
2

Memory-Throughput Trade-off for CNN-Based Applications

at the Edge

SVETLANA MINAKOVA and TODOR STEFANOV, Leiden University

Many modern applications require execution of Convolutional Neural Networks (CNNs) on edge devices, such

as mobile phones or embedded platforms. This can be challenging, as the state-of-the art CNNs are memory

costly, whereas the memory budget of edge devices is highly limited. To address this challenge, a variety of

CNN memory reduction methodologies have been proposed. Typically, the memory of a CNN is reduced us-

ing methodologies such as pruning and quantization. These methodologies reduce the number or precision of

CNN parameters, thereby reducing the CNN memory cost. When more aggressive CNN memory reduction is

required, the pruning and quantization methodologies can be combined with CNN memory reuse methodolo-

gies. The latter methodologies reuse device memory allocated for storage of CNN intermediate computational

results, thereby further reducing the CNN memory cost. However, the existing memory reuse methodologies

are unfit for CNN-based applications that exploit pipeline parallelism available within the CNNs or use mul-

tiple CNNs to perform their functionality. In this article, we therefore propose a novel CNN memory reuse

methodology. In our methodology, we significantly extend and combine two existing CNN memory reuse

methodologies to offer efficient memory reuse for a wide range of CNN-based applications.

CCS Concepts: • Computing methodologies→ Neural networks; • Computer systems organization

→ Embedded software; • Hardware→ Emerging tools and methodologies;

Additional Key Words and Phrases: Convolutional neural networks, AI at the edge, memory reduction,

trade-off

ACM Reference format:

Svetlana Minakova and Todor Stefanov. 2022. Memory-Throughput Trade-off for CNN-Based Applications

at the Edge. ACM Trans. Des. Autom. Electron. Syst. 28, 1, Article 2 (December 2022), 26 pages.

https://doi.org/10.1145/3527457

1 INTRODUCTION

Many modern applications are based on Convolutional Neural Networks (CNNs): biologically
inspired computational models that are extremely effective at processing multi-dimensional data
and solving tasks such as images classification, objects detection, and others [3]. With recent trends
in the fields of Deep Learning (DL) and Edge Computing, more and more CNN-based applications
are executed on edge devices such as mobile and embedded platforms [16]. Typical reasons for
deployment of CNN-based applications at the edge are privacy (some applications require local

This project received funding from the European Union’s Horizon 2020 Research and Innovation program under grant

agreement number 780788.

Authors’ address: S. Minakova and T. Stefanov, Leiden University, Niels Bohrweg 1, Leiden, South Holland, The Netherlands,

2333 CA; emails: {s.minakova, t.p.stefanov}@liacs.leidenuniv.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1084-4309/2022/12-ART2 $15.00

https://doi.org/10.1145/3527457

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

https://doi.org/10.1145/3527457
mailto:permissions@acm.org
https://doi.org/10.1145/3527457
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3527457&domain=pdf&date_stamp=2022-12-10

2:2 S. Minakova and T. Stefanov

storage of their data), high responsiveness (embedded platforms can guarantee real-time response),
and energy efficiency (embedded platforms consume much less energy than high-performance
cloud-based servers) [16].

The deployment of state-of-the-art CNN-based applications often involves hosting one or
more memory-costly CNNs on a target edge device, whereas the memory budget of edge
devices is quite limited. Thus, it may occur that a CNN-based application does not fit into the
limited memory budget of a target edge device. To tackle this problem, CNN memory reduction
methodologies [7, 15, 17, 23, 30] have been proposed. These methodologies reduce the memory
cost of CNNs significantly and thus allow fitting of a memory-costly CNN-based application into
the limited memory of an edge device.

The most common of these methodologies are pruning and quantization methodologies such
as the methodologies reviewed in surveys [6, 7, 11, 30]. These methodologies reduce the number
or precision of CNN parameters, thereby reducing the CNN memory cost and increasing the CNN
throughput. However, at high CNN memory reduction rates, these methodologies may decrease
CNN accuracy.

Orthogonal to the pruning and quantization methodologies, the methodologies in some
works [15, 17, 23] reuse platform memory allocated to store intermediate CNN computational
results produced by the CNN layers. These methodologies do not change the CNN parameters and
therefore allow to further reduce CNN memory cost without decreasing CNN accuracy. To achieve
high CNN memory reduction and avoid substantial decrease of CNN accuracy, one can combine
CNN pruning and quantization methodologies with CNN memory reuse methodologies. However,
existing CNN memory reuse methodologies are unfit for some CNN-based applications.

For example, CNN buffer reuse methodologies (e.g., [15, 23]) reuse platform memory allocated
to store intermediate CNN computational results produced by different CNN layers. Thus, these
methodologies reduce CNN memory cost at no expense. However, these methodologies are not
suitable for applications that utilize several CNNs (e.g., [26, 27, 29]) or CNN-based applications
exploiting task-level (pipeline) parallelism [18, 31] available within the CNNs. Moreover, these
methodologies are not very efficient for CNNs with residual connections, such as ResNets [12]
and DenseNets [14], that have to simultaneously store large amounts of intermediate CNN
computational results.

In addition, the CNN memory reuse methodology proposed in our earlier work [17] reuses
platform memory allocated for different partitions of input data processed by CNN layers. This
methodology does not reduce CNN accuracy. Instead, it involves a CNN memory-throughput trade-
off caused by synchronization among the CNN input data partitions. As noted in that work [17], the
rapidly growing computational power of edge devices, allowing for high CNN throughput, makes
memory-throughput trade-off preferred over memory-accuracy trade-off for many state-of-the-
art CNN-based applications. However, the trade-off offered by this methodology is unbalanced: it
often involves more throughput decrease than necessary to fit a CNN-based application into the
memory of a target edge device. Thus, this methodology involves unnecessary CNN throughput
decrease, which is undesired for many CNN-based applications [8, 10].

Based on the preceding discussion, we argue that existing work still lacks a CNN memory reuse
methodology that

(1) does not introduce accuracy decrease into CNN-based applications;
(2) is suitable for a wide range of CNN-based applications including multi-CNN applications (ap-

plications that utilize several CNNs), CNN-based applications exploiting task-level (pipeline)
parallelism, and CNN-based applications utilizing CNNs with residual connections;

(3) does not introduce unnecessary throughput reduction to a CNN-based application.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:3

In this article, we propose a methodology fitting the criteria mentioned previously. Our method-
ology significantly extends and combines the existing CNN memory reduction methodologies pro-
posed in the work of Pisarchyk and Lee [23] and our earlier work [17] to allow efficient trade-off
between CNN memory and CNN throughput for a wide range of CNN-based applications. Our
methodology consists of three main steps. In step 1 (Section 5), we introduce CNN buffer reuse into
the CNN-based application, thereby reducing the application memory cost. To perform this step,
we propose and utilize a buffer reuse algorithm. Unlike other CNN buffer reuse algorithms [15, 23],
our proposed algorithm is suitable for multi-CNN applications and CNN-based applications ex-
ploiting task-level (pipeline) parallelism. As mentioned earlier, the reuse of CNN buffers does not
affect the throughput and accuracy of a CNN-based application. However, it might be insufficient
to fit the application into the limited memory of an edge device, especially if the application utilizes
CNNs with residual connections. In such cases, we perform step 2 (Section 6), where we further
reduce the memory cost of the CNN-based application at the expense of CNN-based application
throughput decrease. In step 2, we propose and utilize a buffers size reduction algorithm. This algo-
rithm introduces data processing by parts, initially proposed in our previous work [17], and buffers
reuse proposed in Section 5 to a CNN-based application. Unlike our earlier methodology [17], our
buffers reduction algorithm does not introduce data processing by parts into every layer of every
CNN used by the application. Instead, it searches for a subset of layers that have to process data
by parts to fit the application into a predefined memory constraint. The data processing by parts
employed by these layers, in combination with the buffers reuse, introduces a balanced memory-
throughput trade-off in a CNN-based application. Finally, in step 3 (Section 7), we derive a final
CNN-based application with reduced memory cost.

Article Contributions. In this article, we propose a novel methodology for balanced trade-off
between the memory cost and throughput of CNN-based applications. Our main contribution is
our methodology presented in Section 4. Other important novel contributions are as follows:

• A CNN buffer reuse algorithm, suitable for multi-CNN applications and CNN-based applica-
tions, using task-level (pipeline) parallelism (Section 5)
• A CNN buffers size reduction algorithm (Section 6), which combines data processing by parts

with buffers reuse and introduces a balanced memory-throughput trade-off to a CNN-based
application
• Up to 5.9 times memory reduction compared to deployment of CNN-based applications with

no memory reduction (Section 8.1)
• A 7% to 30% memory reduction compared to other CNN memory reuse methodologies

(Section 8.1).

In addition, in Section 8.2, we demonstrate that our methodology can be efficiently combined
with orthogonal memory reduction methodologies such as CNN quantization.

2 BACKGROUND

In this section, we provide a brief description of the CNN computational model (Section 2.1), the
parallelism available within a CNN (Section 2.2), a CNN-based application (Section 2.3), estimation
of the memory cost of a CNN-based application (Section 2.4), and the data processing by parts in
the CNN layers (Section 2.5). This section is essential for understanding the proposed methodology.

2.1 CNN Computational Model

A CNN is a computational model [2], commonly represented as a directed acyclic computational
graph CNN(L,E) with a set of nodes L, also called layers, and a set of edges E. An example of a CNN
model with |L| = 5 layers and |E | = 5 edges is given in Figure 1(a). Every layer li ∈ L represents part

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:4 S. Minakova and T. Stefanov

Fig. 1. CNN computational model.

of the CNN functionality. It performs operator opi (convolution, pooling, etc.), parameterized with
hyper-parameters hypi (kernel size, stride, borders processing mode, etc.), and learnable parame-
ters pari (weights and biases, etc.). We define a layer as a tuple li = (opi ,hypi ,pari), where opi is
the operator of li ,hypi are the hyper-parameters of li , and pari is a list of multi-dimensional arrays,
called tensors [2], where every tensor parik ∈ pari stores a set of learnable parameters (weights or
biases) or layer li . An example of a CNN layer l1

2 = (Conv, {ks : 5, s : 1,bm : same}, {[8, 3, 5, 5], [8]}
is shown in Figure 1(a). Layer l1

2 performs convolutional operator op1
2 = Conv , parameterized with

three hyper-parameters (kernel size ks = 5, stride s = 1, and borders processing mode bm = same)
and parameters par 1

2 = {[8, 3, 5, 5], [8]}, where [8, 3, 5, 5] is a four-dimensional tensor of the layer
weights and [8] is one-dimensional tensor of the layer biases.

