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Many modern applications require execution of Convolutional Neural Networks (CNNs) on edge devices, such as mobile phones or
embedded platforms. This can be challenging as the state-of-the art CNNs are memory-costly, whereas the memory budget of edge
devices is highly limited. To address this challenge, a variety of CNN memory reduction methodologies have been proposed. Typically,
the memory of a CNN is reduced using methodologies such as pruning and quantization. These methodologies reduce the number or
precision of CNN parameters, thereby reducing the CNN memory cost. When more aggressive CNN memory reduction is required, the
pruning and quantization methodologies can be combined with CNN memory reuse methodologies. The latter methodologies reuse
device memory allocated for storage of CNN intermediate computational results, thereby further reducing the CNN memory cost.
However, the existing memory reuse methodologies are unfit for CNN-based applications that exploit pipeline parallelism available
within the CNNs or use multiple CNNs to perform their functionality. In this paper, we therefore propose a novel CNN memory reuse
methodology. In our methodology, we significantly extend and combine two existing CNN memory reuse methodologies to offer
efficient memory reuse for a wide range of CNN-based applications.
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1 INTRODUCTION

Many modern applications are based on Convolutional Neural Networks (CNNs): biologically inspired computational
models that are extremely effective at processing multi-dimensional data and solving tasks such as images classification,
objects detection and others [3]. With recent trends in the fields of Deep Learning (DL) and Edge Computing, more
and more CNN-based applications are executed on edge devices such as mobile and embedded platforms [16]. Typical
reasons for deployment of CNN-based applications at the edge are privacy (some applications require local storage
of their data), high responsiveness (embedded platforms can guarantee real-time response) and energy efficiency
(embedded platforms consume much less energy than high-performance cloud-based servers) [16].

The deployment of state-of-the-art CNN-based applications often involves hosting one or more memory-costly
CNNs on a target edge device, whereas the memory budget of edge devices is very limited. Thus, it may occur that a
CNN-based application does not fit into the limited memory budget of a target edge device. To tackle this problem CNN
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memory reduction methodologies [7, 15, 17, 23, 30] have been proposed. These methodologies reduce the memory cost
of CNNs significantly and thus enable for fitting of a memory-costly CNN-based application into the limited memory
of an edge device.

The most common of these methodologies are pruning and quantization methodologies such as the methodologies
reviewed in surveys [6, 7, 11, 30]. These methodologies reduce the number or precision of CNN parameters, thereby
reducing the CNN memory cost and increasing the CNN throughput. However, at high CNN memory reduction rates
these methodologies may decrease the CNN accuracy.

Orthogonal to the pruning and quantization methodologies, the methodologies in [15, 17, 23] reuse platform memory
allocated to store intermediate CNN computational results produced by the CNN layers. These methodologies do not
change the CNN parameters and therefore enable to further reduce the CNN memory cost without decreasing the
CNN accuracy. To achieve high CNN memory reduction and avoid substantial decrease of the CNN accuracy, one can
combine the CNN pruning and quantization methodologies with the CNN memory reuse methodologies. Existing CNN
memory reuse methodologies are however unfit for some CNN-based applications.

For example, CNN buffer reuse methodologies such as the methodologies in [15, 23] reuse platform memory allocated
to store intermediate CNN computational results produced by different CNN layers. Thus, these methodologies reduce
the CNN memory cost at no expense. However, these methodologies are not suitable for applications that utilize
several CNNs, e.g. [26, 27, 29], or CNN-based applications exploiting task-level (pipeline) parallelism [18, 31] available
within the CNNs. Moreover, these methodologies are not very efficient for CNNs with residual connections, such as
ResNets [12] and DenseNets [14], that have to simultaneously store large amounts of intermediate CNN computational
results.

In addition, the CNN memory reuse methodology proposed in [17] reuses platform memory allocated for different
partitions of input data processed by the CNN layers. This methodology does not reduce the CNN accuracy. Instead,
it involves CNN memory-throughput trade-off caused by synchronization among the CNN input data partitions. As
noted in [17], the rapidly growing computational power of edge devices, allowing for high CNN throughput, makes
the memory-throughput trade-off preferred over the memory-accuracy trade-off for many state-of-the-art CNN-based
applications. However, the trade-off offered by this methodology is unbalanced: it often involves more throughput
decrease than necessary to fit a CNN-based application into the memory of a target edge device. Thus, this methodology
involves unnecessary CNN throughput decrease, undesired for many CNN-based applications [8, 10].

Based on the discussion above, we argue that existing work still lacks a CNN memory reuse methodology which:

(1) does not introduce accuracy decrease into CNN-based applications;
(2) is suitable for a wide range of CNN-based applications including multi-CNN applications (applications that utilize

several CNNs), CNN-based applications exploiting task-level (pipeline) parallelism and CNN-based applications
utilizing CNNs with residual connections;

(3) does not introduce unnecessary throughput reduction to a CNN-based application.

