
INTEGRATION, the VLSI journal 100 (2025) 102299

A
0

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Model and system robustness in distributed CNN inference at the edge
Xiaotian Guo a,b,∗, Quan Jiang c, Andy D. Pimentel a, Todor Stefanov b

a Informatics Institute, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
b Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CC, The Netherlands
c Informatics Institute, Nanjing Agricultural University, Nanjing, 210095, China

A R T I C L E I N F O

Keywords:
Embedded systems
System resilience
Fault tolerance
Distributed systems
Deep learning

A B S T R A C T

Prevalent large CNN models pose a significant challenge in terms of computing resources for resource-
constrained devices at the Edge. Distributing the computations and coefficients over multiple edge devices
collaboratively has been well studied but these works generally do not consider the presence of device
failures (e.g., due to temporary connectivity issues, overload, discharged battery of edge devices). Such
unpredictable failures can compromise the reliability of edge devices, inhibiting the proper execution of
distributed CNN inference. In this paper, we present a novel partitioning method, called RobustDiCE, for robust
distribution and inference of CNN models over multiple edge devices. Our method can tolerate intermittent and
permanent device failures in a distributed system at the Edge, offering a tunable trade-off between robustness
(i.e., retaining model accuracy after failures) and resource utilization. We verify the system’s robustness by
validating the overall end-to-end latency under failures. We evaluate RobustDiCE using the ImageNet-1K
dataset on several representative CNN models under various device failure scenarios and compare it with
several state-of-the-art partitioning methods as well as an optimal robustness approach (i.e., full neuron
replication). In addition, we demonstrate RobustDiCE’s advantages in terms of memory usage and energy
consumption per device, and system throughput for various system setups with different device counts.
1. Introduction

As Artificial Intelligence (AI) continues its rapid evolution, convo-
lutional neural networks (CNNs) are becoming increasingly prevalent
across a variety of applications [1]. The surge of Internet-of-Things
(IoT) devices has also elevated the deployment requirements of CNNs at
the Edge. However, the growing complexity and size of CNN models,
such as VGG-16 [2], and CoAtNet-6 [3], pose a significant challenge
in terms of computing resources for resource-constrained edge devices.
One approach to address this challenge is to construct a lightweight
CNN model from a large CNN model utilizing model compression [4] or
neural architecture search [5] which may decrease accuracy. Another
approach is to distribute a large CNN model between edge devices and
cloud servers [6], but this approach introduces unpredictable inference
latency and raises trustworthiness, security, and privacy concerns.

To address these issues, studies on fully distributing the CNN in-
ference over multiple edge devices have been proposed without the
need for model compression and cloud servers. In such a planar CNN
distribution paradigm, model partitioning [7,8] and data partitioning [9,
10] methods are typically applied to alleviate the discrepancy between
the constrained resources of edge devices and the huge requirements
of deploying large CNN models. However, these partitioning methods

∗ Corresponding author at: Informatics Institute, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands.
E-mail address: gxtzhuxi@gmail.com (X. Guo).

assume continuous availability of all involved edge devices that cannot
be always guaranteed because an edge device could be temporarily
unreachable (especially when edge devices are mobile and use low-
power short distance radios for communication) or a device could
experience a temporary failure (e.g., due to a discharged battery).
Therefore, it is imperative to devise and utilize partitioning methods
for distributed CNN inference with robustness in mind.

In this paper, we present a novel partitioning method, called Ro-
bustDiCE, for robust distribution and inference of CNN models over
multiple edge devices. RobustDiCE features both system robustness,
i.e., CNN inference can continue execution even if one or more edge de-
vices fail to function properly, and model robustness, i.e., preserving the
inference accuracy of the CNN model as much as possible when some
of the intermediate CNN inference results are lost due to failed devices.
We improve the system robustness by implementing a decentralized
connections between multiple devices where each device incorporates a
robust fault handler for reliable execution. The fault handler’s internal
timeout mechanism, regulated by periodic heartbeats, prevents system
deadlocks and improves resilience against potential device failures
or network disruptions. Moreover, we address the model robustness
challenge by evaluating the relative importance of each neuron in
https://doi.org/10.1016/j.vlsi.2024.102299
Received 31 May 2024; Received in revised form 4 September 2024; Accepted 12 O
vailable online 20 October 2024
167-9260/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
ctober 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/vlsi
https://www.elsevier.com/locate/vlsi
mailto:gxtzhuxi@gmail.com
https://doi.org/10.1016/j.vlsi.2024.102299
https://doi.org/10.1016/j.vlsi.2024.102299
http://creativecommons.org/licenses/by/4.0/

X. Guo et al.

C
d
s

e

a
d

t

t
t
l

f

s
C
m
t
e
M
l
c
s
t
a
C
t
c
h

d
d

c
t
f
t
s
m
c

(

c
g

b

T
a
o

s

i
t
b

Integration 100 (2025) 102299
the CNN model and then partitioning these different neurons of each
NN layer into different groups (to be mapped to the various edge
evices) as ‘evenly’ as possible. Our main novel contributions can be
ummarized as follows:

• Based on the importance criterion of different neurons in each
CNN layer, a new partitioning method is proposed to preserve the
model accuracy as much as possible against device failures. This
new method combines partial neuron replication and importance-
aware neuron clustering to achieve CNN model robustness. It also
provides a tunable trade-off between robustness (i.e., retaining
model accuracy after failures) and resource utilization.

• We evaluate our novel partitioning method on several representa-
tive CNN models using the ImageNet-1K dataset under pessimistic
device failure scenarios, as enabled by RobustDiCE’s system ro-
bustness support. We compare it with a number of state-of-the-art
(partitioning) approaches, including the CDC method [11] lever-
aging neuron replication to increase robustness, and an ideal
robustness approach utilizing full neuron replication.

• We demonstrate our method’s superiority in terms of memory
usage and energy consumption per device, and system throughput
under different system configurations.

The remainder of the paper is organized as follows. Section 2 dis-
cusses related work, after which Section 3 gives a simple motivational
xample illustrating the need for our novel partitioning method Robust-

DiCE. Section 4 presents the RobustDiCE method in detail. In Section 5,
we describe a range of experiments, demonstrating the merits and
advantages of RobustDiCE in terms of system and model robustness
as well as resource utilization. Finally, Section 6 concludes the paper
nd discusses the limitations of our work as well as possible future
irections of research.

2. Related work

Model and data partitioning methods [7,12] can be exploited to
distribute the workload of a large CNN model inference along the edge–
cloud continuum or fully among multiple edge devices, thus reducing
the required computation resources of edge devices [8]. Considering
he edge–cloud continuum, studies [7,10,13–16] distribute the work-

load of a large CNN model in a planar fashion over multiple devices at
he edge without using the cloud. Processing the input data collabora-
ively by utilizing multiple edge devices helps to mitigate the resource
imitations of a single edge device in terms of available memory, energy

budget, etc. As mentioned in Section 1, there are two common methods
or implementing planar distributed CNN inference: model partitioning

and data partitioning.
Data partitioning involves dividing the input data into smaller

chunks, with each chunk processed on a separate device. For example,
DeepThings [13] uses the Fused Tile Partitioning (FTP) method for
plitting input data frames of CNN layers in a grid fashion to reduce the
NN memory usage per device. Alternatively, the model partitioning
ethod splits the CNN layers and/or connections of a large CNN model,

hereby creating several smaller sub-models (model partitions) where
ach sub-model is executed on a different edge device. For example,
oDNN [10] and DeeperThings [7] split the neurons in convolution

ayers and fully connect layers of the VGG-16 model to reduce layer
omputations per device. In [12,15,16], CNN layer connections are
plit and each CNN layer is treated as a sub-task. These sub-tasks are
hen mapped to edge devices through a balanced processing pipeline
pproach. In addition to using data and model partitioning to map large
NNs on resource-constrained edge devices, researchers try to optimize
he CNN partitioning to improve inference performance under different
onditions such as network bandwidth, neural network topology, and
ardware specifications [8]. For example, the methodologies in [9,16–

18] propose algorithms to determine partitioning policies that generate
efficient CNN mappings to improve the performance of cooperative
2
inference over multiple edge devices. [8] explores specific optimal CNN
partitionings to reduce memory usage and energy consumption per
device. However, these partitioning methods assume that the involved
computing devices/servers (and communication links) between them
are always available and work properly. Our partitioning method is
esigned to be robust against temporary or permanent failures of
evices.