Every edge ei j ∈ E specifies a data dependency between layers li and lj such that data produced
by layer li is accepted as an input by layer lj . We define an edge as a tuple (i, j,data), where i and
j are the indexes of the layers connected by edge ei j ; data is the data exchanged between layers
li and lj and stored in a tensor of shape [batch,Ch,H ,W], where batch,Ch,H ,W are the tensor
batch size [2], the number of channels, the height and the width, respectively. An example of edge
e1

12 = (1, 2, [1, 3, 32, 32]) is shown in Figure 1(a). Edge e1
12 represents a data dependency between

layers l1
1 and l1

2 , where layer l1
1 produces a data tensor [1, 3, 32, 32] with batch size = 1, number of

channels = 3, height and width = 32, accepted as input by layer l1
2 .

2.2 Parallelism, Available within a CNN

As a computational model, the CNN is characterized with large amount of available parallelism.
This parallelism can be exploited to speed up CNN inference and to efficiently utilize the compu-
tational resources of a platform where the CNN is deployed. The most well-known and widely
exploited type of parallelism available within CNNs is data-level parallelism. This type of paral-
lelism involves the same computation, such as convolution, performed by a CNN layer over the
CNN layer input data partitions. It allows to speed up CNN inference by accelerating the execu-
tion of individual CNN layers on parallel processors such as Graphics Processing Units (GPUs)

or Field Programmable Gate Arrays (FPGAs). The data-level parallelism available within CNNs is
exploited by most of the existing DL frameworks, such as TensorFlow [1] or PyTorch [22].

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:5

Fig. 2. Execution of CNN 2 as a pipeline.

Another type of parallelism available within a CNN is known as task-level parallelism or pipeline

parallelism [18, 31] among CNN layers. This type of parallelism is related to the streaming nature
of CNN-based applications, where the application accepts different input frames (images) from an
input data stream. When a CNN is executed on a platform with multiple processors, the frames
from the input data stream can be processed in a pipelined fashion by different layers of the CNN
deployed on different processors. Figure 2 shows an example where CNN 2, introduced and ex-
plained in Section 2.1, is executed in a pipelined fashion on a platform with two processors: a
Central Processing Unit (CPU) and a GPU.

The layers of CNN 2, representing computations within the CNN, are distributed over the plat-
form processors: layers l2

1 and l2
2 are executed on the GPU, whereas layers l2

3 and l2
4 are executed on

the CPU. These layers form two CNN sub-graphs also referred to as partitions [18, 31], annotated
as P2 and P3. Partition P2 accepts frames from the application input data stream, processes these
frames as specified by layers l2

1 and l2
2 , and stores the results into a buffer associated with edge e2

23.

Partition P3 accepts the frames processed by partition P2 from edge e2
23, further processes these

frames, and produces the output data of CNN 2. Partitions P2 and P3 are executed on different
processors in the platform and do not compete for the platform computational resources. Thus,
when applied to different data (i.e., different frames), the partitions can be executed in parallel. In
Figure 2, partitions P2 and P3 process frames frame 2 and frame 1 in parallel. This leads to overlap-
ping execution of layers belonging to different partitions and allows for faster inference ofCNN 2

compared to conventional layer-by-layer execution. However, pipelined CNN execution involves
memory overheads. As shown in Figure 2, edge e2

23 of CNN 2 is duplicated between the partitions

P2 and P3 (see edges e2(1)
23 and e2(2)

23 and the corresponding buffers). Such duplication, called double

buffering [13], is necessary for execution of the CNN as a pipeline. It prevents competition between
the partitions when accessing data associated with edge e2

23. If double buffering is not enabled, the

CNN partitions compete for access to edge e2
23, creating stalls in the pipeline and reducing CNN

throughput.

2.3 CNN-Based Application

A CNN-based application is an application that requires execution of one or multiple CNNs to
perform its functionality. When deployed on a target edge device, a CNN-based application utilizes
memory and computational resources of the device to execute the CNNs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:6 S. Minakova and T. Stefanov

Table 1. Naive CNN Buffers Allocation

B B1 B2 B3 B4 B5 B6 B7 B8 B9

Edges e1
12 e1

23 e1
24 e1

34 e1
45 e2

12 e2(1)
23 e2(2)

23 e2
34

Size 3,072 8,192 8,192 8,192 16,384 3,072 6,272 6,272 10

The memory of the edge device is used to store parameters (weights and biases) and intermediate
computational results. The platform memory allocated to store the CNNs’ intermediate computa-
tional results is typically defined as a set of CNN buffers [23], where every CNN buffer stores data
associated with one or multiple CNN edges and is characterized with size, specifying the maximum
number of data elements, that can be stored in the buffer.

The computational resources of the edge device are utilized to perform the functionality of the
CNNs. Typically, the CNNs are executed layer by layer—that is, at every moment in time, only
one CNN layer is executed on the edge platform. However, as explained in Section 2.2, some of
the applications execute CNNs in a pipelined fashion.

In this work, we formally define a CNN-based application as a tuple ({CNN 1, . . . ,
CNN N },B, P , J , {schedule1, . . . , schedule |P | }), where {CNN 1, . . . ,CNN N } are the CNNs utilized
by the application; B is the set of CNN buffers, utilized by the application; P is the set of CNN
partitions; and J is the set that explicitly defines exploitation of task-level (pipeline) parallelism by
the application. Every element Ji ∈ J contains one or several CNN partitions. If two CNN parti-
tions Pm and Px ,m � x belong to the element Ji ∈ J , the CNN-based application exploits task-level
(pipeline) parallelism among these partitions; schedulei , i ∈ [1, |P |] is a schedule of partition Pi that
determines the execution order of the layers within partition Pi . Formally, we define schedulei as
a set of steps, where at each step one or several layers of partition Pi are executed.

To illustrate a CNN-based application as defined previously, we give an example of a CNN-
based applicationAPP = ({CNN 1,CNN 2}, {B1, . . . ,B9}, {P1, P2, P3}, {{P1}, {P2, P3}}, {{{l1

1 }, {l1
2 }, {l1

3 },
{l1

4 }, {l1
5 }}, {{l2

1 }, {l2
2 }}, {{l2

3 }, {l2
4 }}}), inspired by the real-world CNN-based application for adaptive

images classification proposed by Taylor et al. [29]. To perform its functionality, application APP
uses N = 2 CNNs:CNN 1 andCNN 2, shown in Figures 1(a) and (b), respectively. During its execu-
tion, application APP accepts a stream of images, also called frames, and adaptively selects one of
its CNNs (CNN 1 orCNN 2) to perform the image classification of the input frame.CNN 1 consists
of one partition, P1. CNN 2 consists of two partitions, P2 and P3, executed in a pipelined fashion,
as shown in Figure 2 and explained in Section 2.2. The layers within every partition Pi , i ∈ [1, 3]
of application APP are executed sequentially (one by one). This is expressed through schedule1,
schedule2, and schedule3 of application APP . For example, schedule1 = {{l1

1 }, {l1
2 }, {l1

3 }, {l1
4 }, {l1

5 }}
specifies that the layers within partition P1 of application APP are executed in five steps, and at
the j-th step, j ∈ [1, 5], layer l1

j is executed.

To store intermediate computational results associated with every edge en
i j ofCNN 1 andCNN 2,

applicationAPP uses a set of buffers B, where every edge en
i j has its own buffer Bk of size |en

i j .data |.
Hereinafter, we refer to such buffers allocation as naive buffers allocation. In total, applicationAPP
uses |B | = 9 CNN buffers. These buffers are shown in Table 1, where row 1 lists the layers within
every CNN buffer, row 2 lists the edges using the CNN buffers to store associated data, and row 3
lists the sizes of the CNN buffers expressed in the number of data elements.

2.4 CNN-Based Application Memory Cost

The memory cost M of a CNN-based application, explained in Section 2.3, is estimated as follows:

M = Mpar +Mbuf, (1)

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:7

where Mpar is the amount of memory allocated to store CNN parameters (weights and biases);
Mbuf is the amount of memory allocated to the CNN buffers. Mpar and Mbuf are computed in
Equations (2) and (3), respectively.

Mpar =

N∑

n=1

|L |∑

i=1

|pari |∑

k=1

|parn
ik | ∗ par_bytes (2)

In Equation (2), N is the total number of CNNs of a CNN-based application; parn
i is the list of

parameter tensors parn
ik
,k ∈ [1, |pari |] of layer lni ofCNN n ; and par_bytes is the size of one CNN

parameter in bytes.

Mbuf =
∑

Bk ∈B

Bk .size ∗ data_bytes (3)

In Equation (3), B = {B1, . . . ,BK } are the CNN buffers;data_bytes is the size of one data element
in bytes; and Bk .size is the size of CNN buffer in tokens, computed as follows:

Bk .size = max
en

i j ∈Bk .edдes
|en

i j .data |. (4)

In Equation (4), |en
i j .data | is the total number of elements in data tensor en

i j .data associated with

edge en
i j and stored in buffer Bk .