In this paper, we propose a methodology fitting the criteria mentioned above. Our methodology significantly extends
and combines the existing CNN memory reduction methodologies proposed in [23] and [17] to enable for efficient
trade-off between CNN memory and CNN throughput for a wide range of CNN-based applications. Our methodology
consists of three main steps. At Step 1 (Section 5), we introduce CNN buffer reuse into the CNN-based application,
thereby reducing the application memory cost. To perform this step we propose and utilize a buffer reuse algorithm.
Unlike other CNN buffer reuse algorithms [15, 23], our proposed algorithm is suitable for multi-CNN applications and
Manuscript submitted to ACM
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CNN-based applications exploiting task-level (pipeline) parallelism. As mentioned above, the reuse of CNN buffers
does not affect the throughput and accuracy of a CNN-based application. However, it might be insufficient to fit
the application into the limited memory of an edge device, especially if the application utilizes CNNs with residual
connections. In such cases, we perform Step 2 (Section 6), where we further reduce the memory cost of the CNN-based
application at the expense of CNN-based application throughput decrease. At Step 2 we propose and utilize a buffers size
reduction algorithm. This algorithm introduces data processing by parts, initially proposed in [17], and buffers reuse
proposed in Section 5 to a CNN-based application. Unlike the methodology in [17], our buffers reduction algorithm
does not introduce data processing by parts into every layer of every CNN used by the application. Instead, it searches
for a subset of layers that have to process data by parts to fit the application into a predefined memory constraint.
The data processing by parts employed by these layers, in combination with the buffers reuse, introduces a balanced
memory-throughput trade-off in a CNN-based application. Finally, at Step 3 (Section 7), we derive a final CNN-based
application with reduced memory cost.

Paper contributions

In this paper, we propose a novel methodology for balanced trade-off between the memory cost and throughput of
CNN-based applications. Our main contribution is our methodology presented in Section 4. Other important novel
contributions are:

• A CNN buffer reuse algorithm, suitable for multi-CNN applications and CNN-based applications, using task-level
(pipeline) parallelism (Section 5);
• A CNN buffers size reduction algorithm (Section 6) , which combines data processing by parts with buffers reuse
and introduces a balanced memory-throughput trade-off to a CNN-based application;
• up to 5.9 times memory reduction compared to deployment of CNN-based applications with no memory reduction
(Section 8.1);
• 7% to 30% memory reduction compared to other CNN memory reuse methodologies (Section 8.1).

Additionally, in Section 8.2 we demonstrate that our methodology can be efficiently combined with orthogonal
memory reduction methodologies such as CNN quantization.

2 BACKGROUND

In this section we provide a brief description of: 1) the CNN computational model (Section 2.1); 2) the parallelism
available within a CNN (Section 2.2); 3) a CNN-based application (Section 2.3); 4) estimation of the memory cost of a
CNN-based application (Section 2.4); 5) the data processing by parts in the CNN layers (Section 2.5). This section is
essential for understanding the proposed methodology.

2.1 CNN computational model

A convolutional neural network (CNN) is a computational model [2], commonly represented as a directed acyclic
computational graph CNN(𝐿, 𝐸) with a set of nodes 𝐿, also called layers, and a set of edges 𝐸. An example of a CNN
model with |𝐿 | = 5 layers and |𝐸 | = 5 edges is given in Figure 1(a). Every layer 𝑙𝑖 ∈ 𝐿 represents part of the CNN
functionality. It performs operator 𝑜𝑝𝑖 (such as Convolution, Pooling, etc.), parameterized with hyper-parameters ℎ𝑦𝑝𝑖
(such as kernel size, stride, borders processing mode etc.) and learnable parameters 𝑝𝑎𝑟𝑖 (such as weights and biases). We
define a layer as a tuple 𝑙𝑖 = (𝑜𝑝𝑖 , ℎ𝑦𝑝𝑖 , 𝑝𝑎𝑟𝑖 ), where 𝑜𝑝𝑖 is the operator of 𝑙𝑖 ; ℎ𝑦𝑝𝑖 are the hyper-parameters of 𝑙𝑖 ; 𝑝𝑎𝑟𝑖 is
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(a)𝐶𝑁𝑁 1

(b)𝐶𝑁𝑁 2

Fig. 1. CNN computational model

a list of multi-dimensional arrays, called tensors [2], where every tensor 𝑝𝑎𝑟𝑖𝑘 ∈ 𝑝𝑎𝑟𝑖 stores a set of learnable parameters
(weights or biases) or layer 𝑙𝑖 . An example of a CNN layer 𝑙12 = (𝐶𝑜𝑛𝑣, {𝑘𝑠 : 5, 𝑠 : 1, 𝑏𝑚 : 𝑠𝑎𝑚𝑒}, {[8, 3, 5, 5], [8]} is shown
in Figure 1(a). Layer 𝑙12 performs Convolutional operator 𝑜𝑝12 = 𝐶𝑜𝑛𝑣 , parameterized with three hyper-parameters
(kernel size 𝑘𝑠 = 5, stride 𝑠 = 1 and borders processing mode 𝑏𝑚 = 𝑠𝑎𝑚𝑒) and parameters 𝑝𝑎𝑟12 = {[8, 3, 5, 5], [8]}, where
[8, 3, 5, 5] is a four-dimensional tensor of the layer weights and [8] is one-dimensional tensor of the layer biases.