System robustness in distributed CNN inference refers to the ability
of a system to continue functioning correctly, or to provide graceful
degradation, even in the presence of hardware or software failures
(such as the unavailability of system resources, communication failures,
invalid or excessive input data, etc.) [19]. The majority of studies
on robust computing focus on replication [20–22], redundancy [23,
24], error correction [11,25], checkpoint recovery [26], and fault
tolerance techniques [27]. For example, [20–22] keep the results of
multiple computing nodes up to date and consistent through repli-
ation. [23,24] replicate computing nodes of the distributed system
o provide multiple identical instances as backups in case of a node
ailure. However, full replication of input data and CNN layers (with
heir vast numbers of weights/biases) for CNN inference is not fea-
ible for resource-constrained edge devices. Moreover, the usage of
any redundant hardware devices is expensive and not suitable in all

ases. [25] uses error correcting codes (ECCs) to protect the weights
from perturbations while [11] applies a coded distributed computing
CDC) method for fast recovery of output results from a certain number

of node failures. However, error correction methods introduce extra
omputations on the edge devices which may be difficult to facilitate
iven the limited available resources. [26] provides a checkpoint re-

covery mechanism for ‘‘continued execution’’ where the deep learning
implementation continues to execute by utilizing the remaining set of
computing nodes. However, the recovery method increases the physical
memory usage, and the recovery time is limited to the filesystem I/O
ottleneck of the edge devices. Unlike the previous works, our work

focuses on robust, distributed CNN inference with the goal of reducing
the computational and memory resource usage per edge device to better
match the limited resources of edge devices.

Model robustness of distributed CNN inference concerns the prop-
erty of a model of being resilient in terms of inference accuracy to
the failure of physical computing nodes due to power outages, un-
stable inter-node connections, other hardware/software failures, etc.
In distributed CNN inference, the missing neurons on those failed
nodes may result in a significant accuracy drop [11] of a CNN model.

he code distributed computing (CDC) method in [11] utilizes one
dditional, presumed functional device to back up the summation
f partitioned neurons of other distributed devices and use that to

recover the output of missing neurons in the event of a single node
failure. Our method, on the other hand, can cope with multiple node
failures without integrating additional devices and computations. To
alleviate the influence of node failures on the CNN inference accuracy,
everal failure-aware retraining methods [28–33] for CNNs have been

developed. For example, if layer connections of CNN models are split,
the forward process of the CNN inference cannot continue because
of the presence of failed nodes. DeepFogGuard [34] establishes skip
hyperconnections to skip certain failed physical nodes during the re-
training process. ResiliNet [31] introduces failout to simulate physical
node failure conditions during retraining. [30] retrains CNN models to
be resilient to packet loss in a lossy IoT network. The retraining process
adds dropout on certain CNN layers but this cannot guarantee that
the model accuracy is preserved. When the dropout rate is too high,
thereby simulating a high percentage of node failures, the retraining
model may result in under-learning which causes a significant decrease
n its accuracy. In addition, all these retrained models are designed
o be aware of only specific failures such as communication failures
etween two CNN layers, certain node failures in a pipeline multi-

node inference, etc. Moreover, CNN retraining requires a large amount

X. Guo et al.

t
a
d
o

t
f

i

t
m

c
n

Integration 100 (2025) 102299
Fig. 1. Typical vs. Robust partitioning.
w

n
r
d

m
r
d
i

o

w

i
c
f
n
n

of data that may not be always accessible for an end user of a pre-
rained CNN model to perform retraining before the deployment in
n unreliable environment. As most state-of-the-art pre-trained models
irectly available to an end user for deployment are not failure-aware,
ur RobustDiCE method can be easily applied to partition these pre-

trained models to achieve system and model robustness without any
retraining, without assuming specific types of failures, and without
suffering from accuracy degradation due to parameter changes (e.g., by
adding dropout on CNN layers) in the neural networks. Moreover, our
robustness method can be seen as complementary to these retraining
approaches, i.e., if we would apply our method to the aforementioned
retrained models, we can further improve their robustness against node
failures.

To summarize, performing robust inference on distributed edge de-
vices is vital. Existing robustness methods suffer from extra computing
resource requirements, time-consuming retraining, accuracy degrada-
tion, etc. In contrast, our method RobustDiCE is designed to guarantee
robustness under limited resources of edge devices. In addition, our
method is a post-training technique that provides robustness without
the need for CNN model retraining. Furthermore, we have implemented
and tested our robust distributed CNN inference on real physical edge
devices. Both system robustness and model robustness are provided by
our method and verified via experimental results.

3. Background and motivation

In this section, we provide some background information and a mo-
ivational example to understand our novel CNN partitioning method
or robustness.

In general, state-of-the-art partitioning methods, such as discussed
n [7], do not consider robustness as they do not consider the fact

that different neurons/filters in CNN layers have different importance,
hereby causing various effects on the inference accuracy of a CNN
odel, particularly those neurons with larger values [35]. The relative

importance of a neuron in a CNN layer can be measured by calculating
metrics such as the 𝑙1-norm [36] and 𝑙2-norm [37], just to name a few.
‘To partition a CNN layer with robustness in mind, it is essential to
find an effective way to group and distribute its neurons/filters over
computing nodes as evenly as possible in terms of importance.

To clarify this statement, we use the simple example shown in
Fig. 1, where we consider a convolution layer with five filters/neurons
denoted as 𝑛1 to 𝑛5. We want to partition these neurons over three
omputing nodes. In this example, the importance score 𝑠𝑗 of each
euron 𝑛𝑗 is measured by calculating the 𝑙1-norm. That is, taking the

filter corresponding to neuron 𝑛𝑗 with shape 𝐶𝑖𝑛×𝑘×𝑘 (where 𝑘 denotes
the kernel size of the filter and 𝐶𝑖𝑛 the number of input channels), we
calculate the sum of absolute values of all the weights in the filter and
its bias using the magnitude-based method 𝑙1-norm. In Line 7, 𝑊 𝑐 ,ℎ,𝑤

𝑗
denotes a particular weight value in the 𝑗th filter corresponding to
neuron 𝑛𝑗 , and 𝑏𝑗 its bias. In the middle and the right part of Fig. 1, we
visualize the importance 𝑠 of each neuron 𝑛 by the size of the circle
𝑗 𝑗 a

3
representing the neuron, i.e., neuron 𝑛5 has the highest importance
hereas 𝑛1 and 𝑛2 have the lowest importance.