2.5 Data Processing by Parts in the CNN Layers

Many CNN operators are characterized with the ability to process data by parts [2]. Formally,
such ability can be expressed as follows: applying a CNN operator op to a data tensor data can
be represented as a sequence of Φ phases, where at every phase operator op is applied to a part
data′ of the tensor data. For example, applying CNN operator conv to data tensor [1, 3, 32, 32]
associated with edge e1

12 (shown in Figure 1(a) and explained in Section 2.1) can be represented
as a sequence of 32 phases, where at each phase operator conv is applied to a part [1, 3, 5, 32] of
data [1, 3, 32, 32]. The CNN memory reduction methodology proposed in our earlier work [17]
exploits such data processing by parts to reduce the CNN’s memory cost. In this methodology,
every layer li of a CNN processes data in Φi phases. At each phase, layer li accepts a part of the
input data, applies operator li .op to this part of data, and produces the corresponding part of the
output data. Each part of the input and output data of layer li is characterized with minimum
height. The minimum height of the data parts as well as the number of phases Φi are determined
by operator li .op performed by layer li , hyper-parameters hypi of layer li , and the data tensors
associated with the input and output edges of layer li . Table 2 shows how the minimum input and
output data height and corresponding number of phases are computed for layers performing the
most common CNN operators. In Table 2, column 1 lists the most common CNN operators li .op
performed by the CNN layers, columns 2 and 3 show the minimum height of input and output
data of layer li , and column 4 shows the number of phases Φi performed by layer li . For example,
row 2 in Table 2 shows that layer li performing operator conv or operator pool can process data
in Φi phases, where Φi is computed as the height of data tensor ei j .data produced by layer li . At
every phase, layer li accepts and processes a data part of minimum height H in

min equal to the layer
kernel size hypi .ks and produces an output data part of height Hout

min =1.
When two layers li and lj process data by parts, only the part of data exchanged between these

layers, ei j .data
′, has to be stored in the memory of a target edge device at every moment in

time [17]. The size of the minimum data part ei j .data
′ exchanged between layers li and lj is com-

puted as ei j .data
′ = [ei j .batch, ei j .Ch,H

′, ei j .W], where ei j .batch, ei j .Ch, and ei j .W are the batch

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:8 S. Minakova and T. Stefanov

Table 2. Data Processing by Parts in CNN Layers

li .op H in
min Hout

min Φi

Conv, pool hypi .ks 1
ei j .data.HActivation 1 1

FC, loss eji .data.H ei j .data.H 1

Fig. 3. Execution of layers l11 and l12 of CNN 1 with data processing by parts.

size, number of channels, and width of data ei j ; H
′ ≤ ei j .H is computed as follows:

H ′ = max
(
Hout

min (li),H in
min (lj)

)
, (5)

where Hout
min (li) is the minimum height of data produced by layer li , H

in
min (lj) is minimum height

of data accepted as input by layer lj , and Hout
min (li) and H in

min (lj) are determined using Table 2.
To illustrate how data processing by parts reduces the memory cost of a CNN-based application,

we show an example where layers l1
1 and l1

2 ofCNN 1, shown in Figure 1(a) and used by application
APP explained in Section 2.3, process data by parts. The example is illustrated in Figure 3, where
layer l1

1 has 32 phases and layer l1
2 has 32 phases. Execution of the phases of layer l1

1 and layer

l1
2 is performed in a specific order. We formally define this order as a schedule shortly written as

{[{l1
1 }] × 5, {l1

2 }, [{l1
1 }, {l1

2 }] × 27, [l1
2] × 4}. In the defined schedule, the square brackets enclose the

repetitive (sub-sequences of) steps. At every step, a phase of a CNN layer is executed. During the
first five steps, the first five phases of layer l1

1 are executed, which is expressed at [{l1
1 }] × 5 in

the aforementioned schedule. At every phase, layer l1
1 produces the data part of shape [1, 3, 1, 32]

in buffer B1, used to store the data exchanged between layers l1
1 and l1

2 as specified in Table 1 in
Section 2.3. After the first five steps, the data part of shape [1, 3, 5, 32] is accumulated in buffer
B1. This part is sufficient to execute the first phase of layer l1

2 . Thus, at step 6 of the schedule,

the first phase of layer l1
2 is executed (see Figure 3(a)). To execute the second phase of layer l1

2 (see
Figure 3(b)), the data of shape [1, 3, 5, 32] should be accumulated inB1. However, some of this data is
already in B1 because the data between subsequent execution steps of layer l1

2 is overlapping. When
the overlapping part is stored in buffer B1, only new (non-overlapping) data should be produced
in B1 to enable the execution of the second phase of layer l1

2 . This new data can be produced by

execution of one phase of layer l1
1 . Thus, phases 6 through 32 of layer l1

1 and phases 2 through

28 of layer l1
2 are executed in an alternating manner, where a phase of layer l1

1 is followed by a

phase of layer l1
2 , and this pattern repeats until all phases of l1

1 are executed. This is expressed as

[{l1
1 }, {l1

2 }]×27 in the aforementioned schedule. Finally, the last four phases of layer l1
2 are executed.

The maximum amount of data, stored between layers l1
1 and l2

2 at any time of layers execution

corresponds to the data part of shape [1, 3, 5, 32], accumulated in B1. Thus, when layers l1
1 and l1

2

of CNN 1 process data by parts, the size of buffer B1 is 1 * 3 * 5 * 32 = 480 data elements, which
is 3, 072/480 ≈ 6.4 times less, compared to the size of buffer B1 given in Table 1 in Section 2.3.
Thus, by introducing data processing by parts into the CNN layers, the methodology in our earlier
work [17] reduces the memory cost of a CNN. However, data processing by parts may cause CNN

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:9

execution time overheads (e.g., CNN layers may require time to switch among the data parts),
leading to CNN throughput decrease. Thus, processing data by parts involves a trade-off between
the CNN memory cost and the CNN throughput. In this work, similarly to the methodology in our
previous work [17], we exploit this trade-off to reduce the CNN’s memory cost.

It is important to note that the reduction of application buffer sizes from data processing by
parts requires the layers of a CNN to be executed in a specific order formally expressed as a sched-
ule. For example, as explained earlier, layers l1

1 and l1
2 are executed in phases where the execution

order of the phases is defined by the following schedule: {[{l1
1 }] × 5, {l1

2 }, [{l1
1 }, {l1

2 }] × 27, [l1
2] × 4}.

To find a proper schedule (i.e., execution order of phases in a CNN) similar to the methodology
in our previous work [17], we first perform conversion of the CNN into a functionally equiva-
lent Cyclo-Static Dataflow (CSDF) model of computation [5], accepted as an input by many
embedded systems analysis and design tools. For the description of a CNN represented as a CSDF
model and details of the CNN-to-CSDF model conversion, we refer the reader to the methodology
proposed in our earlier work [17]. Second, we use the SDF3 embedded systems analysis and de-
sign tool [28] to automatically derive the execution order (schedule) of the phases within a CNN.
We also use the SDF3 tool to automatically compute the sizes of CNN buffers, when the CNN is
executed with phases.

3 MOTIVATIONAL EXAMPLE

In this section, we motivate the necessity of devising a new memory reduction methodology for
deployment of CNN-based applications at the edge. We show an example where we design a CNN-
based application executed on the NVIDIA Jetson TX2 edge platform [20]. To perform its function-
ality, the application requires execution of the MobileNetV2 CNN [24]. The CNN performs image
classification on the ImageNet dataset [9] composed of RGB images with 224 pixels height and
width. The application poses requirements on the MobileNetV2 CNN: it requires the CNN to uti-
lize less than 8 MB of memory, demonstrate more than 70% accuracy, and no less than 71 frames

per second (fps) throughput.
As the baseline implementation of the MobileNetV2 CNN, we take a pre-trained CNN from the

applications library of the well-known and widely used TensorFlow DL framework [1]. The base-
line CNN is trained and inferred with the original 32-bit floating-point (fp32) weights and data pre-
cision. When executed on the NVIDIA Jetson TX2 platform, the baseline CNN occupies 58.63 MB
of memory and demonstrates 72.09% accuracy and 46 fps throughput. Thus, the baseline CNN
meets the accuracy requirement but does not meet the memory and throughput requirements.

To reduce the CNN memory cost and increase the CNN throughput, we use the quantization
methodology offered by the TensorFlow DL framework. The quantization methodology reduces
the precision of the CNN parameters and data from the original 32-bit floating-point (fp32) pre-
cision to a lower precision such as a 16-bit floating-point (fp16) precision or a 8-bit integer (int)
precision, thereby reducing the CNN memory cost and increasing the CNN throughput. The Ten-
sorFlow framework offers several types of quantization, varying in terms of target precision used
to store CNN parameters and weights. The quantization types and their respective target precision
are shown in Table 3. For example, the half-quantization, shown in row 4, reduces the precision of
CNN parameters and data to fp16 precision.

The characteristics of the baseline CNN after quantization, executed on the Jetson TX2 plat-
form, are shown in Table 4. Column 1 lists the types of quantization. Column 2 shows the top-1
images classification accuracy (in percentage). Column 3 shows the CNN throughput (in frames
per second). The CNN throughput is not shown for the CNNs with int- and mixed-quantization
because the Jetson TX2 platform does not support integer computations. Column 4 shows the CNN
memory cost (in megabytes).

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:10 S. Minakova and T. Stefanov

Table 3. Quantization in the

TensorFlow DL Framework [1]

Quantization

Name Data Par

No. (baseline) fp32 fp32

Half fp16 fp16

Mixed fp16 int

Int int int

Table 4. MobileNetV2 CNN After Quantization

Quantization A (%) T (fps) M (MB)

No. (baseline) 72.09 46 58.63

Half 71.06 79 29.3

Mixed 63.51 — 21.54

Int 60.03 — 14.65

Table 5. MobileNetV2 CNN After Quantization

and Buffers Reuse Proposed by

Pisarchyk and Lee [23]

Quantization A (%) T (fps) M (MB)

No. (baseline) 72.09 46 20.32

Half 71.06 79 10.16

Mixed 63.51 — 7.46

Int 60.03 — 5.08

Table 6. MobileNetV2 CNN After Quantization

and Data Processing by Parts Proposed in Our

Earlier Work [17]

Quantization A (%) T (fps) M (MB)

No. (baseline) 72.09 40 16.2

Half 71.06 68 8.1

Mixed 63.51 — 4.61

Int 60.03 — 4.04

Table 4 shows that the CNN quantization leads to significant reduction of the CNN memory cost
as well as increase of the CNN throughput. For example, the CNN with half-quantization, shown in
row 3 in Table 4, has 2 times smaller memory cost and ≈1.72 times higher throughput compared to
the baseline CNN, shown in row 2. However, the memory reduction achieved by applying any type
of quantization, shown in Table 4, is insufficient to meet the 8-MB memory requirement. Moreover,
both int-quantization and mixed-quantization significantly reduce the CNN accuracy, dropping it
below the requirement of 70% accuracy.

To further reduce the memory cost of the quantized CNNs, shown in Table 4, we apply existing
CNN memory reuse methodologies proposed in the work of Pisarchyk and Lee [23] and our previ-
ous work [17]. Table 5 shows the characteristics of the MobileNetV2 CNN after the quantization
and the buffers reuse methodology proposed by Pisarchyk and Lee [23]. A comparison between
Tables 4 and reftab:motiv-q-br shows that the methodology in their work [23] allows to further re-
duce CNN memory cost without decreasing CNN accuracy or throughput. For example, the CNN
with half-quantization and buffers reuse has ≈3 times smaller memory cost but equal accuracy
and throughput compared to the CNN with half-quantization and no buffers reuse (see row 3 in
Tables 4 and 5). However, none of the CNNs shown in Table 5 meets all three requirements posed
on the CNN.

