N;E) [54], derived from a
dSAC, where

� the set of nodes NS � N ,

� the set of edges ES � E,

� the topology of the STree has to represent a control structure of a program that exe-
cutes the function calls [] = hnamei() of the dSAC in a correct order. hnamei is
different from ipd and opd.

2.3.2 Deriving STree from dSAC

The procedure to obtain the STree from the dSAC is done in two steps: 1) the dSAC is
converted to a syntax tree using a standard syntax parser [54]; 2) the STree is extracted from
the syntax tree. According to Definition 2.3.1 the schedule tree (STree) is a pruned version of
the syntax tree derived from the dSAC. The pruning procedure is given by the pseudo code
below:

for all leafNodej 2 N do
if leafNodej 6= ipd ^ leafNodej 6= opd then

MARK all nodes from leafNodej to rootNode;
endif

endfor

46 Deriving Process Networks from Weakly Dynamic Programs

for all Nodej 2 N do
if Nodej is not marked then

REMOVE Nodej;
endif

endfor

First, this procedure visits every leaf node in the syntax tree and checks whether the leaf node
represents a function call of the dSAC with name different from ipd and opd. If this is true
then all the nodes in the path from the leaf node to the root node in the syntax tree are marked.
After all the leaf nodes are visited, the marked syntax tree is traversed and all the nodes that
are not marked are removed.

2.3.3 Example

Consider the dynamic single assignment code shown in Figure 2.4. The corresponding sched-
ule tree (STree) is depicted in Figure 2.6. If we parse this tree top-down from left to right a

root

for i = 1:1:N
for i = 1:1:N

for i = 1:1:N+1

for i = 1:1:N+2

if cond_1(i) = 0

[] = F4()

[] = F3()

if cond_2(i) > 0

[] = F2()

[] = if_x()[] = F1()

[] = if_z()
[] = _Source_x()

[] = _Source_yt()

[] = _Source_z()

Figure 2.6: Schedule Tree derived from the dSAC shown in Figure 2.4.

program code can be generated that gives a valid sequential execution order (global sequen-
tial schedule) among function calls Source x, Source yt, Source z, if z, if x, F1, F2,
F3, and F4. This sequential order is the original order given by the dSAC.

2.4 Process Network Synthesis

In this section, we present the final step of our approach in which we synthesize a process
network - see STEP3 in Figure 1.5. Our synthesis approach is mainly a translation of the
ADG model and STree model into a process network (PN) model. The structure of our PN
model is defined in Section 2.4.3. The basic synthesis flow in STEP3 is depicted in Figure 2.7.
The starting point for the synthesis is the information captured in the ADG and the STree.

2.4 Process Network Synthesis 47

This information is enough to generate a set of process networks with different topologies and
degree of exploited parallelism. The dashed box in Figure 2.7 selects one possible topology
of a network that has to be synthesized.

F2

F3

F1

P2P1

F1 F2 F3

root

for k
for j

for i

for t

OPD refinement
Point−to−Point

Node Grouping

PN−to−ParseTrees
Linearization

Code Generation

Partitioning
Information

PN
Synthesis

Process Network
Description

Processes

PN

(approximated data dependency) (controll dependency)
STree

2

4

3

1

ADG

ADG’

Edge Grouping
STEP3

Figure 2.7: The Process Network Synthesis step in COMPAANDYN consists of four sub-steps.

The process network synthesis consists of four steps as shown in Figure 2.7. In step 1, we
apply two transformations on the ADG, namely Point-to-Point and OPD refinement. This
transformations have to be done because of two reasons:

1. On the one hand, our synthesis approach translates an ADG model into a PN model,
where there is one-to-one correspondence between the input ports of the ADG and
the input ports of the PN. The same is true for the output ports. The ADG may have
several input ports connected to a single output port. On the other hand, we focus on
the synthesis of a special class of process networks: Kahn Process Networks, where
every input port is connected to only one unique output port. This fact requires that

48 Deriving Process Networks from Weakly Dynamic Programs

we have to change the topology of the ADG such that every input is connected to only
one unique output port, i.e., point-to-point connection. The change of the topology is
always possible without changing the semantics of the ADG model. For more details
see the transformation Point-to-Point presented in Section 2.4.2;

2. Every output port in the PN has to send a token in its corresponding output channel if it
is possible that the token will be needed in the process that reads this channel. This is
accomplished by the transformation OPD refinement presented in Section 2.4.2. This
transformation is applied on every OPD that is associated with an output port in the
ADG before the ADG model is translated to the PN model.

In steps 2 and 3 (Figure 2.7), the process network model (PN) is created gradually by creating
the topology of the PN - step 2, followed by creating the behavior of the PN - step 3. The
topology of the process network is created by grouping nodes and edges of the ADG into
processes and channels in the PN. The grouping is based on the partitioning information de-
livered by the dashed box in Figure 2.7. The grouping procedures are given in Section 2.4.4.

In step 3 in Figure 2.7 the behavior of the PN is created. The procedures that create the
behavior are presented in Section 2.4.5. These procedures operate on the PN model and use
the information captured in the STree. A procedure called Linearization deals with the com-
munication behavior of every process in the PN. This procedure extends the research work
presented in [21] [22]. The procedure is built depending on the target class of process net-
works under synthesis - in our case Kahn Process Networks (KPN). In a KPN the processes
communicate with each other over 1-dimensional unbounded FIFO channels. In Section 2.4.5
we define four possible ways to model this communication. Also, we give a procedure that
selects for every channel the optimal communication model that preserves the correct behav-
ior of the PN. The information needed to build this model is derived by the Linearization
procedure as well.

Internally, a process in a KPN has by definition [10] a sequential behavior. This means that
the function calls that have to be executed inside a process are executed in a sequential order.
The procedure PN-to-ParseTree, given in Section 2.4.5, derives this order such that the PN
execution is deadlock free and expresses it as a parse tree for every process in the PN.

The last step of the PN synthesis (Figure 2.7 - step 4) is called Code Generation. In this
step an executable code of a Kahn process network is generated from the PN model. We use
a software engineering technique called Visitor [55] to visit the PN model structure and to
generate the executable code. This code can be expressed in any programming language on
top of which an environment to execute Kahn process networks is built. For example, the
YAPI environment [45] in C++, or the PtolemyII framework [12] in Java, or SystemC. The
Code Generation step is presented in Section 2.4.6 by an example.

2.4.1 Notations

In the rest of the sections in this chapter, the following notations apply. Let G = (S; T) =
(fsj jj = 1::jSjg; (E1; E2)) be given. G is called a tuple with elements: set S and tuple T .
The number of the elements of a given set S we denote by jSj. Adding a new element e to a

2.4 Process Network Synthesis 49

given set S is denoted by S.ADD(e). An empty set is denoted by ;. The symbol ":" is used
to point hierarchically to an element of a given tuple. For example, if the tuple G is given
then G:T:E1 points to the element E1. The symbol "()" is used to point hierarchically to
the tuples to which a given element belongs. For example, if the element E1 is given then
(E1)T points to the tuple T and ((E1)T)G points to the tupleG. Also, the combination of ”.”
and ”()” is used. For example, if E1 is given then (E1)T :E2 points to the element E2 of T .
The symbol ”?” has to be read as not defined. The symbol ” ” has to be read as gets. The
symbol ”jj” denotes concatenation. The text followed by the symbol ”.” has to be interpreted
as a comment line or auxiliary explanation.

2.4.2 ADG transformations

Point-to-Point

The Point-to-Point transformation transforms an ADG such that every output port is associ-
ated with at most one edge as follows. Let an ADG = (Nodes; Edges) be given. For every
edge Ei = (ql; pk;M) 2 Edges create a new port ql i = ql, add this port to the node that
contains ql and modifyEi such that Ei = (ql i; pk;M). Finally, for every nodeN 2 Nodes
remove the original output ports ql from ON .

Example: Figure 2.8 illustrates the point-to-point transformation applied on port q1 of node
N2 in the ADG shown in Figure 2.5. Three edges start from port q1. After the transformation
node N2 has three output ports q1 13, q1 14, q1 15, where
q1 13 = q1 14 = q1 15 = q1 = (y 1(i); out 0; f iq1 2 Z j 1 � iq1 � N +
1 ^ 8 � N � 16 g).

(F2)
N7

(F4)
N9

ED15(y_1)

ED14(y_1)

ED13(y_1)

q1_13
q1_14

q1_15 N2
(S_yt)

(F2)
N7

(F4)
N9

N2
(S_yt)

ED15(y_1)

ED14(y_1)

ED13(y_1)

q1

Point−to−Point

Figure 2.8: Example of Point-to-Point transformation for a part of the ADG shown in Fig-
ure 2.5.

OPD refinement

Let anADG = (Nodes; Edges) be given. According to Definition 2.2.5 in Section 2.2 every
edge E 2 Edges is given by E = ((Vq ; Aq; OPDq); (Vp; Ap; IPDp);M), where OPDq

and IPDp are linearly bounded sets with linear bounds Bq = f iq 2 Z
n j Aq :iq � bq g

50 Deriving Process Networks from Weakly Dynamic Programs

and Bp = f ip 2 Z
m j Ap:ip � bp g, respectively. The transformation OPD refinement

derives for every E 2 Edges a new linearly bounded set OPD
0

q = OPDq \ M(Bp),
where M(Bp) is the image of Bp in Zn defined by the affine mapping M . In order to find
the image M(Bp) we use the procedure described in [56]. Also, the Ehrhart test described
in [19] can be used.

Example of OPD refinement:
Consider edgeED12 in the ADG shown in Figure 2.5. The edge ED12 is given by the triple
E12 = (q1; p2;M), where

� q2 = (y 3(i); out 0; f iq1 2 Z j 1 � iq1 � N ^ 8 � N � 16 g) is the output
port,

� p2 = (y 3(i� 1); in 0; f ip2 2 Z j 2 � ip2 � N ^ 8 � N � 16;
cond 2(ip2) > 0 g) is the input port,

� the affine mapping M is given by iq1 = ip2 � 1.

The OPD refinement of OPDq2 = f iq1 2 Z j 1 � iq1 � N ^ 8 � N � 16 g using
the procedure described in [56] gives the new OPD

0

q1 = f iq1 2 Z j 1 � iq1 � N �
1 ^ 8 � N � 16 g. The Ehrhart test procedure described in [19] gives
OPD

0

q1 = f iq1 2 Z j 1 � iq1 � N ^ 8 � N � 16; Multiplicity(iq1; N)�1 � 0 g,
where

Multiplicity(iq1; N) =

(
1 if 1 � iq1 � N � 1

0 otherwise
(2.6)

2.4.3 The Process Network (PN) model

In this section we define our process network model.

Definition 2.4.1 (process network)
A process network (PN) is given by a tuple PN = (P;C), where

� P = fPi j i = 1; 2; :::; jP jg is a set of processes,

� C = fCj j j = 1; 2; :::; jCjg is a set of channels.

Definition 2.4.2 (process)
A process in the PN is given by a tuple P = (NP; IP;OP; ST), where

� NP = fNm j m = 1; 2; :::;Mg is a set of nodes, where Nm is given by Defini-
tion 2.2.2,

� IP = fIGk j k = 1; 2; :::;Kg is a set of input gates,

� OP = fOGl j l = 1; 2; :::; Lg is a set of output gates,

2.4 Process Network Synthesis 51

� ST is a schedule tree that gives a valid execution order between the functions F asso-
ciated with every Nm.

Definition 2.4.3 (input gate)
An input gate is given by a tuple IG = (IIG; IKIG), where

� IIG = fpk j k = 1; 2; :::; jIIGjg is a set of ports, where pk is given by Definition 2.2.3,

� IKIG = fInKeypk j k = 1; 2; :::; jIIGjg is a set of functions, where for every
pk 2 IIG a function InKeypk 2 IKIG is associated, InKeypk : IPDpk ! Z

1.

The functions InKeypk are used for color (tag) matching when the input gate IG is
connected to a channel that communicates colored (tagged) data. Also, these functions
are used when the communicated data has to be re-ordered. The re-ordering is done
by a special controller and a re-ordering memory located in the process to which IG
belongs. The functions InKeypk are used as address generators for the re-ordering
memory. More details about when and why coloring and/or re-ordering of data is
needed as well as how the functions InKeypk are determined are given in Section 2.4.5
- linearization.

Definition 2.4.4 (output gate)
An output gate is given by a tuple OG = (OOG; OKIG), where

� OOG = fqk j k = 1; 2; :::; jOOGjg is a set of ports, where qk is given by Defini-
tion 2.2.4,

� OKOG = fOutKeyqk j k = 1; 2; :::; jOOGjg is a set of functions, where for ev-
ery qk 2 OOG a function OutKeyqk 2 OKOG is associated, OutKeyqk :
OPDqk ! Z

1 is a one-to-one mapping.

Every functionOutKeyqk is used to generate unique integer numbers that are attached
as colors (tags) to every data sent via the corresponding port of output gate OG. This
is done only when the output gate OG is connected to a channel that communicates
colored (tagged) data. Also, functions OutKeyqk are used when the sent data via out-
put gate OG has to be re-ordered at the other side of the communication channel where
we have an input gate IG. In this case functions OutKeyqk are used to determine the
functions InKeypk (Definition 2.4.3) of the input gate IG. More details about when
and why coloring and/or re-ordering of data is needed as well as how the functions
OutKeyqk are determined are given in Section 2.4.5 - linearization.

Definition 2.4.5 (channel)
A channel is given by a tuple C = (OG; IG;E;CM), where

� OG = (OOG; OKIG) is an output gate,

� IG = (IIG; IKIG) is an input gate,

� E = fEm jm = 1; 2; :::; jEjg is a set of edges, whereEm is given by Definition 2.2.5,

52 Deriving Process Networks from Weakly Dynamic Programs

� CM 2 f1; 2; 3; 4g is the communication model of the channel, where

CM =

8>>><
>>>:
1 in-order communication without coloring of tokens

2 out-of-order communication without coloring of tokens

3 in-order communication with coloring of tokens

4 out-of-order communication with coloring of tokens

(2.7)

In a Kahn Process Network the processes communicate data with each other over 1-
dimensional unbounded FIFO channels. Our PN model supports four communication
models that can realize such communication. CM defined above specifies one of the
four possible communication models for a given channel C. More details about the
communication models as well as why we need four models are given in Section 2.4.5
- linearization. Also, in this section, a procedure that selects for every channel C the
optimal communication model that preserves the correct behavior of the PN is given.

2.4.4 Creating the PN topology

Let an empty PN model PN = (P;C) = (;; ;) be given. Creating the topology of the PN
means that the set of processes P and the set of channels C have to be created by grouping
nodes and edges of the ADG obtained after the transformations presented in Section 2.4.2.
The following elements of every process Pi 2 P and every channel Cj 2 C have to be
determined (see Section 2.4.3 for precise definitions):

� Pi:NP - nodes of the ADG that are grouped in process Pi;

� Pi:IP - the set of input gates of Pi;

� Pi:OP - the set of output gates of Pi;

� Cj :E - edges of the ADG that are grouped in channel Cj ;

� Cj :OG:OOG - output ports of the ADG that are grouped in the output gate of Cj ;

� Cj :IG:IIG - input ports of the ADG that are grouped in the input gate of Cj .

In order to create the PN topology, i.e., to determine the elements of the PN model described
above we use the following information:

� The ADG = (Nodes; Edges) = (fNi j i = 1::jNodesjg; fEj j j = 1::jEdgesjg)
that is obtained after the transformations presented in Section 2.4.2.

� A set SP = fSPi j i = 1::jSP jg, where

1. 8i=1::jSP j) SPi � Nodes;

2. 8i 6= j) SPi \ SPj � ;.

2.4 Process Network Synthesis 53

The set SP specifies how the nodes in the ADG have to be grouped in processes.
jSP j specifies the total number of processes that have to be created. Every element
SPi 2 SP specifies which nodes of the ADG form a process. SPi can be an arbitrary
set of ADG nodes satisfying condition 2) above.

The set SP can be given manually by a system designer who wants to generate a
network with a particular topology or SP can be given by the dashed box shown in
Figure 2.7. This box may implement some design space exploration procedures and/or
some optimization procedures. If SP is not given then we use the following grouping
to define a default SP : for every node in the ADG a process has to be created, i.e.,
every SPi 2 SP consists of only one ADG node.

� A set SC = fSCi j i = 1::jSCjg, where

1. 8i=1::jSCj) SCi � Edges;

2. 8i 6= j) SCi \ SCj � ;.

3. in every set SCi all the edges begin from nodes that belong to a particular set
SPq and all the edges end to nodes that belong to a particular set SPt.

The set SC specifies how the edges in the ADG have to be grouped in channels.
jSCj specifies the total number of channels that have to be created. Every element
SCi 2 SC specifies which edges of the ADG form a channel. Grouping ADG edges
into PN channels has to be specified after the grouping of ADG nodes into PN processes
is specified because of the restriction given in 3) above. This restriction limits the edge
grouping as follows: All the edges that we want to group in a channel have to start from
the same process, say Pq , and have to end at the same process, say Pt. The restriction
given in 3) preserves one of the KPN semantics, i.e., only one process can write to a
channel and only one process can read from a channel.

The set SC can be given manually or by the dashed box shown in Figure 2.7. If SC is
not given then we use the following grouping to define a default SC: for every edge in
the ADG a channel has to be created, i.e., every SCi 2 SC consists of only one ADG
edge.

We start with the empty process network PN = (P;C) = (;; ;) and create the PN topology
in accordance with the information described above. First, we execute a procedure called
Node Grouping which creates the processes of the PN . Second, we execute a procedure
called Edge Grouping which creates the channels of the PN and determines the connections
between the processes (created by the node grouping) via these channels. Both procedures
are defined and explained below.

Node Grouping

1 for all SPi 2 SP do
2 CREATE Pi = (NP; IP ;OP ; ST); . new process is created
3 Pi:NP SPi;
4 Pi:IP ;;

54 Deriving Process Networks from Weakly Dynamic Programs

5 Pi:OP ;;
6 Pi:ST ?;
7 P.ADD(Pi); . the process is added to the set of processes
8 endfor

The node grouping procedure given above uses the set SP to create the set of processesP and
to determine which nodes of the ADG belong to every process. For every element SPi 2 SP
a process Pi is created. The ADG nodes specified by SPi become the set of nodes Pi:NP
of the process Pi. The created process Pi is added to the set of processes P of the process
network PN .

Edge Grouping

1 for all SCi 2 SC do
2 CREATE Ci = (OG; IG;E;CM); . new channel is created
3 Ci:OG (;;?);
4 Ci:IG (;;?);
5 Ci:E SCi;
6 Ci:CM ?;
7 for all Em 2 Ci:E do
8 Ci:IG:IIG.ADD(Em:p);
9 Ci:OG:IOG.ADD(Em:q);
10 endfor
11 ((E1:p)

N)P :IP.ADD(Ci:IG);.connect channel to process via input gate

12 ((E1:q)
N)P :OP.ADD(Ci:OG);.connect channel to process via output gate

13 C.ADD(Ci); . the channel is added to the set of channels
14 endfor

The edge grouping procedure given above uses the set SC to create the set of channels C -
see lines 2 and 13. Also this procedure determines:

� which edges of the ADG belong to every channel. This is done at line 5 where the set
Ci:E of every channel Ci is determined. This set gets all the edges that belong to set
SCi;

� which input ports and output ports of the ADG belong to the input gate and output gate
of every channel. This is done at lines 7 to 10 where: 1) the input port of every edge
that belongs to the channel Ci is added to the set Ci:IG:IIG - see line 8; 2) the output
port of every edge that belongs to the channel Ci is added to the set Ci:OG:IOG - see
line 9;

� to which processes the input and output gates of every channel belong. This is done at
lines 11 and 12 where:
1) the input gate Ci:IG of every channel Ci is added to the set of input gates IP of
process ((E1:p)

N)P - see line 11. Notice that this process is found by starting from the

2.4 Process Network Synthesis 55

input port p of the first edge E1 of channel Ci and going up hierarchically by finding
the nodeN to which the port p belongs followed by finding the process P to which the
node N belongs;
2) the output gate Ci:OG of every channel Ci is added to the set of output gates OP
of process ((E1:q)

N)P - see line 12. Notice that this process is found by starting from
the output port q of the first edge E1 of channel Ci and going up hierarchically in the
same way as described in 1) above.

Examples

Assume that the transformations presented in Section 2.4.2 have been applied on the ADG
model shown in Figure 2.5. Here, we give, by an example, how this transformed ADG model
is translated to a PN model by the node grouping and edge grouping discussed above. The
grouping is specified by the sets SP and SC. Let us assume that the sets SP and SC are
defined as follows:

SP = fSPi j i = 1::7g =
= f fN1g1; fN2;N7g2; fN3g3; fN4;N5g4; fN6g5; fN8g6; fN9g7 g;

SC = fSCi j i = 1::17g =
= f fED1g1; fED2g2; fED3g3; fED4g4; fED5g5; fED6g6; fED7g7;
fED8;ED9g8; fED10g9; fED11g10; fED12g11; fED13g12;
fED14;ED15g13; fED16g14; fED17g15; fED18g16; fED19g17 g

The set SP specifies that a PN model has to be created that consists of 7 processes P1 to P7
because jSP j = 7. Process P2 has to be created by grouping nodes N2 and N7 of the ADG.
Process P4 has to be created by grouping N4 and N5. The rest of the processes have to be
created as follows: P1 takes N1, P3 takes N3, P5 takes N6, P6 takes N8, and P7 takes
N9.

Similarly, the set SC specifies that the PN model consists of 17 channels. Channel C8 has to
be created by grouping edges ED8 and ED9. ChannelC13 groups edgesED14 andED15.
To the rest of the channels one edge each has to be assigned.

The topology of the PN model created after applying the grouping procedures, described in
the previous section, is depicted in Figure 2.9. This topology is in accordance with the spec-
ification given by the sets SP and SC described above. The elements of this PN model are
determined by the grouping procedures as well. The PN elements comply with the definitions
given in Section 2.4.3. Below, we give some examples.

Example of Definition 2.4.1:
The process network in Figure 2.9 is given by the tuple PN = (P;C), where

� P = f P1; P2; P3; P4; P5; P6; P7 g is the set of processes,

� C = f C1; C2; C3; C4; C5; C6; C7; C8; C9; C10; C11; C12;
C13; C14; C15; C16; C17 g is the set of channels.

Examples of Definition 2.4.2:

56 Deriving Process Networks from Weakly Dynamic Programs

P7

C
15

(z
_2

_1
)

C
14

(z
_1

_1
)

C9(y_2)

C11(y_3)

C13(y_1_2|3)
C17(z_1_2)

P1

P3

P4 P6

P5
C6(cond_1)

C12(y_1_1)

C
7(x_1_1)

C1(x_2)

C3(cond_2_1)

C
5(

t_
1)

C
8(

x_
1_

2|
3)

IG1

P2

C16(z_2_2)

IG3
IG5

IG4

OG3

OG3

OG2

OG1

IG1

IG2

IG3

OG2IG2

C4(cond_2_1)

OG1

OG4

OG5

C10(BC2)

C2(BC1)

Figure 2.9: The Process Network (PN) model created after applying the procedures Node
Grouping and Edge Grouping on the ADG model shown in Figure 2.5.

Consider process P2 of the PN in Figure 2.9. P2 is created by grouping two nodes N2 and
N7 of the ADG. P2 is given by the tuple P2 = (NP; IP;OP; ST), where

� NP = fN2; N7g is the set of nodes. N2 and N7 are nodes of the ADG shown in
Figure 2.5. These nodes are defined in accordance with Definition 2.2.2. An example
of how node N7 is defined was given in Section 2.2.3;

� IP = fIG1; IG2; IG3g = f (IIG1
; IKIG1

); (IIG2
; IKIG2

); (IIG3
; IKIG3

) g =
= f (fN7:p1g; ;); (fN7:p2g; ;); (fN7:p3g; ;) g

IP is the set of input gates. Every input gate IGi in the set IP is defined in accordance
with Definition 2.4.3. Notice that here every input gate IGi consists of one input port
that belongs to node N7; An example of how input gate IG2 is defined is given below
- see Examples of Definition 2.4.3;

� OP = fOG1; OG2; OG3; OG4; OG5g =
= f (OOG1

; OKOG1
); (OOG2

; OKOG2
); (OOG3

; OKOG3
); (OOG4

; OKOG4
);

(OOG5
; OKOG5

) g =
= f (fN2:q1 13g; ;); (fN2:q1 14; N2:q1 15g; ;); (fN2:q2g; ;); (fN7:q1g; ;);

(fN7:q2g; ;) g
OP is the set of output gates. Every output gate OGi in the set OP is defined in
accordance with Definition 2.4.4. Notice that the output gate OG2 consists of two
output ports that belong to node N2. An example of how output gate OG2 is defined
is given below - see Examples of Definition 2.4.4;

2.4 Process Network Synthesis 57

� ST = ? is the schedule tree of process P2. This tree is not defined yet. NOTE:
This tree is not defined by the grouping procedures because ST is not related to the
topology of the PN model. ST is related to the internal behavior of process P2, i.e.,
it gives a valid execution order between the functions Source yt and F2 associated
with the nodes N2 and N7 that are grouped in P2. In general, ST has to be defined
when the behavior of the PN is created by the procedures described in Section 2.4.5 -
PN-to-ParseTrees.

Consider process P7 of the PN in Figure 2.9. P7 is created by taking only node N9 of the
ADG. P7 is given by the tuple P7 = (NP; IP;OP; ST), where

� NP = fN9g is the set of nodes. N9 is the node in the ADG shown in Figure 2.5 and
it is defined in accordance with Definition 2.2.2;

� IP = fIG1; IG2; IG3; IG4; IG5g =
= f (fN9:p1g; ;); (fN9:p2g; ;); (fN9:p3; N9:p4g; ;); (fN9:p5g; ;); (fN9:p6g; ;) g
IP is the set of input gates where every gate is defined in accordance with Defini-
tion 2.4.3. Notice that the input gate IG3 consists of two input ports p3 and p4 of node
N9. An example of how input gate IG3 is defined is given below - see Examples of
Definition 2.4.3;;

� OP = fOG1; OG2; OG3g = f (fN9:q1g; ;); (fN9:q2 17g; ;); (fN9:q2 18g; ;) g is
the set of output gates;

� ST = ? is the parse tree that gives the sequence of executions of function call F4
associated with node N9. This tree is not defined yet. NOTE: As we said above ST is
defined when the behavior of the PN is created.

Examples of Definition 2.4.3:
Consider the input gate IG2 of process P2 in Figure 2.9. IG2 is given by the tuple IG2 =
(IIG2

; IKIG2
), where

� IIG2
= fN7:p2g is the set of input ports. In this case the set consists of only one port

N7:p2. This port is input port p2 of node N7 in the ADG shown in Figure 2.5. Port
p2 is defined in accordance with Definition 2.2.3. An example of how input port p2 is
defined was given in Section 2.2.3;

� IKIG2
= fInKeyN7:p2g = ? is the set of functions of the input gate. It consists

of only one function InKeyN7:p2 associated with the port N7:p2 because the input
gate consists of only one port. The function InKeyN7:p2 is not defined yet. NOTE:
This function is not defined by the grouping procedures because InKeyN7:p2 is not
related to the topology of the PN model. InKeyN7:p2 is related to the communication
behavior of process P2 via port N7:p2 of input gate IG2. The data coming from port
N7:p2 is colored (tagged). When a data is read from port N7:p2 of gate IG2 then
function InKeyN7:p2 generates an integer number. If this number matches the unique
color (tag) of the read data then this data is processed inside P2. If there is not a
match then the data is discarded because this data is not needed by process P2. In

58 Deriving Process Networks from Weakly Dynamic Programs

general, InKeyN7:p2 has to be defined when the behavior of the PN is created by the
procedures described in Section 2.4.5 - Linearization.

Consider the input gate IG3 of process P7 in Figure 2.9. IG3 is given by the tuple IG3 =
(IIG3

; IKIG3
), where

� IIG3
= fN9:p3; N9:p4g is the set of input ports, where N9:p3 and N9:p4 are input

ports of node N9 of the ADG shown in Figure 2.5. Notice that the input gate IG3

consists of two input ports that belong to node N9 because this gate is connected to
channel C13. This channel is created by grouping edges ED14 and ED15 of the
ADG. These edges end up at ports p3 and p4 of node N9, respectively;

� IKIG3
= fInKeyN9:p3 ; InKeyN9:p4g = f?;?g is the set of functions, where

InKeyN9:p3 and InKeyN9:p4 are associated with input ports N9:p3 and N9:p4, re-
spectively. NOTE: InKeyN9:p3 and InKeyN9:p4 have to be defined when the behav-
ior of the PN is created. In Section 2.4.5 - Examples of Linearization, we give an
example of how these functions are defined.

Example of Definition 2.4.4:
Consider the output gateOG2 of process P2 in Figure 2.9. OG2 is given by the tupleOG2 =
(OOG2

; OKOG2
), where

� OOG2
= fN2:q1 14; N2:q1 15g is the set of output ports, whereN2:q1 14 andN2:q1 15

are output ports of the node N2 of the ADG shown in Figure 2.5. Notice that the
output gate OG2 consists of two output ports that belong to node N2 because this gate
is connected to channel C13 which is created by grouping edges ED14 and ED15 of
the ADG. These edges start from ports q1 14 and q1 15 of node N2;

� OKOG2
= fOutKeyN2:q1 14 ; OutKeyN2:q1 15

g = f?;?g is the set of functions of
output gate OG2, where OutKeyN2:q1 14

and OutKeyN2:q1 15 are associated with the
output ports N2:q1 14 and N2:q1 15, respectively. This functions are not defined here
by the grouping procedures because they are not related to the topology of the PN.
The functions are related to the communication behavior of process P2 via output gate
OG2. When a data is sent via port N2:q1 14 or port N2:q1 15 of gate OG2 the cor-
responding function generates a unique integer number which is attached as a color
(tag) to the data. Details about when and why the tags are needed during data com-
munication is given in Section 2.4.5 - Linearization. NOTE: OutKeyN2:q1 14

and
OutKeyN2:q1 15

have to be defined when the behavior of the PN is created. In Sec-
tion 2.4.5 - Examples of Linearization, we give an example of how these functions
are defined.

Example of Definition 2.4.5:
Consider channel C13 of the PN shown in Figure 2.9. C13 is created by grouping edges
ED14 andED15 of the ADG. ChannelC13 is given by the tupleC13 = (OG; IG;E;CM),
where

� OG = OG2 is the output gate. This output gate was described in the examples above;

2.4 Process Network Synthesis 59

� IG = IG3 is the input gate. Also, this gate was described above;

� E = fED14; ED15g is the set of edges, where ED14 and ED15 are edges in the
ADG shown in Figure 2.5;

� CM = ? is the communication model of C13. CM has to be one of the four possible
communication models that our PN model supports. CM is not defined here because
it is related to the communication behavior of the channel. Therefore, CM is selected
when the behavior of the PN is created. An example of how CM is selected is given
in Section 2.4.5 - Examples of Linearization.

2.4.5 Creating the PN behavior

The starting point for creating the PN behavior is the process network model PN = (P;C)
created by the Node Grouping and Edge Grouping procedures described in Section 2.4.4.
This PN model is not complete, i.e., not all of the elements of PN , as defined in Section 2.4.3,
have been specified by the grouping procedures. Only the elements of PN related to its
topology have been specified. Therefore, by creating the behavior of PN the rest of the
elements are specified. This means that the following elements of every process Pi 2 P and
every channel Cj 2 C have to be determined (see Section 2.4.3 for precise definitions):

� Pi:ST - the schedule tree of process Pi that gives a valid execution order between the
function calls which have to be executed inside process Pi;

� Cj :CM - the communication model of channel Cj ;

� Cj :OG:OKOG - the set of functions associated with the output gate OG of channel
Cj . These functions are used to realize a correct communication behavior of Cj when
the communication model of Cj requires coloring (tagging) or re-ordering of the com-
municated data;

� Cj :IG:IKIG - the set of functions associated with the input gate IG of channel Cj .
Again, these functions are used to realize a correct communication behavior of Cj
when the communication model of Cj requires coloring (tagging) or re-ordering of the
communicated data.

The PN behavior is obtained by executing two procedures: 1) Linearization procedure that
determines elements Cj :CM , Cj :OG:OKOG, and Cj :IG:IKIG for every communication
channelCj ; 2) PN-to-ParseTrees procedure that determines element Pi:ST for every process
Pi. Both procedures are defined and explained below:

Linearization

By definition [10], in a Kahn Process Network (KPN) the functions executed inside a process
communicate data with functions inside other processes over 1-dimensional FIFO channels.
However, our approach has to derive KPNs from weakly dynamic programs (WDP) in which

60 Deriving Process Networks from Weakly Dynamic Programs

functions communicate data between each other via N -dimensional variables. In order to
keep the functionality of the KPN the same as the functionality of the WDP, we apply the
procedure Linearization, explained in this section, on the PN model. This procedure adds
to the PN model information that is necessary to convert the WDP communication model to
the KPN communication model. Our PN model supports four models of 1-dimensional FIFO
communication. These models are:

1. in-order communication without coloring of tokens - this model is used when the
order of the tokens (data) written in the FIFO channel by a producer process is the same
as the order the tokens are read by a consumer process. The number of tokens that will
be written or read to/from the channel is known at compile time;

2. out-of-order communication without coloring of tokens - this model is used when
the order of the tokens (data) written in the FIFO channel by a producer process is
different than the order the tokens are read by a consumer process. The number of
tokens that will be written or read to/from the channel is known at compile time.