Every edge 𝑒𝑖 𝑗 ∈ 𝐸 specifies a data dependency between layers 𝑙𝑖 and 𝑙 𝑗 , such that data produced by layer 𝑙𝑖 is accepted
as an input by layer 𝑙 𝑗 . We define an edge as a tuple (𝑖, 𝑗, 𝑑𝑎𝑡𝑎), where 𝑖 and 𝑗 are the indexes of the layers connected by
edge 𝑒𝑖 𝑗 ; 𝑑𝑎𝑡𝑎 is the data exchanged between layers 𝑙𝑖 and 𝑙 𝑗 and stored in a tensor of shape [𝑏𝑎𝑡𝑐ℎ,𝐶ℎ, 𝐻,𝑊 ], where
𝑏𝑎𝑡𝑐ℎ,𝐶ℎ, 𝐻,𝑊 are the tensor batch size [2], the number of channels, the height and the width, respectively. An example
of edge 𝑒112 = (1, 2, [1,3,32,32] ) is shown in Figure 1(a). Edge 𝑒112 represents a data dependency between layers 𝑙11 and 𝑙12 ,
where layer 𝑙11 produces a data tensor [1,3,32,32] with batch size = 1, number of channels = 3, height and width = 32,
accepted as input by layer 𝑙12 .

2.2 Parallelism, available within a CNN

As a computational model the CNN is characterized with large amount of available parallelism. This parallelism can be
exploited to speed-up the CNN inference and to efficiently utilize the computational resources of a platform where
the CNN is deployed. The most well-known and widely exploited type of parallelism available within the CNNs is
data-level parallelism. This type of parallelism involves the same computation, e.g. Convolution, performed by a CNN
layer over the CNN layer input data partitions. It allows to speed-up CNN inference by accelerating the execution
of individual CNN layers on parallel processors such as Graphics Processing Units (GPUs) or Field Programmable
Gate Arrays (FPGAs). The data-level parallelism available within the CNNs is exploited by most of the existing Deep
Learning frameworks, such as TensorFlow [1] or PyTorch [22].

Another type of parallelism available within a CNN is known as task-level parallelism or pipeline parallelism [18, 31]
among the CNN layers. This type of parallelism is related to the streaming nature of CNN-based applications, where the
application accepts different input frames (images) from an input data stream. When a CNN is executed on a platform
with multiple processors, the frames from the input data stream can be processed in a pipelined fashion by different
Manuscript submitted to ACM



Memory-Throughput Trade-off for CNN-based Applications at the Edge 5

Fig. 2. Execution of𝐶𝑁𝑁 2 as a pipeline

layers of the CNN deployed on different processors. Figure 2 shows an example where𝐶𝑁𝑁 2, introduced and explained
in Section 2.1, is executed in a pipelined fashion on a platform with two processors: a Central Processing Unit (CPU)
and a GPU.

The layers of 𝐶𝑁𝑁 2, representing computations within the CNN, are distributed over the platform processors:
layers 𝑙21 and 𝑙22 are executed on the GPU, while layers 𝑙23 and 𝑙24 are executed on the CPU. These layers form two CNN
sub-graphs also referred as partitions [18, 31], annotated as 𝑃2 and 𝑃3. Partition 𝑃2 accepts frames from the application
input data stream, processes these frames as specified by layers 𝑙21 and 𝑙22 and stores the results into a buffer associated
with edge 𝑒223. Partition 𝑃3 accepts the frames processed by partition 𝑃2 from edge 𝑒223 further processes these frames
and produces the output data of𝐶𝑁𝑁 2. Partitions 𝑃2 and 𝑃3 are executed on different processors in the platform and do
not compete for the platform computational resources. Thus, when applied to different data (i.e. different frames), the
partitions can be executed in parallel. In Figure 2, partitions 𝑃2 and 𝑃3 process frames frame 2 and frame 1 in parallel.
This leads to overlapping execution of layers belonging to different partitions and enables for faster inference of 𝐶𝑁𝑁 2

compared to conventional layer-by-layer execution. However, pipelined CNN execution involves memory overheads.
As shown in Figure 2, edge 𝑒223 of 𝐶𝑁𝑁 2 is duplicated between the partitions 𝑃2 and 𝑃3 (see edges 𝑒

2(1)
23 and 𝑒2(2)23 and

the corresponding buffers). Such duplication, called the double-buffering [13], is necessary for execution of the CNN as
a pipeline. It prevents competition between the partitions when accessing data associated with edge 𝑒223. If the double
buffering is not enabled the CNN partitions compete for access to edge 𝑒223, creating stalls in the pipeline and reducing
the CNN throughput.

2.3 CNN-based application

A CNN-based application is an application which requires execution of one or multiple CNNs to perform its functionality.
When deployed on a target edge device, a CNN-based application utilizes memory and computational resources of the
device to execute the CNNs.

