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Optimal Loop Unrolling and Shifting
for Reconfigurable Architectures
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In this article, we present a new technique for optimizing loops that contain kernels mapped on a
reconfigurable fabric. We assume the Molen machine organization as our framework. We propose
combining loop unrolling with loop shifting, which is used to relocate the function calls contained in
the loop body such that in every iteration of the transformed loop, software functions (running on
GPP) execute in parallel with multiple instances of the kernel (running on FPGA). The algorithm
computes the optimal unroll factor and determines the most appropriate transformation (which
can be the combination of unrolling plus shifting or either of the two). This method is based on
profiling information about the kernel’s execution times on GPP and FPGA, memory transfers
and area utilization. In the experimental part, we apply this method to several kernels from loop
nests extracted from real-life applications (DCT and SAD from MPEG2 encoder, Quantizer from
JPEG, and Sobel’s Convolution) and perform an analysis of the results, comparing them with the
theoretical maximum speedup by Amdahl’s Law and showing when and how our transformations
are beneficial.
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1. INTRODUCTION

Reconfigurable Computing (RC) is becoming increasingly popular and the com-
mon solution for obtaining a significant performance increase is to identify the
application kernels and accelerate them on hardware. Loops are an important
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source of performance improvement, as they represent or include kernels of
modern real-life applications (audio, video, image processing, and so on).

The case we address in our research is when hardware-mapped kernels exist
in the loop body. Assuming the Molen machine organization [Vassiliadis et al.
2004] as our framework, we focus on applying existing loop optimizations to
such loops, with the purpose of parallelizing applications such that multiple
kernel instances run in parallel on the reconfigurable hardware, while there
is also the possibility of concurrently executing code on the general purpose
processor (GPP).

Optimal is defined in this paper as the largest feasible unroll factor, given
area constraints, performance requirements, and memory access constraints,
also taking into account that multiple kernels may be mapped on the reconfig-
urable hardware. The contributions of this article are as follows:

(a) We propose an algorithm to automatically compute the optimal unroll
factor for a loop containing a kernel mapped on the reconfigurable hard-
ware and select the most suitable transformation for the analyzed loop
(unrolling, shifting, or a combination of them). The algorithm is based
on profiling information about memory transfers, available area, and soft-
ware/hardware execution times.

(b) We present experimental results for several loops containing well known
kernels—DCT (discrete cosine transformation), Sobel’s Convolution, SAD
(sum of absolute differences), and Quantizer—comparing the achieved
speedup with the theoretical maximum speedup by Amdahl’s Law. We pro-
vide an analysis of the possible cases, showing when the proposed loop
transformations are beneficial and when they cannot have much influence
on the performance. Also we present a case study of DCT. We compare
the speedup achieved by using an aggressively optimized hardware imple-
mentation of DCT with the speedup achieved by using an automatically
generated VHDL code and our loop transformations.

The rest of this article is organized as follows. Section 2 introduces the back-
ground and related work. In Section 3, we present the problem statement. In
Section 4, we propose our algorithm, and we illustrate it in Section 5 with sev-
eral kernels of well-known applications and an analysis of the possible cases.
Final conclusions are presented in Section 6.

2. BACKGROUND AND RELATED WORK

The work presented in this article is related to the Delft WorkBench (DWB)
project.1 The DWB is a semiautomatic toolchain platform for integrated
hardware-software codesign in the context of custom computing ma-
chines (CCM), which targets the Molen polymorphic machine organization
[Vassiliadis et al. 2004]. In the first stage of the design process, profiling and
cost estimation are performed and kernels are identified. After performing

1http://tudelft.nl/DWB/
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the appropriate transformations by collapsing the identified kernels on
set/execute nodes, the Molen compiler generates the executable file, replac-
ing and scheduling function calls to the kernels implemented in hardware with
specific instructions for hardware reconfiguration and execution, according to
the Molen programming paradigm [Vassiliadis et al. 2003]. An automatic tool
for hardware generation (DWARV [Yankova et al. 2007]) is used to transform
the selected kernels into VHDL code targeting the Molen platform. The auto-
mated code generation is envisioned for fast prototyping and fast performance
estimation during the design space exploration.

This article extends our previous work on loop unrolling [Dragomir et al.
2008a] and loop unrolling plus shifting [Dragomir et al. 2008b]. In the follow-
ing section we will present the methodology for choosing the more suitable of
the two transformations and the optimal unroll factor (which may be 1, if only
loop shifting is used). In our previous work, the methods were illustrated only
on the DCT kernel. In this article, the experimental section contains a larger
set of empirical results. We also provide an extended analysis of the encoun-
tered cases, showing when our method is beneficial and for what reason.

Several research projects develop C to VHDL frameworks, trying to exploit
as much as possible the advantages of reconfigurable systems by maximizing
the parallelism in targeted applications and accelerating kernel loops in hard-
ware. Directly connected to our work are those of Guo et al. [2005], Weinhardt
and Luk [2001] and Gupta et al. [2004], where hardware is generated after
optimizing the kernel loops.

To be more specific, the work of Guo et al. [2005] is part of the ROCCC—C
to hardware compilation project, whose objective is the FPGA-based accelera-
tion of frequently executed code segments (loop nests). The ROCCC compiler
applies loop unrolling, fusion, and strip mining, and creates pipelines for the
unrolled loops in order to efficiently use the available area and memory band-
width of the reconfigurable device.

Weinhardt and Luk [2001] introduce us to pipeline vectorization, a method
for synthesizing hardware pipelines based on software vectorizing compil-
ers. In their approach, full loop unrolling, as well as loop tiling, and loop
merging, are used to increase basic block size and extend the scope of local
optimizations.

The work in Gupta et al. [2004] is part of the SPARK project and uses shift-
ing to expose loop parallelism and then to compact the loop by scheduling mul-
tiple operations to execute in parallel. In that case, loop shifting is performed
at low level, whereas we perform it at a high functional level. The shifted
loops are scheduled and mapped on the hardware, as in the case of the projects
presented previously.