3. in-order communication with coloring of tokens - this model is used when the order
of the tokens (data) written in the FIFO channel by a producer process is the same as
the order the tokens are read by a consumer process. Also, the number of tokens that
will be written or read to/from the channel is not known at compile time. Because of
this, more tokens can be written to the channel than needed at run time. Every token is
tagged by a unique number (color) that is used to remove the tokens that are not needed
while reading them from the channel;

4. out-of-order communication with coloring of tokens - this model is used when the
order of the tokens (data) written in the FIFO channel by a producer process is different
than the order the tokens are read by a consumer process. Also, the number of tokens
that will be written or read to/from the channel is not known at compile time. In order
to keep the correct behavior of the KPN, every token is tagged by a unique number
(color) that is used to re-order the tokens while reading them form the channel;

Our procedure LINEARIZATION(PN) is given below. This procedure takes as an input the
process network model PN = (P;C) created by the procedures described in Section 2.4.4.

Linearization(PN) begin
1 for all Cj 2 PN:C do
2 Cj :CM channelModel(Cj); .select communication model for Cj

3 for all qk 2 Cj :OG:OOG do .derive info to build the selected model

4 OutKeyqk LBS2ColorGenerator(qk:OPDqk);
5 InKey(qk)E:p compose(OutKeyqk ; (qk)

E :M);
6 Cj :OG:OKOG.ADD(OutKeyqk);
7 Cj :IG:IKIG.ADD(InKey(qk)E:p);
8 endfor
9 endfor
10 end

2.4 Process Network Synthesis 61

First, the procedure LINEARIZATION(PN) selects for every channel Cj in the network
model PN the least expensive communication model that guarantees the correct behavior of
the network - see line 2 where the element CM (Definition 2.4.5) of every Cj is determined.
The four communication models, described above, have different cost of implementation in
terms of required memory and complexity of the control. The out-of-order communication
with coloring of tokens model is the most expensive model but it is the most general model.
This model can be used for every channel and the correct behavior of the PN is guaranteed.
However, depending on the edges that are grouped in a particular channel, in some cases a
less expensive communication model can be selected. This model still guarantees the correct
behavior of the PN . The selection is done by calling the procedure CHANNELMODEL(C)
in line 2.

This procedure extends the work presented in [22] [57]. In this work only two communi-
cation models are considered, i.e., models 1) and 2) described above. This is because this
work deals with deriving KPNs from static programs where everything is known at compile
time, thus models 1) and 2) are sufficient for the communication. In our case we deal with
deriving KPNs from weakly dynamic programs (WDP) where not everything is known at
compile time. Therefore our procedure CHANNELMODEL(C) considers four communica-
tion models that are sufficient to realize correct inter-process communication. The procedure
CHANNELMODEL(C) is given below:

channelModel(C) begin
1 if jC:Ej = 1 then
2 e C:E:E1;
3 if isOutOfOrder(e:M) = true then
4 if S 2 e:p:IPDp � ; then
5 return(2); . out-of-order without coloring of tokens

6 else
7 return(4); . out-of-order with coloring of tokens

8 endif
9 else
10 if S 2 e:p:IPDp � ; then
11 return(1); . in-order without coloring of tokens

12 else
13 return(3); . in-order with coloring of tokens

14 endif
15 endif
16 else
17 return(4); . out-of-order with coloring of tokens

18 endif
19 end

This procedure takes as an input a channel C and decides what the communication model for
C has to be. In line 1 the procedure checks if the channel consists of only one edge. If this
is not true then model 4) is selected (line 17) because many streams of data corresponding to
every edge will be interlaced and communicated over the channel. This requires re-ordering
and coloring of the data while reading it from the channel in order to identify and split the

62 Deriving Process Networks from Weakly Dynamic Programs

multiple streams of data. If the condition in line 1 is true then we have only one edge, i.e.,
one stream of data in the channel and we use the procedure ISOUTOFORDER(M) in line
3 to decide whether re-ordering of data is needed. This procedure is actually the Reordering
Detection Decision Tree presented in [22]. If we need re-ordering of data we execute code
lines 4 till 8, else we execute code lines 10 till 14. In both cases we have to decide whether
we need to color the data or not - lines 4 and 10. We use the domain IPD of the input
port p (see Definition 2.2.3) of the edge e which belongs to the channel C. The IPD is a
linearly bounded set (see Definition 2.2.6) and we check whether the set of filtering functions
S of IPD is empty. If this is not true then this means that some information about the
communication is not known at compile time (see models 3) and 4)), thus we have to color
the data.

After the selection of communication model for channelC, our procedure LINEARIZATION(
PN), given above, derives the information needed to realize the selected communication
model - see code lines 3 till 8 where the elements C:OG:OKOG (Definition 2.4.4) and
C:IG:IKIG (Definition 2.4.3) of C are determined. This is done by executing the proce-
dure LBS2COLORGENERATOR in line 4 followed by the procedure COMPOSE in line 5. The
procedure LBS2COLORGENERATOR(qk:OPDqk) derives the function OutKeyqk associ-
ated with every output port qk in the output gateOG of channelC. Every output port qk has a
corresponding input port pk in the input gate IG of channelC. Port pk can be found using the
edge E = (qk; pk;M) (see Definition 2.2.5) that connects the ports, so we can denote port
pk as (qk)E :p in accordance with the notations in Section 2.4.1. The procedure COMPOSE(
OutKeyqk , (qk)E :M) derives the function InKey(qk)E:p associated with every input port
pk. So, for every pair of ports < qk , pk >, a pair of functions < OutKeyqk , InKeypk >
is derived. Such pair of functions is used for generating colors (tags) attached to the data
communicated over channelC via ports qk and pk in case the selected communication model
for C is 3) or 4). Also, such pair of functions is used for data re-ordering in case the se-
lected model is 2). More details about the use of < OutKeyqk , InKeypk > are given in
Section 2.4.5-Communication Models Realizations where these functions are used in the
controllers described in Figure 2.13, Figure 2.15, Figure 2.16, and Figure 2.17.

The procedure LBS2COLORGENERATOR(qk:OPDqk) derives function OutKeyqk as a
polynomial. This procedure takes as an input the output port domain OPDqk (see Defi-
nition 2.2.4) of port qk. This output port domain is a linearly bounded set (LBS - Defi-
nition 2.2.6) with a linear bound B which is a polytope. This polytope is defined in the
n-dimensional space with dimension vector i = (i1; :::; in). By using B the procedure
finds a hypercube HC that bounds B. This cube is again a polytope. Then the function
OutKeyqk(i) is the very simple ranking polynomial of HC that is obtained using the tech-
nique described in [19]. We can apply this technique directly on the linear boundB but in this
case OutKeyqk(i) may be a pseudo-polynomial which is a much more complex function.

The procedure COMPOSE(OutKeyqk(i), (qk)
E :M) derives function InKeypk as a polyno-

mial. This procedure takes as an input the polynomial OutKeyqk(i) discussed above. Also,
it takes the affine function M : j ! i (see Definition 2.2.5) which maps the input port do-
main of port pk to the output port domain of port qk. This can be written as i = M(j).
The procedure COMPOSE substitutes i with M(j) in the polynomial OutKeyqk(i), so the
derived function InKeypk(j) = OutKeyqk(M(j)) is again a polynomial.

2.4 Process Network Synthesis 63

Examples of Linearization

In this section we give an example of how the procedure LINEARIZATION(PN), described
in the previous section, works for one channel Cj 2 PN:C. Consider channel C13 in the
PN shown in Figure 2.9. We used the same channel as an example in Section 2.4.4-Example
of Definition 2.4.5. Channel C13 is given by the tuple C13 = (OG; IG;E;CM), where

� OG = OG2 = (fN2:q1 14; N2:q1 15g ; fOutKeyN2:q1 14
; OutKeyN2:q1 15

g) =
= (fN2:q1 14; N2:q1 15g ; f?;?g) is the output gate;

� IG = IG3 = (fN9:p3; N9:p4g ; fInKeyN9:p3 ; InKeyN9:p4g) =
= (fN9:p3; N9:p4g ; f?;?g) is the input gate;

� E = fED14; ED15g is the set of edges, where ED14 and ED15 are edges in the
ADG shown in Figure 2.5;

ED14 corresponds to the variable y 1 that appears in function calls [in 0] = ipd(y 1(i+
1)) and [y 1(i)] = opd(out 0) at lines 80 and 18 in the dSAC shown in Figure 2.4.
Therefore, edge ED14 is defined by the triple E14 = (q1 14; p3;M), where

– q1 14 = (Vq1 14
; Aq1 14

; OPDq1 14
) =

= (y 1(i); out 0; f iq1 14 2 Z j 1 � iq1 14 � N + 1 ^ 8 � N � 16 g)
is the output port;

– p3 = (Vp3 ; Ap3 ; IPDp3) =
= (y 1(i+ 1); in 0; f ip3 2 Z j 1 � ip3 � N ^ 8 � N � 16;

� c+ ip3 � 0; � c+ ip3 � 1 � 0 g) is
the input port;

– the affine mapping M is derived from the indexing of variable y 1 and it is given
by the equation iq1 14 = ip3 + 1.

ED15 corresponds to the variable y 1 that appears in function calls [in 0] = ipd(y 1(i+
1)) and [y 1(i)] = opd(out 0) at lines 83 and 18 in the dSAC shown in Figure 2.4.
Therefore, edge ED15 is defined by the triple E15 = (q1 15; p4;M), where

– q1 15 = (Vq1 15
; Aq1 15

; OPDq1 15
) =

= (y 1(i); out 0; f iq1 15 2 Z j 1 � iq1 15 � N + 1 ^ 8 � N � 16 g)
is the output port;

– p4 = (Vp4 ; Ap4 ; IPDp4) =
= (y 1(i+ 1); in 0; f ip4 2 Z j 1 � ip4 � N ^ 8 � N � 16;

c� ip4 � 1 � 0 g) is the input port;

– the affine mapping M is derived from the indexing of variable y 1 and it is given
by the equation iq1 15 = ip4 + 1.

� CM = ? is the communication model of C13.

The first step in the procedure LINEARIZATION(PN) is to specify the CM of channel C13
by calling the procedure CHANNELMODEL(C13). Since the number of edges jC13:Ej that

64 Deriving Process Networks from Weakly Dynamic Programs

belong to C13 is equal to 2, the procedure CHANNELMODEL(C13) selects the communi-
cation model CM of C13 to be 4. This means out-of-order communication with coloring of
tokens.

The next step in the procedure LINEARIZATION(PN) is the derivation of functions
OutKeyN2:q1 14 and OutKeyN2:q1 15 by calling procedure LBS2COLORGENERATOR. We
illustrate this procedure for function OutKeyN2:q1 14

associated with output port q1 14. The
linear bound of OPDq1 14

is the polytope 1 � iq1 14 � N + 1 defined in the one
dimensional space iq1 14. A hypercube that bounds this polytope is equal to the same polytope
in this simple case. So, the technique described in [19] for deriving a ranking polynomial is
applied on the polytope 1 � iq1 14 � N + 1 which gives us the following function
OutKeyN2:q1 14 :

OutKeyN2:q1 14
(iq1 14) = iq1 14

Similarly, the procedure LBS2COLORGENERATOR derives the function OutKeyN2:q1 15
as

follows:

OutKeyN2:q1 15
(iq1 15) = iq1 15

The final step in the procedure LINEARIZATION(PN) is the derivation of functions
InKeyN9:p3 and InKeyN9:p4 by calling the procedure COMPOSE. The following mapping
functions defined above are used: iq1 14 = ip3 + 1 and iq1 15 = ip4 + 1. So, the functions
InKeyN9:p3 and InKeyN9:p4 are derived as follows:

InKeyN9:p3(ip3) = OutKeyN2:q1 14
(ip3 + 1) = ip3 + 1

InKeyN9:p4(ip4) = OutKeyN2:q1 15
(ip4 + 1) = ip4 + 1

Communication Models Realizations

As said before our PN model supports four models of communication. The procedure LIN-
EARIZATION(PN) selects a communication model for every channel in the network and
derives the information needed to realize the communication models. In this section, we
explain how we realize the models using the simple process network shown in Figure 2.10.
This network consists of two processes Pm and Pn and one communication channel. The
components (A) and (C) in processes Pm and Pn, respectively, are the sequential code that
describes the behavior of Pm and Pn, respectively. When Pm has to send some data to Pn
one of the controllers -putController(V,I)- in component (B) of process Pm is activated.
The putController(V,I) takes the data V and the current value of the iteration vector I, forms
a token and puts the token in the channel using output gate OG. Similarly, when process Pn
needs data from processPm, then Pn activates a controller -getController(J)- in component
(D). The getController(J) gets a token from gate IG using the value of the current iteration
vector J and returns the data V of the token.

In our PN model every FIFO channel supports two communication primitives for putting and
getting tokens to/from the channel:

2.4 Process Network Synthesis 65

q1.putController(V1, i1)

qT.putController(Vt, {i1,i2})

tag datadatatag data

OG IG

1

T T

1

::

.

Vt = p1.getController(j2);

V1 = pT.getController({j2,j1});

B

A C

D

process Pm process Pn

putController(V,I)

putController(V,I)

MEMORYunbounded FIFO
Channel

or
FIFO cell formats MEMORY cell format

V=getController(J)

V=getController(J)

ValueterationI terationI

. . .

. . .

. . .

. . .

. . .

. . .
Vt = Fn(...)

for i1 =

V1 = F1(...);

for i2 =

Value

p

pq

q

. . .

. . .

. . .

. . .

. . .

. . .

for j2 =

for j1 =
. . . = Fm(Vt);

. . . = Fx(V1);

Figure 2.10: A simple Kahn Process Network that consists of one ”producer” process and
one ”consumer” process communicating data over one FIFO channel.

1. WRITE(gate, token) - this primitive is used in a putController(V,I) to put a token
into the FIFO channel that has gate as an output gate.

2. READ(gate) - this primitive is used in a getController(J) to get a token from the
FIFO channel that has gate as an input gate. When the primitive READ is called it
returns the first token that is in the FIFO channel.

For every edge that belongs to a channel (see Definition 2.4.5) a pair of controllers putCon-
troller(V,I) – getController(J) is created. The controllers are accessed via the output port
q and the input port p of a given edge as shown in Figure 2.10. The values of the variable
associated with q and p (see Definitions 2.2.4 and 2.2.3) are communicated using these con-
trollers. Every value is encapsulated in a token that has a format depending on the format
of the cells in the FIFO channel - see Figure 2.10. The ”data” component of a token is the
value and the ”tag” component is a color of the token that makes the token unique among
other tokens in the channel. As shown in Figure 2.10 our communication model supports
also channels without coloring of tokens.

The tokens in the FIFO channel, shown in Figure 2.10, are written in a particular order. A
communication problem appears when this order is not the same as the order the tokens are
needed in the consumer process. In this case, the tokens have to be re-ordered in order to
preserve the correct behavior of the network. This is accomplished by the controllers in com-
ponent (D) of process Pn together with the component MEMORY of Pn. The component
MEMORY is a content addressable memory (CAM) that is used as a temporary storage of
tokens during the re-ordering procedure.

The components (B) of Pm, (D) of Pn, MEMORY, and the FIFO channel shown in Fig-
ure 2.10 realize the four communication models supported by our PN model. The differ-
ence between the communication models is the implementation of the controllers putCon-

66 Deriving Process Networks from Weakly Dynamic Programs

troller(V,I) in component (B) and getController(J) in component (D), the FIFO cell format,
and the necessity of component MEMORY in process Pn. Below, we describe every com-
munication model:

1) in-order communication without coloring of tokens - this model consists of components
(B) and (D). All controllers (putController(V,I)) in component (B) implement the procedure
given in Figure 2.11. All controllers (getController(J)) in component (D) implement the
procedure given in Figure 2.12. Every token and cell in the FIFO channel has the format:
(data).

1 ql. putToken(value, I) begin
2 WRITE((ql)

OG, value);
3
4 end

Figure 2.11: Implementation of the con-
troller used in communication models 1)
and 2) to write data into a channel.

1 pk. getToken(J) begin
2 value READ((pk)

IG);
3 return(value);
4 end

Figure 2.12: Implementation of the con-
troller used in communication model 1) to
read data from a channel.

The controller shown in Figure 2.11 takes the data stored in variable value and uses the
primitive WRITE to put this data, via output port ql, in the channel connected to output
gate (ql)

OG. Similarly, the controller shown in Figure 2.12 uses the primitive READ to get
the first token from the channel connected to input gate (pk)

IG. Also, the controller returns
the value of the token via input port pk. Notice that the value of input argument I in the
controller in Figure 2.11 is not used. The same is true for argument J of the controller shown
in Figure 2.12. This is because we do not have coloring of tokens (data) when using these
controllers.

2) out-of-order communication without coloring of tokens - this model consists of com-
ponents (B), (D), and MEMORY. All controllers (putController(V,I)) in component (B)
implement the procedure given in Figure 2.11. All controllers (getController(J)) in compo-
nent (D) implement the procedure given in Figure 2.13. In this procedure the tokens that are
received from the channel are not colored. However, to re-order these tokens, a unique tag
is added to the tokens internally in the controller. The tags are generated by the procedure
shown in Figure 2.14. Every token and cell in the FIFO channel has the format: (data).
Every cell in the re-ordering memory (component MEMORY) has the format: (tag; data).

The procedure shown in Figure 2.13 does the re-ordering of the incoming tokens using a re-
ordering memory as a temporary storage. The input of this procedure is the current iteration
J at which the procedure is called by component (C) in Figure 2.10. The value of J is used
in this procedure to generate an integer number called key - see code line 2 in Figure 2.13.
J is put as an argument of function (pk)

IG:InKeypk(J) which corresponds to input port pk
of input gate IG (see Definition 2.4.3). The integer number key is a tag which is used to
identify the needed token for the current iteration J . First, the procedure checks whether the
needed token with tag key is in the re-ordering memory - see code line 3. If this is true, then
the procedure returns the value of the token (code line 4) and releases the memory location
occupied by this token (code line 5).

If the needed token is not in the re-ordering memory then the procedure takes the needed
token from the channel. This is done by executing code lines 7 till 14. The first token from

2.4 Process Network Synthesis 67

1 pk. getReorderToken(J) begin
2 key (pk)

IG:InKeypk (J);
3 if isInMEMORY(key) = true then
4 return(MEMORY[key].value);
5 MEMORY.remove(key);
6 else
7 do
8 value READ((pk)

IG);
9 color recoverColor(pk);
10 if color 6= key then
11 MEMORY.insert((color; value));
12 endif
13 while color 6= key
14 return(value);
15 endif
16 end

Figure 2.13: Implementation of the controller
used in communication model 2) to read and
re-order data coming from a channel.

1 recoverColor(pk) begin
2 outp (pk)

E :q;
3 for n = start : 1 : joutp:OPD:Bj do
4 if in 2 outp:OPD then
5 start n+ 1;
6 c (outp)OG:OutKeyoutp(in);
7 return(c);
8 endif
9 endfor
10 end

Figure 2.14: Procedure to generate colors
for the incoming tokens in the controller
shown in Figure 2.13.

the FIFO channel is read at line 8 and its value is stored in variable value. The tag of this
token is determined by the procedure RECOVERCOLOR at line 9 and this tag is stored in
variable color. At code line 10 tag key of the needed token is compared to tag color of
the read token from the channel. If the tags do not match then the read token is stored in
the re-ordering memory (see code line 11) and another token is read from the channel by
repeating the code lines 8 till 13. The procedure continues to read tokens from the channel,
i.e., executing code lines 8 to 13, till the tags key and color match. Then the value of the
token read from the channel is returned because this is the needed token.

As said before, in communication model 2) the communicated tokens are not colored when
they are written into the channel. However, we described above that in order to do re-ordering
the tokens read from the channel in model 2) are tagged internally in the procedure shown in
Figure 2.13 - see code line 9 where procedure RECOVERCOLOR is executed. This procedure
takes as an input the input port pk of input gate IG via which the tokens are read. First, the
procedure RECOVERCOLOR takes the corresponding output port q - see code line 2. Second,
the procedure starts to enumerate the points bounded by the linear bound of output port
domainOPD (see Definition 2.2.4) of q using the loop at line 3. Initially, the value of variable
start is equal to 0. Every enumerated point in is checked whether it belongs to the output
port domain OPD - see code line 4. If this is true then: 1) variable start stores the number n
of the next point - line 5; 2) function (outp)OG:OutKeyoutp(in) that corresponds to output
port q is used to generate an integer number - line 6. This number is returned as tag (color) by
the procedure RECOVERCOLOR. NOTE: the next time procedure RECOVERCOLOR is called
it starts to enumerate the OPD of q from the value stored in variable start.

3) in-order communication with coloring of tokens - this model consists of components
(B) and (D). All controllers (putController(V,I)) in component (B) implement the procedure
given in Figure 2.15. All controllers (getController(J)) in component (D) implement the
procedure given in Figure 2.16. Every token and cell in the FIFO channel has the format:
(tag; data).

The controller shown in Figure 2.15 takes as an input the data stored in variable value.

68 Deriving Process Networks from Weakly Dynamic Programs

1 ql. putColoredToken(value, I) begin
2 color (ql)

E jj(ql)
OG:OutKeyql (I);

3 WRITE((ql)
OG, (color; value));

4 end

Figure 2.15: Implementation of the con-
troller used in communication models 3)
and 4) to write data into a channel.

1 pk. getColoredToken(J) begin
2 key (pk)

Ejj(pk)
IG:InKeypk (J);

3 do
4 (color; value) READ((pk)

IG);
5 while color 6= key
6 return(value);
7 end

Figure 2.16: Implementation of the con-
troller used in communication model 3) to
read data from a channel.

Also, it takes iteration vector I which points to the current iteration at which the controller
is activated by component (A) in Figure 2.10. First, a unique color (tag) for the data stored
in value is generated by function (ql)

OG:OutKeyql(I) that corresponds to output port ql -
see code line 2. This function takes as an input iteration vector I and generates an integer
number. To ensure the uniqueness of the color (tag) among other colors used in the channel
and generated by other functions, the generated integer number is concatenated with the
number of the edge to which port ql belongs - see the notation ’jj’ in code line 2. Second,
the primitive WRITE is used to put, in the channel, the data stored in value together with its
tag. This is done via output port ql of output gate (ql)

OG that is connected to the channel -
see code line 3.

The controller shown in Figure 2.16 takes as an input iteration vector J which points to the
current iteration at which the controller is activated by component (C) in Figure 2.10. The
value of J is used to generate an integer number called key - see code line 2. J is put as an
argument of function (pk)

IG:InKeypk(J) which correspond to input port pk of input gate
IG. The integer number key is a tag which is used to identify the needed token for the current
iteration J . The controller reads tokens from the channel using the primitive READ until tag
key of the needed token matches tag color of the read token - see code lines 3 to 5. When
there is a match the value of the read token is returned because this is the needed token (code
line 6).

4) out-of-order communication with coloring of tokens - this model consists of compo-
nents (B), (D) and MEMORY. All controllers (putController(V,I)) in component (B) im-
plement the procedure given in Figure 2.15. All controllers (getController(J)) in component
(D) implement the procedure given in Figure 2.17. Every token, cell in the FIFO channel,
and cell in the re-ordering memory (component MEMORY) has the format: (tag; data).

The controller shown in Figure 2.17 behaves exactly the same way as the controller in Fig-
ure 2.13. However, there is a small difference. The controller in Figure 2.13 executes pro-
cedure RECOVERCOLOR in line 9 to get the tag of every incoming token. In contrast, the
controller in Figure 2.17 does not use the procedure RECOVERCOLOR - see that code line 9
is empty. This is because the tokens in the channel are tagged (colored), thus the tag (color)
of the incoming token is get when the token is read from the channel - see code line 8.

2.4 Process Network Synthesis 69

1 pk. getReorderColoredToken(j) begin
2 key (pk)

Ejj(pk)
IG:InKeypk (j);

3 if isInMEMORY(key) = true then
4 return(MEMORY[key].value);
5 MEMORY.remove(key);
6 else
7 do
8 (color; value) READ((pk)

IG);
9
10 if color 6= key then
11 MEMORY.insert((color; value));
12 endif
13 while color 6= key
14 return(value);
15 endif
16 end

Figure 2.17: Implementation of the controller
used in communication model 4) to read and
re-order data coming from a channel.

PN-to-ParseTrees

In previous sections we discussed how the communication behavior of our PN model is de-
termined by our procedure LINEARIZATION(PN). In this section we describe how the
internal behavior of every process Pi that belongs to PN is determined. This means that we
have to explain how the element Pi:ST (see Definition 2.4.2) of every process Pi is deter-
mined. Pi:ST is the schedule tree of process Pi that gives a valid execution order between
the function calls which have to be executed inside process Pi.

We take the network model PN = (P;C) after the procedure LINEARIZATION(PN) is
applied on it. We execute the procedure PNTOPARSETREES(PN) which determines ele-
ment Pi:ST of every process Pi 2 P . After this procedure, the PN model PN = (P;C) is
complete, i.e., all elements of PN given by the definitions in Section 2.4.3 are determined.
The procedure PNTOPARSETREES(PN) is defined and explained below:

PNtoParseTrees(PN) begin
1 for all Pi 2 PN:P do
2 for all Nm 2 Pi:NP do
3 tree processNode(Nm);
4 vectorOfTrees.ADD((tree;Nm));
5 endfor
6 tree scheduleNodes(Pi:NP, STree);
7 Pi:ST connectParseTrees(tree,vectorOfTrees);
8 endfor
9 end

For every process Pi in PN the procedure PNTOPARSETREES(PN) visits the following
three steps:

1) for all nodes N (see Definition 2.4.2) in process Pi the procedure PROCESSNODE is exe-

70 Deriving Process Networks from Weakly Dynamic Programs

cuted at code line 3. This procedure derives for a given nodeN a syntax tree that corresponds
to a control structure of a program. This program specifies from which ports the function F
(see Definition 2.2.2) associated with N gets input data and to which ports function F puts
the output data for every iteration i 2 N:NDN . The syntax tree is stored in a data structure
called vectorOfTrees as shown in code line 4.

2) for every process Pi the procedure SCHEDULENODES is executed at code line 6. This
procedure takes a schedule tree STree defined in Section 2.3 and derives a valid sequential
execution order between the functions that have to be executed inside Pi. These functions are
functions F associated with the nodes N that belong to Pi. The sequential execution order is
represented as a syntax tree of a sequential program that specifies the order. This syntax tree
is denoted as tree at code line 6.

3) for every processPi the procedure CONNECTPARSETREES is executed at code line 7. This
procedure connects the syntax tree (tree) derived in 2) with the syntax trees (vectorOfTrees)
derived in 1). As a result a syntax tree of a sequential program that defines completely the
internal behavior of Pi is generated. Actually, this tree is the element Pi:ST of process Pi.

For the sake of clarity we illustrate the behavior of procedure PNTOPARSETREES(PN)
by an example. Let us take process P2 of the network shown in Figure 2.9. P2 is created
by grouping two nodes N2 and N7 of the ADG shown in Figure 2.5. We used process P2
as an example in Section 2.4.4-Example of Definition 2.4.2. So, P2 is given by the tuple
P2 = (NP; IP;OP; ST), where

� NP = fN2; N7g is the set of nodes. N2 and N7 are nodes of the ADG shown in
Figure 2.5. These nodes are defined in accordance with Definition 2.2.2 as follows:

N2 corresponds to function call Source yt in the dSAC shown in Figure 2.4. This
node is given by the tuple N2 = (IN2; ON2; FN2; NDN2), where

– IN2 = ; is the set of input ports which is empty,

– ON2 = fq1 13; q1 14; q1 15; q2g is the set of output ports,

– FN2 = (Source yt; fout 0; out 1g) is the function associated with the node,

– NDN2 is the node domain of N2 defined by the linearly bounded set
LBS = f i 2 Z j 1 � i � N + 1 ^ 8 � N � 16g. NDN2 represents the
iterations i at which function call Source yt is executed in the dSAC.

N7 corresponds to function call F2 in the dSAC shown in Figure 2.4. This node is
given by the tuple N7 = (IN7; ON7; FN7; NDN7), where

– IN7 = fp1; p2; p3g is the set of input ports,

– ON7 = fq1; q2g is the set of output ports,

– FN7 = (F2; fin 0g; fout 0g), where F2 : fin 0g ! fout 0g,

– NDN7 is the node domain of N7 defined by the linearly bounded set
LBS = f i 2 Z j 1 � i � N ^ 8 � N � 16; cond 2(i) > 0 g. NDN7

represents the iterations i at which function call F2 is executed in the dSAC.

� IP = fIG1; IG2; IG3g is the set of input gates of P2.

2.4 Process Network Synthesis 71

� OP = fOG1; OG2; OG3; OG4; OG5g is the set of output gates of P2.

� ST = ? is the schedule tree of process P2 that has to be determined by procedure
PNTOPARSETREES.

Now, let us apply code lines 2 till 7 in procedure PNTOPARSETREES for process P2 given
above. First, procedure PROCESSNODE at code line 3 is executed two times because process
P2 has two nodes N2 and N7. This procedure generates the trees bounded by the dashed
boxes in Figure 2.18 - the tree on the left corresponds to node N2 and the tree on the right
corresponds to node N7. Both trees are stored in the data structure vectorOfTrees - see
code line 4.

root

for i = 1:1:N+1

N2_q1_14.putCT(out_0,i)

[out_0,out_1] = _Source_yt() [out_0] = F2(in_0)

if cond_2(i) > 0

if i−2 >= 0

if −i+1 >= 0

for i = 1:1:N

N2_q1_15.putCT(out_0,i)

N2_q2.putCT(out_1,i)

in_0 = N7_p3.getT(i)

N7_q2.putT(BC(i+1),i)

if i = 1

5

5

33

5

5

5
4

5

1
1

2

2
in_0 = N7_p2.getCT(i)

N2_q1_13.putT(out_0,i) N7_q1.putT(out_0,i)

Figure 2.18: The schedule tree ST of process P2 that is derived by procedure PNTOPARSE-
TREES.

Second, procedure SCHEDULENODES is executed at code line 6. This procedure uses the
schedule tree STree given in Section 2.3.3 and derives a valid sequential execution order
between functions Source yt and F2. These two functions correspond to nodes N2 and
N7 in process P2. The sequential order is represented as a tree. In our case this is the tree
bounded by the dotted box in Figure 2.18.

Finally, procedure CONNECTPARSETREES is executed at code line 7. This procedure con-
nects the trees generated by procedure PROCESSNODE and the tree generated by procedure
SCHEDULENODES. The resultant tree is shown in Figure 2.18. This tree is the complete
schedule tree ST of process P2.

In the next three sections we describe the procedures PROCESSNODE, SCHEDULENODES,
and CONNECTPARSETREES in more detail. Also, we give examples using process P2 and
its nodes N2 and N7 described above.

72 Deriving Process Networks from Weakly Dynamic Programs

Procedure PROCESSNODE - definition and example

The pseudo code below defines the procedure PROCESSNODE(N). The input of this pro-
cedure is a node N that belongs to a process. Node N (Definition 2.2.2) has a set of input
ports denoted as N:IN , a set of output ports N:ON , a function N:FN , and a node domain
N:NDN .

processNode(N) begin
1 s CREATE RootNode;
2 for all pk 2 N:IN do
3 st s;
4 vec InputPort2IfNodes(pk);.nodes #1 in Fig.2.18

5 st addNodes(vec, st);
6 vec InputPort2CommunicateNode(pk);.nodes #2 in Fig.2.18

7 st addNodes(vec, st);
8 endfor
9 vec Node2FunctionNode(N:FN);.nodes #3 in Fig.2.18

10 st addNodes(vec, s);
11 for all ql 2 N:ON do
12 st s;
13 vec OutputPort2IfNodes(ql);.nodes #4 in Fig.2.18

14 st addNodes(vec, st);
15 vec OutputPort2CommunicateNode(ql);.nodes #5 in Fig.2.18

16 st addNodes(vec, st);
17 endfor
18 return(s);
19 end

The output of procedure PROCESSNODE(N) is a syntax tree that corresponds to a control
structure of a program. This program specifies from which ports the functionN:FN gets input
data and to which ports functionN:FN puts the output data for every iteration i 2 N:NDN .
First, the procedure creates an empty syntax tree, i.e, tree that has only root node - see code
line 1.

Second, every input port pk 2 N:IN is converted to a number of ”IfNodes” that are added to
the syntax tree - code lines 4 and 5. The conversion is based on the input port domain IPD of
pk and the node domain ND of node N to which port pk belongs. Always, IPD is included
in ND or IPD is equal to ND. We explain the conversion by an example. Let us consider
input port p2 of node N7 - see Section 2.2.3. The input port domain IPD of p2 is defined as
follows:
IPDp2 = f i 2 Z j 1 � i � N ^ i � 2 ^ 8 � N � 16; cond 2(i) > 0 g
The node domain ND of node N7 is defined as follows:
NDN7 = f i 2 Z j 1 � i � N ^ 8 � N � 16; cond 2(i) > 0 g
We see that NDN7 includes IPDp2 because IPDp2 has one additional condition i � 2. For
every additional condition an ”IfNode” is generated in the syntax tree. In our case we have
only one additional condition, thus only one node is generated for input port p2 at code line
4. This node is denoted as ”if i-2 >= 0” in the syntax tree depicted in Figure 2.18.

2.4 Process Network Synthesis 73

Third, for every input port pk 2 N:IN a communication node is generated and added to
the syntax tree - code lines 6 and 7. The communication node specifies a communication
controller that has to be used for port pk. The possible controllers were described in Sec-
tion 2.4.5-Communication Models Realizations. We know that port pk belongs to an input
gate, say IG. This gate is connected to a channel, say C. Channel C has an element CM
that specifies the communication model of the channel. Depending on the value of CM one
of the following communication nodes is generated:

communication node =

8>>><
>>>:
N pk:getT if ((pk)IG)C :CM = 1

N pk:getRT if ((pk)IG)C :CM = 2

N pk:getCT if ((pk)IG)C :CM = 3

N pk:getRCT if ((pk)IG)C :CM = 4

(2.8)

For example, let us consider again input port p2 of node N7. Port p2 belongs to input gate
IG2 of process P2 - see Section 2.4.4-Examples. IG2 is connected to channel C11 which
has communication model CM equal to 3, i.e., in-order communication with coloring of
tokens. Therefore, the communication node generated for p2 and depicted in Figure 2.18 is
”N7 p2.getCT”.