As shown in Fig. 1(a), a partitioning method without robustness
in mind (i.e., no consideration of the neurons’ importance 𝑠𝑗) splits
the five neurons into three groups (visualized by the three colors in
Fig. 1) and the groups are distributed over the three nodes. Such
distribution reduces computational resources per node because the
layer workload is split over the nodes. However, this distribution is
ot robust at all because if, for example, the third node fails, which
uns the most important neuron 𝑛5, then the inference accuracy will
ecrease significantly.

To maximize the robustness, well-known modular redundancy
methods can be applied as shown in Fig. 1(b). Here, we replicate all
neurons over the three nodes, thereby achieving maximum robustness
against failures because even if one or two nodes fail then the re-
maining available node will run all the neurons without a decrease
in inference accuracy. However, this significantly increases the re-
source requirements (e.g., memory and energy consumption) for each
node. Moreover, this full replication approach might be infeasible for
resource-constrained nodes due to the limitations with respect to their
computational or memory resources and the possible energy budget of
an edge device.

The two example scenarios, illustrated in Fig. 1(a) and (b), clearly
show that using existing, robustness-unaware partitioning methods or

odular redundancy methods in isolation cannot provide efficient and
obust distributed CNN inference on multiple resource-constrained edge
evices. Therefore, in this paper, we propose a novel method, explained
n detail in Section 4, which combines replication and importance-aware
partitioning to achieve high and tunable robustness in an efficient way
for distributed CNN inference. The result of applying our method to our
simple example is illustrated in Fig. 1(c). The basic idea is that some
(not all) neurons in a CNN layer are replicated and all neurons (initial
and replicas) are partitioned into groups and distributed evenly over
the nodes based on their importance.

The advantage of this partitioning method is that if either the first
r third node fails, the remaining nodes can still run all the neurons,

preserving inference accuracy. If the second node fails, the critical
neuron 𝑛5 still remains, limiting the accuracy degradation. Therefore,

e can achieve comparable robustness to the scenario in Fig. 1(b), but
with reduced computational resource requirements, as not all neurons
are replicated or run on each node.

4. The RobustDiCE method

Our method RobustDiCE features both system robustness, i.e., CNN
nference can continue to execute or recover even if one or more
omputing nodes and/or communication links between them fail to
unction properly and model robustness, i.e., when some of the CNN
eurons and/or their input/output data are lost due to the failed
odes/links, the inference accuracy of the CNN model is preserved
s much as possible. In Section 4.1, we outline our decentralized

X. Guo et al.

n
p
p
d

c
n
i
m
n
r
n
u
c
m

t
p
m
i
b
m
d
m
a
w
f

a
w
c

Integration 100 (2025) 102299
Fig. 2. Decentralized computing framework.
i

t
c
v

r
w
p
o

i
a
s

i
f

f
F
s
a
o
l
l
s
a
e
i

c
s
e

computing framework for CNN inference that supports system robust-
ess. In addition, we support model robustness by applying our new
artitioning method, presented in Sections Section 4.2, that combines
artial neuron replication and importance-aware neuron grouping and
istribution over multiple nodes.

4.1. Decentralized computing framework

In our work, we have devised and implemented a decentralized
framework for distributed computing and communication. Such an
infrastructure is crucial to ensure that the distributed CNN inference
an be executed collaboratively and properly even in the case of
ode/link failures. In our decentralized framework, each node operates
ndependently in an interconnected network, which simplifies manage-
ent and enhances scalability without relying on centralized managing
odes. This mechanism offers significant advantages in terms of system
obustness and reliability. For example, if one node fails, the other
odes autonomously detect and manage it, adjusting their operations
ntil the failed node recovers and is reintegrated into the network. This
ontrasts with centralized systems, where a single point of failure in a
anagement node can lead to disruption of the entire system.

A high-level overview of our decentralized computing framework
for distributed CNN inference is shown in Fig. 2. In this framework,
all nodes are interconnected in a peer-to-peer fashion through an N-
o-N mesh topology. On each computing node, there are two running
rocesses: inference engine and event handler. The inference engine
ainly takes care of the CNN computations, whereas the event handler

s responsible for handling events such as interconnections, heart-
eat [38] and data synchronization between nodes, node failures, node
anagement, etc. The two processes communicate with each other
irectly through the inter-process communication mechanism. As com-
unication between nodes happens asynchronously with computation,
 node can continue with its computation even if the communication
ith other nodes is not completed. This prevents the communication

rom becoming a bottleneck.
In the N-to-N mesh topology, each node acts as both a client and

 server, thereby allowing for direct communication between nodes
ithout centralized servers or coordinators. The client on each node

onnects with a set of servers on other nodes, and the server on each
node is capable of replacing other servers if necessary. This design
ensures that a failure of a node or communication link will not dis-
rupt the entire system. The client in the event handler of each node
continuously sends regular messages, known as heartbeats, to servers
on other nodes to confirm their operational status. As shown in Fig. 2,
we typically set a relatively large value for the timeout to ensure that
 e

4
the data synchronization between the event handlers of these nodes
is completed before reaching the timeout. Once data synchronization
s completed, the event handler will activate the inference engine to

proceed with the corresponding computations. However, if a node
fails to send out a heartbeat within a predefined timeout, other nodes
assume that this unresponsive node has failed. Then, the server would
remove the inactive or failed nodes and update its list of active nodes.

For example, consider the bottom part of Fig. 2 illustrating the
imeout mechanism concerning the three nodes. When all nodes have
ompleted their assigned computations, the partial results, i.e., the
alues in the green boxes on each node, need to be synchronized. If data

communication proceeds without any failures, all nodes will receive
the correct full results, as shown in the 2 × 3 green box configuration.
However, if Node 1 encounters a failure and cannot send its partial
esults (values 1 and 3) to the other nodes, these nodes will end up
aiting for Node 1. If Node 1 is unable to send a heartbeat within the
redefined timeout period due to its failure, the event handlers on the
ther nodes will detect this failure and disconnect from Node 1.

Subsequently, all nodes, except Node 1, will proceed to zero out the
vector content related to Node 1’s contributions, indicated by the red
box. Although the data synchronization results on these nodes will be
ncorrect without the input from Node 1, these nodes will still proceed
nd activate their inference engines to continue processing tasks. It
hould be noted that our decentralized framework ensures that no node

is permanently eliminated from the system upon failure. Instead, we
employ a timeout mechanism to manage transient faults during the
nference process. This allows the system to temporarily bypass any
aulty node and continue operations. In cases where a node fails to send

a heartbeat within the predefined timeout, it is temporarily excluded
rom computations but can rejoin once it becomes operational again.
or example, if a node recovers after a failure, it reintegrates into the
ystem seamlessly due to our N-to-N mesh topology. As each node acts
s both client and server, all working nodes would update their registry
f active nodes to add the recovered node back to their communication
ist again. Nodes continuously exchange heartbeats (using a sufficiently
arge timeout value) to monitor each other’s status and facilitate data
ynchronization before a node is considered unresponsive. This mech-
nism ensures that our system can adaptively maintain functionality
ven in the presence of node failures, without significant degradation
n performance.

By enabling each node to perform its computation and communi-
ation independently, our decentralized framework offers robust and
calable computation and communication for distributed CNN infer-
nce. This approach ensures that the system remains functional and
fficient even in the face of individual node or link failures.