Our approach differs, as we do not aggressively optimize the kernel imple-
mentation to improve the application’s performance. Instead, we speed up the
application by executing multiple kernel instances in parallel. The benefit of
our approach is that it improves the performance irrespective of the kernel’s
hardware implementation.

Previous approaches in predicting the impact of loop unrolling include Liao
et al. [2003] and Cardoso and Diniz [2004]. In Liao et al. [2003], the authors
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propose a model for the hardware realization of kernel loops. The compiler
is used to extract certain key parameters of the analyzed loop. From these
parameters, taking into account the resource constraints, the user is informed
about the performance that can be obtained by unrolling the loop or applying
loop unrolling together with software pipelining. The algorithm also suggests
the optimal unroll factor to be used, but the main difference between our ap-
proaches is that their method does not consider parallel execution. Also, their
model needs to be calibrated by running several transformed loops in order to
be able to make a prediction about the frequency and thus, about the execu-
tion time.

In Cardoso and Diniz [2004], the authors propose a model to predict the
impact of full loop unrolling on the execution time and on the number of re-
quired resources, without explicitly performing it. However, unroll-and-jam
(unrolling one or more nested loops in the iteration space and fusing inner
loop bodies together) is not covered. The design space algorithm evaluates a
set of possible unroll factors for multiple loops in the loop nest, searching for
the one that leads to a balanced, efficient design. The estimation of needed
resources for unrolled loops is performed simply by multiplying the resources
for the loop body with the number of iterations, similar to the way we estimate
the resource usage for multiple instances of the kernel. We apply the same
strategy for estimating the time for the software part of the unrolled loop, but
the time for the kernels running in parallel is determined taking into account
the computational time and the memory transfers inside the kernel. They also
have a complex formula for computing the execution time for the transformed
loop (unrolled or pipelined), taking into account the loop overhead, the length
of the pipeline, and the number of successive accesses to the same memory,
but their research does not consider parallel execution, nor memory bandwidth
constraints.

PARLGRAN Banerjee et al. [2006] is an approach that tries to maximize
performance on reconfigurable architectures by selecting the parallelism gran-
ularity for each individual data-parallel task. However, this approach is differ-
ent than ours in several ways:

—they target task chains and make a decision on the parallelism granularity
of each task, while we target loops (loop nests) with kernels inside them and
make a decision on the unroll factor;

—in their case, the task instances have identical area requirements but dif-
ferent workloads, which translates into different execution times (a task is
split into several subtasks); in our algorithm, all instances have the same
characteristics in both area consumption and execution time;

—their algorithm takes into consideration the physical (placement) con-
straints and reconfiguration overhead at run-time, but without taking into
account the memory bottleneck problem; we present a compile-time al-
gorithm, which considers that there is no latency due to configuration
of the kernels (static configurations), but takes into account the memory
transfers;

—they do not consider running the software and hardware in parallel.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.
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3. PROBLEM STATEMENT
In many real life applications, loops represent an important source of opti-
mization. A number of loop transformations (such as loop unrolling, software
pipelining, loop shifting, loop distribution, loop merging, or loop tiling) can be
successfully used to maximize the parallelism inside the loop and improve the
performance. The applications we target in our work have loops that contain
kernels inside them. One challenge we address is to improve the performance
for such loops by applying standard loop transformations such as the ones we
mentioned. We also keep in mind that there are loop transformations that are
not beneficial in most compilers because of the large overhead that they in-
troduce when applied at instruction level, but at a coarse level (i.e., function),
they show a great potential for improving the performance.

In this article, we study the effects of applying loop unrolling versus loop
unrolling plus shifting. In related work such as Gupta et al. [2004] and Darte
and Huard [1999], loop shifting is performed at instruction level. In our re-
search, loop shifting means moving a function from the beginning of the loop
body to the end, while preserving the correctness of the program. We use loop
unrolling to expose the parallelism at hardware level (e.g., run multiple ker-
nels in parallel), and loop shifting to eliminate the data dependencies between
software and hardware functions, allowing concurrent execution on the GPP
and FPGA (as illustrated in Figure 3).

The problem statement is the following: find the optimal transformation
(unrolling or unrolling plus shifting) and unroll factor u which maximize the
performance for a loop nest containing a kernel K, such that u identical in-
stances of K run in parallel on the reconfigurable hardware. The method pro-
posed in this article addresses this problem, given a C implementation of the
target application and a VHDL implementation of the kernel. Our algorithm
computes at compile time, the optimal unroll factor, taking into consideration
the memory transfers, the execution times in software and hardware, the area
requirements for the kernel, and the available area (we assume no constraints
regarding the placement of the kernel). Note that we consider that the execu-
tion time in hardware is constant for all kernel instances, independent of the
input data.

We target the Molen framework, which allows multiple kernels/applications
to run simultaneously on the reconfigurable hardware. Because of the reconfig-
urable hardware’s flexibility, the algorithm’s output depends on the hardware
configuration at a certain time. The Molen architecture is based on the tightly
coupled processor coprocessor paradigm. Within the Molen concept, a general
purpose core processor (GPP) controls the execution and reconfiguration of a
reconfigurable coprocessor. The Molen machine organization [Vassiliadis et al.
2004] has been implemented on a Virtex II Pro device [Xilinx Inc. 2007]. The
memory design uses the available on-chip memory blocks of the FPGA; this
memory is shared by the GPP and the reconfigurable processor. The resources
consumed by the Molen implementation on the XC2VP30 chip are less than
2% [Kuzmanov et al. 2004].

The main benefits of this algorithm are that it can be integrated in an au-
tomatic toolchain and it can use any hardware implementation of the kernel.
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Table I. General and Molen-Specific Assumptions

Loop nest
� no data dependencies between different iterations;
� loop bounds are known at compile time;
� loops are perfectly nested;

Memory accesses
� memory reads in the beginning, memory writes in the end;
� on-chip memory shared by the GPP and the custom computing units (CCUs) is used for

program data;
� all necessary data are available in the shared memory;
� all transactions on shared memory are performed sequentially;
� kernel’s local data are stored in the FPGA’s local memory, not in the shared memory;

Area & placement
� shape of design is not considered;
� placement is decided by a scheduling algorithm such that the configuration latency

is hidden;
� interconnection area needed for CCUs grows linearly with the number of kernels.