Fourth, for function F that belongs to node N a function node is generated and added to
the syntax tree - code lines 9 and 10. For example, the function that belongs to node N7 is
defined as follows: FN7 = (F2; fin 0g; fout 0g). The generated function node is depicted
in Figure 2.18 as ”[out 0] = F2(in 0)”.

Fifth, every output port ql 2 N:ON is converted to a number of ”IfNodes” that are added to
the syntax tree - code lines 13 and 14. The conversion is based on the output port domain
OPD of ql and the node domain ND of node N to which port ql belongs. Always, OPD is
included in ND or OPD is equal to ND. We explain the conversion by an example. Let us
consider output port q2 of node N7 - see Section 2.2.3. The output port domain OPD of q2
is defined as follows:
OPDq2 = f i 2 Z j 1 � i � N ^ 8 � N � 16; cond 2(i) > 0 g
The node domain ND of node N7 is defined as follows:
NDN7 = f i 2 Z j 1 � i � N ^ 8 � N � 16; cond 2(i) > 0 g
We see that NDN7 is equal to OPDq2. This means that OPDq2 does not have additional
conditions compared to NDN7 for which ”IfNodes” have to be generated in the syntax tree.
Therefore, for port q2 ”IfNodes” are not generated in Figure 2.18.

Finally, for every output port ql 2 N:ON a communication node is generated and added to
the syntax tree - code lines 15 and 16. The communication node specifies a communication
controller that has to be used for port ql. The possible controllers were described in Sec-
tion 2.4.5-Communication Models Realizations. We know that port ql belongs to an output
gate, say OG. This gate is connected to a channel, say C. Channel C has an element CM
that specifies the communication model of the channel. Depending on the value of CM one
of the following communication nodes is generated:

communication node =

(
N ql:putT if ((ql)OG)C :CM = 1 or 2

N ql:putCT if ((ql)OG)C :CM = 3 or 4
(2.9)

74 Deriving Process Networks from Weakly Dynamic Programs

For example, let us consider again output port q2 of node N7. Port q2 belongs to output gate
OG5 of process P2 - see Section 2.4.4-Examples. OG5 is connected to channel C10 which
has communication model CM equal to 1, i.e., in-order communication without coloring of
tokens. Therefore, the communication node generated for q2 and depicted in Figure 2.18 is
”N7 q2.putT”.

Procedure SCHEDULENODES - definition and example

The pseudo code below defines the procedure SCHEDULENODES(NP , Stree). The first
input argument of this procedure is a set of nodes NP = fN1; N2; :::; Nig that belongs to a
process. To every node Nm 2 NP a function Nm:NF is associated (Definition 2.2.2). The
name of the function we denote as Nm:NF :F .

scheduleNodes(NP, Stree) begin
1 s COPY Stree;
2 for all leafNodej 2 s do
3 for all Nm 2 NP do
4 if Nm:NF :F = leafNodej:F then
5 MARK all nodes from leafNodej to root;
6 endif
7 endfor
8 endfor
9 for all Nodej 2 s do
10 if Nodej is not marked then
11 REMOVE Nodej;
12 endif
13 endfor
14 return(s);
15 end

The second argument of the procedure is a schedule tree Stree as defined in Section 2.3.
Every function Nm:NF described above has a corresponding leaf node leafNodej:F in
STree. The output of procedure SCHEDULENODES is a sub-tree derived from STree. The
sub-tree represents a control structure of a program that gives a valid sequential execution
order between all functions Nm:NF associated with the set of nodes NP described above.

We explain the behavior of procedure SCHEDULENODES using the following example. Let
assume the set of nodes NP = fN2; N7g of process P2. Function Source yt is associated
with N2 and function F2 is associated with N7. We take the schedule tree Stree depicted
in Figure 2.6 where functions Source yt and F2 are leaf nodes. First, procedure SCHED-
ULENODES finds these leaf nodes and traverses Stree from these nodes up to the root node
marking every node in the path - see code lines 2 till 8. The marked tree is shown in Fig-
ure 2.19-a). Next, the procedure prunes the marked tree by removing all nodes in this tree
that are not marked - code lines 9 till 13. The resultant tree is depicted in Figure 2.19-b).
If we parse the tree top-down from left to right we can generate a sequential program that
specifies a sequential order between functions Source yt and F2.

2.4 Process Network Synthesis 75

root

for i = 1:1:N
for i = 1:1:N

for i = 1:1:N+1

for i = 1:1:N+2

if cond_1(i) = 0

[] = F4()

[] = F3()

if cond_2(i) > 0

[] = F2()

[] = if_x()[] = F1()

[] = if_z()
[] = _Source_x()

[] = _Source_yt()

[] = _Source_z()

a)

root

for i = 1:1:N
for i = 1:1:N+1

if cond_2(i) > 0

[] = F2()[] = _Source_yt()

b)

Figure 2.19: Example of applying procedure SCHEDULENODES on the schedule tree shown
in Figure 2.6: a) Marking the schedule tree; b) Pruning the schedule tree.

Procedure CONNECTPARSETREES - definition and example

The pseudo code given below defines the procedure CONNECTPARSETREES(tree, vec). The
first input argument (tree) of this procedure is a tree generated by procedure SCHEDULEN-
ODES defined above. The second input argument is a set of tuples vec = fv1; v2; :::; vig =
f (tree1; N1); (tree2; N2); :::; (treei; Ni)g where tree1 to treei are trees generated by pro-
cedure PROCESSNODE and N1 to Ni are the nodes corresponding to these trees - see above
the definition of procedure PROCESSNODE.

connectParseTrees(tree, vec) begin
1 for all leafNodej 2 tree do
2 s PARENT of leafNodej;
3 for all vm 2 vec do
4 if vm:Nm:F = leafNodej :F then
5 position s.removeChild(leafNodej);
6 s.addChildAt(position, vm:treem);
7 endif
8 endfor
9 endfor
10 return(tree);
11 end

The output of procedure CONNECTPARSETREES is a tree that is generated by connecting
input argument tree with the trees tree1 to treei. This is done as follows: 1) for every leaf
node leafNodej that belongs to tree the parent node s is found - code line 2; 2) every node
Nm of every tuple vm in vec is checked whether it matches the current leaf node leafNodej
- see code lines 3 and 4. When a match is found then tree treem corresponding to node Nm

is connected to tree by replacing leafNodej and adding treem as a ”child” of node s - see
code lines 5 and 6.

We illustrate the behavior of procedure CONNECTPARSETREES(tree, vec) by an example.
Let us assume that the first argument tree is the tree shown in Figure 2.19-b). This tree is
generated by procedure SCHEDULENODES for node N2 and N7 of process P2. Also, let
us assume that the second argument vec is equal to f(treeN2; N2); (treeN7; N7)g where

76 Deriving Process Networks from Weakly Dynamic Programs

treeN2 is the tree bounded by the dashed box in the left part of Figure 2.18 and treeN7

is the tree bounded by the dashed box in the right part of the same figure. Both trees are
generated by procedure PROCESSNODE applied on nodes N2 and N7. Connecting treeN2

and treeN7 to tree by applying procedure CONNECTPARSETREES results in the tree shown
in Figure 2.18.

2.4.6 Code Generation

In this section, we describe the last step of the PN synthesis (Figure 2.7 - step 4) called Code
Generation. In this step an executable code of a Kahn process network is generated from a
PN model. This PN model is completely defined by the procedures discussed in Section 2.4.4
and Section 2.4.5. We use a software engineering technique called Visitor [55] to traverse the
PN model structure and to generate the executable code. This code can be expressed in any
programming language on top of which an environment to execute Kahn process networks
is built. For example, Philips Research has developed the YAPI environment [45] where a
Kahn process network can be described in C++, run and simulated. Another example is the
PtolemyII framework [12] developed at UC Berkeley where Java is used to describe and run
a process network. Recently, the SystemC environment (see www.systemc.org) supports the
description and execution of Kahn process networks in C++, as well.

Below, we give an example of how the code generation works for our example network (see
Figure 2.9) which was gradually defined in Section 2.4.4 and Section 2.4.5. We generate the
network as YAPI C++ code distributed in several header files. The topology of the network
is described in header file ”Example.h” given in Figure 2.22. The processes P1 to P7 are
described in separate header files ”P1.h” till ”P7.h”. In Figure 2.20 and Figure 2.21 the
files ”P2.h” and ”P7.h” are given that describe the behavior of process P2 and process P7,
respectively.

The procedure that generates the processes is called YAPIPROCESSVISITOR. For every pro-
cess Pi in a PN model this procedure converts the schedule tree Pi:ST (Definition 2.4.2) into
a C++ class file which describes the behavior of process Pi. For process P2 in our exam-
ple, the result of procedure YAPIPROCESSVISITOR is the C++ code in file ”P2.h” shown in
Figure 2.20.

In code lines 4–6 some base classes of the YAPI environment are included. Code lines 8–78
define the C++ class P2. Class P2 is derived from the base YAPI class ”Process” defined
in file ”process.h”. In lines 10–21 gates and variables are declared that are used later in
the code1. The process is constructed in code lines 24–40 by declaring the constructor of
class P2. The real work is done in method void P2::main() defined at lines 43–76.
This method executes a sequential program that describes the internal behavior of process
P2. This program is generated mainly by parsing top-down from left to right the schedule
tree shown in Figure 2.18. At lines 49 and 67 the function calls Source yt and F2 are
executed that are the main computation tasks of process P2. These tasks are defined in file
”aux func.h”. The rest of the code in method void P2::main() controls the sequence

1At this place the port controllers used in code lines 52, 54, 55, 56, 60, 62, 64, 70, and 71 have to be declared as
well. We omit these declarations for the sake of brevity

2.4 Process Network Synthesis 77

1 #ifndef P2_H
2 #define P2_H
3
4 #include "process.h"
5 #include "port.h"
6 #include "aux_func.h"
7
8 class P2 : public Process f
9
10 private:
11 //Input Gates declaration
12 InPort<Token> IG1; InPort<ColoredToken> IG2; InPort<Token> IG3;
13
14 // OutPut Gates declaration
15 OutPort<Token> OG1; OutPort<ColoredToken> OG2;
16 OutPort<ColoredToken> OG3;
17 OutPort<Token> OG4; OutPort<Token> OG5;
18
19 // Parameters Input Arguments, and Output Arguments
20 int N, *BC2;
21 double in_0, out_0, out_1;
22
23 public:
24 P2(Id n,
25 In<Token>& _IG1, In<ColoredToken>& _IG2, In<Token>& _IG3,
26 Out<Token>& _OG1, Out<ColoredToken>& _OG2,
27 Out<ColoredToken>& _OG3,
28 Out<Token> _OG4; Out<Token> _OG5,
29 int parm_N
30) :
31 Process(n),
32 IG1(id("IG1"), _IG1), IG2(id("IG2"), _IG2),
33 IG3(id("IG3"), _IG3),
34 OG1(id("OG1"), _OG1), OG2(id("OG2"), _OG2),
35 OG3(id("OG3"), _OG3),
36 OG4(id("OG4"), _OG4), OG5(id("OG5"), _OG5), N(parm_N)
37 f
38 int pBC[parm_N + 1];
39 BC2 = pBC;
40 g;
41
42 //sequential code executed in process P2
43 void P2::main() f
44 for (int i = 1; i <= N+1; i += 1) f
45 BC2[i] = N+1;
46 g //end for
47
48 for (int i = 1; i <= N+1; i += 1) f
49 _Source_yt(out_0, out_1);
50
51 if (i = 1) f
52 N2_q1_13->putToken(out_0, i);
53 g
54 N2_q1_14->putColoredToken(out_0, i);
55 N2_q1_15->putColoredToken(out_0, i);
56 N2_q2->putColoredToken(out_1, i);
57 g //end for
58
59 for (int i = 1; i <= N; i += 1) f
60 if (N7_p1->getToken(i) > 0) f
61 if (i-2 >= 0) f
62 in_0 = N7_p2->getColoredToken(i);
63 g else f
64 in_0 = N7_p3->getToken(i);
65 g
66
67 F2(in_0, out_0);
68 BC2[i+1] = i;
69
70 N7_q1->putToken(out_0, i);
71 N7_q2->putToken(BC2[i+1], i);
72 g else f
73 N7_q2->putToken(BC2[i+1], i);
74 g
75 g //end for
76 g //end main
77
78 g; //end class P2
79
80 #endif /* P2_H */

Figure 2.20: YAPI C++ code describing the behavior of process P2.

of executions of tasks Source yt and F2. Also, the code controls from/to which ports the
input/output arguments of Source yt and F2 are read/written. For example, code lines 61–
65 specify at which iterations i input argument in 0 of F2 is read from port N7 p2 of input

78 Deriving Process Networks from Weakly Dynamic Programs

gate IG2 and at which iterations - from port N7 p3 of input gate IG3. The actual reading
is done by activating the controllers at lines 62 and 64. These controllers implement the
procedures described in Figure 2.16 and Figure 2.12 where the primitives READ(IG2) and
READ(IG3) are used to read tokens from channels C11 and C12 connected to input gates
IG2 and IG3, respectively.

In Figure 2.21 we show the code generated by procedure YAPIPROCESSVISITOR for process
P7 of our example PN model. This code is the file ”P7.h” where the class P7 is defined at
code lines 8 till 70. The structure of class P7 is similar to the structure of class P2 explained
above.

The procedure that generates the topology of a network is called YAPINETWORKVISITOR.
This procedure converts the structure of a PN model into a class file describing the topology.
In our case the result of procedure YAPINETWORKVISITOR is the C++ code in file ”Exam-
ple.h” shown in Figure 2.22. In code lines 4–6 some base classes of the YAPI environment
are included. The classes that describe the processes of the network are included at lines
8–14. For examples, code line 9 includes class P2 given in Figure 2.20 and code line 14
includes class P7 given in Figure 2.21.

Code lines 16–67 define the C++ class Example which corresponds to our example PN
model. Class Example is derived from the base YAPI class ”Process Network” defined in
file ”network.h”. The structure of class Example begins with declaration of the commu-
nication channels of our PN model. At lines 20–36 the channels C1 to C17 are declared
as instances of class Fifo which is a base YAPI template class. Also, the type of the data
communicated over every channels is specified. For example, channel C1 at line 20 commu-
nicates data that is not tagged (colored), i.e., data of type Token. Channel C13 at line 32
communicates tagged (colored) data, i.e., data of type ColoredToken.

The processes named as P1 instance to P7 instance are declared as instances of classes
P1 to P7. This is done at code lines 39–45. Next, the process network is constructed by code
lines 48–65 where the constructor of class Example is defined. The topology of the process
network is specified at code lines 56–62 where the connections of processes P1 instance to
P7 instance via channels C1 to C17 are given.

2.4.7 Discussion and Conclusions

In this chapter we presented a novel systematic approach that allows automatic derivation
of executable Kahn Process Network (KPN) specifications from Weakly Dynamic Programs
(WDP). The problem of deriving a KPN specification for an application in a systematic and
automated way has been addressed in the past by fellow researchers in the work presented
in [18] [19] [20] [21] [22] [23]. This work reports techniques for automatic derivation of
Kahn Process Networks from applications specified as static affine nested loop programs
(SANLP). The main property of such program is that everything about the program execution
is known at compile time. In contrast, our approach presented in this chapter targets Weakly
Dynamic Programs (WDP) where the program execution may not be known completely at
compile time, thus making such programs more difficult for analysis and conversion to a KPN
specifications.

2.4 Process Network Synthesis 79

1 #ifndef P7_H
2 #define P7_H
3
4 #include "process.h"
5 #include "port.h"
6 #include "aux_func.h"
7
8 class P7 : public Process f
9
10 private:
11 //Input Gates declaration
12 InPort<Token> IG1; InPort<Token> IG2; InPort<ColoredToken> IG3;
13 InPort<Token> IG4; InPort<Token> IG5;
14
15 // OutPut Gates declaration
16 OutPort<ColoredToken> OG1; OutPort<Token> OG2; OutPort<Token> OG3;
17
18 // Parameters Input Arguments, and Output Arguments
19 int N, c;
20 double in_0, in_1, out_0, out_1;
21
22 public:
23 P7(Id n,
24 In<Token>& _IG1, In<Token>& _IG2, In<ColoredToken>& _IG3,
25 In<Token>& _IG4, In<Token>& _IG5,
26 Out<ColoredToken>& _OG1, Out<Token>& _OG2, Out<Token>& _OG3,
27 int parm_N
28) :
29 Process(n),
30 IG1(id("IG1"), _IG1), IG2(id("IG2"), _IG2),
31 IG3(id("IG3"), _IG3),
32 IG4(id("IG4"), _IG4), IG5(id("IG5"), _IG5),
33 OG1(id("OG1"), _OG1), OG2(id("OG2"), _OG2),
34 OG3(id("OG3"), _OG3), N(parm_N)
35 f g;
36
37 //sequential code executed in process P7
38 void P7::main() f
39 for (int i = 1; i <= N; i += 1) f
40 c = N9_p1->getToken(i);
41 if (-c+i >= 0) f
42 if (c-i >= 0) f
43 in_0 = N9_p2->getToken(i, c);
44 g else f
45 in_0 = N9_p3->getReorderColoredToken(i, c);
46 g
47 g else f
48 in_0 = N9_p4->getReorderColoredToken(i, c);
49 g
50
51 if (i-3 >= 0) f
52 in_1 = N9_p5->getToken(i);
53 g else
54 in_1 = N9_p6->getToken(i);
55 g
56
57 F4(in_0, in_1, out_0, out_1);
58
59 if (-i+N-1 >= 0) f
60 N9_q1->putColoredToken(out_0, i);
61 g
62
63 if (-i+N-2 >= 0) f
64 N9_q2_17->putToken(out_1, i);
65 N9_q2_18->putToken(out_1, i);
66 g
67 g //end for
68 g //end main
69
70 g; //end class P7
71
72 #endif /* P7_H */

Figure 2.21: YAPI C++ code describing the behavior of process P7.

Although, the program execution of a WDP is not known completely at compile time, we
have shown in this chapter that still a WDP can be analyzed and transformed into a KPN in a
formal and structured way. To do this we used Fuzzy Array Dataflow Analysis techniques and
we introduced the notions of Dynamic Single Assignment Code, Approximated Dependence
Graph, and Linearly Bounded Sets. Our definition of a WDP (see Chapter 1) includes the
static affine nested loop programs considered in the past as a special case. This means that
our approach extends the range of applications where KPNs can be derived in a systematic

80 Deriving Process Networks from Weakly Dynamic Programs

1 #ifndef Example_H
2 #define Example_H
3
4 #include "fifo.h"
5 #include "process.h"
6 #include "network.h"
7
8 #include "P1.h"
9 #include "P2.h"
10 #include "P3.h"
11 #include "P4.h"
12 #include "P5.h"
13 #include "P6.h"
14 #include "P7.h"
15
16 class Example : public ProcessNetwork f
17
18 private:
19 // Fifo Channels instantiation
20 Fifo<Token> C1;
21 Fifo<Token> C2;
22 Fifo<Token> C3;
23 Fifo<Token> C4;
24 Fifo<ColoredToken> C5;
25 Fifo<Token> C6;
26 Fifo<ColoredToken> C7;
27 Fifo<ColoredToken> C8;
28 Fifo<Token> C9;
29 Fifo<Token> C10;
30 Fifo<ColoredToken> C11;
31 Fifo<Token> C12;
32 Fifo<ColoredToken> C13;
33 Fifo<Token> C14;
34 Fifo<Token> C15;
35 Fifo<Token> C16;
36 Fifo<Token> C17;
37
38 // Processes instantiation
39 P1 P1_instance;
40 P2 P2_instance;
41 P3 P3_instance;
42 P4 P4_instance;
43 P5 P5_instance;
44 P6 P6_instance;
45 P7 P7_instance;
46
47 public:
48 Example(Id n, int parm_N) :
49 ProcessNetwork(n),
50 C1(id("C1")), C2(id("C2")),
51 C3(id("C3")), C4(id("C4")), C5(id("C5")),
52 C6(id("C6")), C7(id("C7")), C8(id("C8")),
53 C9(id("C9")), C10(id("C10")), C11(id("C11")),
54 C12(id("C12")), C13(id("C13")), C14(id("C14")),
55 C15(id("C15")), C16(id("C16")), C17(id("C17")),
56 P1_instance(id("P1"), C7, C8, parm_N),
57 P2_instance(id("P2"), C4, C11, C12, C12, C13, C5, C9, C10, parm_N),
58 P3_instance(id("P3"), C14, C17, parm_N),
59 P4_instance(id("P4"), C6, C7, C14, C15, C1, C2, C6, parm_N),
60 P5_instance(id("P5"), C1, C2, C8, C3, C4, parm_N),
61 P6_instance(id("P6"), C3, C5, parm_N),
62 P7_instance(id("P7"), C10, C9, C13, C16, C17, C11, C15, C16, parm_N)
63 f
64
65 g;
66
67 g; //end class Example
68
69 #endif /* Example_H */

Figure 2.22: YAPI C++ code describing the topology of the process network defined in Sec-
tion 2.4.4-Examples and visualized in Figure 2.9.

and automated way.

In a KPN derived from a WDP we distinguish two types of communication FIFO channels
depending on the purpose of the communicated data: 1) Data FIFO channels where com-
putational data used/generated by function calls (tasks) executed inside processes is commu-
nicated; 2) Control FIFO channels where data that controls the internal sequential behavior
of processes is communicated. By sequential behavior of a process we mean the sequential

2.4 Process Network Synthesis 81

order of execution of function calls inside the process.

The control FIFO channels appear in a KPN derived from a WDP because the behavior of
the WDP is not know completely at compile time. The unknown behavior has to be resolved
at run time in the KPN and the control FIFO channels are used to communicate the necessary
data to do this. Control FIFO channels do not appear in case a KPN is derived from a static
program. This means that the presence of control FIFO channels, i.e., extra communication
workload is the ”price” we have to pay when deriving KPNs from WDPs.

Most of the methods and techniques of our approach presented in this chapter have been
prototyped as software procedures and tested on a small set of sample weakly dynamic pro-
grams (WDP). The running example used in this chapter was also completely generated by
our prototype implementation. Moreover, the approach and the prototype software have been
applied and validated successfully on a real-life application, namely a Motion JPEG encoder
(MJPEG) - see Chapter 4 where we present a case study in which we apply our approach to
derive a KPN specification for the MJPEG encoder application. Although, our approach is
not fully automated yet, the MJPEG KPN was derived in a semi-automatic way in four days.
For comparison, a KPN specification of an MJPEG encoder was derived by hand in [16] that
took four weeks. The facts above prove the feasibility of using our approach to derive KPNs
from large industrial relevant applications in a relatively short amount of time - currently, a
few days. When our approach is fully automated this time will be reduced to several minutes.

The MJPEG KPN was generated as C++ code in YAPI [45] format which allowed us to
run the network and to verify its functional correctness. The computational workload of
the MJPEG program was partitioned by our approach into 9 concurrent processes and the
communication workload was distributed over 19 FIFO channels. We analyzed the network
and concluded that the computational workload was very well balanced over the 9 concurrent
processes. However, the distribution of the communication workload was not optimal. We
found that the number of communication FIFO channels can be reduced from 19 to 14 FIFOs
by merging some FIFOs without obstructing the exploited parallelism.

The presented approach includes the basic techniques that we have developed to derive au-
tomatically KPNs from WDPs. The results, we have obtained for the MJPEG application,
indicated that as a future work some optimization techniques have to be added to the ap-
proach that will help the improving of the quality of the generated KPNs in terms of optimal
partitioning of the computation and communication workloads of a WDP over processes and
channels in the KPN.

82 Deriving Process Networks from Weakly Dynamic Programs

Chapter 3
Algorithmic Transformation
Techniques

Today, most of the system-level design methodologies are based on the Y-chart paradigm [58]
[4]. Following the Y-chart for designing a system, an application and an architecture are mod-
eled separately and mapped onto each other in an explicit design step. Next, a performance
analysis for alternative application instances, architecture instances and mappings has to be
done, thereby exploring the design space of the target system. Deriving alternative appli-
cation instances is not trivially done. Nevertheless, many instances of a single application
exist that are worth to be derived for exploration. In this chapter, we present algorithmic
transformation techniques that we have developed for systematic and fast derivation of alter-
native application instances that express task-level concurrency hidden in an application in
some degree of explicitness. These techniques facilitate a system designer in the design space
exploration process of application instances.

This chapter is organized as follows. In Section 3.1 we introduce the problem of deriving
alternative application instances in the context of system-level design and the importance of
finding a systematic approach to derive them. Section 3.2 introduces our set of four transfor-
mations, namely unfolding, plane cutting, skewing, and merging that we have developed to
derive alternative application instances. Also, these transformations are shown as a part of an
Application Transformation Layer positioned in the Y-chart exploration paradigm. Next, in
Section 3.3 - unfolding, Section 3.4 - plane cutting, Section 3.5 - skewing, and Section 3.6
- merging, we present the transformations by explaining the general idea behind the trans-
formation, the formal procedure to do the transformation, and we give an example which
illustrates the formal procedure. Finally, we conclude the chapter with a discussion and con-
cluding remarks in Section 3.7.

84 Algorithmic Transformation Techniques

3.1 Introduction

In system-level design of embedded multi-processor systems, a system designer sees the tar-
get system as the pair Application(s) specification - Architecture template. An example of
such a pair is shown in the left part of Figure 3.1. The application specification provides the

for j = 1:1:N,

end
[x(j)] = Source1();

end

for i = 1:1:K,
[y(i)] = Source2();

end

for i = 1:1:K,
[Out(i)] = Sink(y(i));

end

for j = 1:1:N,
for i = 1:1:K,

end
[y(i), x(j)] = F(y(i), x(j));

PE PE PE PE0 n21

Architecture Template

Communication Structure

Memory

Map and Explore

Application Specification

Instances of the Application

Derive

S1

KPN_5

SinkS2

P1 P3 P4P2

S1 SinkS2

P1 P2

S1 SinkS2

P1 P2

P3 P4 S1 SinkS2

P1 P2

KPN_3
S1

S2 SinkP

KPN_2

KPN_4

KPN_1

Figure 3.1: Alternative instances of the application have to be derived, mapped onto the ar-
chitecture template and explored in order to evaluate the performance/cost of the Application-
Architecture pair.

functional behavior of the system. The architecture template specifies the organization of the
resources of the system onto which the functional behavior is to be mapped. In this stage,
a designer has to make some design decisions, for example, how to partition the application
into tasks, how to map the tasks onto the architecture template, what kind of communication
structure to use in the architecture template, etc. In order to evaluate different design deci-
sions, a system designer uses a model of the target system and does performance analysis for
alternative application instances, architecture instances and mappings, thereby exploring the
design space of the Application - Architecture pair.

A general scheme for a design space exploration is the Y-chart paradigm [58]. Tools like
POLIS [4], SPADE [48] [16], ORAS [59], Archer [60] [61], Sesame [62] [46] implement
techniques that support the Y-chart paradigm but they focus only on the exploration of alter-
native architecture instances and mappings. In this chapter, however, we focus on techniques
that support efficient exploration of alternative application instances in system-level design.

3.2 Application Transformation Layer 85

An application instance is any feasible partitioning of an application into a composition of
concurrent tasks. We use the Kahn Process Network (KPN) model of computation to describe
application instances. In the Kahn model, concurrent processes communicate via unbounded
FIFO channels. In Figure 3.1, we show a simple application and a set of alternative KPN
instances of this application (KPN 1 to KPN 5). Each application instance differs from the
others in the degree of exploited task-level parallelism. The performance of the Application -
Architecture pair can significantly depend on the application instance. So, a system designer
needs support to derive a set of instances of an application in order to explore and evaluate the
performance of the system and to select an application partitioning that satisfies requirements
the target system has to meet.

In general, a system designer is only able to derive at most a few alternative application in-
stances. This is so because no systematic way to derive an application instance, let alone
alternatives, from an application specification is known, as a result of which heuristic and
time consuming approaches are taken in practice. Nevertheless, many instances of a single
application exist that are worth to be derived for exploration. We present in this chapter algo-
rithmic transformations that we have developed and implemented in order to help a system
designer to derive systematically and fast alternative application instances. These transfor-
mations together with the COMPAANDYN approach presented in Chapter 2 are encapsulated
in an Application Transformation Layer that derives a set of alternative KPN instances from
an application specified as a weakly dynamic program (WDP). Below, we show the position
of the Application Transformation Layer in the Y-chart paradigm.

3.2 Application Transformation Layer

In this section, we discuss the application transformation layer in the context of the design
space exploration process. We use this layer as an extension to the Y-chart environment [58].
The positioning of the transformation layer is shown in Figure 3.2.

We start with an application specified as a WDP and written in an imperative language like
Matlab or C. Our objective is to derive and explore a set of instances (Kahn Process Networks)
functionally equivalent to the application. First, algorithmic transformations are applied to
the application specification. The transformations are controlled by a set of parameters. At
the beginning some initial values are assigned to the parameters depending on the available re-
sources in the architecture template. With these values, the original code of the application is
automatically transformed and structured in a particular way in order to make the parallelism
that is inherently available in the application explicit and to increase or decrease the task-level
parallelism in the application. Second, the transformed code is converted in a systematic and
automated way to a KPN description using the COMPAANDYN approach described in Chap-
ter 2. Third, we use a Y-chart environment to map the KPN onto an architecture template and
do performance analysis. The result of this performance analysis can be used to change the
values of the parameters (step 4 in Figure 3.2) if the system performance is not satisfactory.
Then, we repeat the procedure described above resulting in a design space exploration of
alternative instances of the application. This is shown in Figure 3.2 as a feed-back arrow to
the transformation layer.

86 Algorithmic Transformation Techniques

2

1

4
3 New Values

Parameters
of

Application

Matlab or C
in

Performance
Numbers

Y−chart Environment

Mapping

Architecture
Template

Performance
Analysis

Networks
Process

Intermediate Matlab or C code

Parameters
of

Application Transformation
Layer

Algorithmic Transformations

Initial Values

CompaanDyn approach

Figure 3.2: The Y-chart extended with the Application Transformation Layer.

By changing the values of the parameters, the application transformation layer systematically
derives a set of KPN specifications corresponding to a single application specified as a WDP.
The difference among the KPNs is the degree of the task-level parallelism that is exploited. In
the sections that follow we describe in detail the algorithmic transformations we have devel-
oped and incorporated in the application transformation layer. We present four algorithmic
transformations, namely Unfolding, Plane Cutting, Skewing, and Merging. These transforma-
tions take as an input a weakly dynamic program (WDP) and a set of parameters. The output
of the unfolding and plane cutting transformations is a weakly dynamic program which is
functionally equivalent to the input program but with increased task-level parallelism. The
skewing transformation makes the potential parallelism in the input weakly dynamic pro-
gram explicit. The output of the merging transformation is the input WDP annotated with
special pragma symbols that specify how the function calls in the WDP have to be grouped
in processes by COMPAANDYN, thereby decreasing the available task-level parallelism.

The unfolding, plane cutting, and skewing transformations operate directly on the WDP
source code without using complex intermediate representations like dependence graphs,
signal-flow graphs or data-flow graphs corresponding to the WDP. Therefore, we have imple-
mented these transformations in a source-to-source tool box called MATTRANSFORM. The
merging transformation operates on the approximated dependence graph (ADG) and sched-

3.3 Unfolding Transformation 87

ule tree (STree) that are obtained from the WDP. This transformation is a part of STEP3 in
our COMPAANDYN approach.

3.3 Unfolding Transformation

First, we explain the general idea behind our unfolding transformation in Section 3.3.1 by an
illustrative example. To keep the example simple and clear we apply the unfolding transfor-
mation on a special case of a WDP which is a static affine nested loop program. Next, in
Section 3.3.2, we define the unfolding transformation as a formal procedure which operates
on a general WDP. Finally, we explain the formal procedure by going through an example in
Section 3.3.3.

3.3.1 General Idea

Let us consider the nested loop program (NLP) shown in Figure 3.3-a). The NLP has two

[y(i), x(j)] = F(y(i), x(j));
end

end

[y(i), x(j)] = F(y(i), x(j));
end

end

end

for i = 1:1:3,

for i = 1:1:3,

for j = 1:1:4,
if (j mod 2) = 1,

if (j mod 2) = 0,end
end

[y(i), x(j)] = F(y(i), x(j));

for j = 1:1:4,
for i = 1:1:3, MatTransform

a)

i

j

y(1)

y(2)

y(3)

x(1) x(2) x(3) x(4)

F F F

F

F

F F

F

F

F F F

P1 P2

b)

c)d)

CompaanDyn

Figure 3.3: Simple example illustrating the unfolding transformation.

loops with iterators j and i. The body of the loop nest executes a single task represented by
the function call F for every iteration (j; i), thereby creating the computational workload of
the NLP. This workload can be distributed over several processes in order to exploit some

88 Algorithmic Transformation Techniques

degree of parallelism. Our new approach to get the desired degree of parallelism - at the
task level - is to copy a loop body a number of times in such a way that these copies are
mutually exclusive. We call this new approach unfolding and we have implemented it in
MATTRANSFORM as a source-to-source unfolding transformation.