Analogously, Table 6 shows the characteristics of the MobileNetV2 CNN after the quantization
and the methodology proposed in our earlier work [17]. A comparison between Tables 4 and 6
shows that the methodology in that work [17] allows to further reduce CNN memory cost without
decreasing CNN accuracy. However, the methodology in our earlier work [17] significantly reduces
CNN throughput. For example, the throughput of the CNN with half-quantization and the memory
reuse proposed in that work [17] is reduced by 11 fps compared to the CNN with half-quantization
and no memory reuse (see row 3, column 3 in Tables 4 and 6). Among the CNNs shown in Table 6,
none of the CNNs meets all three requirements posed by the application.

Table 7 shows the characteristics of the MobileNetV2 CNN after quantization combined with
our novel methodology. As shown in row 3 in Table 7, after the half-quantization combined with
our methodology, the MobileNetV2 CNN occupies 7.96 MB of memory and demonstrates 71.06%

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:11

Table 7. MobileNetV2 CNN After Quantization

and Our Methodology

Quantization A (%) T (fps) M (MB)

No. (baseline) 72.09 41 15.93

Half 71.06 71 7.96

Mixed 63.51 – 4.47

Int 60.03 – 3.98

Fig. 4. Our methodology design flow.

accuracy and 71 fps throughput. This means that our methodology allows the MobileNetV2 CNN
to meet all three requirements posed on the CNN.

Based on the preceding motivational example and analysis, we conclude that some CNN-based
applications cannot meet their respective requirements by utilizing existing memory reduction
methodologies but can meet these requirements by utilizing our proposed methodology in combi-
nation with quantization.

4 METHODOLOGY

In this section, we present our memory-throughput trade-off methodology for CNN-based appli-
cations at the edge. The design flow of our methodology is shown in Figure 4. Our methodol-
ogy accepts as inputs a CNN-based application, described in Section 2.3, a memory constraint (in
megabytes), and an optional throughput constraint (in frames per second) posed on the CNN-based
application. As an output, our methodology produces a final CNN-based application that is func-
tionally equivalent to the input CNN-based application but characterized with reduced memory
cost and possibly decreased throughput. Our methodology consists of three main steps.

In step 1, we introduce CNN buffer reuse into the CNN-based application, thereby reducing the
application memory cost. This step is performed automatically using our buffers reuse algorithm
proposed in Section 5. As an output, this step provides a set of CNN buffers to be reused among
the CNNs and within the CNNs of the CNN-based application.

If the memory reduction introduced in step 1 is insufficient to fit a CNN-based application within
the given memory constraint, in step 2 we try to further reduce the memory cost of the CNN-based
application at the expense of application throughput decrease. To do so, we introduce data process-
ing by parts (explained in Section 2.5) combined with buffers reuse (as proposed in Section 5) to the
CNN-based application. We note that unlike the methodology in our earlier work [17], where the
data processing by parts was originally proposed, step 2 of our methodology does not introduce
data processing by parts into every layer of every CNN used by the application. Instead, step 2
searches for a subset of layers such that data processing by parts in these layers combined with

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:12 S. Minakova and T. Stefanov

Table 8. Reused CNN Buffers

B B1 B2 B3 B4

Edges e1
12, e

1
34, e

2
12 e1

23, e
1
45, e

2(1)
23 e1

24, e
2(2)
23 e2

34

Size 8,192 16,384 8,192 10

buffers reuse introduces a balanced memory-throughput trade-off to the CNN-based application.
This step is performed automatically using our buffers reduction algorithm proposed in Section 6.
As explained in Section 2.5, the introduction of data processing by parts in a CNN requires the
layers of the CNN to be executed in a specific order, defined by a proper schedule. Therefore, our
buffers reduction algorithm also finds and enforces a specific schedule in the CNNs used by the
application. As an output, step 2 provides a CNN-based application with buffers reuse and data
processing by parts.

In step 3, we use the CNN-based application, obtained in step 2, to derive the final CNN-based
application provided as output by our methodology. This step is described in Section 7.

5 BUFFERS REUSE ALGORITHM

In this section, we present our buffers reuse algorithm, Algorithm 1, which is a greedy algorithm. It
visits, one by one, every edge in every CNN of a CNN-based application and allocates a CNN buffer
to this edge. When possible, Algorithm 1 reuses CNN buffers among the visited edges, thereby in-
troducing memory reuse into the CNN-based application and reducing the application memory
cost. Algorithm 1 accepts as an input a CNN-based application with naive buffers allocation, ex-
plained in Section 2.3. As an output, Algorithm 1 produces a set of buffers B, reused among all
CNNs of the CNN-based application. An example of buffers B generated by Algorithm 1 for the
example CNN-based application APP , explained in Section 2.3, is given in Table 8.

Unlike the naive CNN buffers allocation given in Table 1, the buffers in Table 8 are reused among
CNNs and within the CNNs of application APP . For example, as shown in column 2 in Table 8,
CNN buffer B1, generated by Algorithm 1, is reused among edges e1

12 and e1
34 of CNN 1 and edge

e2
12 of CNN 2. We note that according to Equation (3), explained in Section 2.4, the reused buffers
B, produced by Algorithm 1, occupy 32,778* data_bytes bytes of memory, whereas the initial, non-
reuse buffers, given in Table 1 in Section 2.3, occupy 59,658* data_bytes bytes of memory.

In line 1, Algorithm 1 sets the CNN buffers B to an empty set. In lines 4 through 35, Algorithm 1
visits every edge en

i j of every partition Pm ∈ P of the CNN-based application. In line 4, Algorithm 1

creates an empty list Br euse of existing CNN buffers that can be assigned to edge en
i j . In lines 5

through 18, Algorithm 1 checks every buffer Bk ∈ B and determines if buffer Bk can be assigned
to edge en

i j . Buffer Bk cannot be assigned to edge en
i j if it is already assigned to another edge er

zq ,

used by the CNN-based application simultaneously with edge en
i j —that is, if (1) edges er

zq and en
i j

belong to different partitions and the CNN-based application exploits parallelism between these
partitions (conditions in lines 9 and 10 are met; e.g., buffer B1 of application APP assigned to edge
e2

12 of partition P2 cannot be also assigned to edge e2
34 of partition P3 because the application APP

exploits pipeline parallelism between partitions P2 and P3); (2) edges er
zq and en

i j belong to one

and the same partition (the condition in line 9 is not met) and simultaneously use the platform
memory. To determine whether edges er

zq and en
i j use the platform memory simultaneously, in

lines 13 through 16, Algorithm 1 takes the schedule of partition Pm (i.e., schedulem) and finds in
this schedule intervals (in steps) when the platform memory is used by edges er

zq and en
i j . Edge

er
zq starts to use the platform memory when layer lrz is first executed—that is, when layer lrz first

writes data associated with edge er
zq to the platform memory. Edge er

zq stops using the platform

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:13

ALGORITHM 1: Buffers reuse

Input: APP in = ({CNN 1, . . . ,CNNN , Bnaive , P , J , {schedule1, . . . , schedule |P | }})
Result: B

1 B ← ∅;
2 for Pm ∈ P do
3 for en

i j ∈ Pm .E do

4 Br euse ← ∅;
5 for Bk ∈ B do
6 suits = true ;

7 for er
zq ∈ Bk .edдes do

8 find Px : er
zq ∈ Px ;

9 if m � x then
10 if ∃Jr ∈ J : {Pm , Px } ∈ Jr then
11 suits = f alse;

12 else
13 startz ← find in schedulem first step of lrz ;

14 endq ← find in schedulem last step of lrq ;

15 starti ← find in schedulem first step of lni ;

16 endj ← find in schedulem last step of lnj ;

17 if [starti , endj] ∩ [startz , endq] � ∅ then
18 suits = f alse;

19 if suits = true then
20 Br euse ← Br euse + Bk ;

21 if Br euse = ∅ then
22 edдes ← ∅; edдes ← edдes + en

i j ;

23 find Bz in Bnaive such that en
i j ∈ Bz .edдes;

24 Bbest = new shared buffer (edдes,Bz .size);
25 B ← B + Bbest ;

26 else
27 costmin = in f ;

28 for Bk ∈ Br euse do
29 find Bz in Bnaive such that en

i j ∈ Bz .edдes;

30 cost =max (Bz .size − Bk .size, 0);
31 if cost < costmin then
32 Bbest = Bk ;

33 costmin = cost ;

34 Bbest .edдes ← Bbest .edдes + e
n
i j ;

35 Bbest .size = Bbest .size + costmin ;

36 return B

memory when layer lrq is last executed—that is, when layer lrq reads the (last part of) data asso-
ciated with edge er

zq from the platform memory. Analogously, edge en
i j starts to use the platform

memory when layer lni is first executed and stops using the platform memory when layer lnj is last

executed. Thus, edges er
zq and en

i j use the platform memory simultaneously if the steps interval

of memory usage of er
zq overlaps with the interval of en

i j (i.e., if the condition in line 17 is met).

For example, buffer B2 of the example application APP assigned to edge e1
23 of partition P1 cannot

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:14 S. Minakova and T. Stefanov

be also assigned to edge e1
24 of partition P1. The layers within partition P1 are executed according

to schedule1 = {{l1
1 }, {l1

2 }, {l1
3 }, {l1

4 }, {l1
5 }}, explained in Section 2.3. According to schedule1, edge e1

23

uses the platform memory in steps interval [2, 3], and edge e1
24 uses the platform memory in steps

interval [2, 4]. Intervals [2, 3] and [2, 4] overlap, which means that edges e1
23 and e1

24 use the plat-
form memory simultaneously and cannot be assigned to one buffer. If neither of conditions (1) and
(2) mentioned earlier is met, buffer Bk can be reused for storage of data associated with edge en

i j

and is added to the list Br euse in line 20.
In lines 21 through 35, Algorithm 1 finds a reuse buffer Bbest , which is best suited to store the

data associated with edge en
i j . If list Br euse , created in lines 4 through 20, is empty (the condition in

line 21 is met), in lines 21 through 25, Algorithm 1 defines Bbest as a new buffer and allocates this
buffer to edge en

i j . The size of buffer Bbest is computed as the size of buffer Bz ∈ Bnaive allocated

to edge en
i j in the naive buffers allocation.

Otherwise, in lines 27 through 35, Algorithm 1 selects Bbest from the list Br euse . Buffer Bbest is
selected such that the increase in memory cost, computed in line 30, and introduced by reusing
buffer Bbest to store data associated with edge en

i j is minimal. In lines 34 and 35, Algorithm 1

assigns buffer Bbest to edge en
i j and increases the size of buffer Bbest by the memory cost costmin ,

introduced into the CNN-based application by reuse of buffer Bbest for storage of data associated
with edge en

i j . Finally, in line 36, Algorithm 1 returns the CNN buffers B.