Fig. 1. Loop containing a kernel call.

In this context, performance can be improved even when the kernel is already
optimized. Our assumptions regarding the application and the framework are
summarized in Table I.

Motivational example. Throughout the article, we will use the motivational
example in Figure 1. It consists of a loop with two functions: do SW—which
is always executed on the GPP—and K, which is the application’s kernel and
will be executed on the reconfigurable hardware in order to speed up the appli-
cation. Implicitly, the execution time for do SW is smaller than the execution
time of K on the GPP.

Note that the focus of this article is to present how the loop unrolling and
loop shifting can be applied to loops containing only one kernel mapped on the
reconfigurable hardware. Considering that there is just one kernel in the loop
body, implies that the software code (do SW) can be placed before the kernel
(preprocessing), after the kernel (post-processing) or as both pre- and post-
processing. In this article, we show only the formulas for the pre-processing
case because the other two cases are similar and the formulas will not be much
different. We consider the case of software code occurring in the middle of a
loop as a case where a loop contains multiple kernels. This is not within the
scope of this article, but a subject of our ongoing work. For these loops, a
different approach is needed and sometimes it is more beneficial to split them
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.
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Fig. 2. Parallelized loop after unrolling with factor u.

in small loops where unrolling and shifting can be applied as presented in this
article.

In each iteration in our example, data dependencies between do SW and K
may exist. In order to be able to apply loop unrolling and run in parallel,
multiple instances of the kernel, data dependencies between K(i) and K( j), for
any iterations i and j, i �= j, may not exist. For instance, do SW can be the
code that computes the parameters for the kernel instance to be executed in
the same iteration. In order to perform loop shifting and then concurrently
execute the code on the GPP and on the FPGA, one more constraint needs to
be satisfied: there should be no data dependencies between do SW(i) and K( j),
for any iterations i and j, i �= j.

The example in Figure 1 is a generalized version of a loop extracted from
the MPEG2 encoder multimedia benchmark, where the kernel K is DCT. The
blocks variable is written in do SW and then read (or read+written) in K, thus
there are data dependencies between do SW and K in the same iteration.

4. PROPOSED METHODOLOGY

In this section, we present two techniques that can be applied for loops that
contain hardware kernels inside. One technique consists of only loop unrolling,
and the second technique is based on loop unrolling combined with loop shift-
ing. In both cases, we compute the optimal unroll factor taking into consider-
ation the execution times on GPP/FPGA, the memory transfers, and the area
usage for one instance of the kernel. We will provide a detailed demonstra-
tion of the fact that combining unrolling and shifting gives better results than
unrolling only. In the end, we show how the decision is made on what tech-
nique and what unroll factor to use.

Figure 2 presents a parallelized loop when applying the unrolling method
for the simplified case N mod u = 0. Each iteration consists of u sequential ex-
ecutions of the function do SW() followed by the parallel execution of u kernel
instances (there is an implicit synchronization point at the end of the parallel
region).
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.
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Fig. 3. Parallelized loop after unrolling and shifting with a factor u.

The loop unrolling is extended in Figure 3 by shifting the software part of
the loop to the end of the loop body, such that in each iteration, u sequential
executions of the function do SW are executed in parallel with u identical ker-
nel instances. The loop body has one iteration less than in the previous case
(when applying only unrolling), as the first u calls of do SW are executed before
the loop body (namely, the loop prologue) and the last u kernel instances are
executed after the loop body (the loop epilogue).

Next we will show how the unroll factor depends on the area, memory trans-
fers, and execution times for the software part and for the kernel running in
software/hardware.

Area. Taking into account only the area constraints and assuming no con-
straint regarding the placement of the kernel, an upper bound for the unroll
factor is set by:

ua =
⌊

Area(available)

Area(K) + Area(interconnect)

⌋
, (1)

where:

—Area(available) is the available area, taking into account the resources utilized
by Molen and by other configurations;

—Area(interconnect) is the area necessary to connect one kernel with the rest of
the hardware design (we made the assumption that the overall interconnect
area grows linearly with the number of kernels);

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.
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Fig. 4. Parallelism on the reconfigurable hardware.

—Area(K) is the area utilized by one instance of the kernel, including the stor-
age space for the values read from the shared memory. All kernel instances
have identical area requirements.

Memory accesses. Ideally, all data would be available immediately, and the
degree of parallelism would be limited only by the area availability. However
for many applications, the memory bandwidth is an important bottleneck in
achieving the maximum theoretical parallelism. We consider that Tr, Tw, and
Tc are, respectively, the times for memory read, write, and computation on
hardware for kernel K, as indicated by the profiling information. If TK(hw)
is the execution time for one instance of the kernel K on the reconfigurable
hardware, then:

TK(hw) = Tr + Tw + Tc (2)

Without reducing the generality of the problem for most applications, we
assume that the memory reads are performed at the beginning and memory
writes in the end. Then, as illustrated in Figure 4,2 a new instance of K can
start only after a time Tr (we denote kernel instances by K(1), K(2), and so on).

Note that this is actually the worst case scenario in our analysis and our
algorithm will always give results which are on the safe side. More precisely,
using this assumption to compute the unroll factor bound, um, with respect to
the assumed memory accesses is just a very quick worst-case estimation, which
does not require further study of the target application. Moreover, determin-
ing um with this assumption guarantees that for any unroll factor that is less
than um, there will be no computation stalls due to memory accesses/transfers.
Depending on the hardware implementation, the real threshold value um for

2Figure 4 represents only one of the 8 possible cases (Tw ≤ Tr < Tc and Tw + Tr > Tc).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.
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the unroll factor regarding memory transfers might be more permissive than
our estimation.