The memory of the edge device is used to store parameters (weights and biases) and intermediate computational
results. The platform memory allocated to store the CNNs intermediate computational results is typically defined
as a set of CNN buffers [23], where every CNN buffer stores data associated with one or multiple CNN edges and is
characterized with size, specifying the maximum number of data elements, that can be stored in the buffer.
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Table 1. Naive CNN buffers allocation

𝐵 𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 𝐵7 𝐵8 𝐵9

edges 𝑒112 𝑒123 𝑒124 𝑒134 𝑒145 𝑒212 𝑒
2(1)
23 𝑒

2(2)
23 𝑒234

size 3072 8192 8192 8192 16384 3072 6272 6272 10

The computational resources of the edge device are utilized to perform the functionality of the CNNs. Typically the
CNNs are executed layer-by-layer, i.e. at every moment in time only one CNN layer is executed on the edge platform.
However, as explained in Section 2.2, some of the applications execute CNNs in a pipelined fashion.

In this paper, we formally define a CNN-based application as a tuple ({𝐶𝑁𝑁 1, ...,𝐶𝑁𝑁𝑁 }, 𝐵, 𝑃, 𝐽 , {𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1, ...,
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 |𝑃 |}), where {𝐶𝑁𝑁 1, ..., 𝐶𝑁𝑁𝑁 } are the CNNs utilized by the application; 𝐵 is the set of CNN buffers, utilized
by the application; 𝑃 is the set of CNN partitions; 𝐽 is the set which explicitly defines exploitation of task-level (pipeline)
parallelism by the application. Every element 𝐽𝑖 ∈ 𝐽 contains one or several CNN partitions. If two CNN partitions 𝑃𝑚
and 𝑃𝑥 ,𝑚 ≠ 𝑥 belong to the element 𝐽𝑖 ∈ 𝐽 , the CNN-based application exploits task-level (pipeline) parallelism among
these partitions; 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑖 , 𝑖 ∈ [1, |𝑃 |] is a schedule of partition 𝑃𝑖 which determines the execution order of the layers
within partition 𝑃𝑖 . Formally, we define 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑖 as a set of steps, where at each step one or several layers of partition
𝑃𝑖 are executed.

To illustrate a CNN-based application as defined above we give an example of a CNN-based application 𝐴𝑃𝑃 =

({𝐶𝑁𝑁 1,𝐶𝑁𝑁 2}, {𝐵1, ..., 𝐵9}, {𝑃1, 𝑃2, 𝑃3}, {{𝑃1}, {𝑃2, 𝑃3}}, {{{𝑙11 }, {𝑙
1
2 }, {𝑙

1
3 }, {𝑙

1
4 }, {𝑙

1
5 }}, {{𝑙

2
1 }, {𝑙

2
2 }}, {{𝑙

2
3 }, {𝑙

2
4 }}}), in-

spired by the real-world CNN-based application for adaptive images classification proposed in [29]. To perform its
functionality application 𝐴𝑃𝑃 uses 𝑁 = 2 CNNs: 𝐶𝑁𝑁 1 and 𝐶𝑁𝑁 2, shown in Figure 1(a) and Figure 1(b), respec-
tively. During its execution, application 𝐴𝑃𝑃 accepts a stream of images, also called frames, and adaptively selects
one of its CNNs (𝐶𝑁𝑁 1 or 𝐶𝑁𝑁 2) to perform the image classification of the input frame. 𝐶𝑁𝑁 1 consists of one
partition 𝑃1. 𝐶𝑁𝑁 2 consists of two partitions, 𝑃2 and 𝑃3, executed in a pipelined fashion, as shown in Figure 2 and
explained in Section 2.2. The layers within every partition 𝑃𝑖 , 𝑖 ∈ [1, 3] of application 𝐴𝑃𝑃 are executed sequen-
tially (one-by-one). This is expressed through 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒2, and 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒3 of application 𝐴𝑃𝑃 . For example,
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1 = {{𝑙11 }, {𝑙

1
2 }, {𝑙

1
3 }, {𝑙

1
4 }, {𝑙

1
5 }} specifies that the layers within partition 𝑃1 of application 𝐴𝑃𝑃 are executed in

5 steps, and at 𝑗-th step, 𝑗 ∈ [1, 5], layer 𝑙1
𝑗
is executed.

To store intermediate computational results associated with every edge 𝑒𝑛
𝑖 𝑗
of 𝐶𝑁𝑁 1 and 𝐶𝑁𝑁 2, application 𝐴𝑃𝑃

uses a set of buffers 𝐵, where every edge 𝑒𝑛
𝑖 𝑗
has its own buffer 𝐵𝑘 of size |𝑒𝑛

𝑖 𝑗
.𝑑𝑎𝑡𝑎 |. Hereinafter, we refer to such buffers

allocation as to naive buffers allocation. In total, application 𝐴𝑃𝑃 uses |𝐵 | = 9 CNN buffers. These buffers are shown in
Table 1, where Row 1 lists the layers within every CNN buffer; Row 2 lists the edges using the CNN buffers to store
associated data; Row 3 lists the sizes of the CNN buffers expressed in number of data elements.