X. Guo et al.

r
e
e

T
e
s
p
c
d
l
e
e
i
h
a
s
t
p

r
C

A
𝐿

𝑃

e
F

t
A

m
c
a
b
n

p

l
r
o
d
i
i
(

𝐺
a
g
e
g
t

E
i
g

r
o
i
t
‘
o
r
l
i
‘
w
a

Integration 100 (2025) 102299
4.2. Robust partitioning

In this section, we present our new partitioning method which
achieves CNN model robustness by combining importance aware neu-
on grouping/clustering with partial neuron replication in order to
venly distribute the neurons in a CNN model over multiple nodes. We
mploy the so-called horizontal partitioning method, which is applied

layer-wise on every layer until the whole CNN model is partitioned.
he motivation to employ layer-wise horizontal partitioning across
very layer of the CNN model stems from a strategic aim to enhance
ystem robustness and fault tolerance. In distributed CNN architectures,
artitioning can typically be approached either horizontally or verti-
ally. Vertical partitioning distributes entire and different layers onto
ifferent devices, which can indeed improve throughput by allowing
ayers to be processed in a pipelined manner. However, this method
xposes the system to significant risks; if one or more devices fail,
ntire layers of the CNN model are compromised, which can drastically
mpair the entire inference process. In contrast, our method involves
orizontal partitioning, where each layer is divided and distributed
cross multiple devices. This approach ensures that the failure of a
ingle device impacts only a part of each layer rather than entire layers,
hus allowing for partial recovery and continuation of the inference
rocess with minimal disruption.

The general layer-wise partitioning procedure is outlined in Algo-
ithm 1. It accepts as inputs a set of computational layers 𝐿 from the
NN model and their coefficients 𝑊 as well as the total number of

computing nodes 𝑁 𝐷 across which the CNN model will be distributed.
dditionally, a set 𝑇 of threshold values corresponding to layers in
is provided as another input. The threshold values serve as specific

criteria for identifying similar neurons in terms of importance, and sub-
sequently making neuron grouping decisions based on the similarity.
The output of Algorithm 1 is set 𝑃 of neuron partitions. Every partition
𝑖 = {𝑝1,… , 𝑝𝑁 𝐷} ∈ 𝑃 determines how the neurons in layer 𝑙𝑖 ∈ 𝐿 are

distributed across the specified number of computing nodes 𝑁 𝐷.
The goal of Algorithm 1 is to evenly distribute the neurons 𝑛𝑗 of

very layer 𝑙𝑖 ∈ 𝐿 over 𝑁 𝐷 nodes (i.e., devices) in terms of importance.
or example, applying Algorithm 1 (Lines 3–29) to the convolution

layer with the five neurons 𝑛1 to 𝑛5 shown in Fig. 1 and setting 𝑁 𝐷 = 3,
he output 𝑃 of the algorithm is the partition illustrated in Fig. 1(c).
lgorithm 1 consists of three main steps performed on each layer 𝑙𝑖 ∈ 𝐿.

In Step 1 (Lines 3–9), we first include each neuron 𝑛𝑗 ∈ 𝑙𝑖 into
a separate group 𝐺𝑗 which is stored in the set of groups 𝐺 (Line 5).
Then, we calculate three importance scores for 𝑛𝑗 from three different
perspectives. The first score 𝑠1𝑗 (Line 7) is the 𝑙1-norm [36] which is a

agnitude-based approach, widely used in CNN pruning techniques, to
ompute neuron importance based on the sum of its absolute weights
nd bias. The second importance score 𝑠2𝑗 (Line 8) of 𝑛𝑗 is computed
y summing the sensitivity scores of all its connections with other
eurons. We use the Taylor expansion approach [39] to obtain the

connection sensitivity scores through the gradient in the propagation
rocess [40]. The third score 𝑠3𝑗 (Line 9) assesses the neuron importance

by employing the Jensen–Shannon divergence [41] denoted as JSD. A
arger change in the CNN output probability distributions 𝐲, induced by
emoving neuron 𝑛𝑗 ∈ 𝑙𝑖, indicates that 𝑛𝑗 is more important. Instead
f using a single importance score only, set 𝑆𝑗 = {𝑠1𝑗 , 𝑠2𝑗 , 𝑠3𝑗 } of the three
ifferent scores enables a more comprehensive evaluation of the neuron
mportance because it performs a three-dimensional assessment of the
mportance, thereby facilitating a more effective clustering of neurons
see Table 1).

In Step 2 (Lines 10–20), Algorithm 1 takes the initial set of groups
created in Line 5, where each group contains only one neuron 𝑛𝑗 ∈ 𝑙𝑖,

nd clusters these 1-neuron groups into a new set of groups 𝐺 where any
roup may contain multiple neurons with similar importance. To this
nd, the following two actions are performed iteratively for every two
roups 𝐺𝑧 ∈ 𝐺 and 𝐺𝑞 ∈ 𝐺−𝐺𝑧. First, the largest distance 𝑑𝑚𝑎𝑥 between

he neurons in 𝐺𝑧 and 𝐺𝑞 is determined in Lines 12–17. Initially, 𝑑𝑚𝑎𝑥

5
Algorithm 1: Robust Partitioning
Input : Set of layers 𝐿; Number of nodes 𝑁 𝐷;

Set of layer coefficients 𝑊 = {𝑊1, ..., 𝑊|𝐿|};
Set of threshold values 𝑇 = {𝑡1, ..., 𝑡|𝐿|};

Output: Set of neuron partitions 𝑃 = {𝑃1, ..., 𝑃|𝐿|};
1 𝑃 ← ∅
2 for 𝑙𝑖 ∈ 𝐿 do

// Step 1: neuron importance scores
3 𝐺 ← ∅
4 for 𝑛𝑗 ∈ 𝑙𝑖 do
5 Create 𝐺𝑗 ; 𝐺𝑗 ← 𝐺𝑗 + 𝑛𝑗 ; 𝐺 ← 𝐺 + 𝐺𝑗
6 Create 𝑆𝑗 = {𝑠1𝑗 , 𝑠2𝑗 , 𝑠3𝑗 }
7 𝑠1𝑗 =

∑𝑘ℎ
ℎ=1

∑𝑘𝑤
𝑤=1

∑𝐶𝑖𝑛
𝑐=1 |𝑊

𝑐 ,ℎ,𝑤
𝑗 | + |𝑏𝑗 |

8 𝑠2𝑗 =
∑𝑘ℎ

ℎ=1
∑𝑘𝑤

𝑤=1
∑𝐶𝑖𝑛

𝑐=1 |
𝜕y

𝜕 𝑊 𝑐 ,ℎ,𝑤
𝑗

⋅𝑊 𝑐 ,ℎ,𝑤
𝑗 | + |

𝜕y
𝜕 𝑏𝑗 ⋅ 𝑏𝑗 |

9 𝑠3𝑗 =JSD(ycomplete || yremoving neuron 𝑛𝑗)

// Step 2: neuron clustering
10 for 𝐺𝑧 ∈ 𝐺 do
11 for 𝐺𝑞 ∈ 𝐺 − 𝐺𝑧 do
12 𝑑𝑚𝑎𝑥 = 0
13 for 𝑛𝑗 ∈ 𝐺𝑧 do
14 for 𝑛𝑜 ∈ 𝐺𝑞 do
15 𝑑(𝑛𝑗 , 𝑛𝑜) =

√

∑3
𝑎=1 (𝑠

𝑎
𝑗 − 𝑠𝑎𝑜)2

16 if 𝑑(𝑛𝑗 , 𝑛𝑜) > 𝑑𝑚𝑎𝑥 then
17 𝑑𝑚𝑎𝑥 = 𝑑(𝑛𝑗 , 𝑛𝑜)