6 BUFFERS REDUCTION ALGORITHM

In this section, we present our buffers sizes reduction algorithm, Algorithm 2. This algorithm
introduces data processing by parts (explained in Section 2.5) and buffers reuse (as proposed in
Section 5) to a CNN-based application. To enable a balanced memory-throughput trade-off in the
application, data processing by parts is introduced only in a subset of layers used by the application.
To find this subset, Algorithm 2 uses a multi-objective Genetic Algorithm (GA) [25]: a well-
known heuristic approach widely used for finding optimal solutions for complex design space
exploration problems.

Algorithm 2 accepts the following as inputs: (1) a CNN-based application with naive buffers
allocation, explained in Section 2.3; (2) a list of reused buffers B obtained using Algorithm 1, pre-
sented in Section 5; (3) constraints Mc andT c posed on the application (the memory constraint Mc

specifies the maximum amount of memory (in megabytes) that can be occupied by the CNN-based
application, and the throughput constraintT c is defined as a set {T c

1 , . . . ,T
c
N
}, whereT c

n ,n ∈ [1,N]
specifies the minimum throughput (in frames per second) that has to be demonstrated by CNN n

used by the application); and (4) a set of standard user-defined GA parameters GA_par such as
initial population size, number of GA iterations, mutation, and crossover probabilities [25]. As
outputs, Algorithm 2 provides the following: (1) a CNN-based application functionally equivalent
to the input application but utilizing data processing by parts and buffers reuse as explained pre-
viously (compared to the input application, the output application is characterized with reduced
memory cost and possibly decreased throughput; in addition, due to the utilization of data process-
ing by parts, the output application may execute CNN layers in a different order than the input
application) and (2) a set of phases Φ that specifies the number of phases in every layer of every
CNN used by the application. These two outputs are required to generate the final application as
proposed in Section 7.

As an example, taking CNN-based application APP = ({CNN 1,CNN 2}, Bnaive , P , J , {{{l1
1 },

{l1
2 }, {l1

3 }, {l1
4 }, {l1

5 }}, {{l2
1 }, {l2

2 }}, {{l2
3 }, {l2

4 }}}) introduced in Section 2.3, reused buffers B shown in
Table 8, constraints Mc = 0.02 MB (20, 000 bytes), T c = {0, 0}, and standard GA parameters
GA_par [25], Algorithm 2 produces as output application APP ′ = ({CNN 1,CNN 2}, Br educed ,

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:15

ALGORITHM 2: Buffers reduction
Input: AP P in = ({C N N 1, . . . , C N N N }, Bnaive , P, J , {schedule1, . . . , schedule |P | }), B, Constr aints = (Mc , T c), GA_par

Result: AP P out = ({C N N 1, . . . , C N N N }, Br educed , P, J , {schedule ′1, . . . , schedule ′|P | }), Φ

1 AP P out ← ({C N N 1, . . . , C N N N }, B, P, J , {schedule1, . . . , schedule |P | });
2 M = compute memory cost of AP P out , using Equation (1);

3 if M ≤ Mc then
4 Φ← {(l n

i , 1) }, n ∈ [1, N], i ∈ [1, |Ln |];
5 return (AP P out , Φ);

6 X ← binary string of length
∑N

n=1 |Ln |;
7 f itness =minimize (Eval Memory (AP P in, X), −EvalT hrouдhput (AP P in, X , 1), . . . , −EvalT hrouдhput (AP P in, X , N));

8 pareto ← GA(X , GA_par, f itness);

9 S ← ∅;
10 for X ∈ pareto do
11 if M = Eval Memory (AP P in, X) ≤ Mc ∧Tn = EvalT hrouдhput (AP P in, X , n) ≥ T c

n ∈ T c , n ∈ [1, N] then
12 S ← S ∪ X ;

13 if S � ∅ then

14 X best = select from S chromosome X with minimal memory footprint M = Eval Memory (AP P in, X);

15 else

16 X best = select from pareto chromosome X with minimal memory footprint M = Eval Memory (AP P in, X);

17 (AP P out , Φ) ← Der iveApplicationW ithReducedBuf f s (AP P in, X best);

18 return (AP P out , Φ);

19 Function Eval Memory(AP P in, X):
20 (AP P X , Φ) ← Der iveApplicationW ithReducedBuf f s (AP P in, X);

21 M = compute memory cost of AP P X , using Equation (1);

22 return M ;

23 Function EvalT hrouдhput(AP P in, X , n):
24 (AP P X , Φ) ← Der iveApplicationW ithReducedBuf f s (AP P in, X);

25 Tn = evaluate throughput of C N N n used by AP P X and executed with phases Φ;

26 return Tn ;

27 Function Der iveApplicationW ithReducedBuf f s(AP P in, X):
28 Bmin ← ∅; Φ← ∅;
29 for Pp ∈ AP P in do
30 Φp ← {(l n

i , Equation (6) (X .l n
i))}, l n

i ∈ Pp .L;

31 Gp (Ap, Cp) ← CNN-to-CSDF (Pp, Φp) [17];

32 Bmin
p , schedule ′p ← use SDF3 [28] to derive minimum-sized buffers and a schedule that enables execution of partition Pp

represented as CSDF model Gp with these buffers;

33 Bmin ← Bmin ∪ Bmin
p ;

34 Φ← Φ ∪ Φp ;

35 AP P par t s ← ({C N N 1, . . . , C N N N }, Bmin, P, J , {schedule ′1, . . . , schedule ′|P | });
36 Br educed ← Algorithm 1 (AP P par t s);

37 AP P r educed = ({C N N 1, . . . , C N N N }, Br educed , P, J , {schedule ′1, . . . , schedule ′|P | })
38 return (AP P r educed , Φ);

P , J , {{l1
1 }, {l1

2 }, [{l1
3 }, {l1

4 }, {l1
5 }] × 32}, {{l2

1 }, {l2
2 }}, {{l2

3 }, {l2
4 }}}) and a set of phases Φ = {(l1

1 , 1),

(l1
2 , 1), (l1

3 , 32), (l1
4 , 32), (l1

5 , 32), (l2
1 , 1), (l2

2 , 1), (l2
2 , 1), (l2

2 , 1)}. ApplicationAPP ′ uses buffers Br educed ,
produced by Algorithm 2 and shown in Table 9. We note that according to Equation (3), the
reduced CNN buffers produced by Algorithm 2 occupy 19,712* data_bytes bytes of memory
(see Table 9), whereas the CNN buffers obtained by only using buffers reuse occupy 32,778*
data_bytes bytes of memory (see Table 8). The difference occurs because, besides buffers reuse,
Algorithm 2 introduces data processing by parts to layers l1

3 , l1
4 , and l1

5 of CNN 1. To allow for
buffers reduction with data processing by parts, Algorithm 2 enforces a specific execution or-
der for the layers of CNN 1 that processes data by parts. This is expressed in APP ′ through
schedule ′1 = {{l1

1 }, {l1
2 }, [{l1

3 }, {l1
4 }, {l1

5 }] × 32}. The set Φ specifies that each of layers l1
3 , l1

4 , and l1
5

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:16 S. Minakova and T. Stefanov

Table 9. Reduced CNN Buffers

B B1 B2 B3 B4

Edges e1
12, e1

34,e2
12 e1

23, e2(1)
23 e1

24, e2(2)
23 e1

45, e2
34

Size 3,072 8,192 8,192 256

Table 10. Chromosome

l1
1 l1

2 l1
3 l1

4 l1
5 l2

1 l2
2 l2

3 l2
4

0 0 1 1 1 0 0 0 0

in CNN 1 performs 32 phases (processes its input data by 32 parts), whereas layers l1
1 , l1

2 of CNN 1

and all layers of CNN 2 perform one phase (do not process data by parts).
In lines 1 through 3, Algorithm 2 checks if utilization of only buffers reuse is sufficient to meet

the memory constraint. To perform the check, in line 1, Algorithm 2 generates an application
that employs only buffers reuse (uses buffers B, obtained using Algorithm 1). In lines 2 and 3,
Algorithm 2 checks whether this application meets the memory constraint. If so (the condition in
line 3 is met), in line 5, Algorithm 2 performs an early exit. It returns as an output the application,
generated in line 1. It also returns the set of phases Φ generated in line 4 specifying that every
layer in every CNN in the application performs one phase (i.e., does not process data by parts).

Otherwise, Algorithm 2 performs a GA-based search to find a set of layers that have to process
data by parts. To this end, Algorithm 2 uses a standard GA with two-parent crossover and a single-
gene mutation as presented in the work of Sastry et al. [25] and two problem-specific GA attributes:
a chromosome and a fitness function [25]. The chromosome is a representation of a GA solution
as a set of parameters (genes), joined into a string [25]. In Algorithm 2, a chromosome X specifies
data processing by parts in a CNN-based application. It is defined in line 6 as a string of length∑N

n=1 |Ln |, where N is number of CNNs used by the application and |Ln | is the total number of
layers in the n-th CNN used by the application. Every gene of the chromosome takes value 0 or 1
and specifies whether a layer processes data by parts (gene=1) or not (gene=0). Table 10 gives an
example of a chromosome, which specifies data processing by parts as in the example application
APP ′, mentioned earlier.

The fitness function evaluates the quality of GA solutions, represented as chromosomes, and
guides the GA-based search. During the search, the fitness function should be minimized or max-
imized. The fitness function used by Algorithm 2 is defined in line 7. It specifies that during the
GA-based search, Algorithm 2 tries to (1) minimize the application memory cost M and (2) max-
imize (minimize the negative) throughput Tn of every CNN used by the application. To evaluate
a chromosome in terms of memory and throughput, Algorithm 2 uses function EvalMemory and
function EvalThrouдhput , explained in Section 6.2.

In line 8, Algorithm 2 performs the GA-based search, which delivers a set of Pareto-optimal
solutions (chromosomes) called a Pareto front [25]. From this Pareto front, in lines 9 through 16,
Algorithm 2 selects the best chromosome—that is, a chromosome that ensures that the CNN-based
application has minimum memory footprint while, if possible, meeting the memory and through-
put constraints posed on the application. In lines 9 through 12, Algorithm 2 defines subset S of the
Pareto front. All chromosomes in subset S enable the CNN-based application to meet the memory
and throughput constraints. If such a subset exists (the condition in line 13 is met), in line 14, Al-
gorithm 2 selects the best chromosome from this subset. Otherwise, in line 16, Algorithm 2 selects
the best chromosome from the Pareto front.