2.4 CNN-based application memory cost

The memory cost𝑀 of a CNN-based application, explained in Section 2.3, is estimated as:

𝑀 = 𝑀𝑝𝑎𝑟 +𝑀𝑏𝑢𝑓 (1)

where𝑀𝑝𝑎𝑟 is the amount of memory allocated to store CNN parameters (weights and biases); 𝑀𝑏𝑢𝑓 is the amount
of memory allocated to the CNN buffers.𝑀𝑝𝑎𝑟 and𝑀𝑏𝑢𝑓 are computed in Equation 2 and Equation 3, respectively.
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𝑀𝑝𝑎𝑟 =

𝑁∑︁
𝑛=1

|𝐿 |∑︁
𝑖=1

|𝑝𝑎𝑟𝑖 |∑︁
𝑘=1
|𝑝𝑎𝑟𝑛

𝑖𝑘
| ∗ 𝑝𝑎𝑟_𝑏𝑦𝑡𝑒𝑠 (2)

In Equation 2, 𝑁 is the total number of CNNs of a CNN-based application; 𝑝𝑎𝑟𝑛
𝑖
is the list of parameter tensors

𝑝𝑎𝑟𝑛
𝑖𝑘
, 𝑘 ∈ [1, |𝑝𝑎𝑟𝑖 |] of layer 𝑙𝑛𝑖 of 𝐶𝑁𝑁𝑛 ; 𝑝𝑎𝑟_𝑏𝑦𝑡𝑒𝑠 is the size of one CNN parameter in bytes.

𝑀𝑏𝑢𝑓 =
∑︁
𝐵𝑘 ∈𝐵

𝐵𝑘 .𝑠𝑖𝑧𝑒 ∗ 𝑑𝑎𝑡𝑎_𝑏𝑦𝑡𝑒𝑠 (3)

In Equation 3, 𝐵 = {𝐵1, ..., 𝐵𝐾 } are the CNN buffers; 𝑑𝑎𝑡𝑎_𝑏𝑦𝑡𝑒𝑠 is the size of one data element in bytes; 𝐵𝑘 .𝑠𝑖𝑧𝑒 is
the size of CNN buffer in tokens, computed as:

𝐵𝑘 .𝑠𝑖𝑧𝑒 = max
𝑒𝑛
𝑖 𝑗
∈𝐵𝑘 .𝑒𝑑𝑔𝑒𝑠

|𝑒𝑛𝑖 𝑗 .𝑑𝑎𝑡𝑎 | (4)

In Equation 4, |𝑒𝑛
𝑖 𝑗
.𝑑𝑎𝑡𝑎 | is the total number of elements in data tensor 𝑒𝑛

𝑖 𝑗
.𝑑𝑎𝑡𝑎 associated with edge 𝑒𝑛

𝑖 𝑗
and stored

in buffer 𝐵𝑘 .

2.5 Data processing by parts in the CNN layers

Many CNN operators are characterized with the ability to process data by parts [2]. Formally, such ability can be
expressed as follows: applying a CNN operator 𝑜𝑝 to a data tensor 𝑑𝑎𝑡𝑎 can be represented as a sequence of Φ phases,
where at every phase operator 𝑜𝑝 is applied to a part 𝑑𝑎𝑡𝑎′ of the tensor 𝑑𝑎𝑡𝑎. For example, applying CNN operator 𝑐𝑜𝑛𝑣
to data tensor [1,3,32,32] associated with edge 𝑒112 (shown in Figure 1(a) and explained in Section 2.1) can be represented
as a sequence of 32 phases, where at each phase operator 𝑐𝑜𝑛𝑣 is applied to a part [1,3,5,32] of data [1,3,32,32]. The
CNN memory reduction methodology proposed in [17] exploits such data processing by parts to reduce the CNNs
memory cost. In this methodology every layer 𝑙𝑖 of a CNN processes data in Φ𝑖 phases. At each phase layer 𝑙𝑖 accepts a
part of the input data, applies operator 𝑙𝑖 .𝑜𝑝 to this part of data and produces the corresponding part of the output
data. Each part of input and output data of layer 𝑙𝑖 is characterized with minimum height. The minimum height of the
data parts as well as the number of phases Φ𝑖 are determined by operator 𝑙𝑖 .𝑜𝑝 performed by layer 𝑙𝑖 , hyperparameters
ℎ𝑦𝑝𝑖 of layer 𝑙𝑖 and the data tensors associated with the input and output edges of layer 𝑙𝑖 . Table 2 shows how the
minimum input and output data height and corresponding number of phases are computed for layers performing the
most common CNN operators. In Table 2, Column 1 lists the most common CNN operators 𝑙𝑖 .𝑜𝑝 performed by the
CNN layers; Columns 2 and 3 show the minimum height of input and output data of layer 𝑙𝑖 ; Column 4 shows the
number of phases Φ𝑖 performed by layer 𝑙𝑖 . For example, Row 2 in Table 2 shows that layer 𝑙𝑖 performing operator 𝑐𝑜𝑛𝑣
or operator 𝑝𝑜𝑜𝑙 can process data in Φ𝑖 phases, where Φ𝑖 is computed as the height of data tensor 𝑒𝑖 𝑗 .𝑑𝑎𝑡𝑎 produced by
layer 𝑙𝑖 . At every phase, layer 𝑙𝑖 accepts and processes a data part of minimum height 𝐻 𝑖𝑛

𝑚𝑖𝑛
equal to the layer kernel

size ℎ𝑦𝑝𝑖 .𝑘𝑠 and produces an output data part of height 𝐻𝑜𝑢𝑡
𝑚𝑖𝑛

=1.