18 if 𝑑𝑚𝑎𝑥 < 𝑡𝑖 then
19 𝐺𝑧 ← 𝐺𝑧 + 𝐺𝑞
20 𝐺 ← 𝐺 − 𝐺𝑞

// Step 3: round-robin distribution
21 Create 𝑃𝑖 = {𝑝1, ..., 𝑝𝑁 𝐷}; 𝑝1 ← ∅, ..., 𝑝𝑁 𝐷 ← ∅
22 for 𝐺𝑜 ∈ 𝐺 do
23 if (|𝐺𝑜| mod 𝑁 𝐷) ≠ 0 then
24 for 𝑗 ∈ [1, 𝑁 𝐷 − (|𝐺𝑜| mod 𝑁 𝐷)] do
25 Create 𝑛

|𝐺𝑜|+𝑗 = REPLICA(𝑛𝑗 ∈ 𝐺𝑜)
26 𝐺𝑜 ← 𝐺𝑜 + 𝑛

|𝐺𝑜|+𝑗

27 for 𝑛𝑗 ∈ 𝐺𝑜 do
28 𝑟 = (𝑗 mod 𝑁 𝐷) + 1; 𝑝𝑟 ← 𝑝𝑟 + 𝑛𝑗

29 𝑃 ← 𝑃 + 𝑃𝑖

30 return 𝑃

is set to zero. Then, for every pair of neurons 𝑛𝑗 ∈ 𝐺𝑧 and 𝑛𝑜 ∈ 𝐺𝑞 , the
uclidean distance 𝑑(𝑛𝑗 , 𝑛𝑜) between 𝑛𝑗 and 𝑛𝑜 in the three-dimensional
mportance score space (𝑠1, 𝑠2, 𝑠3) is computed in Line 15. If 𝑑(𝑛𝑗 , 𝑛𝑜) is
reater than 𝑑𝑚𝑎𝑥, then 𝑑𝑚𝑎𝑥 is updated with 𝑑(𝑛𝑗 , 𝑛𝑜) in Line 17.

Second, if 𝑑𝑚𝑎𝑥 is below a given threshold value 𝑡𝑖 ∈ 𝑇 then the
neurons in 𝐺𝑧 and 𝐺𝑞 are merged (Line 19) into one group 𝐺𝑧 because
they are considered similar in terms of importance, and group 𝐺𝑞 is
emoved from set 𝐺 in Line 20. The threshold value 𝑡𝑖 affects the result
f the neurons clustering in Step 2. For example, a small 𝑡𝑖 would result
n set 𝐺 having many groups with a few neurons per group. If 𝑡𝑖 is
oo small then every group in 𝐺 will contain only one neuron, thereby
‘forcing’’ the following Step 3 in Algorithm 1 to perform full replication
f all neurons, thus maximizing the robustness at the expense of high
esource requirements per node in the distributed system. In contrast, a
arge 𝑡𝑖 would result in a few groups with many neurons per group. If 𝑡𝑖
s too large then all neurons would be clustered into one group, thereby
‘forcing’’ Step 3 to perform very limited or no replication of neurons
hich could lead to a significant reduction of the robustness. Recall that
 set 𝑇 of threshold values 𝑡𝑖 is given as an input to Algorithm 1, thus

an optimal set of such values could be determined by integrating Al-
gorithm 1 in a design space exploration (DSE) procedure with multiple

X. Guo et al.

e
a

t
u

w

t
o

w
d
W
t
a

i

m

c

c

c

m
w
b

Integration 100 (2025) 102299
Table 1
Top-1 accuracy (1D-Fail case in SysConf4D).

optimization objectives including distributed CNN inference accuracy,
nergy and resource requirements per node in the distributed system,
nd system performance.

Finally, in Step 3 (Lines 21–29), Algorithm 1 distributes all neurons
𝑛𝑗 in every group 𝐺𝑜 ∈ 𝐺 across a number of nodes 𝑁 𝐷 in a round-
robin fashion (Lines 27–28). If the number of neurons in group 𝐺𝑜
is not a multiple of the number of nodes 𝑁 𝐷 then some neurons in
the group are replicated (Lines 23–26) in order to increase the neuron
number to the closest multiple of the number of nodes before the
round-robin distribution. Such round-robin distribution can guarantee
that every node runs the same number of similarly important neurons
from a group, thereby providing CNN model robustness by reducing
the CNN inference accuracy degradation in the event of failures in the
distributed system.

5. Evaluation of the RobustDiCE method

In this section, we present a range of experiments demonstrating
he merits of RobustDiCE in terms of achieved robustness and resource
tilization per node/device in a distributed system performing CNN

inference.

5.1. Experimental setup

We implement RobustDiCE and apply it to the following distributed
system configurations and real-world CNNs, and considering the follow-
ing device failure scenarios.

CNNs and System Configurations: We experimented with three
CNNs, namely AlexNet [42], VGG16-BN [2], and ConvNext-Tiny [43],
taken from the TorchVision library. Given their extensive use in image
classification and their diversity in layer types, operation counts, and
memory requirements for weights, we consider these CNNs to be repre-
sentative targets to demonstrate the merits of our method. By applying
RobustDiCE, every CNN is distributed for inference on three system
configurations: one with four edge devices (SysConf4D), one with
three devices (SysConf3D), and one with two devices (SysConf2D). All
devices in a system configuration are NVIDIA Jetson Xavier NX boards
connected over a Gigabit network switch. Each device has an embedded
MPSoC featuring a 6-core Carmel ARMv8.2 CPU, an NVIDIA Volta GPU
with 384 CUDA cores, 48 Tensor cores, and 8 GB of LPDDR4x memory.

Device Failure Scenarios: For each of the aforementioned CNNs,
e consider three scenarios.

Scenario A: The CNN is distributed for inference on system configura-
ion SysConf4D where 1 device fails (1D-Fail), 2 devices fail (2D-Fail),
r 3 devices fail (3D-Fail).
Scenario B: CNN on SysConf3D where 1D-Fail or 2D-Fail.
Scenario C: CNN on SysConf2D where 1D-Fail.

Under every scenario with a different number of failing devices,
e evaluate the preserved Top-1 accuracy on the ImageNet-1K test
ataset when the CNN is distributed using our RobustDiCE method.
e compare RobustDiCE to state-of-the-art robustness-unaware parti-

ioning which performs filter and layer output partitioning, referred to
7], as well as the robustness-aware CDC method from [11].
s LOP [d

6
In addition, we also show the Top-1 CNN accuracy results under an
ideal scenario, called Optimal. This Optimal scenario assumes that
n system configurations SysConf4D, SysConf3D, and SysConf2D no

devices fail or all CNN neurons are replicated on every device in order
to have quadruple (QMR), triple (TMR), and dual (DMR) modular
redundancy, thus achieving maximum robustness.

By continuously providing 1000 images as an input data stream for
the distributed CNN inference, we measure the system performance
in images (frames) per second (FPS), memory usage per device in
megabytes (MB), and energy consumption per device in joules per
image (J/img) of the distributed CNN inference for the different sys-
tem configurations. We measure the overall latency in processing the
1000 images and compute averaged FPS as throughput. The energy
consumption per device is obtained with a special sampling thread
that reads power values from the INA3221 power monitor, available
on the NVIDIA Jetson Xavier NX board, where the power consumption
involves the whole board including CPUs, GPU, SoC, etc. The sampled
power values are integrated over the duration of the 1000-image
inference, and the obtained energy consumption is divided by 1000
to represent it in J/img. The memory usage per device is reported
directly by the executed CNN code itself during the CNN inference.
Here, we strategically selected 1000 images to strike a balance between
obtaining statistically accurate inference time metrics and maintaining
a manageable experiment duration. Such a volume of input images is
sufficient to fully engage the entire decentralized system and ensure
that each node is fully utilized to reveal potential reliability issues un-
der real operational loads. If the number of input images is too small, it
will not put sufficient computation pressure on the system and result in
inaccurate statistics of the system’s operational capabilities. Conversely,
too many input images will greatly extend the experimental duration
without providing more information about the system’s performance.