In line 17, Algorithm 2 uses the input application APP in and the best chromosome Xbest se-
lected in lines 9 through 16 to generate the output application APPout and a set of phases Φ
performed by layers of application APPout . The output application uses both data processing by
parts and buffers reuse, and is characterized with reduced memory cost and possibly decreased
throughput compared to the input application. The generation of application APPout and set Φ
from the input application APP in and the best chromosome Xbest is performed using function

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:17

DeriveApplicationWithReducedBu f f s , explained in Section 6.1. Finally, in line 18, Algorithm 2
returns application APPout and set Φ.

6.1 Derivation of a CNN-Based Application with Data Processing by Parts

and Buffers Reuse

To generate an application that is functionally equivalent to the input application APP in but us-
ing the data processing by parts as specified in chromosome X and buffers reuse as proposed in
Section 5, Algorithm 2 uses function DeriveApplicationWithReducedBu f f s defined in lines 27
through 38. In line 28, Algorithm 2 defines an empty set Bmin of buffers with minimum size and
no reuse, and an empty set of phases Φ. In lines 29 through 34, Algorithm 2 visits every partition
Pp in the input application APP in . In line 30, Algorithm 2 uses chromosome X and Equation (6)

to compute the number of phases Φ1
n performed by every layer lni in partition Pp . If gene X .lni of

chromosome X specifies that layer lni processes data by parts (i.e., X .lni = 1), the number of phases
Φn

i for this layer is determined using Table 2, explained in Section 2.5. Otherwise, the number of
phases Φn

i for layer lni is set to 1, which means that layer lni does not process data by parts.

Φn
i (x) =

⎧⎪⎨
⎪
⎩

determine using Table 2 if x = 1

1 otherwise
(6)

In line 31 and 32, Algorithm 2 obtains a set of buffers Bmin
p for partition Pp , where every buffer

Bk ∈ Bmin
p is allocated to an edge in partition Pp , and is characterized with minimum size. To-

gether with buffers Bmin
p , Algorithm 2 obtains specific schedule schedule ′p , which allows to cor-

rectly execute partition Pp with buffers Bmin
p . To do so, Algorithm 2 converts every CNN partition

into a functionally equivalent CSDF model (line 31) using the CNN-to-CSDF conversion proce-
dure in our earlier work [17] and feeds the obtained CSDF models to the SDF3 embedded systems
design and analysis tool [28]. In lines 33 and 34, Algorithm 2 accumulates the minimum sized
buffers and phases obtained in lines 30 through 32 in sets Bmin and Φ, respectively. In line 35,
Algorithm 2 generates application APPpar ts , which processes data by parts as specified in chro-
mosome X without buffers reuse. In lines 36 and 37, Algorithm 2 introduces buffers reuse into
application APPpar ts , thereby obtaining application APPr educed , returned as output by function
DeriveApplicationWithReducedBu f f s .

6.2 Memory and Throughput Evaluation

The memory and throughput of a GA solution (i.e., a chromosome) are evaluated using function
EvalMemory defined in lines 19 through 22 of Algorithm 2 and function EvalThrouдhput defined
in lines 23 and 24 of Algorithm 2. Both functions accept as inputs the CNN-based applicationAPP in

and chromosome X . From the application APP in and chromosome X , functions EvalMemory and
EvalThrouдhput generate application APPX as explained in Section 6.1. Function EvalMemory
computes the memory cost of application APPX using Equation (1). Function EvalThrouдhput
evaluates the throughput of CNN n used by application APPX . The throughput of CNN n is esti-
mated using measurements on the platform or a third-party throughput evaluation tool.

7 FINAL APPLICATION DERIVATION

In this section, we show how we perform the last step of our methodology, where we derive the
final CNN-based application with reduced memory cost and possibly decreased throughput from
the CNN-based application with data processing by parts and buffers reuse obtained using Algo-
rithm 2, explained in Section 6. To derive the final CNN-based application, we use a DL frame-
work, such as TensorRT [19], and custom extensions. The DL framework is used to implement and

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:18 S. Minakova and T. Stefanov

Table 11. Comparison of the Memory Reduction Principles and Features Associated with the Memory

Reuse Methodologies [17, 23] and Our Proposed Methodology

Memory Reuse Principle or Feature [23] [28] Our
Methodology

Buffers reuse (i.e., reuse of platform memory, allocated
to store output data of different CNN layers)

No Yes Yes

Data processing by parts (i.e., reuse of platform
memory, allocated to store partitions of input data of
CNN layers)

Yes No Yes

Pipeline parallelism awareness No No Yes

Reuse of platform memory among multiple CNNs No No Yes

Memory-throughput trade-off Yes,
unbalanced

No Yes, balanced

execute the CNNs and the CNN buffers within the application. The custom extensions are used
to enable an alternative (different from layer-by-layer) execution order within every CNN parti-
tion and among CNN partitions. The alternative execution order is required for processing data
by parts and exploiting pipeline parallelism in the CNN-based application.

8 EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our methodology. The experiments are performed
in two steps. First, in Section 8.1, we compare our proposed methodology to the existing memory
reuse methodologies proposed in the work of Pisarchyk and Lee [23] and our earlier work [17].
Then, in Section 8.2, we further study the impact of our proposed methodology on real-world appli-
cations and demonstrate how our methodology can be used jointly with orthogonal memory reduc-
tion methodologies such as CNN quantization. The applications considered in our experiments be-
long to three categories: (1) applications utilizing one CNN that is executed in a commonly adopted
sequential fashion (layer by layer), (2) applications utilizing one CNN and exploiting pipeline
parallelism available among layers of the CNN as explained in Section 2.2, and (3) multi-CNN
applications. By performing the experiments on the applications from these common categories,
we study the efficiency of our methodology for a wide range of CNN-based applications.

8.1 Comparison to Existing Memory Reuse Methodologies

In this section, we evaluate the efficiency of our methodology in comparison with the existing
memory reuse methodologies proposed in the work of Pisarchyk and Lee [23] and our earlier
work [17]. The comparison between our methodology and the methodologies in those works [17,
23] in terms of memory reduction principles is summarized in Table 11.

To evaluate the efficiency of our methodology and study the impact of the memory reuse princi-
ples and features summarized in Table 11 on CNN-based applications, we apply our methodology
and the methodologies in the work of Pisarchyk and Lee [23] and our previous work [17] to six
real-world CNN-based applications from the three common categories, introduced in Section 8.
The applications are listed in column 1 in Table 12. To perform their functionality, the CNN-based
applications utilize the state-of-the-art CNNs listed in column 2.

We measure and compare the applications memory cost, when it is (1) reduced using our method-
ology, (2) not reduced (i.e., every CNN edge has its own CNN buffer allocated, similar to the ex-
ample CNN-based application, explained in Section 2.3), (3) reduced using the methodology of
Pisarchyk and Lee [23], and (4) reduced using the methodology in our previous work [17].

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:19

Table 12. Experimental Results

Application Memory (MB) Throughput (fps)

No. CNN(s) Memory
Constraint

(MB)

No
Reduc-

tion

[23] [17] Ours No
Reduc-

tion

[23] [17] Ours

CNN-based applications with one CNN and no exploitation of task-level (pipeline) parallelism

1 MobileNetV2 1.0
25

58.63 20.32 16.2
20.32

46 46 40
46

15 14.98 41
min 14.90 40.5

2 EfficientNet B0
150

161.33 39.14 42.97
39.14

168.35 168.35 98
168.35

40 39.14 168.35
min 27.30 128.5

CNN-based applications, exploiting pipeline parallelism, as proposed by Minakova et al. [18]

3 MobileNetV2 1.0
30

61.69 20.32 17.38
30

49 46 43
49

15 15.92 43.65
min 15.92 43.65

4 EfficientNet B0
150

163.65 39.14 44.18
45

170.3 168.35 98.8
170.3

50 45 170.3
min 31.34 124.24

Multi-CNN applications

5

Inception V2

380 175 226

175
94 94 67 94

MobileNetV1 0.25 200 432 432 183 432
ResNet V1 50 55 55 46 55
Inception V2

162
94 94 67 75

MobileNetV1 0.25 min 432 432 183 244
ResNet 50 55 55 46 47

6

DenseNet121

625 291 184

161
52 52 37 52

MobileNetV1 1.0 500 59 59 50 59
ResNet V1 50 55 55 46 55
DenseNet121

155
52 52 37 41

MobileNetV1 1.0 min 59 59 50 54
ResNet V1 50 55 55 46 49

Taking into account that both the related work in our previous study [17] and our methodology
can decrease the throughput of CNNs, we also measure and compare the throughput of every CNN
utilized by the CNN-based applications. To measure the applications memory cost and the CNNs’
throughput, we execute the CNNs on the NVIDIA Jetson TX2 embedded platform [20]. Every CNN
is implemented using the TensorRT DL framework [19], the best known and state of the art for
CNN execution on the Jetson TX2, and is executed with batch size = 1, typical for CNN execution
at the edge and native fp32 data precision.

The results of our experiments are given in columns 3 through 11 of Table 12, where column 3
lists memory constraints (in megabytes) posed on the CNN-based applications, columns 4 through
7 show the applications memory cost, and columns 8 through 11 show the throughput (in frames
per second) of the CNNs utilized by the applications.

Columns 4 through 7 show the memory cost of the CNN-based applications. As shown in those
columns, when compared to the applications deployed without memory reduction, our methodol-
ogy demonstrates 2.3 to 5.9 times memory reduction, with the minimum of (380/162) ≈ 2.3 times
memory reduction achieved for application 5 and the maximum of (161.33/27.30) ≈ 5.9 times

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:20 S. Minakova and T. Stefanov

memory reduction achieved for application 2. Analogously, when compared to the most relevant
related work (the methodologies in the work of Pisarchyk and Lee [23] and our earlier work [17]),
our methodology achieves 7% to 30% memory reduction with minimum and maximum memory re-
duction achieved for application 5 and application 2, respectively. As shown in columns 4 through
7, for every CNN-based application, our methodology allows for more memory reduction than
the methodologies in the work of Pisarchyk and Lee [23] and our earlier work [17]. For exam-
ple, the memory cost of application 1 can be reduced to 14.90 MB by our methodology and to
20.32 MB and 16.2 MB by the methodologies in the work of Pisarchyk and Lee [23] and and earlier
work [17], respectively. The difference occurs because our methodology combines the strength of
both methodologies and extends the memory reuse among multiple CNNs.