Performance increases until the computation is fully overlapped by the
memory transfers performed by the kernel instances running in parallel—see
Figure 4—and we denote by um, the unroll factor where this case happens.
Then um sets another bound for the degree of unrolling on the reconfigurable
hardware. Further increase of the unroll factor gives a converse effect when
computation stalls occur due to waiting for the memory transfers to finish, as
can be seen in Figure 4(b). Using the following notations:

Tmin(r,w) = min (Tr, Tw) ; Tmax(r,w) = max (Tr, Tw) , (3)

the time for running u instances of K on the reconfigurable hardware is:

TK(hw)(u) =
{

Tc + Tmin(r,w) + u · Tmax(r,w), if u ≤ um
u · (Tr + Tw), if u > um

(4)

The speedup at kernel level is SK(u) =
u · TK(hw)(1)

TK(hw)(u)
. For u > um the speedup

is constant:

SK(u > um) =
u · (Tr + Tw + Tc)

u · (Tr + Tw)
=

Tr + Tw + Tc

Tr + Tw
, (5)

thus it is not worth it to unroll more. Performance increases with the unroll
factor while the following condition is satisfied:

Tc + Tmin(r,w) + u · Tmax(r,w) < u · (Tmin(r,w) + Tmax(r,w)) (6)

The memory bound can be derived:

u ≤ um =

⌊
Tc

Tmin(r,w)

⌋
+ 1. (7)

When applied to the example in Figure 4, um = 2. The case u ≤ um corre-
sponds to Figure 4(a) and the case u > um corresponds to Figure 4(b). In our
example, Tw ≤ Tr, thus Tmax(r,w) = Tr and Tmin(r,w) = Tw. In Figure 4(a), the
time for running two kernel instances (K(1) and K(2)), in parallel, is given by
the time for K(1) (Tc + Tr + Tw) plus the necessary delay for K(2) to start (Tr).
In Figure 4(b), K(1) writing to memory is delayed because of K(3) reading from
memory; in this case, the actual kernel computation is hidden by the memory
transfers and the hardware execution time depends only on the memory access
times (u · (Tr + Tw)).

Speedup. In order to compute the optimal unroll factor, we use the following
notations:

—N—initial number of iterations (before unrolling);
—Tsw—number of cycles for one instance of the software function (the function

that is always executed by the GPP—in our example, the do SW function);
—TK(sw)/TK(hw)—number of cycles for one instance of K() running in

software/hardware;
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.
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—TK(hw)(u)—number of cycles for u instances of K() running in hardware, as
defined in (4) (only the case u ≤ um);

—Tloop(sw)—number of cycles for the loop nest executed completely in software.
Note that it does not depend on the unroll factor:

Tloop(sw) = (Tsw + TK(sw)) · N; (8)

—Tloop(hw)(u)—number of cycles for the loop nest with K() running on the
FPGA, when applying loop unrolling with factor u (considering that u < um);

—Tshift(u)—number of cycles for the loop nest transformed with unrolling and
shifting with factor u, with K() running on the FPGA;

—Sloop(u)/Sshift(u)—the speedup at loop level when applying unrolling/
unrolling and shifting.

Speedup with loop unrolling. The speedup at loop nest level when only loop
unrolling is used is defined as:

Sloop(u) =
Tloop(sw)

Tloop(hw)(u)
. (9)

For the simplified case in Figure 2, where N mod u = 0, the total execution
time for the loop with the kernel running in hardware is:

Tloop(hw)(u) = (Tsw · u + TK(hw)(u)) · (N/u).

For the general case where u is not a divisor of N, the remainder instances
of the software function and hardware kernel will be executed in the loop
epilogue. We denote by R the remainder of the division of N by u:

R = N − u ∗ �N/u�, 0 ≤ R < u. (10)

We define TK(hw)(R) as:

TK(hw)(R) =
{

0, R = 0
Tc + Tmin(r,w) + R · Tmax(r,w), R > 0

. (11)

Then, Tloop(hw)(u) is:

Tloop(hw)(u) = �N/u� · (u · Tsw + TK(hw)(u)) + (R · Tsw + TK(hw)(R))
= N · Tsw + �N/u� · TK(hw)(u) + TK(hw)(R), (12)

which, by expanding TK(hw)(u) from (4) with u ≤ um, is equivalent to:

Tloop(hw)(u) = (Tsw + Tmax(r,w)) · N + (Tc + Tmin(r,w)) · �N/u�. (13)

Since Tloop(sw)(u) is constant and Tloop(hw)(u) is a monotonic decreasing
function, then Sloop(u) is a monotonic increasing function for u < um.

When multiple kernels are mapped on the reconfigurable hardware, the goal
is to determine the optimal unroll factor for each kernel, which would lead to
the maximum performance improvement for the application. For this purpose,
we introduce a new parameter to the model: the calibration factor F, a positive
number decided by the application designer, which determines a limitation of
the unroll factor according to the targeted trade-off. (For example, you may not
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.
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want to increase the unrolling if the gain in speedup would be by a factor of
0.1%, but the area usage would increase by 15%.) The simplest relation to be
satisfied between the speedup and necessary area is:

�S(u + 1, u) > �A(u + 1, u) · F, (14)

where �A(u + 1, u) is the relative area increase, which is constant, since all
kernel instances are identical:

�A(u + 1, u) = A(u + 1) − A(u) = Area(K) ∈ (0, 1), (15)

and �S(u + 1, u) is the relative speedup increase between unroll factors u and
u + 1:

�S(u + 1, u) =
Sloop(u + 1) − Sloop(u)

Sloop(u)
. (16)

Note that only in the ideal case
Sloop(u + 1)

Sloop(u)
=

u + 1
u

, which means that:

Sloop(u + 1) < 2 · Sloop(u), ∀u ∈ N, u > 1, (17)

and the relative speedup satisfies the relation:

�S(u + 1, u) ∈ [0, 1), ∀u ∈ N, u > 1. (18)

Thus, F is a threshold value that sets the speedup bound for the unroll factor
(us). How to choose a good value for F is not within the scope of this research.
However, it should be mentioned that a greater value of F would lead to a
lower bound, which translates to the price we are willing to pay in terms of
area compared to the speedup gain is small. Also, the value of F should be

limited by
�S(2, 1)
Area(K))