Table 2. Data processing by parts in CNN layers

𝑙𝑖 .𝑜𝑝 𝐻 𝑖𝑛
𝑚𝑖𝑛

𝐻𝑜𝑢𝑡
𝑚𝑖𝑛

Φ𝑖

conv, pool ℎ𝑦𝑝𝑖 .𝑘𝑠 1
𝑒𝑖 𝑗 .𝑑𝑎𝑡𝑎.𝐻activation 1 1

FC, loss 𝑒 𝑗𝑖 .𝑑𝑎𝑡𝑎.𝐻 𝑒𝑖 𝑗 .𝑑𝑎𝑡𝑎.𝐻 1
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8 S. Minakova and T. Stefanov

(a) Phase 1 of layer 𝑙12 (b) Phase 2 of layer 𝑙12

Fig. 3. Execution of layers 𝑙11 and 𝑙12 of𝐶𝑁𝑁 1 with data processing by parts

When two layers 𝑙𝑖 and 𝑙 𝑗 process data by parts, only the part of data exchanged between these layers, 𝑒𝑖 𝑗 .𝑑𝑎𝑡𝑎′,
has to be stored in the memory of a target edge device at every moment in time [17]. The size of the minimum
data part 𝑒𝑖 𝑗 .𝑑𝑎𝑡𝑎′ exchanged between layers 𝑙𝑖 and 𝑙 𝑗 is computed as 𝑒𝑖 𝑗 .𝑑𝑎𝑡𝑎′=[𝑒𝑖 𝑗 .𝑏𝑎𝑡𝑐ℎ, 𝑒𝑖 𝑗 .𝐶ℎ, 𝐻 ′, 𝑒𝑖 𝑗 .𝑊 ], where
𝑒𝑖 𝑗 .𝑏𝑎𝑡𝑐ℎ, 𝑒𝑖 𝑗 .𝐶ℎ and 𝑒𝑖 𝑗 .𝑊 are the batch size, number of channels and width of data 𝑒𝑖 𝑗 ; 𝐻 ′ ≤ 𝑒𝑖 𝑗 .𝐻 is computed as:

𝐻 ′ = max(𝐻𝑜𝑢𝑡𝑚𝑖𝑛 (𝑙𝑖 ), 𝐻
𝑖𝑛
𝑚𝑖𝑛 (𝑙 𝑗 )) (5)

where 𝐻𝑜𝑢𝑡
𝑚𝑖𝑛
(𝑙𝑖 ) is the minimum height of data produced by layer 𝑙𝑖 ; 𝐻 𝑖𝑛𝑚𝑖𝑛 (𝑙 𝑗 ) is minimum height of data accepted as

input by layer 𝑙 𝑗 ; 𝐻𝑜𝑢𝑡𝑚𝑖𝑛
(𝑙𝑖 ) and 𝐻 𝑖𝑛𝑚𝑖𝑛 (𝑙 𝑗 ) are determined using Table 2.

To illustrate how data processing by parts reduces the memory cost of a CNN-based application, we show an example
where layers 𝑙11 and 𝑙12 of 𝐶𝑁𝑁 1, shown in Figure 1(a) and used by application 𝐴𝑃𝑃 explained in Section 2.3, process
data by parts. The example is illustrated in Figure 3, where layer 𝑙11 has 32 phases and layer 𝑙12 has 32 phases. Execution
of the phases of layer 𝑙11 and layer 𝑙12 is performed in a specific order. We formally define this order as a schedule shortly
written as {[{𝑙11 }]x5, {𝑙

1
2 }, [{𝑙

1
1 }, {𝑙

1
2 }]x27, [𝑙

1
2 ]x4}. In the defined schedule, the square brackets enclose the repetitive

(sub-sequences of) steps. At every step, a phase of a CNN layer is executed. During the first 5 steps, the first 5 phases of
layer 𝑙11 are executed, which is expressed at [{𝑙11 }]x5 in the aforementioned schedule. At every phase, layer 𝑙11 produces
data part of shape [1, 3, 1, 32] in buffer 𝐵1, used to store the data exchanged between layers 𝑙11 and 𝑙12 as specified in
Table 1 in Section 2.3. After the first 5 steps, data part of shape [1, 3, 5, 32] is accumulated in buffer 𝐵1. This part is
sufficient to execute the first phase of layer 𝑙12 . Thus, at step 6 of the schedule, the first phase of layer 𝑙12 is executed (see
Figure 3 (a)). To execute the second phase of layer 𝑙12 (see Figure 3 (b)), data of shape [1, 3, 5, 32] should be accumulated
in 𝐵1. However, some of this data is already in 𝐵1 because the data between subsequent execution steps of layer 𝑙12 is
overlapping. When the overlapping part is stored in buffer 𝐵1, only new (non-overlapping) data should be produced in
𝐵1 to enable the execution of the second phase of layer 𝑙12 . This new data can be produced by execution of one phase
of layer 𝑙11 . Thus, phases 6-32 of layer 𝑙