An example of applying our unfolding transformation is shown in Figure 3.3-b), where the
j-loop of the NLP is unfolded by a factor of two. The body of loop j is copied two times.
Every copy is bounded by an ”if” statement where the condition is a modulo function of the
loop iterator j as shown in Figure 3.3-b). The modulo functions in the conditions are used in a
particular way to make the execution of the two pieces of code bounded by the ”if” statements
mutually exclusive. The mutually exclusiveness is exploited in our COMPAANDYN approach
to distribute the computational workload of the program given in Figure 3.3-b) over two
concurrent processes. These two processes form a Kahn Process Network with a topology
depicted in Figure 3.3-c).

In the example given above our unfolding transformation is used to unfold loop j by a factor
of two, thereby distributing the workload over two processes. This transformation can be
used to unfold loop j by any factor uj where uj 2 N

V
uj 2 [1::4] as well as to unfold

loop i by any factor ui where ui 2 N
V

ui 2 [1::3] 1. This means that our unfolding
transformation can be used to distribute the computational workload of the NLP in Figure 3.3-
a) over N processes where N = uj � ui. If loop j is unfolded by a factor uj = 4 and loop
i is unfolded by a factor ui = 3 then the workload of the NLP will be distributed over 12
concurrent processes in the process network shown in Figure 3.3-d). In this network, every
process executes the function call F only once, thereby exploiting the maximum task-level
parallelism available in the NLP. The topology of the network is equal to the dependence
graph (DG) that corresponds to the NLP 2.

The process network in Figure 3.3-c) is functionally equivalent to the network in Figure 3.3-d)
but it exploits in less degree the task-level parallelism available in the NLP. This is because the
computational workload of the NLP is distributed over two concurrent processes P1 and P2.
P1 executes in a sequential order the function calls bounded by the dashed boxes depicted in
Figure 3.3-d). Process P2 executes in a sequential order the function calls bounded by the
solid boxes.

In general, our unfolding transformation can be used to derive a set of alternative Kahn Pro-
cess Networks from a weakly dynamic program (WDP) by unfolding the loops in the WDP
with different factors. We have developed this transformation in a specific way to exploit
task-level parallelism available in a WDP. There is a relation between our unfolding trans-
formation and the well known compiler transformation loop unrolling [39] in the sense that
both transformations aim at enhancing parallelism in a sequential program. However, the
loop unrolling enhances instruction level parallelism by copying a loop body several times
and re-indexing the variables in the body, thus creating more parallel instructions and reduc-
ing the loops control overhead. In contrast, our unfolding transformation enhances task-level
parallelism by copying a loop body a number of times in such a way that these copies are
mutually exclusive, thus these copies can be encapsulated in concurrent processes.

1Unfolding factor of one means that the corresponding loop is not unfolded.
2The DG is a graphical representation of the NLP. The nodes in the DG represent the NLP function calls that are

executed in each loop iteration and the edges represent the data dependencies between the function calls.

3.3 Unfolding Transformation 89

3.3.2 Formal Procedure

Let WDP be a weakly dynamic program and let us assume that WDP has N loops. The
iterators of these loops form an iterator vector I = fi1; i2; ::::; iNg. For every loop iterator
ik 2 I j k = 1; 2; ::; N a parameter uk 2 N is associated which is the unfolding factor of
the loop ik. All parameters uk form a parameter vector U = fu1; u2; ::::; uNg which we
call unfolding vector. We define a transformation UNFOLD(WDP,U,I) which is described
below:

� STEP1 - Convert WDP to a parse tree representation, called parseTree for short.
The parseTree representation is the syntax tree [54] corresponding to the WDP
where to every ”For”-statement node in the tree an unfolding factor is assigned based
on the information captured in the iterator vector I and the unfolding vector U . There
are very well known procedures used in the compiler community to convert a program
to a syntax tree representation [54]. These procedures can be used to convert ourWDP
to a parse tree representation.

� STEP2 - Transform the parse tree representation obtained in STEP1 by applying the
procedure treeUNFOLD given in Figure 3.4. This procedure takes as an input the root
node of parseTree. Starting from the root node the procedure visits every node in
parseTree by traversing it from top to bottom and from left to right. This is accom-
plished by calling the procedure treeUNFOLD recursively - see code lines 32 till 37.
When visiting a node, treeUNFOLD checks if this node is a ”For”-statement node and
if the unfolding factor is greater than one - code lines 3 and 9. If both conditions are
true then: 1) the children nodes of the current node together with the sub-trees starting
from them are stored and removed from the current node - code lines 11 and 13; 2)
several ”If”-statement nodes are created and these nodes become children of the cur-
rent node - see code lines 15 till 25. The number of ”If”-statement nodes is equal to the
unfolding factor of the current node. For every ”If”-statement node a special condition
is assigned as shown in code line 19 as well as the children of the current node become
children of the ”If”-statement node - code line 22; 3) the current ”For”-statement node
is marked as processed by assigning a zero value to the unfolding factor - code line 28.

� STEP3 - Convert the transformed parseTree in STEP2 to a weakly dynamic program.
This step is the inverse of STEP1. Every node in parseTree is visited by traversing
the tree top-down from left to right. For every visited node corresponding lines of code
are generated, thereby creating the weakly dynamic program.

3.3.3 Example

In order to explain the behavior of the procedure UNFOLD(WDP,U,I) described above
we consider the following example. Let WDP be the weakly dynamic program shown in
Figure 3.5-a). WDP has only two for-loops. The outer loop has an iterator i1 with lower
bound lb1, upper bound ub1, and iterator step step1. The body of this loop consists of three
parts; two code segments < code1 > and < code2 >, and a for-loop. < code1 > and
< code2 > are arbitrary pieces of code that comply with our definition of weakly dynamic

90 Algorithmic Transformation Techniques

1 treeUNFOLD(node) f
2 // Check this Statement
3 if (node is "For"-statement) f
4 // take the unfolding factor of the "for"-statement
5 factor = node.unfoldFactor;
6 // take the iterator of the "for"-statement
7 iterator = node.loopIterator;
8
9 if (factor > 1) f

10 // store the children nodes of the "for"-statement
11 tempList = node.listOfChildren;
12 // make the list of children empty
13 node.listOfChildren = NULL;
14
15 for (i = 1; i <= factor; i = i+1) f
16 // create a node which is "if"-statement
17 tempNode = create "If"-statement;
18 // set a string which is the condition of the "if"-statement
19 tempNode.condition = "("+iterator+" mod "+factor+") = "+factor-i;
20
21 // the children of the "for"-statement become children of the "if"-statement
22 tempNode.listOfChildren = tempList;
23 // add the "if"-statement as a child of the "for"-statement
24 node.listOfChildren[i-1] = tempNode;
25 g
26
27 // indicate that this "for"-statement has been processed
28 node.unfoldFactor = 0;
29 g
30 g
31
32 // get the number of children of the current node
33 numElements = getNumberOfElemnts(node.listOfChildren);
34 // go down recursively to check and unfold the children
35 for (j = 0; j < numElements; j = j+1) f
36 treeUNFOLD(node.listOfChildren[j]);
37 g
38
39 return;
40 g

Figure 3.4: Pseudo code describing the treeUNFOLD procedure.

program. The for-loop has an iterator i2 with lower bound lb2, upper bound ub2, and iterator
step step2. Its loop body < code3 > is an arbitrary piece of code.

The iterator vector I corresponding to WDP has two elements I = fi1; i2g because WDP
has only two loops. We assign to every element of I a number which is the unfolding factor
of the corresponding loop. In our example we unfold the outer loop by a factor of two and
the inner loop by a factor of three. In this case the unfolding vector U = fu1; u2g = f2; 3g.
Now, let us apply the procedure UNFOLD(WDP,U,I) step-by-step on our example program
given in Figure 3.5-a).

STEP1

First, we have to convert WDP to a parse tree representation. The resulting parse tree is
shown in Figure 3.5-b). The parse tree consists of five nodes. Every program statement
in WDP has a corresponding node in the parse tree. In our example, node1 and node3
correspond to the outer for-loop and inner for-loop statements, respectively. We call node1

3.3 Unfolding Transformation 91

for i = lb : step : ub ,2 2 2 2

for i = lb : step : ub ,1 1 1 1

body of loop i2
end

end

< code1 >

< code2 >

< code3 >

CodeStatement
code = < code1 >

listOfChildren
NULL

CodeStatement
code = < code2 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

ForStatement

listOfChildren

loopIterator = "i1"
lowerBound = lb1
upperBound = ub1
step = step1

ForStatement

listOfChildren

loopIterator = "i2"
lowerBound = lb2
upperBound = ub2
step = step2

unfoldFactor = 2

unfoldFactor = 3

node1

node2

node3

node4

node5

b)a)
Figure 3.5: Example of: a) Weakly Dynamic Program and b) its parse tree representation.

and node3 ”For”-statement nodes. These nodes contain the information about the loops
present in the WDP . Similarly, node2, node4, and node5 correspond to the code segments
< code1 >, < code2 >, and < code3 >, respectively. These nodes we call ”Code”-
statement nodes.

Every node in the parse tree has a list of pointers, called listOfChildren, that connect
the node with several other nodes. These connections are shown as edges in Figure 3.5-b).
Every edge defines a ”father-child” relationship between two nodes. For example, node1 is a
”father” node of its three children node2, node3, and node4. Also, node3 is a ”father” node
of node5. The existence of a ”father-child” relationship between two nodes in the parse tree
depends on the position of the corresponding program statements in WDP . For example,
node2, node3, and node4 are ”children” of node1 because: 1) the outer for-loop in WDP
corresponding to node1 has a body in which the code segment < code1 >, the inner for-
loop, and the code segment < code2 > are located and they correspond to node2, node3,
and node4 in the parse tree; 2) < code1 >, the inner for-loop, and < code2 > are not nested
in other program statements.

At the end of STEP1, the procedure UNFOLD(WDP,U,I) assigns to every ”For”-statement
node in the parse tree a number which is the unfolding factor. In our example, node1 and
node3 are ”For”-statement nodes and they have the special field unfoldFactor which has
to be set with the corresponding number taken from the unfolding vector U = fu1; u2g =
f2; 3g. So, node1 has loopIterator = i1, therefore unfoldFactor = u1 = 2. Similarly,
node3 has loopIterator = i2, therefore unfoldFactor = u2 = 3.

STEP2

Here, the recursive procedure treeUNFOLD given in Figure 3.4 is applied on the parse tree
depicted in Figure 3.5-b). The procedure transforms this parse tree into the parse tree shown
in Figure 3.6.

92 Algorithmic Transformation Techniques

ForStatement

unfoldFactor = 0
listOfChildren

loopIterator = "i1"
lowerBound = lb1
upperBound = ub1
step = step1

CodeStatement
code = < code1 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

IfStatement
condition = "(i1 mod 2) = 1"

listOfChildren

CodeStatement
code = < code2 >

listOfChildren
NULL

ForStatement

unfoldFactor = 0
listOfChildren

loopIterator = "i2"
lowerBound = lb2
upperBound = ub2
step = step2

IfStatement

listOfChildren

IfStatement

listOfChildren
condition = "(i2 mod 3) = 0"

IfStatement

listOfChildren

condition = "(i2 mod 3) = 2"

condition = "(i2 mod 3) = 1"

CodeStatement
code = < code1 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code2 >

listOfChildren
NULL

ForStatement

unfoldFactor = 0
listOfChildren

loopIterator = "i2"
lowerBound = lb2
upperBound = ub2
step = step2

IfStatement

listOfChildren

IfStatement

listOfChildren
condition = "(i2 mod 3) = 0"

IfStatement
condition = "(i1 mod 2) = 0"

listOfChildren

IfStatement

listOfChildren

condition = "(i2 mod 3) = 2"

condition = "(i2 mod 3) = 1"

nd1 nd2

nd3

nd4

nd5 nd3 nd5

nd4

node2 node4

node3

node2 node4

node3

node5
node5

node5 node5

node5
node5

node1

Figure 3.6: The parse tree in Figure 3.5-b) transformed by the procedure treeUNFOLD.

The procedure treeUNFOLD takes as an input the root node of the parse tree. In our
example this is node1. Then, treeUNFOLD checks whether node1 is a ”For”-statement
node - see code line 3 in Figure 3.4. In our case this is true and treeUNFOLD checks
whether the unfolding factor unfoldFactor of node1 is greater than one - code line 9. Since
unfoldFactor = 2, the code lines 10 till 29 are executed. As a result, the two ”If”-statement
nodes nd1 and nd2 in Figure 3.6 are created. The field condition of nd1 and nd2 is gener-
ated by code line 19. The children of node1 (node2, node3, and node4) become children of
nd1 and nd2 - code line 22. Also, nd1 and nd2 become children of node1 - code line 24.
Node1 is marked that it has been processed by setting its unfoldFactor = 0 - code line 28.

The procedure treeUNFOLD continues with executing code line 33. At this point, node1
has two children nd1 and nd2. Therefore, code line 36 is executed two times by calling
the procedure treeUNFOLD recursively. The input node of the first recursive call is nd1.
The second recursive call has as an input nd2. These recursive calls complete the parse tree
transformation by creating the nodes nd3, nd4, and nd5. The final transformed parse tree is
shown in Figure 3.6.

3.4 Plane Cutting Transformation 93

STEP3

In this final step of the procedure UNFOLD(WDP,U,I) the transformed parse tree depicted
in Figure 3.6 is converted to the weakly dynamic program shown in Figure 3.7.

for i = lb : step : ub ,2 2 2 2

body of loop i 2
< code3 >

end

if (i mod 3) = 2,2

body of loop i 2
< code3 >

end

if (i mod 3) = 1,2

body of loop i 2
< code3 >

end

if (i mod 3) = 0,2

end

if (i mod 2) = 1,1

end

< code1 >

< code2 >

for i = lb : step : ub ,2 2 2 2

body of loop i 2
< code3 >

end

if (i mod 3) = 2,2

body of loop i 2
< code3 >

end

if (i mod 3) = 1,2

body of loop i 2
< code3 >

end

if (i mod 3) = 0,2

for i = lb : step : ub ,1 1 1 1

end
end

1

end

< code1 >

< code2 >

if (i mod 2) = 0,

Figure 3.7: The weakly dynamic program in Figure 3.5-a) unfolded by the procedure
UNFOLD(WDP,U,I). I = fi1; i2g and U = f2; 3g.

3.4 Plane Cutting Transformation

The general idea of our plane cutting transformation is explained in Section 3.4.1. We explain
the idea with the same illustrative example used in Section 3.3.1. Next, in Section 3.4.2, we
define the plane cutting transformation as a formal procedure which operates on a general
WDP. Finally, we explain the formal procedure by going through an example in Section 3.4.3.

3.4.1 General Idea

Let us consider the nested loop program (NLP) shown in Figure 3.8-a). This NLP program
was used as an example in Section 3.3.1 where we distributed its workload over two processes

94 Algorithmic Transformation Techniques

end
end

[y(i), x(j)] = F(y(i), x(j));

for j = 1:1:4,
for i = 1:1:3,

end

for j = 1:1:4,
for i = 1:1:3,

[y(i), x(j)] = F(y(i), x(j));
end

[y(i), x(j)] = F(y(i), x(j));
end

end

if i − 2 <= 0,

if i − 2 > 0,

MatTransform

a)

i

j

y(1)

y(2)

y(3)

x(1) x(2) x(3) x(4)

F F F

F

F

F F

F

F

F F F

i − 2 = 0

P1 P2

b)

c)d)

CompaanDyn

Figure 3.8: Simple example illustrating the plane cutting transformation.

by applying the unfolding transformation. The distribution was done by partitioning the iter-
ation space (j; i) of the NLP using ”if” statements with modulo conditions. Here, in contrast,
we present another approach to distribute the workload of the NLP by partitioning the itera-
tion space using hyper planes. By choosing different planes we can exploit different degrees
of task-level parallelism. This approach we call plane cutting and we have implemented it as
a source-to-source transformation in MATTRANSFORM.

An example of applying our plane cutting transformation is shown in Figure 3.8-b). We use
the plane i� 2 = 0 to split the body of the inner loop i in two parts 3. This is accomplished
by copying the body of loop i two times. The two copies are bounded by ”if” statements with
conditions i � 2 � 0 and i � 2 > 0 which keep the transformed program in Figure 3.8-b)
functionally equivalent to the initial program given in Figure 3.8-a). The splitting of the loop
body in the particular way described above is exploited in our COMPAANDYN approach to
distribute the computational workload of the transformed program given in Figure 3.8-b) over
two concurrent processes in the Kahn Process Network (KPN) depicted in Figure 3.8-c).

If we compare this KPN with the KPN in Figure 3.3-c) (obtained by unfolding) we see that
both KPNs have two processes, i.e., they exploit similar degree of task-level parallelism.
However, these KPNs have different topologies. On the one hand, the KPN depicted in

3In the two dimensional iteration space (j; i) of the example, the plane equation i� 2 = 0 defines a line.

3.4 Plane Cutting Transformation 95

Figure 3.8-c) has more communication FIFO channels than the KPN in Figure 3.3-c). On the
other hand, most of the channels of the KPN in Figure 3.8-c) are local for the processes (see
the self-loop channels). The facts mentioned above can be taken into account to select the
most appropriate transformation (unfolding or plane cutting) in order to get some degree of
task-level parallelism with appropriate communication between the processes.

In the example given above our plane cutting transformation splits the body of loop i in two
parts, thereby distributing the workload over two processes. This is because we use only one
plane i� 2 = 0 for splitting. We would like to mention that our plane cutting transformation
can use a set of planes S to split the body of loop i. Each plane in S has to be of the format
p1(j; i) = 0 or p2(j) = 0 or p3(i) = 0 where p1, p2, and p3 are arbitrary affine functions.
Applying the plane cutting transformation on the NLP in Figure 3.8-a) with a set of planes
leads to distribution of the computational workload over N processes. Depending on the set
that is used, N can be in the following range: 1 < N � 12. For example, if we consider the
set of planes S = f i � 1 = 0; i � 2 = 0; j � 1 = 0; j � 2 = 0; j � 3 = 0 g then the
workload of the NLP will be distributed over 12 concurrent processes in the process network
shown in Figure 3.8-d). In this network, every process executes the function call F only once,
thereby exploiting the maximum task-level parallelism available in the NLP. The topology of
the network is equal to the dependence graph (DG) that corresponds to the NLP.

The process network in Figure 3.8-c) is functionally equivalent to the network in Figure 3.8-
d) but it exploits in less degree the task-level parallelism available in the NLP. This is because
the computational workload of the NLP is distributed over two concurrent processes P1 and
P2. P1 executes in a sequential order the function calls located above the plane i � 2 = 0
depicted in Figure 3.8-d). Process P2 executes in a sequential order the function calls located
below this plane.

In general, our plane cutting transformation can be used to derive a set of alternative Kahn
Process Networks from a weakly dynamic program (WDP) by splitting the bodies of the loops
in the WDP with different sets of planes. There is a similarity between our plane cutting trans-
formation and our unfolding transformation presented in Section 3.3. Both transformations
aim at exploiting the task-level parallelism available in a WDP by distributing the computa-
tional workload over several concurrent processes. However, with the plane cutting transfor-
mation, more unbalanced (irregular) workload distributions can be achieved compared to the
distributions achievable by the unfolding transformation. By using both transformations in
combination, very complex computational workload distributions can be achieved.

3.4.2 Formal Procedure

Let WDP be a weakly dynamic program and let us assume that WDP has N loops. The
iterators of these loops form an iterator vector I = fi1; i2; ::::; iNg. For every loop iterator
ik 2 I j k = 1; 2; ::; N a parameter pk is associated which is the cutting plane of the body
of loop ik. All parameters pk form a parameter vector P = fp1; p2; ::::; pNg which we call
set of cutting planes. Every plane pk in the set P has the following format: f(I 0) = 0,
where f is an arbitrary affine function of I 0 � I . I 0 includes loop iterator ik and loop
iterators that belong to loops which are outer in respect to loop ik. We define a transformation
PLANECUT(WDP,P,I) which is described below:

96 Algorithmic Transformation Techniques

� STEP1 - Convert WDP to a parse tree representation, called parseTree for short.
The parseTree representation is the syntax tree corresponding to the WDP where to
every ”For”-statement node in the tree a cutting plane is assigned based on the informa-
tion captured in the iterator vector I and the set of cutting planes P . As we indicated in
Section 3.3.2, there are very well known procedures used in the compiler community
to convert a program to a syntax tree that can be used to convert our WDP to a parse
tree representation.

� STEP2 - Transform the parse tree representation obtained in STEP1 by applying the
procedure treePLANECUT given in Figure 3.9. This procedure takes as an input
the root node of parseTree. Starting from the root node the procedure visits every
node in parseTree by traversing it from top to bottom and from left to right. This is
accomplished by calling the procedure treePLANECUT recursively - see code lines
36 till 41. When visiting a node, treePLANECUT checks if this node is a ”For”-
statement node and if there is a cutting plane assigned to it - code lines 3 and 7. If both
conditions are true then: 1) the children nodes of the current node together with the
sub-trees starting from them are stored temporarily (code line 9) and removed from the
current node - code line 11; 2) Two ”If”-statement nodes are created - see code lines
14 and 32. For the first ”If”-statement node a special condition is assigned as shown in
code line 16 as well as the children of the current node become children of this ”If”-
statement node - code line 18. The ”If”-statement node becomes the first child of the
current node (code line 20). Similarly, for the second ”If”-statement node a special
condition is assigned by code line 25 and the ”father-child” relationship of this node is
established by code lines 27 and 29; 3) the current ”For”-statement node is marked as
processed by assigning a ”-” symbol as a cutting plane - code line 32.

� STEP3 - Convert the transformed parseTree in STEP2 to a weakly dynamic program.

3.4.3 Example

To illustrate the behavior of the procedure PLANECUT(WDP,P,I) described above we ap-
ply it step-by-step on the weakly dynamic program shown in Figure 3.5-a). This program we
call WDP for short. WDP was used to illustrate the procedure UNFOLD(WDP,U,I) in
Section 3.3.3, so a detailed description of WDP can be found there.

WDP has two loops and, therefore, the iterator vector I corresponding to WDP has two
elements I = fi1; i2g. We assign to every element of I a cutting plane which is used to split
the corresponding loop body. In our example, described here, we choose to split the body of
the outer loop by a cutting plane 2 � i1 � ub1 = 0 and the body of the inner loop by a cutting
plane i1�3�i2+2 = 0. In this case the set of cutting planesP = fp1; p2g = f 2�i1�ub1 =
0; i1 � 3 � i2 + 2 = 0 g. Now, let us apply the procedure PLANECUT(WDP,P,I) step-by-
step.

3.4 Plane Cutting Transformation 97

1 treePLANECUT(node) f
2 // Check this Statement
3 if (node is "For"-statement) f
4 // take the cutting plane of the "for"-statement
5 plane = node.cuttingPlane;
6
7 if (plane != "-") f
8 // store the children nodes of the "for"-statement
9 tempList = node.listOfChildren;

10 // make the list of children empty
11 node.listOfChildren = NULL;
12
13 // create a node which is "if"-statement
14 tempNode = create "If"-statement;
15 // set a string which is the condition of the "if"-statement
16 tempNode.condition = plane + " <= 0";
17 // the children of the "for"-statement become children of the "if"-statement
18 tempNode.listOfChildren = tempList;
19 // add the "if"-statement as a child of the "for"-statement
20 node.listOfChildren[0] = tempNode;
21
22 // create a node which is "if"-statement
23 tempNode = create "If"-statement;
24 // set a string which is the condition of the "if"-statement
25 tempNode.condition = plane + " > 0";
26 // the children of the "for"-statement become children of the "if"-statement
27 tempNode.listOfChildren = tempList;
28 // add the "if"-statement as a child of the "for"-statement
29 node.listOfChildren[1] = tempNode;
30
31 // indicate that this "for"-statement has been processed
32 node.cuttingPlane = "-";
33 g
34 g
35
36 // get the number of children of the current node
37 numElements = getNumberOfElemnts(node.listOfChildren);
38 // go down recursively to check and cut the children
39 for (j = 0; j < numElements; j = j+1) f
40 treePLANECUT(node.listOfChildren[j]);
41 g
42
43 return;
44 g

Figure 3.9: Pseudo code describing the treePLANECUT procedure.

STEP1

First, we have to convert WDP to a parse tree representation. The resulting parse tree is
shown in Figure 3.10. This parse tree consists of five nodes. Every program statement in
WDP has a corresponding node in the parse tree. Every edge in the parse tree defines ”father-
child” relationship between two nodes in the parse tree. This parse tree has the same topology
and semantics as the parse tree given in Figure 3.5-b) and described in detail in Section 3.3.3
- STEP1. However, there is a small difference between a ”For”-statement node in Figure 3.10
and a ”For”-statement node in Figure 3.5-b). The former has field cuttingP lane whereas
the latter has field unfoldFactor.

At the end of STEP1, the procedure PLANECUT(WDP,P,I) assigns a cutting plane to every
”For”-statement node of the parse tree in Figure 3.10. In our example, node1 and node3 are

98 Algorithmic Transformation Techniques

CodeStatement
code = < code1 >

listOfChildren
NULL

CodeStatement
code = < code2 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

lowerBound = lb2
upperBound = ub2

cuttingPlane = "i1 − 3*i2 + 2"
listOfChildren

ForStatement
loopIterator = "i2"

step = step2

loopIterator = "i1"
lowerBound = lb1
upperBound = ub1
step = step1

listOfChildren

ForStatement

cuttingPlane = "2*i1 − ub1"

node3

node1

node5

node2 node4

Figure 3.10: Parse tree representation of the program shown in Figure 3.5-a).

”For”-statement nodes and they have the special field cuttingP lanewhich has to be set with
the corresponding plane taken from the set of planes P = fp1; p2g = f 2 � i1 � ub1 =
0; i1� 3 � i2+2 = 0 g. So, node1 has loopIterator = i1 therefore the corresponding plane
is p1 which implies that cuttingP lane = 2�i1�ub1. Similarly, for node3 the corresponding
plane is p2, therefore cuttingP lane = i1 � 3 � i2 + 2.

STEP2

Here, the recursive procedure treePLANECUT given in Figure 3.9 is applied on the parse
tree depicted in Figure 3.10. The procedure transforms this parse tree into the parse tree
shown in Figure 3.11.

The procedure treePLANECUT takes as an input the root node of the parse tree. In our
example this is node1. Then, treePLANECUT checks whether node1 is a ”For”-statement
node - see code line 3 in Figure 3.9. In our case this is true and treePLANECUT checks
whether there is a cutting plane assigned to node1, i.e., cuttingP lane of node1 is different
than the symbol ”-” (see code line 7). Since cuttingP lane = 2 � i1 � ub1, the code lines 9
till 32 are executed. As a result, the two ”If”-statement nodes nd1 and nd2 in Figure 3.11 are
created, their fields condition are set, and their ”father-child” relationship is established.

For nd1: the field condition is set to 2� i1�ub1 � 0 by code line 16. The children of node1
(node2, node3, and node4) become children of nd1 - code line 18. Also, nd1 becomes the
first child of node1 - code line 20.

For nd2: the field condition is set to 2� i1�ub1 > 0 by code line 25. The children of node1
(node2, node3, and node4) become children of nd2 - code line 27. Also, nd2 becomes the
second child of node1 - code line 29.

Node1 is marked that it has been processed (code line 32) by setting its field cuttingP lane
with the symbol ”-”.

The procedure treePLANECUT continues with executing code line 37. At this point, node1
has two children nd1 and nd2. Therefore, code line 40 is executed two times by calling the

3.5 Skewing Transformation 99

ForStatement
loopIterator = "i1"
lowerBound = lb1
upperBound = ub1
step = step1
cuttingPlane = "−"

listOfChildren

CodeStatement
code = < code1 >

listOfChildren
NULL

CodeStatement
code = < code2 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code1 >

listOfChildren
NULL

CodeStatement
code = < code2 >

listOfChildren
NULL

condition = "2*i1 − ub1 <= 0"
listOfChildren

IfStatement

CodeStatement
code = < code3 >

listOfChildren
NULL

CodeStatement
code = < code3 >

listOfChildren
NULL

condition = "2*i1 − ub1 > 0"
listOfChildren

IfStatement

listOfChildrenlistOfChildren

IfStatement IfStatement
condition = "i1 − 3*i2 + 2 <= 0" condition = "i1 − 3*i2 + 2 > 0"

ForStatement

listOfChildren

loopIterator = "i2"
lowerBound = lb2
upperBound = ub2
step = step2
cuttingPlane = "−"

listOfChildrenlistOfChildren

IfStatement IfStatement
condition = "i1 − 3*i2 + 2 <= 0" condition = "i1 − 3*i2 + 2 > 0"

ForStatement

listOfChildren

loopIterator = "i2"
lowerBound = lb2
upperBound = ub2
step = step2
cuttingPlane = "−"

nd1 nd2

nd3 nd3nd4 nd4

node1

node3node3

node2 node4 node2 node4

node5node5 node5 node5

Figure 3.11: The parse tree in Figure 3.10 transformed by the procedure treePLANECUT.

procedure treePLANECUT recursively. The input node of the first recursive call is nd1.
The second recursive call has as an input nd2. These recursive calls complete the parse tree
transformation by creating the nodes nd3 and nd4. The final transformed parse tree is shown
in Figure 3.11.

STEP3

In this final step of the procedure PLANECUT(WDP,P,I) the transformed parse tree de-
picted in Figure 3.11 is converted to the weakly dynamic program shown in Figure 3.12.

3.5 Skewing Transformation

First, we explain the general idea behind our skewing transformation in Section 3.5.1 by ap-
plying the transformation on the example program we used in Section 3.3.1 and Section 3.4.1.
The main reason for using the same example program is to show clearly the effect of the
skewing transformation compared to the previously discussed unfolding and plane cutting
transformations. Next, in Section 3.5.2, we define the skewing transformation as a formal
procedure which operates on an N-deep nested loop WDP. Finally, we explain the formal
procedure by going through an example in Section 3.5.3.

100 Algorithmic Transformation Techniques

for i = lb : step : ub ,1 1 1 1

for i = lb : step : ub ,2 2 2 2

if 2*i − ub > 0,1 1

for i = lb : step : ub ,2 2 2 2

if 2*i − ub <= 0,1 1

body of loop i 2
< code3 >

end

body of loop i 2
< code3 >

end

if i − 3*i + 2 > 0,1

if i − 3*i + 2 <= 0,1 2

2

body of loop i 2
< code3 >

end

body of loop i 2
< code3 >

end

if i − 3*i + 2 > 0,1

if i − 3*i + 2 <= 0,1 2

2

< code1 >

end
< code2 >

end
end

< code1 >

end
< code2 >

end

Figure 3.12: The weakly dynamic program in Figure 3.5-a) planecut by the procedure
PLANECUT(WDP,P,I). I = fi1; i2g and P = f 2 � i1 � ub1 = 0; i1 � 3 � i2 + 2 = 0 g.

3.5.1 General Idea

Let us consider the nested loop program (NLP) shown in Figure 3.13-a). The goal of our
skewing transformation is to transform this initial NLP into a new program in which the
bounds of the loops and the indexes of some variables are changed so as to make the poten-
tial parallelism between the function calls F of the initial NLP explicit in the transformed
program.

For example, skewing the inner loop i of the program in Figure 3.13-a) leads to the NLP
shown in Figure 3.13-b). Both programs are functionally equivalent. However, the program
in Figure 3.13-b) has the following very important property: for every loop iteration j 2 [2::7]
the function calls F executed in the body of loop j are data independent of each other. This
property reveals the independent function calls that can be executed in parallel. Therefore, we
say that the potential parallelism between the function calls F of the program in Figure 3.13-
b) is explicit.

The property, mentioned above, is visualized by showing, in Figure 3.13-e), the dependence
graph (DG) which corresponds to the program in Figure 3.13-b). In the DG the function
calls F which are executed in every iteration j are bounded by dashed or solid box. The
DG explicitly shows that the function calls inside a box can be executed in parallel because
there are no data dependences between these function calls. For comparison, the initial NLP
in Figure 3.13-a) does not have that property. This can be seen from the corresponding

3.5 Skewing Transformation 101

end
end

[y(i), x(j)] = F(y(i), x(j));

for j = 1:1:4,
for i = 1:1:3,

for j = 2:1:4+3,

for i = max(1,j−4):1:min(j−1,3),

end
[y(i), x(j−i)] = F(y(i), x(j−i));

for i = max(1,j−4):1:min(j−1,3),

end
[y(i), x(j−i)] = F(y(i), x(j−i));

end

if (j mod 2) = 1,

end
if (j mod 2) = 0,

end

for j = 2:1:4+3,
for i = max(1,j−4):1:min(j−1,3),

end
[y(i), x(j−i)] = F(y(i), x(j−i));

end

P1 P2

i

j

x(1) x(2) x(3) x(4)

y(1) F FFF

y(2) FF F F

y(3) FF F F

a) b)

MatTransform

MatTransform

c)

e)

d)

CompaanDyn

Figure 3.13: Simple example illustrating the skewing transformation.

DG depicted in Figure 3.3-d). The function calls F in every dashed or solid box are data
dependent.

Above, we showed how the skewing transformation makes the potential parallelism between
function calls F explicit. This parallelism can be exploited by our COMPAANDYN approach
in combination with the unfolding or plane cutting transformations to distribute the compu-
tational workload of the skewed NLP in Figure 3.13-b) over several concurrent processes.
For example, if we unfold loop j of this skewed NLP by a factor of two we get the program
depicted in Figure 3.13-c). Taking this program, the COMPAANDYN approach generates a
Kahn Process Network (KPN) that consists of two processes and has the topology shown in
Figure 3.13-d). Process P1 executes the function calls F bounded by the dashed boxes in
Figure 3.13-e). Process P2 executes the function calls F bounded by the solid boxes. More-
over, inside these processes some function calls can be executed in parallel or in a pipeline
fashion because of the skewing transformation.