, which is the value that would allow the unroll factor of

2—a larger value would lead to the unroll factor 1 (no unroll):

F ∈
[
0,

�S(2, 1)
Area(K))

]
. (19)

By using (8) and (13) in (9) as well as the following notations:

x =
Tc + Tmin(r,w)

(Tmax(r,w) + Tsw) · N
and y =

Tsw + TK(sw)

Tmax(r,w) + Tsw
, (20)

the total speedup is computed by:

Sloop(u) =
y

1 + x · �N/u� . (21)

The speedup bound is defined as:

us = min(u) such that �S(u + 1, u) < F · Area(K). (22)

Local optimal values for the unroll factor u may appear when u is not a
divisor of N, but u+ 1 is. To avoid this situation, as S is a monotonic increasing
function for u < um, we add another condition for us:

�S(us + 2, us + 1) < F · Area(K). (23)
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Fig. 5. DCT loop speedup.

Fig. 6. Influence of F on us.

When the analyzed kernel is the only one running in hardware, it might
make sense to unroll as much as possible, given the area and memory bounds
(ua and um), as long as there is no performance degradation. In this case, we
set F = 0 and us = um.

On the basis of (21), binary search can be used to compute in O(log N) time
at compile-time, the value of us that satisfies the conditions �S(us + 1, us) <
F · Area(K) and �S(us + 2, us + 1) < F · Area(K).

Figure 5 illustrates the speedup achieved for different unroll factors for the
DCT kernel, as presented in Dragomir et al. [2008a]. The area for one instance
of DCT is 0.12 (12% of the area on Virtex II Pro). With respect to these data,
Figure 6 shows how different values of F influence the unroll factor. Note that

in this case,
�S(2, 1)
Area(K))

= 6.23, which means that for F > 6.23 there will be no

unroll (us = 1).

Speedup with unrolling and shifting. The speedup at loop nest level when
unrolling and shifting are used is:

Sshift(u) =
Tloop(sw)

Tshift(u)
, (24)
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where the total execution time (Tshift(u)) for a loop transformed with unrolling
and shifting can be expressed like:

Tshift(u) = Tprolog(u) + Tbody(u) + Tepilog(u). (25)

Looking at Figure 3, the corresponding notations are the following:
(1) Tprolog(u) is the time for the loop prologue:

Tprolog(u) = u · Tsw; (26)

(2) Tbody(u) is the time for the transformed loop body, consisting of parallel
hardware and software execution:

Tbody(u) = (�N/u� − 1) · max
(
u · Tsw, TK(hw)(u)

)
; (27)

(3) Tepilog(u) is the time for the loop epilogue.
For the simplified case in Figure 3, the epilogue consists of the hardware

parallel execution of u kernel instances: Tepilog(u) = TK(hw)(u).
For the general case (N mod u �= 0), the time for the epilogue is:

Tepilog(u) = max
(
R · Tsw, TK(hw)(u)

)
+ TK(hw)(R), (28)

where TK(hw)(R) was defined in (11).
In order to compute Tbody(u) from (27) and Tepilog(u) from (28)—where the

max function is used—there are different cases, depending on the relations
between Tsw, Tc, Tmin(r,w), and Tmax(r,w). For values of u greater than a thresh-
old value U1, the execution on the reconfigurable hardware in one iteration will
take less time than the execution on GPP. If Tsw ≤ Tmax(r,w), then the execu-
tion time for the software part inside a loop iteration increases more slowly
than the hardware part and the threshold value is U1 = ∞. Otherwise, the
execution time of the software part increases more quickly than the hardware
part and we have to compute the threshold value. The execution time for one
iteration is:

max
(
u · Tsw, TK(hw)(u)

)
=

{
TK(hw)(u), u < U1

u · Tsw, u ≥ U1
. (29)

If u ≤ U1 then:

u · Tsw ≤ Tc + Tmin(r,w) + u · Tmax(r,w). (30)

This determines the threshold value U1 for the case Tsw > Tmax(r,w) as:

U1 =

⌈
Tc + Tmin(r,w)

Tsw − Tmax(r,w)

⌉
. (31)
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The execution time for the loop transformed with unrolling and shifting is:

Tshift(u) =

{
u · Tsw + �N/u� · TK(hw)(u) + TK(hw)(R), (u < U1)

�N/u� · u · Tsw + max
(
R · Tsw, TK(hw)(u)

)
+ TK(hw)(R), (u ≥ U1)

(32)

Intuitively, we expect that the unroll factor that gives the smallest execution
time and thus the largest speedup is the one where the software and hardware
execute concurrently in approximatively the same amount of time. This hap-
pens in the close vicinity of U1 (we define the close vicinity as the set {U1 − 1,
U1, U1 + 1}), depending upon whether any of these values is a divisor of N or
not. More specifically, if U1 is a divisor of N, then it is the value that maxi-
mizes the speedup function. Otherwise, this value might be found for u > U1
when u is a divisor of N, but then Tshift(u) is significantly smaller (more than
10%) then Tshift(U1) only if �N/u� ≥ 10.

Unrolling and shifting versus unrolling. We compare Tshift(u) from (32) with
Tloop(hw)(u) from (12).

Tloop(hw)(u) − Tshift(u) =

⎧⎪⎨
⎪⎩

(N − u) · Tsw, if u < U1

R · Tsw + �N/u� · TK(hw)(u)−
max(R · Tsw, TK(hw)(u)), if u ≥ U1

. (33)

This means that the execution time for the two methods is the same when
using the maximum unroll factor (u = N) or when the loop has no software
part. Otherwise, the execution time for the loop transformed with unrolling
and shifting is smaller than the one for unrolling only; thus the performance
is better.

Integrated constraints. In the end, speedup, area consumption, and memory
accesses need to be combined in order to find the feasible unroll factor, given
all constraints.