1
1 and phases 2-28 of layer 𝑙12 are executed in an alternating manner, where a

phase of layer 𝑙11 is followed by a phase of layer 𝑙12 , and this pattern repeats, until all phases of 𝑙11 are executed. This
is expressed as [{𝑙11 }, {𝑙

1
2 }]x27 in the aforementioned schedule. Finally, the last 4 phases of layer 𝑙12 are executed. The

maximum amount of data, stored between layers 𝑙11 and 𝑙22 at any time of layers execution corresponds to data part
of shape [1, 3, 5, 32], accumulated in 𝐵1. Thus, when layers 𝑙11 and 𝑙12 of 𝐶𝑁𝑁 1 process data by parts, the size of buffer
𝐵1 is 1 * 3 * 5 * 32 = 480 data elements, which is 3072/480 ≈ 6.4 times less, compared to the size of buffer 𝐵1 given in
Table 1 in Section 2.3. Thus, by introducing data processing by parts into the CNN layers, the methodology in [17]
reduces the memory cost of a CNN. However, data processing by parts may cause CNN execution time overheads (e.g.
CNN layers may require time to switch among the data parts), leading to CNN throughput decrease. Thus, processing
data by parts involves a trade-off between the CNN memory cost and the CNN throughput. In this paper, similarly to
the methodology in [17], we exploit this trade-off to reduce the CNNs memory cost.
Manuscript submitted to ACM
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It is important to note that the reduction of application buffer sizes from data processing by parts requires the
layers of a CNN to be executed in a specific order formally expressed as a schedule. For example, as explained above,
layers 𝑙11 and 𝑙12 are executed in phases where the execution order of the phases is defined by the following schedule:
{[{𝑙11 }]x5, {𝑙

1
2 }, [{𝑙

1
1 }, {𝑙

1
2 }]x27, [𝑙

1
2 ]x4}. To find a proper schedule, i.e., execution order of phases in a CNN, similarly to

the methodology in [17] we: 1) perform conversion of the CNN into a functionally equivalent Cyclo-Static Dataflow
(CSDF) model of computation [5], accepted as an input by many embedded systems analysis and design tools. For
the description of a CNN represented as a CSDF model and details of the CNN-to-CSDF model conversion, we refer
the reader to the methodology proposed in [17]; 2) use the 𝑆𝐷𝐹3 embedded systems analysis and design tool [28]
to automatically derive the execution order (schedule) of the phases within a CNN. We also use the 𝑆𝐷𝐹3 tool to
automatically compute the sizes of CNN buffers, when the CNN is executed with phases.

3 MOTIVATIONAL EXAMPLE

In this section we motivate the necessity of devising a new memory reduction methodology for deployment of CNN-
based applications at the edge. We show an example where we design a CNN-based application executed on the NVIDIA
Jetson TX2 edge platform [20]. To perform its functionality the application requires execution of the Mobilenet V2
CNN [24]. The CNN performs image classification on the ImageNet dataset [9] composed of RGB images with 224
pixels height and width. The application poses requirements on the Mobilenet V2 CNN: it requires the CNN to utilize
less than 8 MegaBytes (MB) of memory, demonstrate more than 70% accuracy, and no less than 71 frames per second
(fps) throughput.

As the baseline implementation of the Mobilenet V2 CNN, we take a pre-trained CNN from the applications library
of the well-known and widely used TensorFlow DL framework [1]. The baseline CNN is trained and inferred with the
original 32-bit floating-point (fp32) weights and data precision. When executed on the NVIDIA Jetson TX2 platform, the
baseline CNN occupies 58.63 MB of memory, demonstrates 72.09 % accuracy and 46 fps throughput. Thus, the baseline
CNN meets the accuracy requirement but does not meet the memory and throughput requirements.

To reduce the CNN memory cost and increase the CNN throughput we use the quantization methodology offered
by the TensorFlow DL framework. The quantization methodology reduces the precision of the CNN parameters and
data from the original 32-bit floating-point (fp32) precision to a lower precision such as a 16-bit floating-point (fp16)
precision or a 8-bit integer (int) precision, thereby reducing the CNN memory cost and increasing the CNN throughput.
The TensorFlow framework offers several types of quantization, varying in terms of target precision used to store CNN
parameters and weights. The quantization types and their respective target precision are shown in Table 3. For example,
the half-quantization, shown in Row 4, reduces the precision of CNN parameters and data to fp16 precision.