Our skewing transformation is meaningful if it is applied together with the unfolding or plane
cutting transformations to obtain a KPN. In such case, the degree of exploited task-level
parallelism in the KPN, achievable by the unfolding or plane cutting transformations alone,

102 Algorithmic Transformation Techniques

is increased additionally by the skewing transformation. The price for this increase is more
inter-process communication in the KPN. This can be seen from the following two examples.

First, the KPN shown in Figure 3.3-c) is derived from the NLP given in Figure 3.3-a) by
applying our unfolding transformation alone (loop j is unfolded by a factor of two). This
KPN has two processes and two inter-process communication channels. The function calls
F executed inside every process are directly data dependent, i.e., these function calls can not
be executed in parallel. This is visualized in Figure 3.3-d) and explained in Section 3.3.1.

Second, let us consider the KPN shown in Figure 3.13-d) which is derived from the same
NLP as considered above by applying the skewing transformation together with the same
unfolding transformation as described above. Now, the KPN has again two processes but
two more inter-process communication channels compared to the KPN in Figure 3.3-c). On
the other hand, the exploited parallelism is increased because the function calls F executed
inside every process are data independent, i.e., these function calls can be executed in parallel
or in very efficient pipeline.

In general, our skewing transformation can be applied on an N-deep nested loop WDP. There
is a relation between our skewing transformation and the loop skewing transformation used
in the classical high-performance compilers [40] in the sense that both transformations are an
enabling (auxiliary) transformations that are primarily useful in combination with other trans-
formation to exploit parallelism. However, the classical loop skewing is used in combination
with loop interchange to exploit fine-grain instruction level parallelism by handling so called
wavefront computations. In contrast, our skewing transformation is used in combination with
our unfolding transformation to enhance and exploit task-level parallelism by deriving alter-
native KPNs. Our skewing transformation is similar to the re-timing transformation used in
the signal-processing community [42]. However, we have developed a procedure to do the
skewing transformation on the source code of a weakly dynamic program (WDP), whereas
in [42] the re-timing transformation is applied on signal-flow graphs or dependence graphs
corresponding to a static nested loop program because only for static programs such graphs
can be derived. This means that our skewing transformation has more general applicability
than the re-timing transformation.

3.5.2 Formal Procedure

Let WDP be a weakly dynamic program and let us assume that WDP has N loops. All
loops in WDP have to be nested in each other at different levels, i.e., there are no loops at
a same level of nest. Such program we call an N-deep nested loop WDP. The iterators of
these loops form an iterator vector I = fi1; i2; ::::; iNg. For every loop iterator ik 2 I j k =
1; 2; ::; N a parameter vector Dk = fm1;m2; ::::;mNg is associated, where mp 2 N j p =
1; 2; ::; N . This vector is the skewing vector of loop ik in the N-dimensional iteration space
of WDP . All parameter vectors Dk form a parameter matrix

M = fDT
1 ; D

T
2 ; ::::; D

T
Ng =

2
4m11 :: m1N

:: :: ::
mN1 :: mNN

3
5

3.5 Skewing Transformation 103

which we call skewing matrix. We require M to be unimodular. We define a transformation
SKEW(WDP,M,I) which is described below:

� STEP1 - Represent the iteration space ofWDP by the polytopeP = fI 2 Zn jA:I � bg,
whereA is an integral matrix and b is an integral vector. The values ofA and b are deter-
mined by the lower and upper bounds of the loop iterators in WDP and the conditions
of the ”if”-statements in WDP that are affine functions of loop iterators. The condi-
tions that are not affine functions of loop iterators are not taken into account. Therefore,
the polytope P represents only the linear bound of the iteration space of WDP ;

� STEP2 - Use the skewing matrix M to transform P as follows:
A:M�1:M:I � b =) A

0

:I
0

� b, where A
0

= A:M�1 and I
0

=M:I ;

� STEP3 - Use the Fourier-Motzkin (FM) procedure [63] to represent the iteration space,
described by A

0

:I
0

� b, in terms of nested loops. This is the new iteration space of
WDP with iterator vector I

0

;

� STEP4 - Change all indexes of the variables in WDP in accordance with the equation
I = M�1:I

0

.

3.5.3 Example

We illustrate the four steps of procedure SKEW(WDP,M,I) described above by applying it
on the weakly dynamic program shown in Figure 3.14. Here, we will refer to this program

1 for j = 1:1:N,
2 for i = 1:1:K,
3 if y(i) = x(j),
4 [y(i), x(j)] = F(y(i), x(j));
5 end
6 end
7 end

Figure 3.14: Example of a weakly dynamic program.

as WDP for short. WDP has two loops j and i which are nested, i.e., WDP is a 2-deep
nested loop program. The upper bounds of the loops are the parameters N and K which
can take any positive integer value. WDP is weakly dynamic because the outcome of the
”if”-condition (code line 3) depends on the values of variables y(i) and x(j) which can not
be determined at compile time.

The loop iterators j and i of WDP form an iterator vector I = fj; ig which defines a
two dimensional iteration space. In this space, with every loop iterator a skewing vector is
associated. By default, Dj = f1; 0g is the initial skewing vector of loop j. Di = f0; 1g is the
initial skewing vector of loop i. These two vectors are orthogonal and they form the skewing

matrix M = fDj
T ; Di

T g =

�
1 0
0 1

�
which is the identity matrix. Applying our skewing

transformation SKEW(WDP,M,I) with the default identity matrix M does not change the
WDP . Therefore, the skewing is interesting if we use some non-identity unimodular skewing

104 Algorithmic Transformation Techniques

matrix M . For our example, let us use the skewing matrix M =

�
1 3
0 1

�
. These means that

we skew only the inner loop i in the direction of loop j by a factor of three because we change
only the skewing vector of loop i as follows Di = f3; 1g. Now, let us apply the procedure
SKEW(WDP,M,I) step by step.

STEP1

In this step, the linear bound of the iteration space of WDP has to be represented by a
polytope. From Figure 3.14 we see that the linear bound of WDP is determined by the
bounds of loop iterators j and i. The following linear inequalities can be derived from the
loop’s code in line 1 and line 2: j � 1, j � N , i � 1, and i � K. These four inequalities can
be rewritten in the form j � 1, �j � �N , i � 1, and �i � �K. These linear inequalities
define a polytope P = f(j; i) 2 Z2 j A:(j; i)T � bg where A:(j; i)T � b is the following
matrix inequality:

2
664

1 0
�1 0
0 1
0 �1

3
775 :

�
j
i

�
�

2
664

1
�N
1
�K

3
775

STEP2

We use the skewing matrix M =

�
1 3
0 1

�
and its inverse matrix M�1 =

�
1 �3
0 1

�
to do the

mathematical manipulation A:M�1:M:(j; i)T � b. This manipulation does not change the

polytope P because M�1:M is equal to the identity matrix

�
1 0
0 1

�
. However, the matrix

inequality A:M�1:M:(j; i)T � b can be written in the form A0:(j0; i0)T � b where A0 =

A:M�1 =

2
664

1 �3
�1 3
0 1
0 �1

3
775 and (j0; i0)T = M:(j; i)T =

�
1 3
0 1

�
: (j; i)T . The matrix inequality

A0:(j0; i0)T � b is used to define a new polytope P 0 = f(j0; i0) 2 Z2 j A0:(j0; i0)T � bg
which is the linear bound of a new iteration space for our inputWDP with new loop iterators
j0 and i0.

STEP3

The Fourier-Motzkin (FM) procedure [63] is used to represent the new iteration space, de-
fined by the polytope P 0, as nested loops. We briefly describe how this procedure works for
our example. So, in STEP2, the polytopeP 0 is defined by the matrix inequalityA0:(j0; i0)T � b

3.5 Skewing Transformation 105

which is

2
664

1 �3
�1 3
0 1
0 �1

3
775 :

�
j0

i0

�
�

2
664

1
�N
1
�K

3
775. This matrix inequality is equivalent to the sys-

tem of linear inequalities shown in Figure 3.15. This system can not be expressed directly

a) j0 � 3 � i0 � 1
b) � j0 + 3 � i0 � �N
c) i0 � 1
d) � i0 � �K

Figure 3.15: The new iteration space of
WDP obtained in STEP2.

a) j0 � 3 � i0 � 1
b) � j0 + 3 � i0 � �N
c) i0 � 1
d) � i0 � �K
e) 3 � i0 � 3
f) � 3 � i0 � � 3 �K

Figure 3.16: Adding two redundant in-
equalities e) and f) to the system in Fig-
ure 3.15.

as nested loops (j0 - outer loop and i0 - inner loop) because the inequalities a) and b) in j0

are dependent on i0. Therefore, the system in Figure 3.15 is transformed in a few steps into
an equivalent system with some inequalities in j0 that are independent on i0. First, we add
to the system two redundant inequalities as shown in Figure 3.16. Inequalities e) and f) are
redundant because they are equivalent to c) and d), respectively.

Second, the system in Figure 3.16 is transformed into the system shown in Figure 3.17. In
this system, the new inequality e) is obtained by summing a) and e) from the system in
Figure 3.16. Similarly, the new inequality f) is obtained by summing b) and f) from the
system in Figure 3.16.

a) j0 � 3 � i0 � 1
b) � j0 + 3 � i0 � �N
c) i0 � 1
d) � i0 � �K
e) j0 � 4
f) � j0 � � (N + 3 �K)

Figure 3.17: System equivalent to the sys-
tem in Figure 3.16 with two inequalities e)
and f) independent on i0.

a) i0 � max(1; ceil((j0 �N)=3))
b) i0 � min(floor((j0 � 1)=3);K)
c) j0 � 4
d) � j0 � � (N + 3 �K)

Figure 3.18: The system in Figure 3.17
represented by using functions max, min,
floor, and ceil.

Finally, we arrive at the system shown in Figure 3.18. In this system the inequality a) is equal
to the inequalities b) and c) taken together from Figure 3.17. Also, inequality b) is equal to
the inequalities a) and d) taken together from Figure 3.17.

Now, the system of linear inequalities given in Figure 3.18 represents the linear bound of the
new iteration space of our input WDP . Converting this system to nested loops with j0 as
outer loop and i0 as inner loop we get the transformed WDP shown in Figure 3.19.

106 Algorithmic Transformation Techniques

1 for j’ = 4:1:N+3*K,
2 for i’ = max(1,ceil((j’-N)/3)) : 1 : min(floor((j’-1)/3),K),
3 if y(i) = x(j),
4 [y(i), x(j)] = F(y(i), x(j));
5 end
6 end
7 end

Figure 3.19: The program in Figure 3.14 after the transformations applied in STEP3.

STEP4

After STEP3 all variables inside the loops of the program shown in Figure 3.19 are still
indexed by the old iterators j and i. We have to replace them with the new iterators j0 and

i0. In order to do this we know from STEP2 that (j0; i0)T =

�
1 3
0 1

�
: (j; i)T , which implies

that (j; i)T =

�
1 �3
0 1

�
: (j0; i0)T . So, we have to replace index j with j0 � 3 � i0 and index

i with i0 in all variables. This gives us the final program shown in Figure 3.20 as a result of
applying our skewing transformation. This program is functionally equivalent to the initial

1 for j’ = 4:1:N+3*K,
2 for i’ = max(1,ceil((j’-N)/3)) : 1 : min(floor((j’-1)/3),K),
3 if y(i’) = x(j’-3*i’),
4 [y(i’), x(j’-3*i’)] = F(y(i’), x(j’-3*i’));
5 end
6 end
7 end

Figure 3.20: The weakly dynamic program in Figure 3.14 skewed by SKEW(WDP,M,I).

WDP shown in Figure 3.14. Although, the bounds of the loops have been changed in STEP2
and STEP3 (see code lines 1 and 2 in Figure 3.20), the initial functional behavior of WDP
is preserved by changing the indexes of all variables in STEP4.

3.6 Merging Transformation

In previous sections we have presented our three source-to-source transformations (unfold-
ing, plane cutting, and skewing) which in combination with our COMPAANDYN approach
(Chapter 2) can be used to derive alternative Kahn Process Network (KPN) specifications
from a weakly dynamic program (WDP). These transformations enhance the task-level par-
allelism available in the WDP, thereby allowing COMPAANDYN to generate KPNs in which
a high degree of concurrency is exploited. However, a lot of task-level parallelism requires
a lot of computational resources which in some cases may not be available. Therefore, in
such cases the task-level parallelism available in a WDP has to be reduced, thereby allowing
COMPAANDYN to generate KPNs with a lower degree of parallelism.

In this section, we present our merging transformation as a means of reducing task-level

3.6 Merging Transformation 107

parallelism. We start by explaining the general idea of the transformation in Section 3.6.1.
The formal procedures which define the merging transformation are not given here. They are
given in Chapter 2 because the merging is part of STEP3 in our COMPAANDYN approach.
Finally, in Section 3.6.2, we explain and show how these formal procedures work by going
through an example.

3.6.1 General Idea

Let us consider the nested loop program (NLP) shown in Figure 3.21-a). This program has

for k = 1:1:T,
 for t = 1:1:N,
 [x(k, N+1−t)] = F1(s(k, t));
 end
 for j = 1:1:N,

 for i = 1:1:N,

 end
end

end

 [r(j, j), t] = F2(r(j, j), x(k, j));

 [r(j, i), x(k, i)] = F3(r(j, i), x(k, i), t);

for k = 1:1:T,
 for t = 1:1:N,

 end
 for j = 1:1:N,

 for i = 1:1:N,

 end
end

end

 [x(k, N+1−t)] = P1_l_F1(s(k, t));

 [r(j, j), t] = P2_l_F2(r(j, j), x(k, j));

 [r(j, i), x(k, i)] = P1_l_F3(r(j, i), x(k, i), t);

for k = 1:1:T,
 for t = 1:1:N,

 end
 for j = 1:1:N,

 for i = 1:1:N,

 end
end

end

 [x(k, N+1−t)] = P1_l_F1(s(k, t));

 [r(j, j), t] = P1_l_F2(r(j, j), x(k, j));

 [r(j, i), x(k, i)] = P2_l_F3(r(j, i), x(k, i), t);

P2

P1
F1|F3

KPN_3

P1
F1|F2

P2

KPN_2

b)

P2

P3

P1

a)

c)

KPN_1

annotateannotate

CompaanDyn CompaanDyn CompaanDyn

Figure 3.21: Simple example illustrating the merging transformation.

three function calls F1, F2, and F3 which are executed several times in a particular sequence
defined by the loops. This multiple execution determines the computational workload of the
NLP. Applying our COMPAANDYN approach on this NLP results in the process network
KPN 1 depicted in Figure 3.21. The number of processes in KPN 1 is three and it is
equal to the number of function calls in the input NLP. This is because COMPAANDYN uses
the following default rule for distributing the computational workload: for every function

108 Algorithmic Transformation Techniques

call that appears in the input NLP a process is generated. This distribution rule we call
oneFunction-in-oneProcess. So, in KPN 1 process P1 executes several times function call
F1. Similarly, process P2 executes F2 and process P3 executes F3.

In some cases, the distribution rule oneFunction-in-oneProcess can lead to a KPN specifica-
tion with a high degree of concurrency which can not be exploited. For example, if we have
to map KPN 1 in Figure 3.21 onto an architecture which consists of only two components
then we do not have enough components to map every process onto a single component, i.e.,
the concurrency in KPN 1 can not be exploited in full scale. In such case, a better KPN
specification will be one that have only two concurrent processes because it matches better
the available architecture resources. Examples of such KPN specifications are KPN 2 and
KPN 3 in Figure 3.21 where process P1 in KPN 2 executes F1 and F2 and process P1
in KPN 3 executes F1 and F3.

In order to derive KPN 2 or KPN 3 from the program in Figure 3.21-a), we need a flexi-
ble mechanism to specify and execute alternative distributions which do not obey the default
distribution rule oneFunction-in-oneProcess. In our COMPAANDYN approach such alterna-
tive distributions can be specified in the code of the input NLP and executed by our merging
transformation which takes place in STEP3 of COMPAANDYN. For example, let us assume
that we want to distribute the computational workload of the NLP shown in Figure 3.21-a)
over two processes P1 and P2 where P1 executes function calls F1 and F2 and P2 executes
function call F3. This distribution has to be specified in the NLP by annotating it as shown in
Figure 3.21-b). We see that labels are attached to the function call names4. F1 and F2 have
the same label P1 l , therefore our merging transformation will place these function calls in
one process with name P1. The resulting network is KPN 2 shown in Figure 3.21.

According to the Kahn Process Network semantics process P1 has to execute the function
calls F1 and F2 in a sequential order. Therefore, the main step in our merging transformation
is to find a valid sequential order, in our case an order between F1 and F2 such that the
network KPN 2 is deadlock free. To get such sequential order a knowledge of a global
schedule between all functionsF1, F2, and F3 is required. Then our merging transformation
extracts a valid sequential order between F1 and F2 from the global schedule. Our merging
transformation uses the global schedule defined by the execution order of the function calls
in the input NLP.

Our merging transformation is not a source-to-source transformation compared to the pre-
viously presented unfolding, plane cutting, and skewing transformations. This is because
in many cases an input weakly dynamic program (WDP) can not be re-written into a func-
tionally equivalent WDP where selected function calls of the input WDP are merged in one
function call. For example, let us take the program in Figure 3.21-a) which is a special sim-
plified case of a WDP. This program can not be re-written such that function calls F1 and
F3 are merged in a single function call because there is function call F2 in between, and
function F3 is data dependent on F2 and vice versa. So, we can not perform the merging
on the source code of the input WDP in order to get a transformed WDP and then give the
transformed WDP to COMPAANDYN to derive a KPN.

4The general format of a label is <processName> l where l is a special terminal symbol used as a separator
between <processName> and the name of the function call. Function calls with the same labels are placed in one
process.

3.6 Merging Transformation 109

Because of the fact given above our merging transformation is part of the COMPAANDYN

approach. The transformation operates on the approximated dependence graph (ADG) and
the schedule tree (STree), both corresponding to an input weakly dynamic program (WDP).
Our merging operation consists of two main steps. First, the nodes of the ADG are grouped in
processes thereby creating the topology of the KPN. The grouping complies with the work-
load distribution specified in the input WDP. Second, a valid intra-process sequential order
is derived from the STree for the processes that have to execute more than one function call,
i.e., the processes that have been created by grouping nodes of the ADG. To make the two
main steps of our merging transformation more concrete we illustrate them with the example
below.

3.6.2 Example

Let us consider the weakly dynamic program shown in Figure 3.22. The functional behavior

1 for j = 1:1:4,
2 [x(j)] = P2 l F1(...);
3 end
4
5 for j = 1:1:4,
6 if x(j) <= 0,
7 [x(j)] = P1 l F2(x(j));
8 end
9 [...] = P2 l F3(x(j));
10 end

Figure 3.22: A weakly dynamic program annotated with labels P1 l and P2 l that specify
a particular computational workload distribution.

of this program is discussed in Section 1.2.2. Here, we annotate the program with the labels
P1 l and P2 l , thereby specifying how our merging transformation has to distribute the
computational workload of the program over two processes P1 and P2. Process P1 has to
execute several times function call F2 and process P2 has to execute several times function
calls F1 and F3 in a sequential order.

To perform the distribution specified above our merging transformation operates on the ap-
proximated dependence graph (ADG) and the schedule tree (STree) derived from the program
in Figure 3.22. General formal definitions of an ADG and an STree are given in Chapter 2.
Formal procedures how to derive them from a weakly dynamic program can also be found
there. For the program in Figure 3.22 the ADG and the STree are depicted in Figure 3.23-a)
and Figure 3.24-a), respectively.

The ADG consists of three nodes and five edges. Nodes N1, N2, and N3 correspond to
function calls F1, F2, and F3, respectively. Edges ED1, ED2, ED3, ED4, and ED5
correspond to possible data dependencies between F1, F2, and F3 through variable x(j).
Every node in the ADG has input ports pi and output ports qj .

The STree is a syntax tree with leaf nodes that correspond to function calls F1, F2, and F3.
The rest of the nodes correspond to control statements of the program in Figure 3.22. The
STree represents in a compact form one valid sequential execution order (global schedule)

110 Algorithmic Transformation Techniques

among functions F1, F2, and F3 that is the original execution order of the program in
Figure 3.22. If we parse the STree top-down from left to right this order can be obtained.

Having the ADG and the STree together with the distribution specified in the input program,
the merging transformation performs the two steps described at the end of the previous sec-
tion:

STEP1

The ADG is transformed to a process network (PN) data structure. A formal definition of a
general PN and a formal procedure called Node Grouping to transform an ADG to a PN are
given in Chapter 2. For our example, the nodes of the ADG in Figure 3.23-a) are structurally
grouped in two processes in a PN data structure with the topology shown in Figure 3.23-b).

p1

q1

q2

p1

p2

p2

N2
(F2)

N3
(F3)

N1
(F1)

p3

ED5(ctrl)

ED3(x_1)

ED
2(

x_
1)

ED4(x_2)

ED1(x_1)

q1

q3
q2

OG2

OG1 IG1

IG3
(N2)
P1

C1(ED5)

P2
C2(ED4)

IG2OG2

IG1 (N1&N3)OG1

OG3

C3(ED2)

C4(ED1)

IG2

C5(ED3)

Node Grouping

b)

a)

Figure 3.23: Example of Node Grouping performed by our merging transformation to trans-
form the Approximated Dependence Graph (a) into the Process Network (b).

Process P1 consists of node N2. Process P2 consists of nodes N1 and N3. For every edge
EDi in the ADG a corresponding channel Cj in the PN is created. Every channel has an
input gate IG and output gate OG which are related to the ports in the ADG. For example,
the OG and IG of channel C2 are related to port q1 of node N2 and port p2 of node N3,
respectively.

3.6 Merging Transformation 111

STEP2

After STEP1 of our merging transformation the topology of the network is defined in the
PN data structure but the sequential order of execution of the function calls inside every
process is not defined yet. Therefore, in this step the merging transformation extracts from
the STree a valid sequential order for every process that guarantees deadlock free process
network. A formal procedure called Schedule Nodes is performed. This procedure was given
in Chapter 2.

In Figure 3.24 we show how the procedure Schedule Nodes works for process P2 in our
example. Since P2 consists of nodes N1 and N3, P2 has to execute sequentially function

F1

root

F3

for j = 1:1:4 for j = 1:1:4

F1 F2

root

F3

for j = 1:1:4 for j = 1:1:4

if x_1(j) <= 0

STree Marking

STree Pruning

F1 F2

root
for j = 1:1:4for j = 1:1:4

F3

if x_1(j) <= 0

Process P2 executes
functions F1 and F3

a)

b) Schedule Nodes

Figure 3.24: Example of applying the Schedule Node procedure to obtain a valid intra-process
sequential order.

calls F1 and F3. This information and the STree in Figure 3.24-a) are given as an input to
the procedure. First, the operation STree Marking is applied. This operation finds the F1 and
F3 leaf nodes in the STree and parses the tree from these nodes up to the tree root, marking
all the nodes in the path - see Figure 3.24. Second, the STree is pruned by removing all the
unmarked nodes in the tree. The resultant three shown in Figure 3.24-b) can be converted to
a program by traversing it top-down from left to right. This program gives a valid sequential
order between F1 and F3 for process P2.

112 Algorithmic Transformation Techniques

3.7 Discussion and Conclusions

In this chapter, we presented a set of transformations for a systematic derivation of alternative
application instances (Kahn Process Networks) from an application specified as a weakly
dynamic program. These transformations are encapsulated in an application transformation
layer on the top of a Y-chart exploration environment in order to facilitate system designers
in exploring alternative instances of an application mapped onto an architecture template.

Our set consists of four transformations, namely unfolding, plane cutting, skewing, and merg-
ing. Although, this is a very small set of transformations its transformation power is very
large when the transformations are applied in combination on a weakly dynamic program
(WDP). By applying the unfolding or plane cutting transformation in combination with the
merging transformation one can get whatever task-level distribution of the computational
workload of a WDP over concurrent processes. This statement is true because: 1) in Sec-
tion 3.3 and Section 3.4 we showed that our unfolding or plane cutting transformations can
be used to transform a WDP such that the maximum task-level parallelism is revealed; 2) On
this transformed WDP, our merging transformation can be applied in order to get an arbitrary
distribution. We showed in Section 3.6 that this is possible by specifying whatever merging
of function calls of a WDP in concurrent processes.

Our transformations have been defined as formal procedures which accept a set of parame-
ters. The behavior of every transformation depends on the values of these parameters. This
means that the way an input program is transformed by a transformation depends on the pa-
rameter values. For an arbitrary parameter value, the unfolding, plane cutting, and merging
transformations always transform an input program to a functionally equivalent program, i.e.,
these transformations are always legal. The skewing transformation is not always legal be-
cause it changes the order of execution of function calls in an input program. The values of
the skewing parameters have to be set such that the changed execution order does not violate
the data dependencies between the function calls.

Our unfolding, plane cutting, and skewing transformations add extra control structures and
operations in the transformed program such as ”if”-statements, and ”mod”, ”div”, ”max”,
”min”, ”ceil”, and ”floor” operations. By converting the transformed program into a pro-
cess network a lot of optimizations are done to minimize the effect of the additional control
and operations on the performance of the network. These extra control and operations are
distributed over the concurrent processes of the network and they are executed in parallel.
Moreover, the effect of these extra control and operations on the network performance gets
lower when the granularity of the function calls executed inside the processes gets higher.
This means that our transformations are very efficient when the function calls in an input
program represent relatively big and computational intensive tasks (not several simple in-
structions). We have developed our transformations to exploit task-level parallelism and to
be used when the input program is a composition of task-level function calls. Therefore, the
extra control and operations added by our transformations do not play a significant role on
the performance.

Chapter 4
Case Studies

4.1 System Design Flow Using Kahn Process Networks: an
M-JPEG Case Study

New emerging embedded system platforms in the realm of high-throughput multimedia,
imaging, and signal processing consist of multiple microprocessors and reconfigurable com-
ponents. In Chapter 1 we argued that the Kahn Process Network (KPN) model of computation
is a suitable parallel model for specifying stream-oriented applications because the specific
characteristics of this model match the characteristics of the new emerging embedded system
platforms. This allows a system designer to perform systematic mapping of an application
onto these platforms.

In this section we present a case study which supports the statement above. The main objec-
tive of this case study is to show that our COMPAANDYN approach presented in Chapter 2
can be used and integrated successfully in a system design flow which relies on the KPN
model of computation to map efficiently real-life applications onto real hardware platforms
in a systematic and automated way. In the case study we show how for an application written
as a weakly dynamic program in Matlab, a Kahn Process Network specification is derived in
a systematic and automated way using the techniques presented in Chapter 2. This specifica-
tion is systematically mapped onto a real hardware platform composed of a microprocessor
and an FPGA using the COMPAAN/LAURA tools [18] [64]. In the case study we use a real-life
application, namely an M-JPEG encoder.

4.1.1 Introduction

New emerging embedded system platforms in the realm of high-throughput multimedia,
imaging, and signal processing consist of multiple microprocessors and reconfigurable com-
ponents. To satisfy the performance needs of tomorrow’s applications, these emerging plat-

114 Case Studies

forms leverage task-level parallelism, i.e., the microprocessors and the reconfigurable com-
ponents run concurrently. To execute an application on these platforms, the platforms have
to be programmed, which implies writing software for the microprocessors using languages
like C and writing hardware descriptions using languages like VHDL to configure the recon-
figurable components.

To use the concurrency available in the platforms, we need to program them in a way that
we exploit distributed control and distributed memory. Distributed control means that the
individual components on a platform can proceed autonomously in time without much in-
terference from other components. Distributed memory means that the exchange of data is
contained in the communication structure between individual components and not pooled in
a large global memory. Although distributed memory and control are key requirements to
take advantage of the new emerging platforms, we observe that sequential programs written
in imperative programming languages like C, Java, or Matlab are still the preferred way to
specify applications that execute on these platforms. The sequential nature of these specifi-
cations makes it easy to reason about an application as only a single thread of control needs
to be considered. Also, memory is global and all the data comes from the same memory
source. But precisely the single memory and single thread of control in a sequential program
are contradictory to the need for distributed control and memory. Therefore, programming
these new platform is a very tedious, error prone, and time consuming process.

Instead, we believe that a much more appropriate model of computation is the Kahn Pro-
cess Network model as it inherently expresses applications in terms of distributed control
and memory. As said before, most applications are written in an imperative model of com-
putation. To facilitate the migration from an imperative application to a KPN specification
and the mapping of this specification onto a platform, we have developed a top-down system
design flow which integrates our COMPAANDYN approach presented in Chapter 2, the COM-
PAAN tool chain, the LAURA tool, and other tools. We have been involved in the development
of parts of the COMPAAN/LAURA tools together with the other main contributors Alexandru
Turjan, Claudiu Zissulescu, Bart Kienhuis, and Ed Deprettere. Our system design flow allows
an application written as a weakly dynamic program in Matlab to be converted in a systematic
and automated way to a KPN using the COMPAANDYN approach. This conversion is correct
by construction. The obtained processes in the KPN can subsequently be mapped either in
software using standard compilers or on hardware using the COMPAAN/LAURA tools.

Our system design flow is centered around exploiting the Kahn Process Network model char-
acteristics. We present the flow by illustrating how we map an M-JPEG application written
as a weakly dynamic program in Matlab onto a target architecture that consists of a CPU
and an FPGA. The design flow consists of two major steps. In the first step, we convert the
Matlab specification of the M-JPEG to a KPN specification. In the second step, we map one
process in hardware on the FPGA whilst the remaining processes are mapped in software on
the CPU. Before we explain our flow in more detail, we first look at the KPN model and its
specific characteristics.

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 115

Kahn Process Networks

The KPN model of computation [10] [13] assumes a network of concurrent autonomous
processes that communicate in a point-to-point fashion over unbounded FIFO channels, using
a blocking-read synchronization primitive. Each process in the network is specified as a
sequential program that executes concurrently with other processes. A KPN has the following
favorable characteristics:

� The KPN model is deterministic, which means that irrespective of the schedule chosen
to evaluate the network, always the same input/output relation exists. This gives us a
lot of scheduling freedom that we can exploit when mapping processes to hardware or
software.

� The inter-process synchronization is done by a blocking read. This is a very simple
synchronization protocol that can be realized easily and efficiently in hardware and
software.

� Processes run autonomously and synchronize via the blocking read. When mapping
processes on hardware like an FPGA, you get autonomous islands on the FPGA that
are only synchronized via blocking reads.

� As control is completely distributed to the individual processes, there is no global
scheduler present. As a consequence, partitioning a KPN over a number of recon-
figurable components or microprocessors is a simple task.

� As the exchange of data has been distributed over the FIFOs, there is no notion of
a global memory that has to be accessed by multiple processes. Therefore, resource
contention does not occur.

COMPAANDYN approach and Compaan/Laura tools

In our system design flow the COMPAANDYN approach and the COMPAAN and LAURA tools
play a crucial role as described above. The COMPAANDYN approach was introduced in
Chapter 1 and elaborated in Chapter 2. We refer the reader there for details. Here, we briefly
describe only the COMPAAN/LAURA tools which we use in our flow as well. The COMPAAN

compiler, introduced in [18] and further developed in [22, 23], fully automates the transfor-
mation of Matlab code into Kahn Process Network (KPN) specifications. The applications
COMPAAN can handle, have to be specified as parameterized static affine nested loop pro-
grams, which is a subset of the Matlab language. COMPAAN consists of three tools. The first
tool transforms the initial Matlab code into single assignment code (SAC), which resembles
the dependence graph (DG) of the initial nested loop program. The second tool converts the
SAC into a Polyhedral Reduced Dependence Graph (PRDG) data structure, which is a com-
pact mathematical representation of the DG in terms of polyhedra. The third tool converts
the PRDG into a process network by associating a process with each node of the PRDG. The
parallel processes communicate with each other according to the data-dependency given in
the DG.

116 Case Studies

LAURA [64] maps a KPN specification onto hardware, for example, FPGAs. The LAURA tool
operates as a back-end for the COMPAAN compiler. First, the KPN specification is converted
into a functionally equivalent network of virtual processors, called hardware model. This is
a platform independent step as no information on the target platform is taken into account.
Second, platform specific information is added as well as IP cores to this hardware model
leading to a network of synthesizable processors. Finally, the hardware model is converted
into synthesizable VHDL code.

Our System Design Flow

We demonstrate and evaluate our design flow in the context of a case study in which we
map an M-JPEG application onto a platform that consists of a microprocessor and an FPGA
running in parallel and communicating with each other via shared memory banks. We give
a brief description of the M-JPEG application and the target platform in Section 4.1.2. This
is followed by a step-by-step description of our system design flow in Section 4.1.3. In
Section 4.1.4, we present some results that we have obtained. In Section 4.1.5 we draw some
conclusions and compare our system design flow with other design flows.

4.1.2 M-JPEG and the Platform Architecture

The application we consider is a modified Motion JPEG (M-JPEG) encoder. We have chosen
this application because it is a real-life application that is not overly complex, but has enough
features to illustrate the use and usefulness of our design flow. Like traditional M-JPEG
encoders, the modified M-JPEG encoder compresses a sequence of video frames, applying
JPEG [65] [66] compression to each frame in the video sequence. M-JPEG is used for mo-
tion pictures compression like MPEG [67] but without inter-frame predictive coding. Our
modified M-JPEG encoder, which we further refer to as M-JPEG*, operates on video data
in both 4:2:2 YUV and RGB formats on a per-frame basis. This implies that the behavior
of M-JPEG* is dependent on the incoming video data. The M-JPEG* encoder application is
depicted as a block diagram in Figure 4.1-a).