(a) If Tsw = 0 (the loop has no software part), or if the loop dependencies
between do SW and K from different iterations do not allow parallelization
(running do SW and K in parallel) after shifting, then the loop will be trans-
formed with loop unrolling and the chosen unroll factor will be:

U = min(ua, um, us). (34)

(b) If Tsw �= 0 (the loop has a software part) and no data dependencies
between the software and hardware parts in different iterations (do SW(i)
and K(j) with i �= j), then loop unrolling will be combined with shifting in
order to obtain better performance. Let umin be umin = min(ua, um).

If Tsw > Tmax(r,w) and the unroll factor threshold U1 satisfies the memory
and area constraints (U1 < umin), the algorithm looks for the unroll factor that
gives the best execution time in the close vicinity of U1. If this unroll factor is
not a divisor of N, the algorithm checks all the divisors of N between U1 and
umin and computes the execution time and the speedup. The selected unroll
factor is the one that gives a speedup improvement over the speedup achieved
for U1.
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If U1 does not satisfy the memory and area constraints or if Tsw ≤ Tmax(r,w),
the unroll factor is chosen as:

U = min
u

{
u ∈ Z|u ≤ umin and Sshift(u) = max

i≤umin

(
Sshift(i)

)}
. (35)

Note that unrolling is not beneficial if U = 1—only loop shifting will be used.

5. EXPERIMENTAL RESULTS

The purpose of this section is to illustrate the presented method which au-
tomatically computes the unroll factor and selects the most appropriate loop
transformation (unrolling, shifting, or unrolling plus shifting) taking into ac-
count the area and memory constraints and the profiling information. We
ran several kernels from well-known applications and analyzed the relative
speedup obtained by running multiple instances of a kernel in parallel, com-
pared to running a single one. The achieved performance depends on the ker-
nel implementation, but is also subject to Amdahl’s Law.

5.1 Selected Kernels

We selected four different kernels to illustrate the presented methods, some
with multiple implementations. The dependencies between different iterations
of the loops containing the kernels have been eliminated, if there were any.
The VHDL code for the analyzed kernels was automatically generated with
the DWARV [Yankova et al. 2007] tool and synthesized with the Xilinx XST
tool of ISE 8.1.

The kernels are as follows.

(1) DCT (Discrete Cosine Transformation)—extracted from the MPEG2 en-
coder. Results for DCT have also been presented in Dragomir et al. [2008a].
In this case, do SW performs a preprocessing of the blocks, by adjusting the
luminance/chrominance.

(2) Convolution—from the Sobel algorithm. We have chosen not to implement
the whole Sobel algorithm in hardware because most of the time is spent
inside a loop that uses the convolution; and accelerating the convolution
also leads to a large speedup for the whole Sobel, but with much smaller
area consumption. As the kernel consists only of the convolution, the part
of the algorithm that adjusts the values of the pixels to the interval [0, 255]
is contained in the do SW function.

(3) SAD (Sum of Absolute Differences)—also extracted from the MPEG2 en-
coder. For this kernel, we have chosen two VHDL implementations, one
that is faster but occupies more area and one that is slower but takes
less area; we will call them SAD-time and SAD-area, although the VHDL
code was automatically generated and the performance does not compare
to a handwritten implementation. The loop nest containing the SAD has
been transformed into a perfect nest, and the execution times for one
instance of SAD on GPP/FPGA used in the algorithm are taken as the
weighted average for the execution times of all instances within the loop
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Table II. Profiling Information for the Analyzed Kernels

Kernel Area Tr/Tw TK(sw) TK(hw) N iter. Tloop(sw) Tsw
[%] (cycles) (cycles) (cycles) (cycles) (cycles)

DCT 12.39 192/64 106626 37278 6*16 10751868 5292
Convolution 3.70 24/1 2094 204 126*126 35963184 168
SAD-area 6.81 330/1 4013 2908 1*13 619392 84
SAD-time 13.17 330/1 4013 1305 11*13 619392 84
Quantizer-1 2.98 192/64 12510 2970 64*16 20925786 8112
Quantizer-2 4.35 192/64 12510 1644 64*16 20925786 8112
Quantizer-4 7.08 192/64 12510 1068 64*16 20925786 8112
Quantizer-8 12.13 192/64 12510 708 64*16 20925786 8112

nest. The length of the execution of a SAD function is determined by the
values of some parameters that are updated after each execution. There-
fore, do SW is the post-processing code, which updates the values of these
parameters.

(4) Quantizer—an integer implementation, extracted from the JPEG applica-
tion. For this kernel, we have four implementations (denoted by Q-1, Q-2,
Q-4, and Q-8), the one with the smallest area consumption is the slowest
(Q-1), and the fastest one also requires the most area (Q-8). The do SW
is a post-processing function, it performs a zig-zag transformation of the
matrix.

Table II summarizes the profiling information for the analyzed kernels. It
includes the area occupied by one kernel instance, memory transfer times,
various execution times, and the number of iterations in the loop nest. The
execution times were measured using the PowerPC timer registers (for the
kernels running on FPGA, the times include the parameter transfer using
exchange registers). They are the following:

(1) the execution time for a single instance of each kernel running in
software/hardware—TK(sw)/TK(hw);

(2) the execution time for the whole loop—Tloop(sw);
(3) the execution time for the software part (in one iteration)—Tsw.

The times for the memory transfers (Tr/Tw) are computed considering three
cycles per memory read (in the automatically generated VHDL, the memory
transfers are not pipelined) and one cycle per memory write.

The experiment was performed with one instance of the kernel running on
the FPGA. The results for the execution time of the loop for higher unroll fac-
tors were computed using (13) and (32), and the speedups for the two methods
were computed using (9) and (24).

5.2 Discussion of the Results

We computed the theoretical maximum achievable speedup using Amdahl’s
Law for parallelization, considering that we have maximum parallelism for
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the kernels executed in hardware (e.g., full unroll). The serial part of the pro-
gram (that part that cannot be parallelized) consists of the N instances (N is
the number of iterations in the loop) of the software function do SW plus one
instance of the kernel running in hardware. The parallelizable part consists
of the N instances of the kernel running in software minus one instance of the
kernel running in hardware, because the execution time of N kernels in hard-
ware is at least the time for running a single kernel—that is the ideal case. We
denote by PK the percentage of the loop time that can be parallelized:

PK =
N × TK(sw) − TK(hw)

Tloop(sw)
. (36)

From now on, we will refer to the computed theoretical maximum speedup
using Amdahl’s Law as the speedup by Amdahl’s Law. Then, the speedup by
Amdahl’s Law is:

SAmdahl =
1

1 − PK +
PK
N

. (37)

Note that Amdahl’s Law neglects potential bottlenecks, such as memory band-
width.