Timeout Configurations: To investigate the impact of the timeout
echanism (Section 4.1) on the overall latency per image of our robust

distributed system against device failures, we conduct a comparison
experiment using the VGG16-BN model deployed across four devices,
i.e., deployed on the SysConf4D system configuration. We test the
VGG16-BN overall latency under the 1D-Fail scenario and compare
it with the overall latency under a scenario without failures. In the
scenario with failures, the timeout mechanism is applied utilizing dif-
ferent timeout values in the range of 10 to 30 000 μs. This comparison
experiment reveals the overhead introduced by the timeout mechanism
on the performance of our robust system.

5.2. Experimental results

Ablation Study of Importance Scores: To substantiate the ef-
ficacy of using multi-dimensional importance evaluation for neuron
clustering, we carried out an ablation study with various combina-
tions of importance scores (𝑠1, 𝑠2, 𝑠3). We evaluate the Top-1 ac-
uracy of the 1D-Fail case for the SysConf4D system configuration

in Table 1 using different combinations of importance scores. It is
lear that the combination of all three scores preserves the Top-1

accuracy (model robustness) the best under the 1D-Fail scenario for all
three models: 52.396% (AlexNet), 72.500% (VGG16_BN), and 76.820%
(ConvNext_Tiny). These findings confirm the potential for enhancing
model robustness in distributed CNN inference using the combination
of multiple importance scores.

Impact of Timeout Mechanism: We present and analyze the im-
pact of the timeout mechanism on the VGG16-BN end-to-end latency
under scenarios with and without node failures utilizing the timeout
onfigurations described in Section 5.1. The performance results are

depicted in Fig. 3. The red horizontal, dashed line represents the
easured overall latency per image in the scenario without failures
here the timeout mechanism is not employed. For comparison, the
lue curve depicts the VGG16-BN overall latency when failures occur
uring the inference process. In this scenario, the timeout mechanism

X. Guo et al.

n

t

t
f
s
a

c
c
t
s

e

a
f
m

Integration 100 (2025) 102299
Fig. 3. Overall latency vs. Timeout against failures.
Fig. 4. CNN model robustness under different device failure scenarios.
R

T

a
a
s
t
1
h
w

m

o

is employed to ensure the continuation of the inference process despite
ode failures.

When the timeout value is set to be smaller (e.g., 500 μs) than
the time needed to synchronize the results from multiple devices,
he available devices ignore unfinished synchronizations between each

other and proceed without waiting. This leads to a reduced overall
latency, as shown in Fig. 3 where the latency of executions with a small
imeout (blue line) can be lower than the latency for execution without
ailures/timeout (red line). However, setting a timeout value that is too
mall can also reduce the accuracy of the inference results, as it may not
llow sufficient time for necessary communications to be completed.

Conversely, setting a relatively large timeout value (e.g., 30 ms)
an cause the system to detect failures too late, leading to hanging
ommunications until the timeout expires. This significantly increases
he overall latency, rising up to 171.72 ms when failures occur, as the
ystem waits for the extended timeout period before proceeding.

While the presence of failures and the subsequent application of
the timeout mechanism do increase the VGG16-BN overall latency
compared to a failure-free environment, the mechanism significantly
mitigates the latency that would otherwise be caused by unresolved
communication issues. This trade-off is essential for maintaining oper-
ational continuity and ensuring that the inference process can proceed
ven under less-than-ideal conditions.
Model Robustness Comparison: The results, obtained with the

experimental setup described in Section 5.1, are presented in Fig. 4
and Table 2. For every CNN model, we show a graph where the 𝑋-
xis represents the considered scenarios with a different number of
ailing devices, and the 𝑌 -axis indicates the evaluated Top-1 CNN
odel accuracy. For every scenario and number of failing devices, we

plot a bar for the RobustDiCE results (blue bar), LOP results (orange
7
bar), and CDC results (green bar). In addition, the horizontal dashed
(red) line shows the accuracy under the Optimal scenario.

Looking at the blue and orange bars in Fig. 4, we observe that
obustDiCE consistently delivers higher Top-1 accuracy compared to

the state-of-the-art but robustness-unaware LOP partitioning method.
his clearly demonstrates the superiority of our method in terms of

CNN model robustness. Taking Fig. 4(a) as an example, the Top-1
accuracy of AlexNet under the Optimal scenario is 56.55% which is
our reference point. When a system configuration experiences device
failures as in Scenario A, our RobustDiCE method delivers a Top-1
ccuracy of 52.40%, 45.28%, and 28.93% for cases 1D-Fail, 2D-Fail,
nd 3D-Fail, respectively. In contrast, the LOP method exhibits more
ignificant drop in accuracy, namely 41.07%, 23.50%, and 6.42% for
he same device failure cases. A similar trend can be observed for VGG-
6BN and ConvNext-Tiny in Fig. 4(b) and (c), respectively. Here, we
ave used an optimistic device failure scenario for LOP, i.e., devices
ith the least important groups of neurons fail.

Comparing our RobustDiCE method (orange bars) with the CDC
method (green bars), we see that CDC is capable of perfectly handling a
single device failure due to its approach of using actor replication and
a spare node. However, the CDC method cannot handle multiple device
failures, resulting in very low accuracy (much lower than RobustDiCE)
or even complete failure (0% accuracy) when all but one devices fail.

Looking at Fig. 4 and comparing the Top-1 accuracy delivered by
RobustDiCE with the reference accuracy under the Optimal scenario,
we observe that our method does not maintain the reference accuracy
level in the event of device failures. The reason is that, in this experi-

ent, we set threshold values 𝑡𝑖 ∈ 𝑇 discussed in Section 4 to be greater
than 0. Because of this, our method does not replicate all CNN neurons
n every device, thereby trading off CNN model robustness (loss of Top-

1 accuracy) for reduced system resource utilization. This tradeoff could

X. Guo et al.

r

C
m
s
S
a
a

A
r
q

i
f
r
C
t

a
a
t
T
Q

C

i

g

e
m
p
f
t

a

t
O
c
n
a
p

c

b
r

Integration 100 (2025) 102299
Table 2
System performance and resource utilization.

be tuned by changing the 𝑡𝑖 values. Moreover, if all 𝑡𝑖 values are set
to 0 then our method will maintain Top-1 accuracy at the same level
as under the Optimal scenario. Under this scenario, all CNN neurons
are replicated on every device in order to have quadruple (QMR), triple
(TMR), or dual (DMR) modular redundancy, thus achieving maximum
obustness. However, achieving this maximum robustness is at the

expense of higher memory usage and energy consumption per device
compared to the resource utilization, imposed by our method, when
trading off robustness against utilization. This statement is supported
by the resource utilization results in Table 2. In this table, for every

NN, we show the maximum per-device memory usage (Column 5), the
aximum per device energy consumption (Column 3), and the overall

ystem throughput (Column 4) for the three system configurations
ysConf4D, SysConf3D, and SysConf2D with our RobustDiCE method
nd the CDC method as well as for the QMR/TMR/DMR configuration
ssociated with the Optimal scenario.
System Performance: Considering the memory usage numbers for

lexNet, shown in Column 5, we see that the replication of all neu-
ons on every device in system configuration QMR/TMR/DMR re-
uires about 150 MB of memory per device. In contrast, our Robust-

DiCE method significantly reduces the required memory per device,
.e., with 51.76% for system configuration SysConf4D, with 46.47%
or SysConf3D, and with 34.23% for SysConf2D. Significant memory
eduction trends can be observed in Column 5 for VGG16-BN and
onvNext-Tiny as well. The memory usage numbers for CDC show
hat this method reduces the memory footprint in comparison to the

all-neuron replication method (QMR/TMR/DMR) but still has higher
memory usage compared to RobustDiCE.