VP1 VP3

VP2

VP4

F
IF

O
3

FIFO4

FIFO2

FIFO1

b) The target platform architecture a) The M−JPEG* application

ADM−XRCII board
Virtex−II 2V6000 FPGA

M
em

o
ry

 B
an

ks

PCI bus

Pentium IV

Microprocessor

M
u

lt
ip

le
xe

r

Host Interface

HW Design

JPEG encoding
M−JPEG encoded

video stream
Video stream

(4:2:2 YUV or RGB format)

Figure 4.1: Block diagrams: a) M-JPEG*; b) target platform

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 117

We map and run the M-JPEG* application on our target platform architecture which is de-
picted in Figure 4.1-b). The platform architecture consists of a microprocessor (i.e., a Pen-
tium IV) running WindowsNT and connected via PCI bus to the ADM-XRCII board man-
ufactured by Alpha Data Parallel Systems, Ltd [68]. The ADM-XRC-II board is a high
performance PCI Card, designed for supporting development of applications using the Xilinx
Virtex-II series of FPGAs. The board consists of a Virtex-II 2V6000 FPGA and six ZBT
memory banks of size 256k � 32 bit.

The platform described above allows some parts of the application to run on the Pentium IV
microprocessor and other parts to run on the FPGA in the HW Design block in Figure 4.1-
b). To facilitate the communication between the microprocessor and the FPGA, we designed
a special interface, labeled as the Host Interface block in Figure 4.1-b). This block is re-
sponsible for uploading/downloading data to/from the Memory Banks. It also controls the
HW Design block. When the Microprocessor has to communicate data with the HW Design
block, it loads some of the memory banks with data through the Host Interface. Next, the
Microprocessor sends a control signal to the HW Design to start execution. The micropro-
cessor also sends a control signal to the Multiplexer block to give the HW Design access to
the memory banks. The Microprocessor continues to run in parallel with the HW Design and
it can access memory banks that are not accessed by the HW Design. When the HW Design
finishes with the execution, it notifies the Microprocessor. Then, the Microprocessor can
change the state of the Multiplexer in order to read the data produced by the HW Design.

4.1.3 The Mapping

Our system design flow maps an application onto a target platform in a systematic and auto-
mated way in a number of steps. We illustrate these steps by mapping the M-JPEG* applica-
tion onto our platform. Central to our system design flow are the COMPAANDYN approach
and the COMPAAN/LAURA tools as shown in Figure 4.2. The figure shows that an application
written as a weakly dynamic program (WDP) in Matlab is converted to a KPN specification
using the COMPAANDYN approach. By doing workload analysis, candidate processes of this
specification are selected for mapping on hardware (FPGA). The remaining processes are
mapped on the CPU as software. The KPN is written in a particular format in C++ called
YAPI [45]. Using a standard C++ compiler, the processes are compiled to run on the CPU on
top of a lightweight multi-threading package. The processes that need to be mapped onto the
hardware are further processed by the COMPAAN tool to obtain a hierarchical subnetwork.
This subnetwork, which is again a KPN, is compiled into hardware using the LAURA tool.
Using commercial synthesizers, we obtain the bitstream to map one or more processes onto
the FPGA. The communication between the FPGA and the CPU is automatically generated
by LAURA.

We now look at the various steps in more detail and see how they apply to our M-JPEG*
application.

118 Case Studies

P6 P7

P1 P2 P3 P4 P5

sP3sP1

sP2

sP4

1

2 3

5

4

FPGA
BANK N

BANK 0

: :environment

microProcessor

Bus

COMPAAN compiler

LAURA

C/C++ compiler

YAPI executable

VHDL Synthesizer

Synthesizable VHDL

YAPI−code

KPN subnetwork
for process P3

HW implementation

KPN as

SW implementation

IP Cores
Library

Target Platform

Application described

Workload
Analysis

YAPI Multi−Threading

as WDP in Matlab

CompaanDyn Approach

Figure 4.2: The System Design Flow.

STEP 1

The input of our design flow is an application described as a weakly dynamic program in
Matlab. It can be debugged easily and the functional correctness of the application can easily
be verified. For the M-JPEG* application, we started from a public domain JPEG codec
implementation in C [69]. First, we extracted the encoder part from the implementation and
modified it to obtain the M-JPEG* application. For example, we added code that implements
the conversion of RGB frames to 4:2:2 YUV frames. Next, we structured our M-JPEG*
C-code as a set of routines (functions) that are called by the Matlab code shown in Figure 4.3.

This Matlab code is parameterized in the number of frames to be processed (NumFrames)
and in the the vertical (VNumBlocks) and horizontal (HNumBlocks) size of a frame in
number of 8�8-pixel blocks. For example, the code in line 1 specifies that the number of
frames in the sequence can be any integer value between 8 and 100. The code in lines 5-8

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 119

1

5

10

15

20

25

30

35

40

45

48

%parameter NumFrames 8 100;
%parameter VNumBlocks 16 100;
%parameter HNumBlocks 8 100;

for k = 1:1:1,
[QTables, HuffTables,

TablesInfo] = DefaultTables();
end

for k = 1:1:NumFrames,

[HeaderInfo, FrameType] = VideoInInit();

if FrameType = 1,
for j = 1:1:VNumBlocks,
for i = 1:1:HNumBlocks,

[BlockRGB] = VideoInRGB();
[Block(j,i)] = RGB_to_YUV(BlockRGB);

end
end

else
for j = 1:1:VNumBlocks,
for i = 1:1:HNumBlocks,

[Block(j,i)] = VideoInYUV();
end

end
end

for j = 1:1:VNumBlocks,
for i = 1:1:HNumBlocks,
[Block(j,i)] = DCT(Block(j,i));

end
end

for j = 1:1:VNumBlocks,
for i = 1:1:HNumBlocks,

[Block(j,i)] = Q(Block(j,i), QTables);

[Packets] = VLE(Block(j,i), HuffTables);

[] = VideoOut(HeaderInfo, TablesInfo,
Packets);

end
end

end

Figure 4.3: Task-Level specification of the M-JPEG* application as a Weakly Dynamic Pro-
gram in Matlab.

initializes the quantization (QTables) and Huffman (HuffTables) tables as well as other
variables.

The Matlab code has a weakly dynamic (data-dependent) behavior because of the data-
dependent ”if”-condition at line 14. This condition checks whether an incoming frame is
in YUV format or in RGB format. If an incoming frame is in RGB format then the frame is
divided in 8�8-pixel blocks by the VideoInRGB() function and every block in the frame
is converted to 4:2:2 YUV block by the RGB to YUV() function - see code lines 15–20. If
an incoming frame is in YUV format then the frame is divided in 8�8-pixel blocks by the
VideoInYUV() function where every block is a 4:2:2 YUV block - see code lines 22–26.

The code lines 29–46 execute the standard JPEG compression algorithm for one frame. A
Discrete Cosine Transform (DCT) is applied on every 4:2:2 YUV block - line 31, followed by
quantization (Q) and variable-length encoding (VLE) - line 38 and line 40, respectively. Func-
tion VideoOut() in line 42 adds header information to the compressed frame sequence.

The function calls communicate data via shared variables with different type and structure.
For example, variable FrameType in line 12 is a simple boolean variable whereas variable

120 Case Studies

QTables in line 38 is a complex data structure that stores the quantization coefficients for
the three components Y, U, and V, with which every 8�8-pixel block is quantized.

The weakly dynamic matlab program in Figure 4.3 is a convenient way to describe the M-
JPEG* application. Nonetheless, this program does not reveal the inherent task-level paral-
lelism available in the M-JPEG* due to the sequential nature of the program. Therefore, the
first step in our system design flow is to convert this sequential program into an executable
parallel specification, in our case a Kahn Process Network (KPN). We need a parallel specifi-
cation of the M-JPEG* because we want to exploit efficiently the parallel resources provided
by the platform described in Section 4.1.2 onto which we map the M-JPEG*.

In general, deriving an executable KPN specification by hand for an application described as
a weakly dynamic program is difficult and time consuming. Instead, we relay on our proto-
type software that implements the COMPAANDYN approach to convert in a semi-automatic
way the M-JPEG* Matlab program into the KPN specification shown in Figure 4.4-a). Our

VideoOut

b) DCT subnetwork

Q

a) M−JPEG* network

DCT

P2

inYUV

RGB2YUV

inInit

inRGB

P

PreShift

Source Sink

VLE

struct Block {
int Y1[64]; /* block 8x8 pixels */
int Y2[64]; /* block 8x8 pixels */
int U[64]; /* block 8x8 pixels */
int V[64]; /* block 8x8 pixels */

};

Pixel

Pixel

Pixel

Pixel
inBlock outBlock

Block Block Packets

H
u

ff
T

ab
le

s

QTables

TablesInfo

HeaderInfo

Block

Block

Select

FrameType

BlockRGB

Fram
eType

FrameType

12

Figure 4.4: The hierarchical KPN for the M-JPEG* Application.

prototype COMPAANDYN software generates a Kahn Process Network as C++ code using
the Y–chart Applications Programmers Interface (YAPI) [45]. In YAPI, each process is mod-
eled as a light-weight thread that communicates data with other threads (processes) via un-
bounded FIFO channels. These channels are accessed using the primitives read and write
to read/write data from/to FIFO channels. The read primitive blocks the execution of a pro-
cess if the current channel from which a process reads data is empty. The write primitive
is non-blocking. The blocking-read mechanism accomplishes the inter-process synchroniza-
tion.

To obtain a KPN from a weakly dynamic matlab program, the general partitioning strategy

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 121

employed by our COMPAANDYN approach is to create a process for every function call in
the program. Therefore, the Kahn Process Network shown in Figure 4.4-a) consists of nine
processes. The DCT, Q (Quantizer), VLE (Variable Length Encoding), and VideoOut processes
form the central data-flow processing of the M-JPEG encoding algorithm. The inInit process
parses the header of every incoming video frame and sends information about the type of
the video frame (RGB or YUV) to the inYUV, inRGB, and RGB2YUV processes. Based on
this information if the type of the frame is RGB then processes inRGB and RGB2YUV are
activated. Process inRGB splits the incoming frame in RGB blocks and sends them to the
RGB2YUV process. This process converts the RGB blocks to 4:2:2 YUV blocks and sends
them to process DCT. If the incoming frame is YUV then process inYUV is activated that
splits the frame in 4:2:2 YUV blocks and sends them to DCT. Process P2 computes and sends
quantization and Huffman tables to process Q and process VLE, respectively.

To obtain a specification that exploits distributed memory, all shared variables in the Matlab
code shown in Figure 4.3 are replaced by FIFO channels in the KPN shown in Figure 4.4-a).
For example, the shared variable Block(j,i) is distributed over four FIFO channels called
Block in Figure 4.4-a). The type of data communicated over the FIFO channels is the same
as the type of the shared variables from which the channels originate. For instance, the type
of the variable Block(j,i) and the date communicated over the channels with the name
Block is the structure shown in the lower right corner of Figure 4.4.

The KPN in Figure 4.4-a) is derived from the weakly dynamic program shown in Figure 4.3
where the data dependent ”if”-condition at code line 14 makes the behavior of the program
data dependent. The derived KPN has to handle this data dependent behavior. This is ac-
complished by introducing control FIFO channels over which control information is sent to
some of the processes in order to control their internal behavior. These control FIFO channels
are depicted as dashed arrows in Figure 4.4-a). The information communicated over control
FIFOs denoted as FrameType is used to activate processes inYUV, inRGB, and RGB2YUV de-
pending on the type of the incoming video frame. The control FIFO denoted as Select
delivers information to process DCT that is used by DCT to select the port (port 1 or port 2)
from where to read the blocks that have to be processed.

At the end of step 1 in our design flow, we have obtained an executable specification of the
M-JPEG* application as a KPN in YAPI code. When the specification is executed, the YAPI
code generates statistics on computational and communicational workload of the application.
Based on this information, we perform a manual HW/SW partitioning of the application. We
identify the most computational intensive process as a candidate we want to put on hard-
ware to speedup the computation. This is done in step 3 of the system design flow. For the
Kahn Process Network shown in Figure 4.4-a), the most computational intensive process is
DCT that performs the Discrete Cosine Transform on every incoming block of pixels. The
rest of the processes in the network will be implemented as software and mapped onto the
microprocessor.

STEP 2

The processes selected to be put in software, need to execute on the microprocessor of our
target platform. For this purpose, we use the YAPI multi-threading environment which is a

122 Case Studies

light-weight multi-threading environment. A standard C/C++ compiler is used to compile the
YAPI code of the processes.

All the processes of the M-JPEG* KPN are mapped onto the microprocessor, except for the
DCT process which is to be mapped on the FPGA. To integrate the execution of the DCT

process on hardware with the software processes on the microprocessor, a small piece of
interface code needs to execute on the microprocessor too. This code is given in Figure 4.5.
The interface code is derived automatically by the COMPAANDYN prototype software.

1

5

10

15

19

void DCT::main() {
for (int k=1; k <= NumFrames; k++) {

for (int j=1; j <= VNumBlocks; j++) {
for (int i=1; i <= HNumBlocks; i++) {

read(SelectPort, c);

if (c == k) {
read(inPort2, inBlock);

} else {
read(inPort1, inBlock);

}

outBlock = DCT(inBlock);

write(outPort, outBlock);
}

}
}

}

Figure 4.5: Interface code in YAPI format to connect the Software Processes with the Hard-
ware implementation of DCT.

In line 5 of the code, the YAPI primitive read() is used to get control data from the control
FIFO channel Select that is connected to the DCT process. The data read from this channel
is stored in the control variable c. The value of this variable is used in code line 7 for selecting
the data FIFO channel from which the data for the function call DCT() has to be read. This
data can be read from port inPort1 or port inPort2 and the data is stored in variable
inBlock. The type of this variable is the data structure shown in the lower right corner of
Figure 4.4. This structure consists of four 8�8-pixel blocks. Two blocks for the luminance
component (Y1 and Y2) and two for the chrominance component (U and V). In line 15, the
YAPI primitive write() is used to put data that is stored in the variable outBlock to
the output FIFO channel which is connected to the DCT process. The type of the variable
outBlock is the same as the type of the variable inBlock.

In line 13, the function DCT() is called. This function executes a Discrete Cosine Transform
(DCT) task implemented as hardware on the FPGA component shown in Figure 4.1-b). First,
the data stored in the input argument inBlock of the DCT() is uploaded to the memory
Bank0 of the Memory block shown in Figure 4.1-b). This is done via the PCI bus and the
Host Interface. Next, the HW Design block executes the DCT task and stores the data in the
memory Bank1. Finally, this data is downloaded from the memory Bank1 and returned in
output argument outBlock of function call DCT() in line 13.

STEP 3

By performing a workload analysis, we identify a candidate process that is the most compu-
tational intensive process of a given KPN. Typically, the code of such process is a nested loop

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 123

program [70]. We want to implement this process as hardware running on the FPGA in the
HW Design block of the target platform. For that purpose, we use the LAURA tool which gen-
erates synthesizable VHDL code from a KPN specification derived by the COMPAAN tool.
This VHDL code is suitable for mapping onto FPGAs.

In our case, the candidate process is the DCT process of the KPN in Figure 4.4-a). The
code executed inside this process is given in Figure 4.5 where the function call DCT() is
to be implemented as hardware on the FPGA. Initially, the function call DCT() executes
a static affine nested loop program. Using the COMPAAN tool we derive a KPN from this
program. This KPN, shown in Figure 4.4-b), is a hierarchical subnetwork in the M-JPEG*.
For this hierarchical subnetwork, LAURA generates synthesizable VHDL. By creating the
subnetwork, we exploit more efficiently the parallelism available inside the DCT process.
Moreover, we apply automatic type conversion as the hierarchical input/output to/from the
DCT subnetwork is data of type Block. Inside the subnetwork, this is converted to streams of
pixels (integers). By moving to streams of pixels, we get more fine-grained communication
that can be mapped more efficiently onto the FPGA. The type conversion is automatically
handled by COMPAAN.

The generation of hardware for the DCT process starts by converting the code in the function
call DCT() in line 13 of Figure 4.5, into a Kahn Process Network specification. This is done
by the COMPAAN compiler - step 3 in Figure 4.2. The code for the DCT() function call is
described as a static affine nested loop program in Matlab as shown in Figure 4.6.

1

5

10

15

20

25

29

for k = 1:1:4,
for j = 1:1:64,

[Pixel(k,j)] = Source(inBlock);
end

end

for k = 1:1:4,

if k <= 2,
for j = 1:1:64,
[Pixel(k,j)] = PreShift(Pixel(k,j));

end
end

for j = 1:1:64,
[Block] = P_l_PixelsToBlock(Pixel(k,j));

end
[Block] = P_l_2D_dct(Block);
for j = 1:1:64,

[Pixel(k,j)] = P_l_BlockToPixels(Block);
end

end

for k = 1:1:4,
for j = 1:1:64,

[outBlock] = Sink(Pixel(k,j));
end

end

Figure 4.6: Matlab code of the DCT() function call.

Lines 1 to 5 transform the incoming data structure inBlock whose type is shown in the
right-down corner of Figure 4.4 into pixels of type int. Then, the first 128 pixels (the lu-
minance Y1 and Y2 components) are preprocessed so that their expected mean value is
zero [65]. This is done by the code in lines 9 to 13. Next, the code in lines 15-21 applies
2D-DCT (Discrete Cosine Transform) [65] on the stream of pixels. Finally, the pixels are
grouped again (see lines 25 to 29) in the data structure outBlock whose type is the same as

124 Case Studies

the type of the inBlock data structure. Applying the special preamble P l on the function
names, we specify that the function calls P l PixelsToBlock(), P l 2D dct(), and
P l BlockToPixels() have to be grouped in process P by COMPAAN.

The Kahn Process Network (KPN) generated by COMPAAN that corresponds to the Matlab
code of the DCT() is depicted in Figure 4.4-b). It shows that this KPN is a subnetwork that
implements the function call DCT() executed inside process DCT in the M-JPEG* network.
The subnetwork consists of four processes. The Source and the Sink processes serve as hierar-
chical interfaces to the M-JPEG* network. The Source process transforms the incoming Block

data structures to pixels and distributes the pixels corresponding to the luminance components
to the PreShift process for preprocessing, while the pixels corresponding to the chrominance
components go directly to the P process. The P process executes a 2D-DCT transformation.
The Sink process groups the stream of pixels that comes out from the P process in Block data
structures.

STEP4

In step 4 of the design flow shown in Figure 4.2, the LAURA tool transforms the KPN speci-
fication generated in step 3 together with predefined IP cores into synthesizable VHDL code.
In our example, we provide to LAURA the KPN specification of the DCT() function call.
The generation of the VHDL code for this KPN takes place in a number of steps.

First, LAURA creates a platform independent hardware model (HM) for the KPN of the
DCT(). The obtained hardware model is depicted in Figure 4.7. It consists of four con-
current virtual processors VP1, VP2, VP3, and VP4 connected in a network that communicate
data with each other asynchronously via FIFO buffers. The topology of the HM network is
the same as the topology of the input KPN shown in Figure 4.4-b), as LAURA performs a
one-to-one mapping. The virtual processors VP1, VP2, VP3, and VP4 implement the processes
Source, PreShift, P, and Sink, respectively.

Every virtual processor is composed of four units: a Read Unit, a Write Unit, an Execute
Unit, and a Control Unit. The Control Unit synchronizes the rest of the units. The Execute
Unit implements the actual computational part of a virtual processor. It has input arguments
that provide to the unit the necessary data for execution and output arguments that are the
result of the computation. As an example, we show the internal structure of processor VP3 in
Figure 4.7.

The Execute unit fires when all the input arguments have valid data and always produces data
to all the output arguments. The Read Unit is responsible for assigning all the input arguments
of the Execute unit with valid data. If there are more input ports than arguments, the Read
Unit has to select from which port to read data. This information is stored in the Control Table
of the Read Unit. Input Ports (IPs) are the input interfaces that connect the virtual processor
to FIFO buffers. The Write Unit is responsible for distributing the results of the Execute Unit
to the relevant processors in the network. A write operation can be executed only when all
the output arguments of the Execute Unit are available to the Write Unit. Output Ports (OPs)
are the output interfaces that connect the virtual processor to FIFO buffers. The Read Unit
and the Write Unit can block the Execution Unit when a blocking-read or a blocking-write

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 125

IP2

IP1 OP1VP3
FIFO1

FIFO2

F
IF

O
3

FIFO4

0

1

M
U

X

IP1

IP2

in_0 out_0

c

OP1

Control Table

Synch. Logic Synch. Logic

VP2

VP1
(Source)

VP4
(Sink)

(PreShift)

(P)

2D−DCT

Control Unit

Execute Unit
IP Core implementing

Read Unit Write Unit

Figure 4.7: The LAURA hardware model of the DCT subnetwork.

situation occurs, thereby stalling the complete processor. A blocking-read situation occurs
when data is not available at a given input port, i.e., the corresponding FIFO buffer is empty.
A blocking-write situation occurs when data can not be written to a particular output port,
i.e., the corresponding FIFO buffer is full. The blocking-read/write is the synchronization
mechanism between the virtual processors, thereby implementing the KPN semantics directly
into hardware.

From the information provided by the input KPN specification shown in Figure 4.4-b), LAURA

synthesizes fully automatically the network of virtual processors shown in Figure 4.7 as well
as the Read Unit, the Write Unit, and the Control Unit of every virtual processor. The Execute
Unit of every virtual processor is implemented by instantiating an appropriate predefined IP
Core. In order to select the appropriate IP core, LAURA searches through a library of prede-
fined IP cores until it matches the required functionality. If an appropriate IP core can not be
found, then the designer is responsible to add such a core to the library. LAURA provides an
easy interface to do this. For the example in Figure 4.7, the IP cores for the Execute Units
of the VP1 and VP4 processors were found in the library. The IP core (pipelined 2D-DCT)
for the Execute Unit of the processor VP3 was downloaded from the Xilinx website [71] and
added to the library. The IP core (pixel preprocessing) for the Execute Unit of the processor
VP2 was written by us and added to the library as well. The hardware FIFO buffers FIFO1

to FIFO4 were implemented by instantiating predefined generic FIFO IP cores found in the

126 Case Studies

library.

In the second step in LAURA, the hardware model is annotated with additional information
about the target platform. This is information about IP cores that are used in the virtual
processors, the bit-width of the communicated data, and the type of this data. Also, the size
of the hardware FIFO buffers is specified. Furthermore, the notion of a clock event is taken
into consideration.

In the last step in LAURA, synthesizable VHDL code is generated that describes the annotated
hardware model (HM). In LAURA a software procedure called VHDL Visitor is implemented
that generates for each hardware component the correct VHDL syntax. By simply implement-
ing other Visitor procedures, we can generate code in other formats, for example, Verilog or
SystemC.

STEP5

In the last step of our design flow, we use commercial tools to synthesize and map the VHDL
code, generated in step 4, onto the FPGA shown in Figure 4.1-b). For the synthesis, we
used the SinplifyPro tool [72] of Synplicity, Inc. For the placement and routing and for the
generation of the configuration file for the FPGA, we used the ISE Foundation package [73]
provided by Xilinx.

4.1.4 Experiments and Results

In this section, we present some of the results we have obtained by mapping the M-JPEG*
application onto the target platform using our system design flow presented in the previous
sections above.

The main objective of this mapping experiment is to evaluate our design flow and to show
that the COMPAANDYN approach presented in Chapter 2 can be used and integrated success-
fully in this flow which relies on the KPN model of computation to map efficiently real-life
applications onto real hardware platforms in a systematic and automated way.

The input to our system design flow was an application described as a weakly dynamic pro-
gram in Matlab. We started with publicly available sequential C code of a JPEG codec. This
code was modified and structured by hand to meet the weakly dynamic subset of Matlab that
our design flow accepts and to match the features of the M-JPEG* application. The only rea-
son we used Matlab is because the prototype software that implements our COMPAANDYN

approach uses a simple Matlab parser. Since the model of computation of Matlab and C is
the same, you can read ”C” every time we speak about Matlab.

The writing of the Matlab code took four days together with the functional testing and de-
bugging. After this preparation work, which is a one-time effort only, we started with the
mapping of the M-JPEG* application using our system design flow.

Our first experiment was to measure how much time it takes to map the M-JPEG* application
onto the target platform using our system design flow. Table 4.1 shows the processing times

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 127

for every step in the flow. The last column shows the time needed for every step to finish.

Table 4.1: Processing Times (hh:mm:ss).
COMPAANDYN COMPAAN LAURA Other tools Manually Total

STEP 1 00:00:24 – – – 00:40:00 00:40:24
STEP 2 – – – 00:00:35 – 00:00:35
STEP 3 – 00:00:08 – – – 00:00:08
STEP 4 – – 00:00:07 – 03:00:00 03:00:07
STEP 5 – – – 00:13:10 – 00:13:10

Overall 00:00:24 00:00:08 00:00:07 00:13:45 03:30:00 03:54:24

The overall time of the whole design flow for the M-JPEG* experiment is around 3 hours and
55 minutes. The column Manually indicates that we had to do some manual manipulations.
For example, the prototype software that implements our COMPAANDYN approach is not
completed yet in the part where the fuzzy array data-flow analysis is done. So, we had to do
some of the procedures in this analysis manually which took 10 minutes. Also, at the end of
STEP 1, we had to do a manual HW/SW partitioning that took 30 minutes. In STEP 4, we
had to download from Internet, modify and add some IP cores to our library of components,
which took 3 hours. However, once the IP cores are in the library any manual manipulations
in STEP 4 will disappear.

The results show that the mapping of the M-JPEG* application onto the target platform is
done in a short amount of time - a few hours. The main reason is the great time performance of
our prototype COMPAANDYN software and the tools COMPAAN and LAURA. For example,
using our COMPAANDYN prototype software we were able to derive in a semi-automatic
and systematic way a KPN for the M-JPEG* in about 11 minutes after the 4-day preparation
work described above. For comparison, a KPN for the same M-JPEG encoder was derived by
hand in [16] that took four weeks. The COMPAAN/LAURA tools convert fully automatically
function call DCT() executed inside process DCT in synthesizable VHDL code in a few
seconds. For comparison, a hand-made design of function call DCT() in VHDL will take
several days.

In the second experiment, we use our design flow to evaluate the performance of the Kahn
Process Network of the DCT() mapped onto the FPGA. We measured the time needed for
the FPGA implementation to process a single datum of type Block. It took 35 micro seconds
at clock frequency of 40MHz. In contrast, the execution of the function call DCT() as
a program on the microprocessor (clock frequency 1.2GHz) took 98 micro seconds. We
conclude, that we got a speedup of 2.8 on the FPGA. We can even improve the speedup
by using in STEP 3 (Figure 4.2) the high-level transformations presented in Chapter 3. By
performing the unfolding transformation, we can obtain a speedup of up to 10.

The mapping of the KPN of function call DCT() is efficient in terms of resource usage.
Table 4.2 shows the FPGA resource utilization. The numbers in the table show that on average
only 7% of the FPGA resources are used – 6% is taken by the IP cores and only 1% is taken
by the FIFOs and the distributed control generated by LAURA to integrate these IP cores in
the KPN of function call DCT().

In the final experiment we measured the performance of the complete system: the M-JPEG*
Kahn Process Network running on the target platform. We looked at the throughput of this

128 Case Studies

Table 4.2: DCT KPN on VirtexII 2V6000: Device utilization
FPGA resource Utilization %

Number of MULT18X18s 8 out of 144 5%
Number of RAMB16s 4 out of 144 2%
Number of SLICEs 2367 out of 33792 7%
Number of BUFGMUXs 2 out of 16 12%

system, measured in frames per second. For frames in CIF format of 128�128 pixels, the
throughput of the system is 10.5 frames per second. This is below the standard minimum
real-time throughput of 25 CIF frames per second. We found that the problem is not in the
output of our design flow, but in the slow communication of data between the microprocessor
and the FPGA. The bottleneck is the 32-bit width PCI bus operating at 33MHz. By switching
the PCI bus to 64-bits at a frequency of 66MHz, we can increase the communication speed
approximately 4 times. As a consequence, the system should be able to process 25 frames
per second in CIF format of 128�128 pixels.

4.1.5 Conclusions and Discussion

We presented a system design flow in which an application written as a weakly dynamic
program in Matlab is mapped onto a target platform composed of a CPU and an FPGA in a
systematic and automated way. The novelty in this flow is that the CPU and the FPGA run
concurrently, thereby exploiting efficiently task-level parallelism. Central to the flow is the
use of the Kahn Process Network model of computation. This model inherently expresses
applications in terms of distributed control and memory. This is required to get an efficient
mapping onto the CPU and the FPGA. In realizing the flow, we integrated our COMPAAN-
DYN approach presented in Chapter 2 with the COMPAAN and LAURA tools. This allow us to
quickly go from a weakly dynamic application specification in Matlab to an implementation
of the application running on the target platform. In conclusion, the use of our COMPAAN-
DYN prototype software (that is still subject to further research and development) and the
COMPAAN/LAURA tools together with other tools results in an efficient design flow for sys-
tems that execute high-performance real-time signal processing and multimedia applications.

We have demonstrated our system design flow by mapping the M-JPEG* application onto a
platform that consists of a CPU and an FPGA. However, our flow is general enough to be
used for a systematic mapping of applications onto multiple CPUs and FPGAs. The main
reason for this is the Kahn Process Network (KPN) model of computation used in our flow.
As the control and memory are distributed in a KPN, no global scheduler is needed. Hence,
partitioning a KPN over a number of CPUs and FPGAs can easily be done.

Although we used in our system design flow a standard C++ compiler, a simple research
multi-threading environment, and a simple target platform, the obtained results are already
promising. Even better results should be achievable when employing, for example, more
optimized and robust commercial solutions.

4.1 System Design Flow Using Kahn Process Networks: an M-JPEG Case Study 129

Discussion on Related Work
Mapping applications like MPEG and JPEG codecs onto a target architecture consisting of
a CPU and a hardware co-processor (in our case an FPGA) has been the central question
in Hardware/Software co-design in the last decade [74]. Researchers have already mapped
successfully multi-media applications on such kind of platforms in a systematic way. The
retargetable framework Nimble [75] and the work presented in [76] automatically compiles
system-level applications specified in C onto a target architecture of a combined CPU and
FPGA. However, the compiler only exploits instruction-level parallelism (ILP) in loops but
not task-level parallelism. Loops are executed purely sequentially according to their original
C specification even if mapped onto the FPGA for acceleration. In [70, 77], reconfigurable
logic is used as a co-processor attached to a CPU. The co-processor is typically used to
speeds-up certain instructions of the CPU.

All of the related work, mentioned above, exploits only ILP in loops mapped onto an FPGA
that runs mutually exclusive with the CPU. In contrast, we show a systematic and automated
system design flow to map an application onto a CPU and an FPGA in such a way that the
CPU and the FPGA run in parallel, exploiting task-level parallelism.

Some recent efforts in mapping applications onto a CPU connected to reconfigurable logic
(FPGAs) exploiting task-level parallelism has led to design flows that are somehow related
to our design flow. Gokhale et al. [78] have developed a compiler that takes stream-based
applications specified in Streams-C and generates synthesizable hardware for FPGAs and a
multi-threaded software program for the control CPU. The Stream-C programming task-level
model is the CSP [79] model of computation. The work in [80] also presents a design flow to
map applications specified as CSPs onto a platform that consists of a CPU and FPGA. Con-
ceptually, our design flow differs from these flows in the sense that we use the Kahn Process
Network (KPN) model which specifies more naturally and efficiently (compared to CSP) the
task-level parallelism in stream-based applications. The UC Berkeley’s project SCORE [81]
has developed a stream-based compute model which virtualizes reconfigurable computing re-
sources (compute, storage, and communication) by dividing a computation up into fixed-size
”pages” and time-multiplexing the virtual pages on available physical hardware. The specific
language TDF is used to specify applications using the SCORE’s model. This stream-based
model is similar to the KPN model we use.

In the three design flows [78, 80, 81], mentioned above, the input application has to be ana-
lyzed and specified manually in terms of a concurrent task-level model of computation using
very specific languages (Stream-C, Handle-C, TDF). This is very time consuming and error
prone process because the system designer has to do manually the dependence analysis as
well as to learn a specific description language. In contrast, our system design flow relies on
our prototype COMPAANDYN software with which currently KPN specifications can be de-
rived in a systematic and semi-automatic way from applications described as weakly dynamic
programs in common languages like Matlab or C.

130 Case Studies

4.2 Exploring the Performance of Alternative Application
Instances realized on a FPGA: a QR Case Study

In this section, we show how our algorithmic transformation techniques presented in Chap-
ter 3 are used in practice for application exploration. Using the transformation techniques
we derive systematically and fast alternative application instances, i.e., alternative Kahn
Process Networks (KPNs) from a real-life signal processing algorithm, namely the QR-
decomposition algorithm. These alternative KPNs express task-level concurrency hidden
in the QR-algorithm in some degree of explicitness. We map the alternative KPNs onto a
FPGA platform in order to demonstrate the effect of the transformation techniques on the
performance of the QR algorithm.

4.2.1 Introduction

In system-level design of embedded signal-processing systems, a system designer sees the
target system as the pair Application specification - Architecture template. An example of
a typical signal-processing application specification is given in Figure 4.8 where the QR-
decomposition algorithm [82] is described in Matlab. An example of an architecture tem-
plate is the Virtex-II 2V6000 FPGA platform where a large amount of reconfigurable parallel
computational resources and memories are available. The application specification provides
the functional behavior of the system. The architecture template specifies the organization of
the resources of the system onto which the functional behavior is to be mapped. Having both
specifications, a designer has to make some design decisions, for example, how to partition
the application into tasks, how to map the tasks onto the architecture template, etc. In order
to evaluate different design decisions, a system designer uses a model of the target system
and does performance analysis for alternative application instances, architecture instances
and mappings, thereby exploring the design space of the Application - Architecture pair.