The results for the analyzed kernels are illustrated in Figure 7. Together
with the achieved speedups for different unroll factors, the speedup by Am-
dahl’s Law is also shown for each of the kernels. Table III summarizes these
results, showing the optimal unroll factor, the area requirements, the achieved
speedup, and the speedup by Amdahl’s Law for each kernel.

(1) DCT (MPEG2). It can be seen that Sshift(u) grows significantly faster than
Sloop(u) until unroll factor u = U1 = 8. At this point, Sloop(u) = 11.06 and
Sshift(u) = 19.65, which is the maximum value. For u > 8, Sshift(u) will have
values between 18.5 and 19.65, while Sloop(u) is monotonically increasing,
with the maximum value 19.07 for u = N.

For comparison, the speedup at kernel level—which would be achieved
if the loop would not have a software part—is drawn with a dashed line on
the same figure, while the speedup by Amdahl’s Law is represented as a
horizontal continuous line with the value 19.97. The area consumption is
illustrated in a chart following the speedup chart.

In conclusion, if the area is not a constraint, the best solution is
unrolling and shifting with unroll factor 8. For Virtex II Pro, consider-
ing only the area requirements for DCT and for Molen, the optimal unroll
factor is 7, with area consumption 87% and speedup of 18.7.

(2) Convolution (Sobel). The execution time for the software part of the loop
is 82% of the kernel’s execution time in hardware, which leads to U1 = 2.
Indeed, as suggested by Figure 7(b), the maximum for Sshift(u) is achieved
for u = 2. Sloop(u) is an increasing function, reaching its maximum value
of 11.8 for u = N. Note that the speedup obtained by combining un-
rolling with shifting is approximatively equal to the speedup by Amdahl’s
Law: 13.48.
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Fig. 7. Speedup and area consumption for: (a) DCT; (b) Convolution; (c) Quantizer; (d) SAD.

The speedup at kernel level is drawn with a dashed line on the same
figure. Its shape is due to the fact that the time for memory transfers
represents a significant amount of the kernel’s execution time in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 25, Pub. date: September 2009.



25: 20 · O. S. Dragomir et al.

Table III. Results Summary for the Analyzed Kernels

Kernel U opt. Area usage [%] Speedup Max speedup (Amdahl) Percent

DCT 7 87.00 18.70 19.97 93.6 %
Convolution 2 7.40 13.48 13.48 99.9 %
SAD 6 79.00 8.71 35.28 24.7 %
Quantizer 1 12.12 2.52 2.52 99.9 %

hardware—almost 12%. The area requirements for different unroll factors
are represented in the following.

In conclusion, unrolling combined with shifting gives an optimal unroll
factor of 2, which leads to a speedup of 13.48 for the whole loop, and area
consumption of 7.4% of the Virtex II Pro area.

(3) SAD (MPEG2). The software part of the loop executes faster than the mem-
ory transfers performed by the hardware kernel, thus we consider U1 = ∞.
The consequence of this fact is that Sshift(u) will look like an increasing
function in the interval [0, N], with a maximum at u = N.

For SAD we have two different implementations, one is more time-
optimized and area-consuming (SAD-time), and the other is more area-
optimized and time-consuming (SAD-area). We note that for SAD-time,
the optimal unroll factor is 6 with speedup of 8.71 and area consumption of
79% (92.2% occupied area for unroll factor 7 would be too much—it would
make the design slow). For SAD-area, the optimal unroll factor is 13, with
area consumption of 88.5% and speedup of 8.08.

The decision is to use SAD-time, which gives better performance and
requires less area. Nevertheless, we must mention that the decision on
which implementation to use differs from case to case as it cannot be taken
without comparing the best solutions for the different implementations.

The maximum Amdahl based speedup is 35.28. In this case, the perfor-
mance achieved with our method is only at 24.7% of the theoretical max-
imum. Part of the explanation is that Amdahl’s Law does not take into
account memory bottlenecks. Memory accesses represent an important
part of the total execution time of the SAD kernel (11.34% for SAD-area
and 25.28% for SAD-time), as they are not optimized in the hardware im-
plementations generated by the DWARV tool. For this reason, the speedup
increases slowly when unrolling. Also, the time for the software function
(Tsw) is smaller than the time for the memory transfers Tmax(r,w), meaning
that the execution on the GPP is completely hidden by the execution on the
FPGA—when loop unrolling and shifting are performed.

In conclusion, this is an example that would benefit more from an opti-
mized hardware implementation of the kernel that would be able to reduce
the memory access time.

(4) Quantizer (JPEG). Out of the four Quantizer implementations we tested
(Q-1, Q-2, Q-4 and Q-8), Q-1 is the slowest but requires the least area, and
Q-8 is the fastest and requires the most area. However, Tsw (the execu-
tion time for the software function) is significantly larger than TK(hw) (the
execution time for the kernel running in hardware). This leads to a very
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small performance increase, as can be seen in Figure 7(d). When also ap-
plying loop shifting, the speedup increases slightly compared to the case
where only loop unrolling is used, but Sshift is ≈ 2.52 for all unroll factors,
and for all Quantizer implementations.

Kernel speedup and area consumption are represented separately. We
notice that a kernel speedup of 40 is possible, with area consumption of
50% (Q-4 for u = 7), but the loop speedup for the same unroll factor is
only 2.4.