The energy consumption per device is also reduced by RobustDiCE
as compared to applying all-neuron replication to achieve CNN model
robustness. For example, Column 3 in Table 2 shows that our method
pplied on SysConf4D achieves an effective energy reduction over the
ll-neuron replication method (QMR/TMR/DMR), i.e., 20.67% reduc-
ion for AlexNet, 8.35% for VGG16-BN, and 6.49% for ConvNext-Tiny.
he CDC energy results again show an improved behavior compared to
MR/TMR/DMR but are inferior to the results from RobustDiCE.

Finally, as shown in Column 4 of Table 2, RobustDiCE slightly
improves the system throughput for almost all CNNs and system con-
figurations as compared to QMR/TMR/DMR (except for SysConf2D on

onvNext-Tiny). For CDC, on the other hand, the system throughput is
generally lower than QMR/TMR/DMR and RobustDiCE.

We note, however, that the system throughput of distributed CNN
inference is highly dependent on the quality of the network intercon-
necting the devices in the system. In our experiments, we have used
a Gigabit network switch. Evidently, in other edge/IoT settings, the
connectivity between devices may have a lower bandwidth, e.g., us-
ng WiFi or other wireless protocols. Thus, our RobustDiCE method
8
cannot always guarantee system throughput improvements but it can
uarantee memory usage and energy consumption reductions.

6. Discussion and conclusions

This paper presented our RobustDiCE approach for model and sys-
tem robustness in distributed CNN inference at the Edge. Our imple-
mentation validates the system robustness of distributed CNN infer-
nce against possible device failures. By applying a robust partitioning
ethod for distributing CNNs over multiple edge devices, our method
reserves the model accuracy as much as possible against device/link
ailures. Several experiments demonstrated that RobustDiCE can retain
he CNN model accuracy after failures much better as compared to

the state-of-the-art partitioning methods. We have also shown the
dvantages of our RobustDiCE method over the optimal robustness

approach and CDC method in terms of memory usage per device,
energy consumption per device, and system throughput.

In terms of limitations of our decentralized framework for dis-
ributed CNN inference, scalability emerges as a primary challenge.
ur decentralized framework, while robust in smaller settings, faces
hallenges in efficiently managing network traffic as the number of
odes increases. This limitation is crucial as it affects the framework’s
bility to scale up to large distributed systems without compromising
erformance.

Additionally, the security of distributed CNN inference is another
oncern that we have not addressed in our current work. The dis-

tributed nature of inference, requiring frequent communications be-
tween nodes, may introduce potential vulnerabilities. These vulnera-
ilities could expose the system to various attacks, undermining the
eliability and trustworthiness of the distributed inference process.

In response to these issues, our future work will focus on develop-
ing more sophisticated mechanisms to enhance the scalability of our
decentralized framework and studying the security aspects – also in
relation to aspects such as robustness against failures – of distributed
CNN inference. Specifically, we aim to implement advanced algorithms
that can efficiently manage larger networks of nodes while minimizing
communication overhead. Moreover, we plan to explore robust secu-
rity methods that can safeguard the communication channels between
nodes, thus enhancing the overall security posture of our distributed
CNN inference system.

By addressing these critical areas, we hope to further improve the
system’s capability to operate reliably and securely on a larger scale,
making it more suitable for widespread real-world applications.

CRediT authorship contribution statement

Xiaotian Guo: Investigation, Conceptualization, Methodology, Soft-
ware, Experimental design and Implementation, Writing – original
draft. Quan Jiang: Validation, Experimental test. Andy D. Pimentel:
Supervision, Reviewing and editing. Todor Stefanov: Supervision, Re-
viewing and editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

X. Guo et al. Integration 100 (2025) 102299
References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2009, pp. 248–255, http://dx.doi.org/10.1109/CVPR.
2009.5206848.

[2] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[3] Z. Dai, H. Liu, Q.V. Le, M. Tan, Coatnet: Marrying convolution and attention for
all data sizes, Adv. Neural Inf. Process. Syst. 34 (2021) 3965–3977.

[4] Y. Guo, A survey on methods and theories of quantized neural networks, 2018,
arXiv preprint arXiv:1808.04752.

[5] T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: A survey, J. Mach.
Learn. Res. 20 (1) (2019) 1997–2017.

[6] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, L. Tang,
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge,
ACM SIGARCH Comput. Archit. News 45 (1) (2017) 615–629.

[7] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, U. Schlichtmann,
DeeperThings: Fully distributed CNN inference on resource-constrained edge
devices, Int. J. Parallel Program. 49 (4) (2021) 600–624.

[8] X. Guo, A.D. Pimentel, T. Stefanov, Automated exploration and implementation
of distributed cnn inference at the edge, IEEE Internet Things J. 10 (7) (2023)
5843–5858, http://dx.doi.org/10.1109/JIOT.2023.3237572.

[9] L. Zhou, M.H. Samavatian, A. Bacha, S. Majumdar, R. Teodorescu, Adaptive
parallel execution of deep neural networks on heterogeneous edge devices, in:
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp.
195–208.

[10] J. Mao, X. Chen, K.W. Nixon, C. Krieger, Y. Chen, Modnn: Local distributed
mobile computing system for deep neural network, in: Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, IEEE, 2017, pp. 1396–1401.

[11] R. Hadidi, J. Cao, B. Asgari, H. Kim, Creating robust deep neural networks with
coded distributed computing for iot, in: 2023 IEEE International Conference on
Edge Computing and Communications, EDGE, IEEE, 2023, pp. 126–132.

[12] E. Aghapour, D. Sapra, A. Pimentel, A. Pathania, CPU-GPU layer-switched low
latency CNN inference, in: 2022 25th Euromicro Conference on Digital System
Design, DSD, 2022, pp. 324–331, http://dx.doi.org/10.1109/DSD57027.2022.
00051.

[13] Z. Zhao, et al., DeepThings: Distributed adaptive deep learning inference on
resource-constrained IoT edge clusters, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 37 (11) (2018) 2348–2359, http://dx.doi.org/10.1109/TCAD.2018.
2858384.

[14] R. Stahl, et al., Fully distributed deep learning inference on resource-constrained
edge devices, in: International Conference on Embedded Computer Systems,
Springer, 2019, pp. 77–90.

[15] R. Hadidi, J. Cao, M.S. Ryoo, H. Kim, Toward collaborative inferencing of deep
neural networks on Internet-of-Things devices, IEEE Internet Things J. 7 (6)
(2020) 4950–4960, http://dx.doi.org/10.1109/JIOT.2020.2972000.

[16] E. Tang, T. Stefanov, Low-memory and high-performance CNN inference on
distributed systems at the edge, in: Proc. of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing Companion, UCC, ACM, 2021, pp.
1–8.