The transformations we have presented in Chapter 3 support efficient exploration of alterna-
tive application instances. An application instance is any feasible partitioning of an applica-
tion into a composition of concurrent tasks. We use the Kahn Process Network (KPN) model
of computation [10] to describe application instances. Each application instance differs from
the others in the degree of exploited task-level parallelism. Therefore, the performance of
the Application - Architecture pair significantly depends on the application instance. Many
instances of a single application exist that are worth to be derived for exploration. In respect
of this, our transformations support a system designer to derive systematically and fast a set
of instances of an application in order to explore and evaluate the performance of the sys-
tem (Application - Architecture pair). This gives a system designer an opportunity to select
an application instance (partitioning) that satisfies performance/cost requirements the target
system has to meet.

We reinforce the statements above with a case study. The main objective of this case study
is to show that our algorithmic transformations presented in Chapter 3 can be used and inte-
grated successfully in a design space exploration environment that facilitates systematic and
automated exploration of alternative KPNs derived from a real-life application and mapped

4.2 Exploring the Performance of Alternative Application Instances realized on a
FPGA: a QR Case Study 131

onto a real-life architecture template. In the case study we demonstrate how for the QR-
decomposition algorithm specified as a sequential program in Matlab, a set of KPN spec-
ifications in VHDL is derived in a systematic and automated way using our transformation
techniques presented in Chapter 3 together with the COMPAAN/LAURA tools [18] [64]. These
specifications are mapped onto a Virtex-II 2V6000 FPGA platform in order to demonstrate
the effect of our algorithmic transformations on the performance of the QR-decomposition
algorithm.

The choice of the QR-decomposition algorithm and the FPGA platform in our case study is
not coincidental. In many modern signal processing applications like Digital Beamforming,
Adaptive Digital Filtering etc., the QR-decomposition algorithm [82] is the main compu-
tational intensive kernel. QinetiQ Ltd.,UK is one of the leading companies that provides
implementation solutions of the QR-decomposition algorithm for digital receivers and beam-
formers for military systems. Currently, QinetiQ explores the potential of the FPGA technol-
ogy for implementation of the QR-decomposition algorithm. The designers at QinetiQ face
the following problems:

� The QR algorithm they have to deal with is written as a sequential program in Matlab
because this is a very convenient way to specify and test signal-processing algorithms.
However, it is very hard to obtain straight from the Matlab a good implementation on
a FPGA platform because the sequential nature of the Matlab code does not allow effi-
cient exploitation of the parallel computational resources available in a FPGA platform.
It took a single person almost a full year to manually partition, schedule, and map the
QR algorithm on a FPGA platform.

� The QR algorithm can be partitioned in many different ways, i.e., many alternative
application instances can be derived. They differ from each other in the degree of ex-
ploited task-level parallelism, thus by mapping alternative instances on a FPGA plat-
form a different performance will be obtained. The QinetiQ designers understand very
well that they have to derive alternative application instances and to explore their per-
formance in order to select an instance that maps best on the target platform. In prac-
tice, however, they can not afford an application exploration because as said above it
takes a designer a lot of time to derive and map a single instance of the QR algorithm,
let alone alternatives. This is because the QinetiQ designers do not have a systematic
and automated approach to derive and map alternative application instances.

QinetiQ finds our transformation techniques presented in Chapter 3 and implemented in the
tool MATTRANSFORM together with the COMPAAN/LAURA tools [18] [64] a very promising
and efficient solution to their problems described above. Therefore, they initiated the QR case
study presented in the sections that follow. Our collaboration with QinetiQ on the QR case
study gave us an opportunity to use our transformations and tools in solving real-life industri-
ally relevant problems as well as to evaluate and show the usefulness of the transformations.

In the next section, we give a brief description of the QR-decomposition algorithm. Sec-
tion 4.2.3 gives an overview of the experimentation set-up which we used to explore alter-
native application instances of the QR algorithm. In Section 4.2.4, we present some of the
experiments that we have conducted and the corresponding results that we have obtained. In
Section 4.2.5 we draw some conclusions.

132 Case Studies

4.2.2 The QR-decomposition Algorithm

In our case we derive and explore alternative application instances of the QR-decomposition
algorithm [82]. This algorithm is the most computational intensive kernel in many signal
processing applications like Digital Beamforming, Adaptive Digital Filtering etc. Matlab
code for the QR-decomposition algorithm is shown in Figure 4.8.

for k = 1:1:T,
for j = 1:1:N,

[r(j,j), x(k,j), t] = Vec(r(j,j), x(k,j));
for i = j+1:1:N,

[r(j,i), x(k,i), t] = Rot(r(j,i), x(k,i), t);
end

end
end

Figure 4.8: QR-decomposition algorithm written in Matlab.

The upper bounds of the loops in the program are given as parameters T and N. The two
inner loops with iterators j and i form a triangular-shaped iteration space of size N. The
function calls Vec and Rot executed in the iterations that belong to the triangular-shaped
space compute a single QR update. The outer loop with iterator k expresses the fact that a
QR decomposition consists of computing several QR updates. In every QR update, i.e., in
every iteration k the values of the triangular matrix r(j,i) computed in iteration k � 1 are
updated such that the final values of the input vector x(k,j) become zero.

The QR-decomposition algorithm shown in Figure 4.8 has a dependence graph representation
as depicted in Figure 4.9. In this figure we show only one k-plane of the dependence graph
(DG) that represents a single QR update. The complete dependence graph consists of several
of these planes. The number of these planes is equal to the value of parameter T. Every k-

Vec

Rot

i

j

k

tx

r

Antenna Signals

Figure 4.9: Dependence Graph Representation of one QR update, i.e., one k-plane of the
QR-decomposition algorithm.

4.2 Exploring the Performance of Alternative Application Instances realized on a
FPGA: a QR Case Study 133

plane depends on its predecessor, i.e., plane k�1. Each node in the DG represents a function
from the QR algorithm. A gray node represents function Vec and a white node represents
function Rot. At the top of the triangle in Figure 4.9 the values of the input vector x(k,j)
are taken for a QR update computation. These values arrive from external sources, say sensors
of an N-antenna array (in our case N = 7), and they are propagated downwards through the
plane such that the values become zero at the end. The values of matrix r(j,i) produced
by the previous plane are updated using the functions Rot and Vec. Function Rot does
rotation of its input arguments with an angle t using the Givens matrix [82]. For every row
of Rot functions in the triangle, the angle t is computed first by the corresponding function
Vec on the diagonal of the triangle. Next, the computed angle t for a row is propagated to
all Rot functions in the row.

The dependence graph representation of the QR-decomposition algorithm reveals a lot of
task-level parallelism that can be exploited by grouping nodes (functions) into concurrent
tasks (processes). For this purpose the Kahn Process Network (KPN) model of computation
is very suitable for parallel specification of the QR algorithm. Many alternative groupings
of the functions into concurrent tasks are possible implying that many alternative KPN spec-
ifications can be derived for the QR algorithm. The alternative KPNs of the QR algorithm
we call application instances of QR. Every application instance differs from the others in the
degree of exploited task-level parallelism which determines the performance of the QR algo-
rithm when mapped onto a parallel architecture. Therefore, it is worth to derive alternative
application instances of the QR algorithm for performance exploration.

4.2.3 Using an Extended Y-chart Environment in the QR exploration

In Chapter 3 we presented a set of transformations that we have developed to derive system-
atically alternative application instances. Also, we presented how in general we can extend
a Y-chart exploration environment with an Application Transformation Layer that allows ex-
ploration of alternative application instances - see Section 3.2. Here, we use such extended
Y-chart environment for exploring our QR-decomposition algorithm. The main components
and structure of the exploration environment are depicted in Figure 4.10.

The application transformation layer applies some of our transformations on the QR algo-
rithm and generates alternative application instances - Kahn Process Networks (KPN) - as
synthesizable VHDL. This is automated by integrating in the transformation layer the tools
MATTRANSFORM, COMPAAN, and LAURA. First, the Matlab code in Figure 4.8 that de-
scribes the QR algorithm is given as an input to the MATTRANSFORM tool. MATTRANS-
FORM applies on the Matlab code our transformationsUNFOLD(U) and SKEW(M) presented
in Chapter 3. Transformation UNFOLD(U) is controlled by the unfolding vector U which
specifies how the loops in the QR algorithm are to be unfolded. Transformation SKEW(M)
is controlled by the skewing matrix M which specifies how the loops in the QR algorithm are
to be skewed. Depending on the values of U and M, the original Matlab code of the QR algo-
rithm is automatically transformed and structured in a particular way in order to express, in
some degree of explicitness, the task-level parallelism inherently available in the algorithm.

Second, the transformed code is converted in a systematic and automated way to a KPN
description in VHDL using the COMPAAN and LAURA tools. These tools were briefly in-

134 Case Studies

Performance
Numbers

Mapping

Performance
Analysis

Application Transformation
Layer

Initial ValuesQR algorithm
in

Matlab U and M
of

MatTransform tool − UNFOLD(U), SKEW(M)

Compaan compiler + Laura tool

Intermediate Matlab

Process Networks

in VHDL
Architecture Template

Xilinx Foundation
Tools

New Values
of

U and M

Xilinx Virtex−II FPGA

Figure 4.10: Exploring alternative Kahn Process Network specifications of the QR-
decomposition algorithm using an extended Y-chart environment.

troduced in Section 4.1.1. Third, we use a Y-chart environment to map the KPN onto an
architecture template and to do performance analysis. The architecture template for our ex-
periments is the Virtex-II 2V6000 FPGA platform. The mapping is done automatically by a
synthesizer and place-and-route tools provided by Xilinx. The performance analysis is done
using the timing analysis and simulation tools from the Xilinx Foundation package. The re-
sult of the performance analysis gives us a hint about how to change the values of parameters
U and M in order to improve the system performance.

Next, we change the parameters and repeat the steps described above resulting in a design
space exploration of alternative KPN specifications of the QR algorithm. This is shown
in Figure 4.10 as a feed-back arrow to the transformation layer. By changing the values
of the parameters, the application transformation layer systematically derives a set of KPN
specifications functionally equivalent to the sequential QR algorithm shown in Figure 4.8.
The difference among the KPNs is the degree of the task-level parallelism that is exploited.

4.2.4 Experiments and Results

In this section, we present some of the experiments we have done in order to evaluate and
show the usefulness of the algorithmic transformation techniques presented in Chapter 3.
In our experiments we used the experimentation set-up described in the previous section to
explore alternative application instances of the QR algorithm.

4.2 Exploring the Performance of Alternative Application Instances realized on a
FPGA: a QR Case Study 135

Experiment 1

In this experiment, we evaluate the effect of transformations UNFOLD and SKEW on the per-
formance of the QR-decomposition algorithm implemented as hardware on an FPGA plat-
form. We use the Matlab code in Figure 4.8. The parameter T is set to 21 which means that
21 QR updates are computed. The parameter N is set to 7 which means that every update
consists of 7 Vec operations and 21 Rot operations that are dependent on each other as
shown in Figure 4.9. From the Matlab code we generate automatically alternative Kahn Pro-
cess Networks (KPN) in VHDL using the tools MATTRANSFORM, COMPAAN, and LAURA

and map these KPNs on an FPGA platform in order to evaluate the performance. To realize
the Vec operations on the platform we use a 3-stage pipelined IP core called BCELL that
implements a vectorize operation on fixed point data. Similarly, to realize the Rot operations
we use a 3-stage pipelined IP core called ICELL that implements a rotate operation on fixed
point data.

First, we generate a KPN from the QR algorithm without applying any transformation. The
KPN is depicted in Figure 4.11. It consists of two processes V and R. Process V executes

r_1

r 2

x_2

t_2

x_2t_1

V

R

Figure 4.11: The Kahn Process Network derived from the Matlab code specifying the QR
algorithm shown in Figure 4.8. No transformation is applied on the QR algorithm.

all vectorize operations Vec and process R executes all rotate operations Rot. The KPN is
mapped on the FPGA platform where the Vec operations of process V are executed on one
BCELL core and the Rot operations of process R are executed on one ICELL core. The
performance numbers we obtain are given in the second row of Table 4.3. These numbers are
our reference numbers in the evaluation of the effect of the transformations. The performance
numbers obtained after applying a transformation are compared to these reference numbers.
The second column of Table 4.3 gives the total execution time of the QR algorithm in clock
cycles. The third column shows the number of hardware (HW) resources used to implement
the functionality of the QR. The fourth column gives the utilization of the HW resources. The
last column shows the achieved speedup compared to the performance of the non-transformed

136 Case Studies

Table 4.3: The effect of Unfolding on QR.
Transformation Total number HW resources Utilization (%) Speedup

of cycles BCELL ICELL BCELL ICELL

NO transform 1735 1 1 8.64 25.59 1.00x
UNFOLD k by 2 913 2 2 8.21 24.31 1.90x
UNFOLD k by 3 600 3 3 8.33 24.66 2.89x
UNFOLD k by 4 516 4 4 7.27 21.51 3.36x
UNFOLD k by 5 445 5 5 6.74 19.96 3.89x

QR.

The KPN in Figure 4.11 is derived without applying any transformation, thus a low degree
of task-level parallelism is exploited - there are only two parallel processes V and R. If the
performance of this KPN mapped onto the FPGA is not satisfactory then we have to increase
the degree of task-level parallelism. By applying transformation UNFOLD to one or more
loops in the algorithm we distribute the computational workload of the algorithm on several
parallel processes, thereby increasing the task-level parallelism, i.e., potentially decreasing
the total execution time of the algorithm. Here, we demonstrate this by applying transforma-
tion UNFOLD with unfolding factors 2 to 5 on loop k of our QR algorithm. As a result four
alternative KPNs are generated. Each of them has more than one V and R processes where
different QR updates are distributed on different pairs of V and R processes. For example,
the KPN depicted in Figure 4.12 is derived by applying the transformation UNFOLD with un-
folding factor 3 on loop k. The KPN consists of three processes V 1, V 2, and V 3 that execute

t_2

x_2t_1 x_6

r_1

t_3

r_5

r_6

t_5x_4

t_4 t_6

x_2 x_6x_4

r_2 r_4

r_3
V1

R1

V2

R2

V3

R3

Figure 4.12: The Kahn Process Network derived after transformation UNFOLD is applied on
loop k of the Matlab code describing the QR algorithm shown in Figure 4.8. The unfolding
factor is three.

Vec operations and three processes R1, R2, and R3 that execute Rot operations. For every
iteration k a QR update is computed that consists of 7 Vec operations and 21 Rot operations.

4.2 Exploring the Performance of Alternative Application Instances realized on a
FPGA: a QR Case Study 137

There are 21 QR updates because k takes values from 1 to 21. The Vec and Rot operations
in QR updates corresponding to k = 1,4,7,10,13,16,19 are executed in processes
V 1 and R1, respectively. The Vec and Rot operations in QR updates corresponding to k =
2,5,8,11,14,17,20 are executed in processes V 2 and R3, respectively. The Vec and
Rot operations in QR updates corresponding to k = 3,6,9,12,15,18,21 are executed
in processes V 3 and R3, respectively.

The performance numbers obtained after mapping the four KPNs on the FPGA platform are
summarized in Table 4.3 - see rows 3 to 6. The second column shows that by increasing
the unfolding factor, the total execution time of the QR algorithm on the FPGA platform
decreases. This means that by using transformation UNFOLD we gain performance improve-
ment. The cost paid for this improvement is the increase of HW resources used to implement
the KPNs - see column 3. The corresponding speedup compared to the non-transformed QR
is given in the last column. With the increase of the unfolding factor, the number of paral-
lel HW resources that perform calculations increases proportional to the unfolding factor as
shown in column 3. Therefore, we should expect to see speedups approximately equal to the
unfolding factor.

Let us look at row 4 where the unfolding factor is three, thus the HW resources BCELL
and ICELL are three times more (see column 3) compared to the HW resources in the non-
transformed QR. The speedup we obtain is 2.89x which is closer to 3x as we expect. It is
not exactly 3x because the HW resources spend time for communication of data among each
other. If we look at the last row we see that with unfolding factor of five the speedup is
3.89x which is not closer to the expected speedup of 5x. Here, again one of the reasons for
this is the time spent for communication among the HW resources. However, another more
important reason is the low utilization of the BCELL and ICELL resources - see column
4. As said earlier BCELL and ICELL are 3-stage pipelined IP cores. In order to exploit
the pipelines efficiently we need to have in each QR update enough independent Vec and
Rot operations that will allow to fill the pipelines. This can be achieved by applying our
transformation SKEW on one or more loops in the algorithm.

We demonstrate the effect of transformation SKEW by skewing loop j in our QR algorithm
with a factor of one. The topology of the generated KPN is the same as the topology of
the KPN generated for the non-transformed QR algorithm - see Figure 4.11. However, the
operations Vec and Rot executed in processes V and R, respectively, are re-ordered such
that in every QR update, see Figure 4.9, the vertical data dependencies among the operations
are broken. This leads to more independent operations in a QR update that allows to fill the
pipelines more efficiently, thereby increasing the utilization of BCELL and ICELL. We
can see this by comparing column 4 in row 1 of Table 4.3 with column 4 in row 1 of Table 4.4.

Table 4.4: The effect of Skewing and Unfolding on QR.
Transformation Total number HW resources Utilization (%) Speedup

of cycles BCELL ICELL BCELL ICELL

SKEW j by 1 1106 1 1 13.56 40.14 1.57x
SKEW j by 1 and UNFOLD k by 2 703 2 2 10.67 31.58 2.47x
SKEW j by 1 and UNFOLD k by 3 500 3 3 10.00 29.60 3.47x
SKEW j by 1 and UNFOLD k by 4 416 4 4 9.01 26.68 4.17x
SKEW j by 1 and UNFOLD k by 5 331 5 5 9.06 26.83 5.24x

138 Case Studies

By comparing row 1 of Table 4.3 with row 1 of Table 4.4 we see that with the same amount of
HW resources we achieve speedup of 1.57x due to the improved utilization of the pipelined
IP cores BCELL and ICELL. The improved utilization achieved by transformation SKEW
can be exploited by transformation UNFOLD to further speedup the execution of the QR
algorithm. The performance numbers we obtain by applying transformation SKEW together
with transformation UNFOLD are shown in rows 3 to 6 of Table 4.4. Comparing columns 3
and 5 of each row in this table with columns 3 and 5 of each row in Table 4.3 we see that
better speedups are achieved with the same amount of HW resources when transformations
SKEW and UNFOLD are used together.

The effect of our transformationsUNFOLD and SKEW on the performance of the QR algorithm
is visualized in Figure 4.13. We plot the total execution time of the QR measured in clock
cycles that are given in the second column of Table 4.3 and Table 4.4.

1735

913

703
600

516 445500 416 331

1106

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5

unfolding factor of loop k

n
u

m
b

er
 o

f
cy

cl
es

NO skewing skew loop j by factor of 1

Figure 4.13: Performance of the QR algorithm transformed by using transformations
UNFOLD and SKEW. The QR is mapped as KPNs on an FPGA platform. The Vec and Rot
operations of the QR are implemented by 3-stage pipelined cores.

Our conclusion is that the performance of the QR algorithm mapped as a KPN onto an FPGA
platform using the 3-stage pipelined IP cores BCELL and ICELL can be improved up
to 3.89 times by unfolding loop k with unfolding factors up to five - see the dark bars in
Figure 4.13. If we continue to increase the unfolding factor we will not get significant im-
provements any more because the degree of task-level parallelism that can be exploited in
our QR algorithm is limited by the number of operations in a QR update and by the data
dependencies among these operations. However, by skewing loop j by a factor of one we
can break some data dependencies among operations in a QR update, thereby utilizing bet-
ter the 3-stage pipelines in BCELL and ICELL. Because of this the performance of the
QR algorithm can be improved up to 5.24 times by skewing loop j with a factor of one and
unfolding loop k with unfolding factors up to five - see the gray bars in Figure 4.13.

4.2 Exploring the Performance of Alternative Application Instances realized on a
FPGA: a QR Case Study 139

Experiment 2

This experiment is similar to Experiment 1 presented in the previous section. Again, we
evaluate the effect of transformations UNFOLD and SKEW on the performance of the QR-
decomposition algorithm mapped as KPNs on an FPGA platform. The difference between
this experiment and Experiment 1 is that here the IP cores BCELL and ICELL are deeply
pipelined. To realize the Vec operations on the platform we use a 55-stage pipelinedBCELL
core that implements a vectorize operation on floating point data. Similarly, to realize the Rot
operations we use a 42-stage pipelined ICELL core that implements a rotate operation on
floating point data.

First, we apply transformationUNFOLD on loop k of our QR algorithm with unfolding factors
from 2 to 5. As a result, four alternative KPNs are generated that differ from each other in the
degree of exploited task-level parallelism. By mapping these KPNs onto an FPGA platform
we obtain the performance numbers given in Table 4.5.

Table 4.5: The effect of Unfolding on QR.
Transformation Total number HW resources Utilization (%) Speedup

of cycles BCELL ICELL BCELL ICELL

NO transform 13190 1 1 1.43 3.76 1.00x
UNFOLD k by 2 7010 2 2 1.35 3.54 1.88x
UNFOLD k by 3 4452 3 3 1.42 3.71 2.96x
UNFOLD k by 4 3920 4 4 1.21 3.16 3.36x
UNFOLD k by 5 3302 5 5 1.14 3.00 3.99x

Again, the last column in the table shows that the performance of the QR algorithm can be
improved and a speedup of up to 4x can be achieved. However, column 4 shows that the
utilization of the hardware resources BCELL and ICELL is very low. This is because
BCELL and ICELL are deeply pipelined IP cores and the data dependencies in a single
QR update do not allow to fill the pipelines efficiently. To overcome this problem we apply
transformation SKEW as we did in Experiment 1. The effect of this transformation on the
performance is shown in the second row of Table 4.6.

Table 4.6: The effect of Skewing and Unfolding on QR.
Transformation Total number HW resources Utilization (%) Speedup

of cycles BCELL ICELL BCELL ICELL

SKEW j by 1 2477 1 1 7.63 20.27 5.32x
SKEW j by 1 and UNFOLD k by 2 1823 2 2 5.18 13.60 7.24x
SKEW j by 1 and UNFOLD k by 3 1481 3 3 4.25 11.16 8.91x
SKEW j by 1 and UNFOLD k by 4 1215 4 4 3.89 10.21 10.86x
SKEW j by 1 and UNFOLD k by 5 1000 5 5 3.78 9.92 13.19x

Let us compare this second row with the second row of Table 4.5. We see that the utiliza-
tion of BCELL and ICELL is improved approximately five times when transformation
SKEW is applied. As a consequence we obtain a speedup of 5.32x with the same amount
of HW resources - one BCELL core and one ICELL core. Moreover, by applying only
transformation SKEW on the QR we get better performance than applying only transforma-
tion UNFOLD. This was not the case in Experiment 1 where the impact of UNFOLD on the

140 Case Studies

performance was higher compared to the impact of SKEW.

Here in our Experiment 2, the higher impact of transformation SKEW compared to transfor-
mation UNFOLD is because the IP cores BCELL and ICELL are deeply pipelined and
transformation UNFOLD is not capable of exploiting this. However, applying transformation
SKEW together with transformation UNFOLD can further improve the performance of our QR
algorithm as shown in rows 3 to 6 of Table 4.6. We see that a speedup of up to 13.19x can be
achieved by skewing loop j with a factor of 1 and unfolding loop k with factors up to 5.

The effect of our transformationsUNFOLD and SKEW on the performance of the QR algorithm
is visualized in Figure 4.14. We plot the total execution time of the QR measured in clock
cycles that are given in the second column of Table 4.5 and Table 4.6.

3302
39204452

7010

13190

2477
1823 1481

1215 1000

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

unfolding factor of loop k

n
u

m
b

er
 o

f
cy

cl
es

NO skewing skew loop j by factor of 1

Figure 4.14: Performance of the QR algorithm transformed by using UNFOLD and SKEW
transformations. The QR is mapped as KPNs on an FPGA platform. The Vec and Rot op-
erations of the QR are implemented by using deeply pipelined IP cores: Vec is implemented
by a 55-stage pipelined core and Rot is implemented by a 42-stage pipeline core.

We conclude that the performance of the QR algorithm mapped as a KPN onto an FPGA
platform using deeply pipelined IP cores can be improved up to 3.99 times by unfolding loop
k with unfolding factors up to five - see the dark bars in Figure 4.14. If we continue to
increase the unfolding factor we will not get significant improvements any more because the
utilization of the deeply pipelined IP cores BCELL and ICELL is very low. However, by
skewing loop j by a factor of one we can break some data dependencies among operations in
a QR update. This allows to fill the deep pipelines of BCELL and ICELL more efficiently,
thereby increasing the utilization approximately five times. Because of this the performance
of the QR is improved 5.32 times - see the first gray bar in Figure 4.14.

The impact of skewing on the performance of the QR is higher compared to the impact of
unfolding when deeply pipelined cores are involved. This can be seen by comparing the first
gray bar with the dark bars in Figure 4.14. Moreover, the high impact of transformationSKEW

4.2 Exploring the Performance of Alternative Application Instances realized on a
FPGA: a QR Case Study 141

can be exploited together with transformationUNFOLD to improve the performance of the QR
algorithm up to 13.19 times. This can be achieved by skewing loop j with a factor of one
and unfolding loop k with unfolding factors of up to five - see the gray bars in Figure 4.14.

4.2.5 Conclusions

We presented a case study in which we used our algorithmic transformation techniques de-
scribed in Chapter 3 to derive systematically and fast a set of application instances (Kahn
Process Networks) corresponding to a real-life application such as the QR-decomposition al-
gorithm. We demonstrated how our techniques support a system designer in exploring the
performance of alternative instances of the QR algorithm mapped onto an architecture tem-
plate (in our case a FPGA platform).

The results we have obtained show that the effect of applying our transformations is that
we can generate alternative application instances with different performance when mapping
them onto an architecture template. It can be seen from Figure 4.13 and Figure 4.14 that our
transformations UNFOLD and SKEW improve significantly the performance of the QR algo-
rithm. Transformation UNFOLD is very useful in exploiting efficiently the task-level paral-
lelism available in the algorithm when the algorithm is mapped onto many parallel hardware
resources. Transformation SKEW improves the utilization of the hardware resources espe-
cially when the hardware resources are deeply pipelined IP cores. Our experiments show that
transformations UNFOLD and SKEW have different impact on improving the performance of
the QR algorithm. The impact of SKEW is higher compared to the impact of UNFOLD when
deeply pipelined cores are involved. If the cores are not deeply pipelined then the impact of
UNFOLD is higher compared to the impact of SKEW. Our transformation plane cutting was
not mentioned in the QR case study because in the QR case this transformation does not have
any significant impact on the performance.

We have implemented our transformations in the tool MATTRANSFORM. Using this tool
together with the tools COMPAAN and LAURA we are able to fully automate the process of
deriving alternative application instances. This helps a system designer to speedup signifi-
cantly the process of exploring the performance of alternative application instances. In our
experiments with the QR algorithm we explored the performance of 20 instances thereby ob-
taining the performance numbers given in Table 4.3, Table 4.4, Table 4.5, and Table 4.6. It
took us two days to derive these 20 instances and to obtain the performance numbers. This
indicates that an extensive design space exploration of alternative application instances can
be done in a relatively short amount of time.

142 Case Studies

Chapter 5
Summary and Conclusions

In this dissertation we have presented a novel systematic and automated approach for con-
verting Weakly Dynamic Programs (WDP) to equivalent Kahn Process Network (KPN) spec-
ifications. Our approach is essential for the systematic and automated design of the emerging
embedded systems-on-chip platforms where a set of parallel specifications of an application
has to be derived in order to allow systematic and efficient exploration and mapping of the
application onto the platform. Many system-level design flows and application modeling
and exploration approaches reported in the literature use the Kahn Process Network (KPN)
model of computation for a parallel application specification. The derivation of a single KPN
specification, let alone a set of KPNs, from an application is based on heuristic and time con-
suming manual approaches because there is not a sufficient amount of research work done in
the area of systematic and automated derivation of KPNs.

The only research work known in this area is the work of Rijpkema et al. [19] [18] and the
work of Turjan et al. [30]. They propose a systematic approach to derive a single KPN spec-
ification from an application specified as a static affine nested loop program. They put a
restriction on the input program to be static in order to enable the automatic analysis and
conversion of the input program to a KPN. Although, many applications in the domain of
Scientific, Matrix Computation and Adaptive Digital Signal Processing can be specified as
static programs the static restriction limits the applicability of their approach when media
applications such as JPEG codecs, MPEG codecs, Smart Cameras, Software Radio, etc. have
to be considered. This is because such applications have a dynamic (data-dependent) be-
havior which can not be expressed as a static affine nested loop program (SANLP). Our
work presented in Chapter 2 of this dissertation demonstrated that the static restriction on
the input program can be relaxed in a particular way and a more general class of programs
called Weakly Dynamic Programs (WDP) can be automatically analyzed and converted to
KPNs. This implies that our approach presented in Chapter 2 extends significantly the class
of applications from which KPN specifications can be derived in a systematic and automated
way. Our approach can handle not only Scientific, Matrix Computation and Adaptive Signal
Processing applications but also media applications with dynamic (data-dependent) behav-

144 Summary and Conclusions

ior such as JPEG codecs, MPEG codecs, etc. because such applications can be specified as
WDPs.

Converting a weakly dynamic program (WDP) to a KPN specification in a systematic and
automated way is a challenging and complex problem because the exact behavior of a WDP
is unknown at compile-time. This comes from the fact that in a WDP there are if-then-else
constructs with dynamic (data-dependent) conditions, i.e., conditions that can be an arbitrary
function of data variables which values may be unknown at compile-time. This means that
the outcome of such conditions may be unknown at compile-time making the behavior of a
WDP unknown. In Chapter 2 we demonstrated that although the exact behavior of a WDP is
unknown at compile-time still such a program can be analyzed and converted to an executable
KPN specification in a systematic and automated way. Our approach to do this consists of
three main steps.

First, a WDP is converted to a functionally equivalent single-assignment program, i.e., a pro-
gram in which every variable is written at most once. In this dissertation we have developed
and used our special form of a single-assignment program called dynamic Single Assignment
Code (dSAC) because the existing single-assignment forms can not capture efficiently the dy-
namic (data-dependent) behavior of a WDP. The procedure we have developed to convert a
WDP to our dSAC is based on a very advanced dependence analysis technique called fuzzy
array data flow analysis (FADA) because the state of the art exact data flow analysis can not
handle the unpredictable behavior of a WDP. Using FADA in our procedure to obtain our
dSAC leads to a code that expresses explicitly all possible data dependencies between the
function calls in a WDP. Some of these data dependencies are not exactly defined, i.e., they
depend on parameters introduced by FADA. To keep the functional behavior of our dSAC
equivalent to the behavior of the initial WDP the values of these parameters have to be set
dynamically at run-time. In Chapter 2 we presented our way of setting these parameters that
is based on placing a very simple and efficient code called control variables in the dSAC.

Second, the dSAC obtained in the first step of our approach is transformed into more compact
representation consisting of two models, namely Approximated Dependence Graph (ADG)
and Schedule Tree (STree). We introduced the ADG model and the STree model in order to
capture all the information that is present in the dSAC in a formal way. Transforming the
dSAC into these models has several advantages: (1) the dSAC is very large and complex data
structure to operate on whereas the ADG and the STree are very compact and easy models to
operate on; (2) these models enable us to decompose the conversion problem into a number
of well defined sub-problems; (3) the conversion to a KPN can be done in a structured and
formal way because formal transformations can be easily defined and applied on the ADG
and the STree instead of the dSAC. Because of the reasons above we decided to convert the
dSAC into the ADG and STree models and derive the KPN from there.

The ADG model contains all the information that is related to the data dependencies be-
tween the functions in a dSAC as well as information about the iterations at which each
function in the dSAC is executed. As said earlier some of the data dependencies in a dSAC
are approximated, i.e., the exact data dependencies are not known at compile-time. We have
developed the ADG model because the classical and widely used Dependence Graph (DG) or
Polyhedral Reduced Dependence Graph (PRDG) models are not general enough to capture
approximated data dependencies occurring in a dSAC. For every function in a dSAC there is

145

a node in the ADG. For every variable in a dSAC there is an edge in the ADG that indicates
possible data dependency. Every node in the ADG is characterized by a set of integral points
that describes the iterations at which the corresponding function in the dSAC is executed.
For some functions the exact execution iterations are unknown at compile-time because of
date-dependent ”if”-constructs occurring in the dSAC. Therefore, we annotated the nodes in
the ADG with Linearly Bounded Sets (LBS). We have developed the notion of a LBS in order
to approximate the unknown information about the iterations at which functions in the dSAC
are executed.

The STree model contains all the information about the execution order between the functions
in a dSAC. The STree represents one valid schedule between all these functions that we
call the global schedule. We have shown that from the STree a local schedule between any
arbitrary set of the functions in the dSAC can be obtained by pruning operations on the STree.

Third, the ADG model and the STree model are converted into the KPN model. This is the
last step in our approach. A KPN consists of concurrent processes that communicate data
with each other over unbounded FIFO channels. Every process executes a sequential code.
The synchronization between the processes is accomplished by a blocking read mechanism,
i.e., a read operation from a FIFO channel blocks when no data is available in the channel.
The generation of the KPN from the ADG and the STree is performed in two stages. In
the first stage the topology of the process network is generated. The topology is determined
by grouping nodes and edges of the ADG into processes and channels in the KPN. Our ap-
proach allows an arbitrary grouping of nodes into processes, thereby allowing the generation
of KPNs with different topologies and degree of exploited parallelism. In the second stage
the processes and their sequential code is generated. The code must be generated in such way
that the functions which have to be executed inside a process are called in the proper order.
This order is determined by using the information captured in the STree model and the order
guarantees a deadlock free execution of the KPN.