As a conclusion, this loop example shows that if the software part of
the loop needs more time to execute than the kernel’s time in hardware,
there will be very little or no gain in unrolling, no matter how optimized
the kernel implementation is. This is nothing but a practical proof for
Amdahl’s Law. In this context, the best solution is to apply shifting without
unrolling. For our example, this leads to a speedup of 2.52, slightly better
than the speedup achieved with Q-8 without unrolling, which is 2.32, and
very close to the theoretical maximum given by Amdahl’s Law, which is
also ≈ 2.52. The area consumption is 12.13% of the Virtex II Pro area.

5.3 Study Case: DCT

Our automatically generated VHDL implementation of DCT has a speedup
factor of 2.86 over the software. The maximum loop speedup is 19.65, achieved
when parallelizing the loop using unrolling and shifting with a factor of 8.
This requires 99% of the area of Virtex II Pro, but is perfectly feasible for the
Virtex-4 we are targeting for the near future.

Vassiliadis et al. [2004] show a speedup of 302× for the hardware imple-
mentation of DCT compared to the software version. However, the loop nest
we extracted from MPEG2 contains the DCT kernel plus some additional soft-
ware code (do SW). Thus, the speedup reported by our algorithm for the whole
loop including do SW and using this aggressively optimized DCT implementa-
tion is 19.83x, while the maximum speedup that can be achieved for the whole
loop is, according to Amdahl’s Law, 21.42. By applying loop shifting and run-
ning do SW and DCT in parallel, the speedup for the whole loop grows to 21.13.
The impact of our transformations is much smaller because the I/O becomes
the bottleneck. However, the achieved speedup is 98.64% of the speedup by
Amdahl’s Law.

5.4 Conclusion of the Experimental Results

In summary, the experiments show the following possible situations.

(1) TK(hw) >> Tsw (DCT, SAD). In this case, loop unrolling plus shifting will
be the most beneficial. It will also matter how optimized the kernel imple-
mentation is, but only up to the point when TK(hw) becomes comparable
to, or less than, Tsw. When that happens, the conclusions for the second or
third category apply (see the following).

(2) TK(hw) ≈ Tsw (Convolution). Most probably, a combination of unrolling
and shifting with a factor of 2 is the best solution.
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(3) TK(hw)<< Tsw (Quantizer). In this case, unrolling is not beneficial, which
is also seen from Amdahl’s Law. By applying loop shifting without un-
rolling, there will be a slight performance improvement, while the area
requirements will not change.

By using automatically generated VHDL code for the analyzed kernels, we
obtained the following results:

—DCT speedup of 18.7 for loop unrolling plus shifting with factor 7 (the
speedup by Amdahl’s Law is 19.97);

—Convolution speedup of 13.48 for unrolling plus shifting with factor 2 (the
speedup by Amdahl’s Law is 13.48);

—SAD speedup of 8.71 for unrolling plus shifting with factor 6, using SAD
time-optimized (the speedup by Amdahl’s Law is 35.28, but it does not con-
sider memory bottlenecks);

—Quantizer speedup of 2.52 using only loop shifting and any of the Quantizer
implementations (Q-1 requires the least area). Loop unrolling does not bring
any benefit, as the result is already approximatively equal to the speedup by
Amdahl’s Law, which is 2.52.

These results prove that there are many cases when applying our methods
leads to a speedup comparable to the theoretical maximum by Amdahl’s Law.
However, when the kernel is I/O intensive and also Tsw < Tmax(r,w), the perfor-
mance improvement is not as high as expected and a more memory-optimized
hardware implementation would lead to significant further improvement.

6. CONCLUSION AND FUTURE WORK

In this article, we presented a method based on loop unrolling and loop shift-
ing for computing the optimal number of instances of a kernel K that will run
in parallel on the reconfigurable hardware, with the possibility of concurrently
executing code on the GPP. The input data for our algorithm consists of pro-
filing information about memory transfers, execution times in software and
hardware, and information about area usage for one kernel instance and area
availability. The algorithm also selects the best transformation to be applied
to the loop nest containing the kernel K.

One of the main benefits of this algorithm is that it can be used to improve
performance for any VHDL implementation of the kernel, if there are enough
resources available (for instance, when moved to a different platform). More-
over, its implementation in the compiler decreases the time for design-space
exploration and makes efficient use of the hardware resources.

An important contribution of this article consists of the experimental
results. An extended analysis of the possible cases that may be encoun-
tered in real applications is included. We analyzed four well-known kernels
(DCT, Sobel’s Convolution, SAD, and Quantizer) and compared the achieved
results with the theoretical maximum speedup computed with Amdahl’s Law
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assuming maximum parallelism (full unroll) for the hardware. We showed the
following.

(1) When a loop contains a kernel call and also a part that will always be
executed by the GPP, it is always beneficial to perform loop shifting, if the
data dependencies constraint is met.

(2) When more than one hardware implementation is available for a kernel,
the one that gives the better overall performance is chosen.

(3) Depending on the ratio between the execution time of the software part
of the loop and that of the kernel executing in hardware, we see different
aspects of Amdahl’s Law. If the software is faster, different results will
be obtained for different kernel implementations, depending on how much
they are optimized. However, the speedup cannot be larger than the the-
oretical maximum given by Amdahl’s Law. If the execution time of the
software part is much larger than the kernel’s execution time in hardware,
then unrolling would not be beneficial, and in this case only loop shifting
should be performed.

(4) For I/O intensive kernels, the performance that can be achieved by apply-
ing our methods with automatically generated VHDL is quite far from the
theoretical maximum. This happens because: (1) Amdahl’s Law does not
consider memory bottlenecks; (2) in the current stage, the DWARV tool
does not optimize the memory accesses.

Also, we have studied the hypothetical case of using an aggressively opti-
mized implementation of DCT (speedup of 302× for the DCT hardware im-
plementation compared to the software, while the automatically generated
hardware gave a speedup of 2.86× compared to the software). Making use of
the same profiling information for the execution times in software and for the
memory transfers, we found that the speedups achieved in the two cases for
the loop containing the DCT kernel and the software function are comparable.

In our future work, we are considering relaxing some of the assumptions re-
garding the loop and the memory accesses. We are also considering extending
the model by supporting loops with an arbitrary number of hardware kernels
and with pieces of software code that also occur in between the kernels.
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