[17] L. Zeng, X. Chen, Z. Zhou, L. Yang, J. Zhang, Coedge: Cooperative dnn inference
with adaptive workload partitioning over heterogeneous edge devices, IEEE/ACM
Trans. Netw. 29 (2) (2020) 595–608.

[18] X. Hou, Y. Guan, T. Han, N. Zhang, Distredge: Speeding up convolutional
neural network inference on distributed edge devices, in: 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium, IPDPS, IEEE, 2022, pp.
1097–1107.

[19] N. Laranjeiro, J. Agnelo, J. Bernardino, A systematic review on software
robustness assessment, ACM Comput. Surv. 54 (4) (2021) 1–65.
9
[20] W. Cirne, F. Brasileiro, D. Paranhos, L.F.W. Góes, W. Voorsluys, On the efficacy,
efficiency and emergent behavior of task replication in large distributed systems,
Parallel Comput. 33 (3) (2007) 213–234.

[21] J.P. Walters, V. Chaudhary, Replication-based fault tolerance for MPI
applications, IEEE Trans. Parallel Distrib. Syst. 20 (7) (2008) 997–1010.

[22] H. Tada, M. Imase, M. Murata, On the robustness of the soft state for task
scheduling in large-scale distributed computing environment, in: 2008 Interna-
tional Multiconference on Computer Science and Information Technology, IEEE,
2008, pp. 475–480.

[23] S. Rajput, et al., DETOX: A redundancy-based framework for faster and more
robust gradient aggregation, Adv. Neural Inf. Process. Syst. 32 (2019).

[24] N. Cheney, M. Schrimpf, G. Kreiman, On the robustness of convolutional neural
networks to internal architecture and weight perturbations, 2017, arXiv preprint
arXiv:1703.08245.

[25] K. Huang, P.H. Siegel, A. Jiang, Functional error correction for robust neural
networks, IEEE J. Sel. Areas Inf. Theory 1 (1) (2020) 267–276.

[26] V. Amatya, A. Vishnu, C. Siegel, J. Daily, What does fault tolerant deep learning
need from mpi? in: Proceedings of the 24th European MPI Users’ Group Meeting,
2017, pp. 1–11.

[27] C. Liu, et al., Fault-tolerant deep learning: A hierarchical perspective, 2022, arXiv
preprint arXiv:2204.01942.

[28] C. Torres-Huitzil, B. Girau, Fault and error tolerance in neural networks: A
review, IEEE Access 5 (2017) 17322–17341.

[29] Z. Hakimi, Collaborative Inference for Distributed Camera System (Master’s
thesis), The Pennsylvania State University, 2019.

[30] S. Itahara, T. Nishio, K. Yamamoto, Packet-loss-tolerant split inference for
delay-sensitive deep learning in lossy wireless networks, in: 2021 IEEE Global
Communications Conference, GLOBECOM, IEEE, 2021, pp. 1–6.

[31] A. Yousefpour, et al., Resilinet: Failure-resilient inference in distributed neural
networks, 2020, arXiv preprint arXiv:2002.07386.

[32] J. Boutellier, B. Tan, J. Nurmi, Fault-tolerant collaborative inference through the
Edge-PRUNE framework, 2022, arXiv preprint arXiv:2206.08152.

[33] X. He, et al., AxTrain: Hardware-oriented neural network training for approxi-
mate inference, in: Proceedings of the International Symposium on Low Power
Electronics and Design, 2018, pp. 1–6.

[34] A. Yousefpour, et al., Guardians of the deep fog: Failure-resilient DNN inference
from edge to cloud, in: Workshop on Challenges in Artificial Intelligence and
Machine Learning for IoT, 2019, pp. 25–31.

[35] J.L. Bernier, J. Ortega, E. Ros, I. Rojas, A. Prieto, A quantitative study of fault
tolerance, noise immunity, and generalization ability of MLPs, Neural Comput.
12 (12) (2000) 2941–2964.

[36] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for efficient
convnets, 2016, arXiv preprint arXiv:1608.08710.

[37] Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning for accelerating deep
convolutional neural networks, 2018, arXiv preprint arXiv:1808.06866.

[38] Z. Hou, Y. Huang, S. Zheng, X. Dong, B. Wang, Design and implementation of
heartbeat in multi-machine environment, in: 17th International Conference on
Advanced Information Networking and Applications, 2003. AINA 2003., IEEE,
2003, pp. 583–586.

[39] N. Lee, T. Ajanthan, P.H. Torr, Snip: Single-shot network pruning based on
connection sensitivity, 2018, arXiv preprint arXiv:1810.02340.

[40] S.-K. Yeom, P. Seegerer, S. Lapuschkin, A. Binder, S. Wiedemann, K.-R. Müller,
W. Samek, Pruning by explaining: A novel criterion for deep neural network
pruning, Pattern Recognit. 115 (2021) 107899.

[41] B. Fuglede, F. Topsoe, Jensen-Shannon divergence and Hilbert space embedding,
in: Int. Symposium on Information Theory, 2004, p. 31.

[42] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90.

[43] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet for
the 2020s, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 11976–11986.

http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb3
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb3
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb3
http://arxiv.org/abs/1808.04752
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb5
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb5
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb5
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb6
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb6
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb6
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb6
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb6
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb7
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb7
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb7
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb7
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb7
http://dx.doi.org/10.1109/JIOT.2023.3237572
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb9
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb9
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb9
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb9
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb9
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb9
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb9
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb10
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb10
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb10
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb10
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb10
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb11
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb11
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb11
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb11
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb11
http://dx.doi.org/10.1109/DSD57027.2022.00051
http://dx.doi.org/10.1109/DSD57027.2022.00051
http://dx.doi.org/10.1109/DSD57027.2022.00051
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb14
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb14
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb14
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb14
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb14
http://dx.doi.org/10.1109/JIOT.2020.2972000
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb16
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb16
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb16
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb16
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb16
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb16
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb16
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb17
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb17
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb17
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb17
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb17
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb18
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb18
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb18
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb18
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb18
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb18
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb18
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb19
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb19
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb19
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb20
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb20
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb20
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb20
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb20
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb21
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb21
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb21
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb22
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb22
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb22
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb22
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb22
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb22
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb22
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb23
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb23
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb23
http://arxiv.org/abs/1703.08245
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb25
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb25
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb25
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb26
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb26
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb26
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb26
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb26
http://arxiv.org/abs/2204.01942
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb28
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb28
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb28
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb29
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb29
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb29
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb30
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb30
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb30
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb30
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb30
http://arxiv.org/abs/2002.07386
http://arxiv.org/abs/2206.08152
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb33
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb33
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb33
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb33
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb33
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb34
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb34
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb34
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb34
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb34
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb35
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb35
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb35
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb35
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb35
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1808.06866
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb38
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb38
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb38
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb38
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb38
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb38
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb38
http://arxiv.org/abs/1810.02340
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb40
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb40
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb40
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb40
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb40
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb41
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb41
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb41
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb42
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb42
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb42
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb43
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb43
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb43
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb43
http://refhub.elsevier.com/S0167-9260(24)00163-9/sb43

	Model and system robustness in distributed CNN inference at the edge
	Introduction
	Related Work
	Background and Motivation
	The RobustDiCE Method
	Decentralized Computing Framework
	Robust Partitioning

	Evaluation of the RobustDiCE Method
	Experimental Setup
	Experimental Results

	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