Columns 8, 10, and 11 show that the reduction of the applications memory cost by the method-
ology in our previous work [17] and our proposed methodology may decrease the throughput of
CNNs utilized by a CNN-based application. For example, as shown in row 4, the throughput of the
MobileNetV2 CNN is (1) decreased to 40 fps by the methodology in our previous work [17] and
(2) may be decreased to 41 or 40.5 fps by our methodology. However, our methodology (1) does
not decrease the CNN throughput when the memory constraint is 25 MB, (2) decreases the CNN
throughput by 46 − 41 = 5 fps when the memory constraint is 15 MB, and (3) decreases the CNN
throughput by 46 − 40.5 = 5.5 fps when the memory constraint is 0, whereas the methodology in
our previous work [17] always decreases the throughput of the MobileNetV2 CNN by 46 − 40 = 6
fps. The difference occurs because, unlike the methodology in our previous work [17], our
proposed methodology searches for an optimal (balanced) memory-throughput trade-off (see
Algorithm 2).

Columns 8 and 9 show that the methodology in the work of Pisarchyk and Lee [23] does not in-
troduce throughput decrease into the CNN-based applications exploiting no task-level parallelism
and multi-CNN applications. However, their work [23] can decrease the throughput of CNNs in the
CNN-based applications that exploit pipeline parallelism. For example, it decreases the throughput
of EfficientNet B0 CNN, shown in row 8. The throughput decrease occurs because their method-
ology [23] reuses CNN buffers that may be simultaneously accessed by different partitions of a
CNN-based application and thus prevents exploitation of pipeline parallelism in the CNN-based
application. Unlike the methodology of Pisarchyk and Lee [23], our proposed methodology does
not reuse such buffers and thus enables for exploitation of pipeline parallelism.

Columns 4 through 7, rows 10 to 13, show that for multi-CNN applications, our methodology
enables more memory reduction than the methodology in the work of Pisarchyk and Lee [23] and
that in our previous work [17]. For example, our methodology is able to reduce the memory of
multi-CNN application 6, shown in rows 12 and 13 in Table 12, to 155 MB. This is ≈2 times more
memory reduction than offered by the methodology of Pisarchyk and Lee [23] and ≈15% more
memory reduction than offered by the methodology in our previous work [17]. The difference
occurs because (1) our methodology combines memory reuse principles offered by the method-
ologies in the other works [17, 23], and (2) unlike the methodologies in those works [17, 23], our
methodology reuses memory among different CNNs as well as within the CNNs.

As demonstrated in this section, our methodology allows for up to 5.9 times memory reduc-
tion compared to deployment of CNN-based applications without memory reduction and 7% to
30% memory reduction compared to other memory reduction methodologies that reduce the CNN
memory cost without CNN accuracy decrease.

8.2 Joint Use of CNN Quantization and Our Proposed Methodology

In this section, we further study the impact of our proposed methodology on real-world appli-
cations and demonstrate how our methodology can be used jointly with orthogonal memory

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:21

Table 13. Applications

Application CNN
Requirements

T (fps) M (MB)

MobileNet-sequential MobileNetV2 75 8

ResNet-sequential ResNet-50 75 26

MobileNet-pipelined MobileNetV2 80 30

Multi-CNN
MobileNetV2 32

30
ResNet-50 32

reduction methodologies such as CNN quantization. We apply the quantization methodology of-
fered by the TensorFlow DL framework [1] and our proposed methodology to four CNN-based
applications, executed on the NVIDIA Jetson TX2 edge platform [20]. The applications are sum-
marized in Table 13 and explained in detail in Section 8.2.1. To study the impact of joint use of our
methodology and the quantization methodology, we measure and compare the accuracy, memory
cost, and throughput of the CNNs used by the applications after the applications’ memory cost is
decreased using (1) quantization and no memory reuse and (2) our methodology combined with
quantization. The measurements are presented in Section 8.2.2. The comparison of the measure-
ments along with analysis and conclusions are presented in Section 8.2.3.

8.2.1 Experimental Setup. The applications that we use to study the effectiveness of our method-
ology when used jointly with CNN quantization are summarized in Table 13. Column 1 lists the
applications’ names. Column 2 lists the CNNs used by the applications. All CNNs perform image
classification on the ImageNet dataset [9], composed of RGB images with 224 pixels height and
width. The baseline topology and weights of every CNN are taken from the applications library of
the TensorFlow DL framework [1], which is well known and widely used for CNN design and train-
ing. For execution at the edge, the CNNs are implemented using the TensorRT DL framework [19],
which is the best-known DL framework for CNN execution on the NVIDIA Jetson TX2 edge plat-
form. Columns 3 and 4 specify requirements posed on the CNNs by the applications and passed as
inputs to our proposed methodology. Column 3 specifies the minimum throughput (in frames per
second) that the CNNs are expected to demonstrate during their inference on the NVIDIA Jetson
TX2 platform. Column 4 specifies the maximum amount of memory (in megabytes) that the CNNs
can occupy.

8.2.2 Experimental Results. The experimental results for the four CNN-based applications, sum-
marized in Table 13, are shown in Figure 5. They are shown as bar plots that compare the char-
acteristics of the CNNs used by the applications when the applications’ memory cost is reduced
using quantization with no memory reuse (the light gray bars) and our methodology combined
with quantization (the dark gray bars). Every plot shows a comparison for the CNNs with half-,
mixed-, and int-quantization offered by the TensorFlow DL framework, as well as for the baseline
CNNs with no quantization and original fp32 weights and data precision. The types of quantiza-
tion offered by the TensorFlow DL framework are summarized in Table 3 and explained in detail
in Section 3. The bar plots are organized in a matrix. Every row corresponds to a CNN-based ap-
plication. Every column corresponds to a characteristic of the CNNs used by the application: the
CNN accuracy (the first column), the CNN throughput (the second column),1 and the CNN mem-
ory cost (the third column). For example, the bar plot in Figure 5(b), located in the first row and

1The CNN throughput is not shown for the CNNs with int- and mixed-quantization because the Jetson TX2 platform does

not support integer computations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:22 S. Minakova and T. Stefanov

second column, shows the throughput of the MobileNetV2 CNN used by the MobileNet-sequential
application. Every bar is annotated with the value of the respective characteristic. For example, Fig-
ure 5(b) shows that the MobileNetV2 CNN with half-quantization demonstrates 79 fps throughput
after the quantization and no memory reuse. The difference in height between the light gray bars
and the dark gray bars demonstrates the reduction (decrease) of the respective characteristics. For
example, Figure 5(b) shows that our methodology decreases the throughput of the MobileNetV2
CNN with half-quantization by 79 − 71 = 8 fps.

8.2.3 Analysis and Conclusions. In this section, we compare and analyze the experimental re-
sults presented in Section 8.2.2.

First, we compare the CNNs’ accuracy. To do that, we analyze the plots shown in the first column
in Figure 5. We note that the accuracy of the CNNs after quantization with no memory reuse
matches the CNNs’ accuracy after quantization combined with our methodology. In other words,
our methodology does not reduce the CNNs’ accuracy. This is because our methodology does not
change the number and precision of CNN weights.

Second, we compare the throughput of the CNNs. To do that, we analyze the plots shown in
the second column in Figure 5. So, we see that our methodology may decrease the CNNs’ through-
put. For example, Figure 5(b) shows that our methodology decreases the throughput of the Mo-
bileNetV2 CNN with half-quantization by 79−71 = 8 fps. As explained in Section 2.5, the through-
put decrease occurs due to the processing data by parts utilized by our methodology. However, the
throughput decrease introduced by our methodology is small and is compensated by the through-
put increase introduced by the quantization. For example, Figure 5(b) shows that the throughput
of the MobileNetV2 CNN with half-quantization combined with our methodology is increased by
71− 46 = 25 fps compared to the CNN with no quantization and no memory reuse (the latter CNN
is represented as the light gray “baseline” bar).

Finally, we compare the memory cost of the CNNs. To do that, we analyze the plots shown
in the third column in Figure 5. The plots show that our methodology allows to further reduce
the memory cost of the quantized CNNs. For example, Figure 5(c) shows that our methodol-
ogy reduces 3.7 times the memory cost of the MobileNetV2 CNN with half-quantization. Anal-
ogously, Figure 5(i) shows that our methodology reduces 2.1 times the memory cost of the Mo-
bileNetV2 CNN with half-quantization and pipelined execution. This means that our methodology
can be efficiently combined with orthogonal quantization methodology to achieve high rates of
CNN memory reduction. The effectiveness of the methodologies’ joint use is explained by the or-
thogonality of the methodologies. The quantization methodology changes the precision of CNN
data and weights, thereby reducing CNN memory cost (i.e., the amount of platform memory re-
quired to deploy and execute the CNN). Our methodology, orthogonal to the quantization, reuses
the platform memory allocated for CNN deployment, thereby further reducing CNN memory
cost.

Based on the analysis presented previously, we conclude that our methodology can be efficiently
combined with the orthogonal methodologies such as quantization. The joint use of our method-
ology and quantization allows achievement of high rates of CNN memory reduction. Moreover,
when our methodology is combined with quantization, the decrease of CNN throughput intro-
duced by our methodology is easily compensated by CNN throughput increase introduced by the
quantization.

9 RELATED WORK

The most common CNN memory reduction methodologies, namely pruning and quantization, re-
viewed in several surveys [6, 7, 11, 30], reduce the memory cost of CNN-based applications by

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:23

Fig. 5. Experimental results.

reducing the number or size of CNN parameters (weights and biases) [3]. However, at high CNN
memory reduction rates, these approaches decrease CNN accuracy, whereas high accuracy is quite
important for many CNN-based applications [3]. In contrast, our memory reduction approach does
not change CNN model parameters and therefore does not decrease CNN accuracy.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

2:24 S. Minakova and T. Stefanov

The knowledge distillation approaches, reviewed in two surveys [7, 30], try to replace an initial
CNN in a CNN-based application by an alternative CNN with the same functionality but smaller
size. However, these approaches involve CNN training from scratch and do not guarantee that the
accuracy of the initial CNN can be preserved. In contrast, our memory reduction approach is a
general systematic approach that always guarantees preservation of CNN accuracy.