An important characteristic of our approach for converting a weakly dynamic program (WDP)
to a KPN is that we do this conversion without changing the semantics of the KPN model of
computation. This is beneficial in the sense that all important properties of the KPN model
are preserved. Introducing weakly dynamic behavior in the KPN model and still preserv-
ing its semantics implies the following as we showed in Chapter 2: (1) in a KPN derived
from a WDP we distinguish two types of communication FIFO channels depending on the
purpose of the communicated data. These two types are data FIFO channels and control
FIFO channels. The control FIFO channels appear because the behavior of the WDP is not
know completely at compile-time. The unknown behavior has to be resolved at run-time in
the KPN and the control FIFO channels are used to communicate the necessary data to do
this; (2) Because of the unknown behavior of a WDP at compile-time, some processes in the
KPN may send more data into the data FIFO channels than actually needed at run-time. In
order to discard the unnecessary data at run-time the data is tagged (colored) and a tag (color)
matching is performed at run-time.

Control FIFO channels and tagging (coloring) of data are not necessary in case a KPN is
derived from a static affine nested loop program. This means that the presence of control
FIFO channels and tags (colors), i.e., extra communication workload is the ”price” we have
to pay when deriving a KPN from a weakly dynamic program.

146 Summary and Conclusions

Another important contribution of this dissertation is our work presented in Chapter 3 on
deriving a set of alternative KPN specifications from an application specified as a weakly
dynamic program (WDP). This work is important in system-level design, because it gives
system designers an opportunity to perform design space exploration and to select a KPN
specification that meets best the system requirements. In Chapter 3 we have presented sev-
eral task-level algorithmic transformations which we have developed to facilitate a systematic
derivation of alternative KPN specifications from a WDP. These KPN specifications are be-
haviorally equivalent to the input WDP but the degree of exploited task-level parallelism is
different. We have demonstrated how our transformations can be encapsulated in an applica-
tion transformation layer on the top of a Y-chart exploration environment in order to facilitate
system designers in exploring the performance of alternative KPNs mapped onto an architec-
ture template. To the best of our knowledge our application transformation layer provides for
the first time a systematic and fast approach to derive alternative KPNs from an application
specified as a WDP.

In Chapter 3 we have presented our set of four task-level transformations, namely unfold-
ing, plane cutting, skewing, and merging. We have shown that our unfolding, plane cutting,
and skewing transformations can be used to transform a WDP such that more task-level par-
allelism is revealed and exploited when converting the transformed WDP to a KPN spec-
ification. Moreover, the unfolding transformation or the plane cutting transformation can
reveal the maximum task-level parallelism available in a WDP. This means that we can gen-
erate a KPN that exploits in full degree the task-level parallelism in a WDP. Our merging
transformation has the opposite effect compared to the unfolding, plane cutting, and skew-
ing transformations. The merging transformation decreases the degree of exploited task-level
parallelism when converting the transformed WDP to a KPN. By merging we can generate a
KPN that consists of only one process, i.e., a KPN where no parallelism is exploited.

Although, our set of algorithmic transformations is very small its transformation power is
very large when the transformations are applied in combination on a WDP. By applying the
unfolding or plane cutting transformation in combination with the merging transformation
one can get whatever task-level distribution of the computational workload of a WDP over
parallel processes. This means that our algorithmic transformations allow systematic deriva-
tion of a set of alternative KPN specifications ranging from a KPN where NO parallelism is
exploited to a KPN where FULL task-level parallelism is exploited.

When a WDP is transformed using our transformations, extra control structures and oper-
ations are placed in the transformed WDP. The effect of these extra control structures and
operations on the performance of the KPN derived from the transformed WDP gets lower
when the granularity of the function calls executed inside the processes gets higher. This
means that our transformations are very efficient when the function calls in the initial WDP
represent relatively big and computational intensive tasks. By converting the transformed
WDP into a KPN specification a lot of optimizations are done to minimize the effect of the
additional control and operations on the performance of the KPN. Moreover, the extra control
and operations are distributed over the parallel processes of the KPN and they are executed
in parallel thereby minimizing the effect on the performance.

In order to validate and evaluate our approach to convert a WDP to a KPN (Chapter 2) and
our transformations to derive a set of alternative KPNs (Chapter 3) we have performed the

147

following two activities.

First, we have prototyped our approach and transformations in software. The methods and
techniques involved in the approach and the transformations are formulated in this disserta-
tion in close resemblance to their corresponding software. The benefit of doing this is that
this dissertation can be used to understand the internal structure and behavior of the proto-
type software we have developed. The following software has been developed: (1) most of
the methods and techniques of our approach have been prototyped and tested as software
procedures. There is work in progress for the complete implementation of the approach in
software; (2) our algorithmic transformations are implemented in a software tool called MAT-
TRANSFORM.

Second, we have conducted several experiments and two case studies using our prototype
software. These case studies, the corresponding experiments, and the obtained results have
been reported in Chapter 4 of this dissertation. The case studies have clearly shown that our
research work presented in this dissertation can be applied successfully on real-life industri-
ally relevant applications.

In the first case study we have shown how for a Motion-JPEG (MJPEG) encoder applica-
tion written as a weakly dynamic program in Matlab, a Kahn Process Network specification
was derived in a systematic and automated way using our approach presented in Chapter 2.
This specification was systematically mapped onto a real hardware platform composed of a
microprocessor and an FPGA using the COMPAAN/LAURA tools [18] [64]. Based on our
experience with the case study and the results we have obtained we draw the following con-
clusions. First, we conclude that a large industrially relevant application such as a Motion
JPEG encoder (MJPEG) can be easily specified as a weakly dynamic program (WDP) and
converted to a KPN specification in a systematic and automated way using our approach pre-
sented in Chapter 2. Second, we conclude that our approach enables a system designer to
derive a KPN from a large industrial relevant application in a relatively short amount of time
- currently, a few days. Although, our approach was not fully automated, the MJPEG was
converted to a KPN specification in a systematic and semi-automatic way in four days. When
our approach is fully automated this time will be reduced to several minutes. For comparison,
a KPN specification of the same MJPEG encoder was derived by hand in [16] that took four
weeks. Third, we conclude that our approach can be used and integrated successfully in a
system design flow which relies on the KPN model of computation to map efficiently real-
life applications onto real hardware platforms in a systematic and automated way. In the case
study we have shown such design flow where the KPN specification derived by our approach
allowed the parallel hardware resources in the platform to run concurrently, thereby exploit-
ing efficiently task-level parallelism. Finally, we conclude that our approach includes only
basic techniques that we have developed in order to convert automatically WDPs to KPNs.
The results, we have obtained for the MJPEG application, indicated that some optimization
techniques have to be added to the approach that will help the improving of the quality of
the generated KPNs in terms of optimal partitioning of the computation and communication
workloads of a WDP over processes and channels in the KPN.

In the second case study we have used the algorithmic transformations presented in Chapter 3
to derive systematically and fast alternative Kahn Process Networks (KPNs) from a real-life
signal processing algorithm, namely the QR-decomposition algorithm. We have mapped the

148 Summary and Conclusions

alternative KPNs onto a FPGA platform in order to demonstrate the effect of the transforma-
tions on the performance of the QR algorithm. Based on the results we have obtained and
the experience we have gained from this case study we can conclude the following. First, we
conclude that the effect of applying our transformations on a real-life algorithm is that we can
derive systematically alternative KPN specifications from the algorithm with different degree
of exploited task-level parallelism resulting in different performance and hardware utilization
when mapping the KPNs onto the hardware platform. From the QR algorithm we derived 20
KPNs that were functionally equivalent to the algorithm but all of them showed different
performance when they were mapped onto our FPGA platform. Second, we conclude that
using our transformations implemented in the tool MATTRANSFORM together with the COM-
PAAN/LAURA tools [18] [64] allows a system designer to perform an extensive design space
exploration of alternative KPNs in a relatively short amount of time. In our case study we
explored the performance of 20 KPNs derived from the QR algorithm. It took us in total only
two days to derive and map these 20 KPNs and to obtain performance numbers. For compar-
ison, doing this by hand takes a single designer several months as reported in [83]. Finally,
we conclude that the impact of each one of our transformations on the performance of the
derived alternative KPNs is different and it depends on the data dependencies in the initial al-
gorithm and on the hardware resources onto which the derived KPNs are mapped. Therefore,
using and applying our transformations efficiently implies that a system designer is familiar
with the algorithm and the target platform. Using and applying our transformations ”blindly”
is also possible but it may result in an exhaustive and time consuming exploration process.

Bibliography

[1] Axel Jantsch and Hannu Tenhunen. Networks on Chips. Kluwer Academic Publishers,
2003.

[2] Alberto Sangiovanni-Vincentelli and Grant Martin. A Vision for Embedded Systems:
Platform-Based Design and Software Methodology. IEEE Design and Test of Comput-
ers, 18(6):23–33, 2001.

[3] Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and Alberto Sangiovanni-
Vincentelli. System-Level Design: Orthogonalization of Concerns and Platform-Based
Design. IEEE Transactions on CAD of Integrated Circuits and Systems, 19(12):1523–
1543, 2000.

[4] F. Balarin, E. Sentovich, M Chiodo, P. Giusto, H. Hsieh, B Tabbara, A. Jurecska,
L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-
Software Co-design of Embedded Systems – The POLIS approach. Kluwer Academic
Publishers, 1997.

[5] Daniel D. Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, and Shuqing Zhao.
SpecC: Specification Language and Methodology. Kluwer Academic Publishers, 2000.

[6] Daniel D. Gajski. System Level Design Flow: What is needed and What is not. Tech-
nical report, CECS, University of California at Irvine, 2002. CECS-TR-02-33.

[7] Bart Kienhuis, Ed Deprettere, Pieter van der Wolf, and Kees Vissers. A Methodology
to Design Programmable Embedded Systems: The Y-Chart Approach. in Embedded
Processor Design Challenges, LNCS 2268, Editors Ed F. Deprettere, Juergen Teich,
and Stamatis Vassiliadis, Springer, 2002.

[8] Andrew Mihal and Kurt Keutzer. Mapping Concurrent Applications onto Architectural
Platforms. In Axel Jantsch and Hannu Tenhunen, editors, Networks on Chips, pages
39–59. Kluwer Academic Publishers, 2003.

[9] Edward Lee and Alberto Sangiovanni-Vincentelli. A Framework for Comparing Mod-
els of Computation. IEEE Transactions on CAD of Integrated Circuits and Systems,
17(12):1217–1229, 1998.

150 Bibliography

[10] Gilles Kahn. The semantics of a simple language for parallel programming. In Proc. of
the IFIP Congress 74. North-Holland Publishing Co., 1974.

[11] Andy Pimentel, Paul Lieverse, Pieter van der Wolf, and Ed F. Deprettere. Explor-
ing Embedded-Systems Architectures with Artemis. IEEE Computer, 34(11):57–63,
November 2001.

[12] E.A. Lee et al. PtolemyII: Heterogeneous Concurrent Modeling and Design in Java.
Technical report, University of California at Berkeley, 1999. UCB/ERL M99/40.

[13] Edward A. Lee and Thomas M. Parks. Dataflow Process Networks. Proceedings of the
IEEE, 83(5):773–799, May 1995.

[14] Erwin de Kock. Multiprocessor Mapping of Process Networks: A JPEG Decoding Case
Study. In Proc. 15th Int. Symposium on System Synthesis (ISSS’2002), pages 68–73,
Kyoto, Japan, October 2-4 2002.

[15] Pieter van der Wolf, Paul Lieverse, Mudit Goel, David La Hei, and Kees Vissers. An
MPEG-2 Decoder Case Study as a Driver for a System Level Design Methodology. In
Proc. 7th Int. Workshop on Hardware/Software Codesign (CODES’99), Rome, Italy,
May 3-5 1999.

[16] Paul Lieverse, Todor Stefanov, Pieter van der Wolf, and Ed Deprettere. System Level
Design with SPADE: an M-JPEG Case Study. In Proc. Int. Conference on Computer
Aided Design (ICCAD’01), pages 31–38, San Jose CA, USA, November 4-8 2001.

[17] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed Depret-
tere. System Design using Kahn Process Networks: The Compaan/Laura Approach. In
Proc. Int. Conference Design, Automation and Test in Europe (DATE’04), pages 340–
345, Paris, France, February 16-20 2004.

[18] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere. Compaan: Deriving Process
Networks from Matlab for Embedded Signal Processing Architectures. In Proc. 8th
International Workshop on Hardware/Software Codesign (CODES’2000), San Diego,
CA, USA, May 3-5 2000.

[19] Edwin Rijpkema. Modeling Task Level Parallelism in Piece-wise Regular Programs,
2002. PhD thesis, Leiden University, The Netherlands.

[20] Alexandru Turjan, Bart Kienhuis, and Ed F. Deprettere. A Compile-time based Ap-
proach for Solving Out-of-Order Communication in Kahn Process Networks. In Proc.
IEEE International Conference on Application-specific Systems, Architectures, and Pro-
cessors (ASAP’2002), San Jose, USA, July 17-19 2002.

[21] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Realizations of the Extended Lin-
earization Model. in Domain-Specific Embedded Multiprocessors (Chapter 9), Marcel
Dekker, Inc., 2003.

[22] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A Technique to Determine Inter-
process Communication in the Polyhedral Model. In Proc. Int. Workshop on Compilers
for Parallel Computers (CPC’03), Amsterdam, The Netherlands, January 8-10 2003.

Bibliography 151

[23] Alexandru Turjan and Bart Kienhuis. Storage Management in Process Networks using
the Lexicographically Maximal Preimage. In Proc. of the IEEE 14th Int. Conf. on
Application-specific Systems, Architectures and Processors (ASAP’03), The Hague, The
Netherlands, January 24-26 2003.

[24] Paul Feautrier. Dataflow Analysis of Scalar and Array References. Int. Journal of
Parallel Programming, 20(1):23–53, 1991.

[25] William Pugh and David Wonnacott. An Exact Method for Analysis of Value-Based
Array Data Dependences. In Proceedings of the 6th Annual Workshop on Programming
Languages and Compilers for Parallel Computing. Lecture Notes in Computer Science,
vol. 768. Springer-Verlag, Berlin, 1993.

[26] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array Dataflow Analysis and its
use in Array Privatization. In Proc. Int. Conference on Principles of Programming
Languages, pages 2–15, January 1993.

[27] Paul Feautrier. Parametric Integer Programming. Operations Research, 22(3):243-268,
1988.

[28] Paul Feautrier and Jean-Francois Collard. Fuzzy Array Dataflow Analysis. Technical
report, Ecole Normale Superieure de Lyon, 1994. ENS-Lyon/LIP No 94-21.

[29] Denis Barthou, Jean-Francois Collard, and Paul Feautrier. Fuzzy Array Dataflow Anal-
ysis. Journal of Parallel and Distributed Computing, 40(2):210–226, 1997.

[30] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Translating Affine Nested-loop
Programs to Process Networks. In Proc. International Conference on Compilers, Ar-
chitectures, and Synthesis for Embedded Systems (CASES’04), Washington D.C., USA,
September 23-25 2004.

[31] K. Knobe and V. Sarkar. Array SSA form and its use in Parallelization. In ACM Symp. on
Principles of Programming Languages (PoPL), pages 107–120, San Diego, California,
USA, January 1998.

[32] Paul Feautrier, Jean-Francois Collard, Michel Barreteau, Denis Barthou, Albert Cohen,
and Vincent Lefebvre. The Interplay of Expansion and Scheduling in PAF. Technical
report, PRiSM, University of Versailles, France, 1998. Report #1998/6.

[33] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, Henk Corporaal, and
Francky Catthoor. A Step towards a Scalable Dynamic Single Assignment Conver-
sion. Technical report, Katholieke Universiteit Leuven, 2003. Report CW360, April
2003.

[34] Patrice Quinton. Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equa-
tions. In Proc. of the the 11th Annual International Symposium on Computer Architec-
ture, pages 208–214, Ann Arbor, Michigan, USA, June 1984.

[35] Lothar Thiele. On the Design of Piecewise Regular Processor Arrays. In Proc. IEEE
Symposium on Circuits and Systems, pages 2239–2242, 1989.

152 Bibliography

[36] Juergen Teich and Lother Thiele. Partitioning of Processor Arrays: a Piecewise Regular
Approach. INTEGRATION: The VLSI Journal, 14(3):297 – 332, February 1993.

[37] Juergen Teich, Lother Thiele, and L. Zhang. Partitioning Processor Arrays under Re-
source Constraints. Int. Journal on VLSI and Signal Processing Systems, 15(1):5 – 21,
1997.

[38] Michael van Swaaij, Frank Franssen, Francky Catthoor, and Hugo De Man. Modeling
Data Flow and Control Flow for DSP System Synthesis. VLSI Design Methodologies
for DSP Systems, M. Bayoumi editor, Kluwer, 1993.

[39] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, Inc., 1997.

[40] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler Transformations for
High-Performance Computing. ACM Computing Surveys, 26(4), December 1994.

[41] Sundararajan Sriram and Shuvra Bhattacharyya. Embedded Multiprocessors: Schedul-
ing and Synchronization. Marcel Dekker, Inc., 2000.

[42] Keshab Parhi. VLSI Digital Signal Processing Systems: Design and Implementation.
John Wiley & Sons, Inc., 1999.

[43] Keshab K. Parhi and David G. Messerschmitt. Static Rate-Optimal Scheduling of Iter-
ative Data-Flow Programs via Optimum Unfolding. IEEE Transaction on Computers,
40(2):178–195, February 1991.

[44] Jurgen Teich and Lothar Thiele. Exact Partitioning of Affine Dependence Algorithms.
Lecture Notes in Computer Science (LNCS), Springer, 2268:133–151, 2002.

[45] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.-Y. Brunel, W.M. Kruijtzer,
P. Lieverse, and K.A. Vissers. YAPI: Application modeling for signal processing sys-
tems. In Proc. 37th Design Automation Conference (DAC’2000), pages 402–405, Los
Angeles, CA, June 5-9 2000.

[46] Joe Coffland and Andy Pimentel. A Software Framework for Efficient System-level
Performance Evaluation of Embedded Systems. In Proc. of the 18th ACM Symposium
on Applied Computing, Embedded Systems track, pages 666–671, Melbourne, Florida,
USA, March 2003.

[47] Todor Stefanov and Ed Deprettere. Deriving Process Networks from Weakly Dynamic
Applications in System-Level Design. In Proc. IEEE-ACM-IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS’03), pages
90–96, Newport Beach, California, USA, October 1-3 2003.

[48] Paul Lieverse, Pieter van der Wolf, Kees Vissers, and Ed Deprettere. A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems. Int. Journal of
VLSI Signal Processing for Signal, Image and Video Technology, 29(3):197–207, 2001.

Bibliography 153

[49] Martijn J. Rutten, Jos T.J. van Eijndhoven, and Evert-Jan D. Pol. Design of Multi-
Tasking Coprocessor Control for Eclipse. In Proc. 10th Int. Symposium on Hard-
ware/Software Codesign (CODES’02), pages 139–144, Estes Park, Colorado, USA,
May 6-8 2002.

[50] Cagkan Erbas, Selin C. Erbas, and Andy D. Pimentel. A Multiobjective Optimiza-
tion Model for Exploring Multiprocessor Mappings of Process Networks. In Proc.
IEEE-ACM-IFIP Int. Conference on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS’03), pages 182–187, Newport Beach, California, USA, October 1-3
2003.

[51] Todor Stefanov, Bart Kienhuis, and Ed Deprettere. Algorithmic Transformation Tech-
niques for Efficient Exploration of Alternative Application Instances. In Proc. 10th
International Symposium on Hardware/Software Codesign (CODES’02), pages 7–12,
Estes Park, Colorado, USA, May 6-8 2002.

[52] Bart Kienhuis. MatParser: An array dataflow analysis compiler. Technical report,
University of California at Berkeley, 2000. UCB/ERL M00/9.

[53] Peter Held. Functional Design of Data-Flow Networks, 1996. PhD thesis, Delft Uni-
versity of Technology, The Netherlands.

[54] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, 1986.

[55] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[56] Alexandru Turjan. A procedure to represent lattice as if-statements, 2002. Technical
Memo No5, Leiden University, The Netherlands.

[57] Alexandru Turjan. The Compaan out-of-order detection step, 2002. Technical Memo
No7, Leiden University, The Netherlands.

[58] Bart Kienhuis. Design Space Exploration of Stream-based Dataflow Architectures:
Methods and Tools, January 1999. PhD thesis, Delft University of Technology, The
Netherlands.

[59] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. The Construction of a
Retargetable Simulator for an Architecture Template. In Proc. 6-th Int. Workshop on
Hardware/Software Codesign (CODES’98), Seattle, Washington, March 15-18 1998.

[60] Vladimir Zivkovic, Erwin de Kock, Ed Deprettere, and Pieter van der Wolf. Fast and
Accurate Multiprocessor Architecture Exploration with Symbolic Programs. In Proc.
Int. Conference Design, Automation and Test in Europe (DATE’03), Munich, Germany,
March 3-7 2003.

[61] Vladimir Zivkovic, Pieter van der Wolf, Ed Deprettere, and Erwin de Kock. Design
Space Exploration of Streaming Multiprocessor Architectures. In Proc. Int. IEEE Work-
shop on Signal Processing Systems (SIPS’02), San Diego, California, USA, October 16-
18 2002.

154 Bibliography

[62] Andy Pimentel, Simon Polstra, Frank Terpstra, Berry van Halderen, Joe Coffland, and
Bob Hertzberger. Towards Efficient Design Space Exploration of Heterogeneous Em-
bedded Media Systems. in E. Deprettere, J. Teich and S. Vassiliadis (eds), Embed-
ded Processor Design Challenges: Systems, Architectures, MOdeling, and Simulation
(SAMOS), Springer LNCS, number 2268, pp. 57-73, 2002.

[63] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proc. ACM SIG-
PLAN’91, pages 39–50, June 1991.

[64] Claudiu Zissulescu, Todor Stefanov, Bart Kienhuis, and Ed Deprettere. LAURA: Lei-
den Architecture Research and Exploration Tool. In Proc. 13th Int. Conference on
Field Programmable Logic and Applications (FPL’03), Lisbon, Portugal, September 1-
3 2003.

[65] Vasudev Bhaskaran and Konstantinos Konstantinides. Image and Video Compression
Standards; Algorithms and Architectures. Kluwer Academic Publishers, 1995.

[66] W.B. Pennebacker and J.L. Mitchel. JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold, New York, 1993.

[67] W.B. Pennebacker, J.L. Mitchel, C.E. Fogg, and D.J. LeGall. MPEG Video Compression
Standard. Chapman and Hall, 1996.

[68] http://www.alpha-data.com/adm-xrc-ii.html. Alpha Data Parallel Systems, Ltd.

[69] PVRG-JPEG CODEC 1.1. Portable Video Research Group, Stanford University.

[70] J. Villarreal, G. Suresh, G. Stitt, F. Vahid, and W. Najjar. Improving Software Perfor-
mance with Configurable Logic. Kluwer Journal on Design Automation of Embedded
Systems, 7(4):325 – 339, November 2002.

[71] http://www.xilinx.com/. Xilinx, Inc.

[72] www.synplicity.com/products/synplifypro/index.html. Synplicity, Inc.

[73] http://www.xilinx.com/. Xilinx, Inc.

[74] Wayne Wolf. A Decade of Hardware/Software Codesign. IEEE Computer, 36(4):35 –
43, April 2003.

[75] Y. Li, T. Callahan, E. Dernell, R. Harr, U. Kurkure, and J. Stockwood. Hardware-
Software Co-Design of Embedded Reconfigurable Architectures. In Proc. 37th Design
Automation Conference (DAC’00), pages 507–512, Los Angeles, CA, June 5-9 2000.

[76] Timothy Callahan, John Hauser, and John Wawrzynek. The Garp Architecture and C
Compiler. IEEE Computer, pages 62–69, April 2000.

[77] Vinod Kathail, Shail Aditya, Robert Schreiber, and Bob Rau. PICO: Automatically
Designing Custom Computers. IEEE Computer, 35(9), September 2002.

[78] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-Oriented FPGA Com-
puting in the Stream-C High Level Language. In Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’00), April 2000.

Bibliography 155

[79] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[80] Eric Verhulst. Beyond the Von Neumann Machine: Communication as the driving
design paradigm for MP-SoC from software to hardware. In Axel Jantsch and Hannu
Tenhunen, editors, Networks on Chips, pages 217–238. Kluwer Academic Publishers,
2003.

[81] Eylon Gaspi et al. Stream Computations Organized for Reconfigurable Execution
(SCORE). In Proc. 10th Int. Conference on Field Programmable Logic and Appli-
cations (FPL’00), August 28-30 2000.

[82] John Proakis, Charles Rader, Fuyun Ling, Chrysostomos Nikias, Mark Moonen, and
Ian Proudler. Algorithms for Statistical Signal Processing. Prentice Hall, Inc., 2002.

[83] Tim Harriss, Richard Walke, Bart Kienhuis, and Ed F Deprettere. Compilation from
Matlab to Process Networks Realized in FPGA. Journal on Design Automation of Em-
bedded Systems, 7(4), 2002.

Index

COMPAANDYN, 8
COMPAANDYN approach, 10
MATTRANSFORM, 16

ADG, 14
affine mapping, 40
Algorithmic Transformation Techniques, 15
application instance, 85
application models, 3
Application Transformation Layer, 85
Application(s) specification, 84
Applications, 2
Approximated Dependence Graph, 14, 38
approximated dependence graph, 39
architecture models, 3
Architecture template, 84
Architectures, 2

blocking-read, 7

channel, 51
Code Generation, 48, 76
coloring of tokens, 52, 60
communication model, 52, 61
Communication Models Realizations, 64
Compaan, 115
Conflicting Access, 29
cutting planes, 95

Dependence Analysis, 11
design space exploration, 85
deterministic, 7
distributed control, 4, 7, 114
distributed memory, 4, 7, 114
dSAC, 13

Dynamic Single Assignment Code, 13, 26

edge, 40
Edge Grouping, 54
Embedded Systems-on-Chip (SoC), 1
Environment, 29
exact array dataflow analysis (EADA), 11
Existence Predicate, 28

FADA, 12
filtering functions, 40
filtering set, 40
Fuzzy Array Dataflow Analysis, 12, 26

hardware model, 124
hierarchical subnetwork, 117, 123
hyper planes, 94

in-order communication, 52, 60
input gate, 51
input port, 39
iterator vector, 89, 95, 102

JPEG, 116

Kahn Process Network, 7
KPN, 7

Laura, 115
LBS, 15, 40
linear bound, 40
Linearization, 48, 59
linearly bounded set, 40
Linearly Bounded Sets, 15

M-JPEG, 116

158 Index

mapping, 117
mappings, 3
merging, 106
Motion JPEG, 116
MPEG, 116

Network-on-Chip (NoC), 2
node, 39
Node Grouping, 53

OPD refinement, 48, 49
out-of-order communication, 52, 60
output gate, 51
output port, 39

Parallel Compiler Techniques, 8
parametric integer programming (PIP), 26
plane cutting, 93
platform architecture, 117
Platform-based Design, 2
PN behavior, 59
PN topology, 52
PN-to-ParseTree, 48
PN-to-ParseTrees, 69
Point-to-Point, 48, 49
process, 50
process network, 50
Process Network (PN) model, 50
Process Network Synthesis, 46
PtolemyII framework, 76

QR-decomposition, 132

re-usability, 2

scalability, 2
Schedule Tree, 11, 45
schedule tree, 45
separation of concerns, 2
Sequencing Condition, 29
skewing, 99
skewing matrix, 103
skewing vector, 102
Specification Gap, 5
standardization, 2
static affine nested loop programs, 8
STree, 11, 45

syntax tree, 45
system design flow, 117
System-level Design, 2
SystemC environment, 76

task-level parallelism, 114

unfolding, 87
unfolding vector, 89

Visitor, 48

WDP, 9
Weakly Dynamic Programs, 9
workload analysis, 117

Y–chart Applications Programmers Inter-
face, 120

Y-chart environment, 85
YAPI environment, 76

Samenvatting

Dit proefschrift introduceert een nieuwe, systematische en automatische methode en pro-
cedure voor het vertalen van Zwak-Dynamische Sequentiële Programma’s naar functioneel
equivalente, parallelle specificaties in de vorm van Kahn-Proces-Netwerken. Het Kahn-
Proces-Netwerken rekenmodel leent zich beter dan het Sequentiële Imperatieve rekenmodel
voor de implementatie van, onder meer, Multimedia taken in multi-processor architecturen.

De methode en procedure die wordt voorgesteld in dit proefschrift verschaft een belang-
rijke en niet triviale uitbreiding van een eerder voorgestelde methode en procedure voor de
automatische vertaling van Statische Sequentiële Programma’s - in het bijzonder statische,
affine geneste lus programma’s zoals bekend uit de HPC wereld - naar functioneel equiv-
alente Kahn-Proces-Netwerken specificaties. In dit geval is het Kahn-Proces-Network een
aantrekkelijk compact alternatief voor het zogenoemde Cyclostatische Dataflow Netwerk
rekenmodel. In de praktijk evenwel blijken vele toepassingen niet gespecificeerd te kunnen
worden op deze manier omdat ze niet statisch, maar dynamisch zijn: Ze zijn data afhankelijk.

In hoofdstuk 2 van dit proefschrift wordt aangetoond dat de beperkingen die het gevolg zijn
van de aanname dat data afhankelijkheid geen rol speelt ten dele kunnen worden opgegeven.
Met andere woorden, de automatische vertaling van sequentiële programma’s naar paral-
lelle (Kahn-Proces-Netwerk) specificaties blijft mogelijk, ook als er data afhankelijke con-
structies in de programma’s voorkomen - ook al moeten ze aan zekere zwakke voorwaar-
den voldoen. Vanwege die laatste beperking worden zulke programma’s in dit proefschrift
Zwak-Dynamische Programma’s genoemd. Vele programma’s die Multimedia taken, maar
ook Adaptieve Signaalbewerkingstaken uit de Communicatie, Radar, en Radioastronomie,
specificeren voldoen aan dit zwak dynamische criterium.

De uitbreiding van statische naar dynamische programma’s wordt gehinderd door het feit dat
een van de belangrijkste stappen in de vertaling naar parallelle Kahn-Proces-Netwerk speci-
ficaties faalt door de onzekerheden die optreden als gevolg van de data afhankelijke construc-
ties in de dynamische programma’s. In hoofdstuk 2 wordt onder andere aangetoond dat deze
hindernis genomen kan worden wanneer het dynamisch gedrag ’zwak’ is zoals gedefinieerd
in dit proefschrift.

160 Samenvatting

Hoofdstuk 3 bevat een andere bijdrage die van groot belang is wanneer een Kahn-Proces-
Netwerk specificatie moet worden geimplementeerd in een multi-processor architectuur. De
bijdrage betreft de mogelijkheid om een gegeven (zwak-dynamisch) sequentieel programma
te vertalen naar meerdere functioneel equivalente parallelle Kahn-Proces-Netwerk specifi-
caties. Deze keuzemogelijkheid is aantrekkelijk wanneer voorafgaand aan implementatie
beslissingen nog optimalisatie exploraties gedaan moeten worden. In hoofdstuk 3 worden
vier mogelijke, systematische en automatische transformaties van (zwak-dynamische) se-
quentiële programma’s voorgesteld die samen vele mogelijke gradaties van parallellisme op
een gebalanceerde manier over meerdere processoren in een architectuur kunnen distribueren.
Drie van de vier transformaties worden automatisch toegepast op de gegeven sequentiële
specificatie en bevatten een of meer parameters die, afhankelijk van hun waarden, een ander
equivalent Kahn-Proces-Netwerk opleveren, typisch met een grotere mate van parallellisme.
De vierde transformatie - waarmee parallellisme kan worden gereduceerd - wordt uitgevoerd
op een Kahn-Proces-Netwerk specificatie, maar maakt gebruik van informatie die niet in die
specificatie beschikbaar is maar wel in de gegeven sequentiële specificatie.

De methoden om Zwak-Dynamische Sequentiële programma’s automatisch te vertalen naar
parallelle Kahn-Proces-Netwerk specificaties zijn alle omgezet in software routines die samen
een executeerbaar vertalingsprototype vormen. In hoofdstuk 4 zijn experimenten opgenomen
die met dit prototype zijn uitgevoerd. Deze experimenten demonstreren en evalueren de
theoretische onderbouwingen die zijn aangedragen in Hoofdstuk 2 en Hoofdstuk 3.

Curriculum Vitae

Todor Stefanov was born on July 11, 1974 in Samokov, Bulgaria. In 1993 he received his
high school diploma at The High Technical School of Microprocessor Technology in Pravetz,
Bulgaria. The same year he started his study in computer engineering at the Technical Uni-
versity of Sofia, Bulgaria. In 1998, Todor Stefanov received his Dipl.Ing. and M.Sc. de-
grees in Computer Engineering from the Technical University of Sofia after successfully
defending his M.Sc. thesis titled ”Design, Analysis, and Area Minimization of the Control
Unit of Application Specific Microprocessor Core”. During his M.Sc. study, he worked at
Info MicroSystems, Ltd., Sofia, Bulgaria on designing application specific microprocessor
IP cores. From 1998 till 2000, Todor Stefanov was a Research and Development Engineer
at Innovative Micro Systems, Ltd., Sofia, Bulgaria where he worked on the development of
a reconfigurable MicroSystems-on-Silicon In-Circuit Emulator based on FPGAs. In 2000,
Todor Stefanov joined the Leiden Embedded Research Center (LERC) which is a part of the
Leiden Institute of Advanced Computer Science (LIACS) at Leiden University where he was
appointed as a research assistant (Ph.D. student). He was involved in the ARTEMIS project
which deals with ARchitectures and meThods for Embedded MedIa Systems. As a member
of the ARTEMIS project he conducted research in the context of modeling of stream-oriented
media applications and mapping them onto parallel architectures. In particular, he worked on
methods and techniques for systematic and automated derivation of process networks from
weakly dynamic applications. This research work culminated in the writing of this Ph.D.
thesis.