CNN buffers reuse methodologies, such as the methodology proposed by Pisarchyk and Lee [23],
and the methodologies reviewed by Jin et al. [15], reduce the required CNN memory by reusing
platform memory allocated for storage of intermediate CNN computational results. These method-
ologies can significantly reduce the CNN memory cost without decreasing CNN throughput or
accuracy. However, these methodologies do not support reuse of the platform memory among
multiple CNNs. Reusing the memory among CNNs as well as within every CNN is vital for de-
ployment of multi-CNN applications (e.g., [26, 27, 29]). Thus, the methodologies in the work of Jin
et al. [15] and Pisarchyk and Lee [23] are not suitable for multi-CNN applications. Moreover, these
methodologies do not account for concurrent execution of CNN layers. Therefore, they are not ap-
plicable to CNN-based applications, exploiting task-level (pipeline) parallelism [18, 31], available
within the CNNs. In contrast to these methodologies, our methodology is applicable to CNN-based
applications, exploiting pipeline parallelism, and multi-CNN applications.

The CNN buffers reduction methodology proposed in our previous work [17] allows to signifi-
cantly reduce CNN-based application memory cost at the expense of CNN throughput decrease. In
this methodology, CNN layers process their input data by parts and the device memory is reused
to store different parts of the layers input data. However, this methodology always tries to achieve
a very low CNN memory cost at the expense of large CNN throughput decrease. In practice, partial
reduction of CNN memory cost is often sufficient to fit a CNN-based application into a device with
a given memory constraint. In contrast to the methodology proposed in our previous work [17],
our proposed methodology involves a balanced memory-throughput trade-off in a CNN-based ap-
plication and therefore does not involve unnecessary decrease of CNN throughput.

CNN layers fusion methodologies, such as the methodologies of Alwani et al. [4] and Olyaiy
et al. [21], and the methodologies adopted by the DL frameworks, such as the TensorRT DL frame-
work [19] or the PyTorch DL framework [22], allow to reduce CNN memory cost by transforming
the network into a simpler form but preserving the same overall behavior. Being a part of the CNN
model definition, the CNN layer fusion methodologies are orthogonal to our proposed methodol-
ogy and can be combined with our methodology for further CNN memory optimizations. In our
experimental study (Section 8), we implicitly use CNN layers fusion by implementing the CNNs
with the TensorRT DL framework [19], which has built-in CNN layers fusion.

10 CONCLUSION

We propose a memory-throughput trade-off methodology for CNN-based applications at the
edge. Our proposed methodology significantly extends and combines two existing memory reuse
methodologies. In addition to the reuse of platform memory offered by the existing methodolo-
gies, our methodology offers support of pipeline parallelism, reuse of memory among different
CNNs, and a memory-throughput trade-off balancing mechanism. Thus, our methodology offers
a balanced memory-throughput trade-off for a wide range of CNN-based applications, including
CNN-based applications exploiting task-level (pipeline) parallelism and multi-CNN applications.
The evaluation results show that our methodology allows for up to 5.9 times memory reduction
compared to deployment of CNN-based applications with no memory reduction, and 7% to 30%
memory reduction compared to other memory reduction methodologies that reduce CNN memory
cost without CNN accuracy decrease. Additionally, our evaluation results show that our method-
ology can be efficiently combined with orthogonal memory reduction methodologies such as

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

Memory-Throughput Trade-off for CNN-Based Applications at the Edge 2:25

quantization to achieve high rates of CNN memory reduction. Moreover, when our methodology is
combined with quantization, the decrease of CNN throughput introduced by our methodology at
high CNN memory reduction rates is easily compensated by CNN throughput increase introduced
by the quantization.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016.

TensorFlow: Large-scale machine learning on heterogeneous systems. In Proceedings of the 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI’16). 265–283.

[2] Martin Abadi, Michael Isard, and Derek G. Murray. 2017. A computational model for TensorFlow: An introduction. In

Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming (MAPL’17). ACM,

New York, NY, 1–7. https://doi.org/10.1145/3088525.3088527

[3] Zahangir Alom, Tarek M. Taha, Christopher, Yakopcic, Stefan Westberg, Paheding Sidike, Shamima Nasrin, Brian C.

Van Esesn, Abdul A. S. Awwal, and Vijayan K. Asari. 2018. The history began from AlexNet: A comprehensive survey

on deep learning approaches. CoRR abs/1803.01164 (2018).

[4] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer CNN accelerators. In Proceedings

of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16). 1–12. https://doi.org/10.

1109/MICRO.2016.7783725

[5] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jan A. Peperstraete. 1996. Cyclo-static dataflow. IEEE Transactions

on Signal Processing 44, 2 (1996), 397–408. https://doi.org/10.1109/78.485935

[6] Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag. 2020. What is the state of neural

network pruning? In Proceedings of Machine Learning and Systems (MLSys’20).

[7] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018. A survey of model compression and acceleration for deep

neural networks. IEEE Signal Processing Magazine 35 (2018), 126–136.

[8] Vadim Demichev, Christoph B. Messner, Spyros I. Vernardis, Kathryn S. Lilley, and Markus Ralser. 2020. DIA-NN:

Neural networks and interference correction enable deep proteome coverage in high throughput. Nature Methods 17,

1 (2020), 41–44. https://doi.org/10.1038/s41592-019-0638-x

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image

database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09). IEEE, Los

Alamitos, CA, 248–255.

[10] S. Devi, P. Malarvezhi, R. Dayana, and K. Vadivukkarasi. 2020. A comprehensive survey on autonomous driving cars:

A perspective view. Wireless Personal Communications 114, 3 (2020), 2121–2133. https://doi.org/10.1007/s11277-020-

07468-y

[11] Amir Gholami, Sehoon Kim, Dong Zhen, Zhewei Yao, Michael Mahoney, and Kurt Keutzer. 2021. A survey of quanti-

zation methods for efficient neural network inference. arXiv abs/2103.13630 (2021).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16).

[13] Steve Heath. 2002. Debugging techniques. In Embedded Systems Design (2nd ed.). Newnes, Oxford, UK, 321–325.

[14] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. 2017. Densely connected convolutional networks. In Proceedings

of the Conference on Computer Vision and Pattern Recognition (CVPR’17).

[15] Hai Jin, Bo Liu, Wenbin Jiang, Yang Ma, Xuanhua Shi, Bingsheng He, and Shaofeng Zhao. 2018. Layer-centric memory

reuse and data migration for extreme-scale deep learning on many-core architectures. ACM Transactions on Architec-

ture and Code Optimization 15, 3 (2018), Article 37, 26 pages. https://doi.org/10.1145/3243904

[16] Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam. 2020. Bringing AI to edge: From deep

learning’s perspective. arXiv 2011.14808 [cs.LG] (2020).

[17] Svetlana Minakova and Todor Stefanov. 2020. Buffer sizes reduction for memory-efficient CNN inference on mobile

and embedded devices. In Proceedings of the Euromicro Conference on Digital System Design (DSD’20). IEEE, Los Alami-

tos, CA, 133–140. https://doi.org/10.1109/DSD51259.2020.00031

[18] Svetlana Minakova, Erqian Tang, and Todor Stefanov. 2020. Combining task- and data-level parallelism for high-

throughput CNN inference on embedded CPUs-GPUs MPSoCs. In Proceedings of the International Conference on Em-

bedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS’20). 18–35.

[19] NVIDIA. 2016. TensorRT—High Performance Neural Network Inference Optimizer and Runtime Engine for Produc-

tion Deployment. Retrieved April 1, 2022 from https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/

index.html.

[20] NVIDIA. 2017. Jetson TX2. Retrieved April 1, 2022 from https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

https://doi.org/10.1145/3088525.3088527
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/78.485935
https://doi.org/10.1038/s41592-019-0638-x
https://doi.org/10.1007/s11277-020-07468-y
https://doi.org/10.1145/3243904
https://doi.org/10.1109/DSD51259.2020.00031
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2

2:26 S. Minakova and T. Stefanov

[21] MohammadHossein Olyaiy, Christopher Ng, and Mieszko Lis. 2021. Accelerating DNNs inference with predictive

layer fusion. In Proceedings of the ACM International Conference on Supercomputing (ICS’21). ACM, New York, NY,

291–303. https://doi.org/10.1145/3447818.3460378

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Zachary DeVito Edward Yang, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In Proceedings of the NIPS 2017

Autodiff Workshop.

[23] Yury Pisarchyk and Juhyun Lee. 2020. Efficient memory management for deep neural net inference. In Proceedings of

the MLSys 2020 Workshop on Resource-Constrained Machine Learning (ReCoML’20).

[24] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2: In-

verted residuals and linear bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR’18). 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

[25] Kumara Sastry, David Goldberg, and Graham Kendall. 2005. Search methodologies. In Genetic Algorithms. Springer

US, Boston, MA, 97–125. https://doi.org/10.1007/0-387-28356-0_4

[26] Benedetta Savelli, Alessandro Bria, Mario Molinara, Claudio Marrocco, and Francesco Tortorella. 2020. A multi-

context CNN ensemble for small lesion detection. Artificial Intelligence in Medicine 103 (2020), 101749. https://doi.

org/10.1016/j.artmed.2019.101749

[27] Marco Seeland and Patrick Mader. 2021. Multi-view classification with convolutional neural networks. PLoS One 16,

1 (2021), e0245230. https://doi.org/10.1371/journal.pone.0245230

[28] Sander Stuijk, Marc Geilen, and Twan Basten. 2006. SDF3: SDF for free. In Proceedings of the 6th International Confer-

ence on Application of Concurrency to System Design (ACSD’06). 276–278.

[29] Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang. 2018. Adaptive selection of deep learn-

ing models on embedded systems. In Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Lan-

guages, Compilers, and Tools for Embedded Systems (LCTES’18). ACM, New York, NY, 31–43. https://doi.org/10.1145/

3211332.3211336

[30] Mario P. Vestias. 2019. A survey of convolutional neural networks on edge with reconfigurable computing. Algorithms

12, 8 (2019), 154. https://doi.org/10.3390/a12080154

[31] Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj Pathania, and Tulika Mitra. 2020. High-

throughput CNN inference on embedded ARM Big.LITTLE multicore processors. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 39, 10 (2020), 2254–2267. https://doi.org/10.1109/TCAD.2019.2944584

Received 13 July 2021; revised 12 January 2022; accepted 16 March 2022

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 1, Article 2. Pub. date: December 2022.

https://doi.org/10.1145/3447818.3460378
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1016/j.artmed.2019.101749
https://doi.org/10.1371/journal.pone.0245230
https://doi.org/10.1145/3211332.3211336
https://doi.org/10.3390/a12080154
https://doi.org/10.1109/TCAD.2019.2944584