The characteristics of the baseline CNN after quantization, executed on the Jetson TX2 platform, are shown in Table 4.
Column 1 lists the types of quantization. Column 2 shows the top-1 images classification accuracy (in %). Column 3
shows the CNN throughput (in fps). The CNN throughput is not shown for the CNNs with int- and mixed-quantization

Table 3. Quantization in the TensorFlow DL framework [1]

Quantization
name data par
No (baseline) fp32 fp32
Half fp16 fp16
Mixed fp16 int
Int int int

Table 4. MobileNet v2 CNN after quantization

Quantization A (%) T (fps) M (MB)
No (baseline) 72.09 46 58.63
Half 71.06 79 29.3
Mixed 63.51 - 21.54
Int 60.03 - 14.65
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Table 5. MobileNet v2 CNN after quantization and buffers
reuse proposed in [23]

Quantization A (%) T (fps) M (MB)
No (baseline) 72.09 46 20.32
Half 71.06 79 10.16
Mixed 63.51 - 7.46
Int 60.03 - 5.08

Table 6. MobileNet v2 CNN after quantization and data
processing by parts proposed in [17]

Quantization A (%) T (fps) M (MB)
No (baseline) 72.09 40 16.2
Half 71.06 68 8.1
Mixed 63.51 - 4.61
Int 60.03 - 4.04

Quantization A (%) T (fps) M (MB)
No (baseline) 72.09 41 15.93
Half 71.06 71 7.96
Mixed 63.51 - 4.47
Int 60.03 - 3.98

Table 7. MobileNet v2 CNN after quantization and our methodology

because the Jetson TX2 platform does not support integer computations. Column 4 shows the CNN memory cost (in
MB).

Table 4 shows that the CNN quantization leads to significant reduction of the CNN memory cost as well as increase
of the CNN throughput. For example, the CNN with half-quantization, shown in Row 3 in Table 4, has 2 times smaller
memory cost and ≈ 1.72 times higher throughput, compared to the baseline CNN, shown in Row 2. However, the
memory reduction achieved by applying any type of quantization, shown in Table 4, is insufficient to meet the 8 MB
memory requirement. Moreover, both int-quantization and mixed quantization significantly reduce the CNN accuracy,
dropping it below the requirement of 70% accuracy.

To further reduce the memory cost of the quantized CNNs, shown in Table 4, we apply existing CNN memory
reuse methodologies proposed in [23] and [17]. Table 5 shows the characteristics of the MobileNet v2 CNN after the
quantization and the buffers reuse methodology proposed in [23]. A comparison between Table 4 and Table 5 shows
that the methodology in [23] enables to further reduce the CNN memory cost without decreasing the CNN accuracy or
throughput. For example, the CNN with half-quantization and buffers reuse has ≈ 3 times smaller memory cost but
equal accuracy and throughput compared to the CNN with half-quantization and no buffers reuse (see Row 3 in Table 4
and in Table 5). However, none of the CNNs shown in Table 5 meets all three requirements posed on the CNN.

Analogously, Table 6 shows the characteristics of the MobileNet v2 CNN after the quantization and the methodology
proposed in [17]. A comparison between Table 4 and Table 6 shows that the methodology in [17] enables to further
reduce the CNN memory cost without decreasing the CNN accuracy. However, the methodology in [17] significantly
reduces the CNN throughput. For example, the throughput of the CNN with half-quantization and the memory reuse
proposed in [17] is reduced by 11 fps compared to the CNN with half-quantization and no memory reuse (see Row 3,
Column 3 in Table 4 and in Table 6). Among the CNNs shown in Table 6, none of the CNNs meets all three requirements,
posed by the application.

Table 7 shows the characteristics of the MobileNet v2 CNN after quantization combined with our novel methodology.
As shown in Row 3 in Table 7, after the half-quantization combined with our methodology, the Mobilenet V2 CNN
occupies 7.96MB ofmemory and demonstrates 71.06 % accuracy and 71 fps throughput. This means that ourmethodology
enables the Mobilenet V2 CNN to meet all three requirements posed on the CNN.
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Based on the above motivational example and analysis, we conclude that some CNN-based applications cannot meet

their respective requirements by utilizing existing memory reduction methodologies but can meet these requirements by

utilizing our proposed methodology in combination with quantization.

4 METHODOLOGY

In this section we present our memory-throughput trade-off methodology for CNN-based applications at the edge. The
design flow of our methodology is shown in Figure 4. Our methodology accepts as inputs a CNN-based application,
described in Section 2.3, a memory constraint (in Megabytes) and an optional throughput constraint (in frames per
second) posed on the CNN-based application. As an output, our methodology produces a final CNN-based application
that is functionally equivalent to the input CNN-based application, but characterized with reduced memory cost and
possibly decreased throughput. Our methodology consists of three main steps.

Fig. 4. Our methodology design flow

At Step 1, we introduce CNN buffer reuse into the CNN-based application, thereby reducing the application memory
cost. This step is performed automatically using our buffers reuse algorithm proposed in Section 5. As an output, this
step provides a set of CNN buffers to be reused among the CNNs and within the CNNs of the CNN-based application.

If the memory reduction introduced by Step 1 is insufficient to fit a CNN-based application within the given memory
constraint, at Step 2, we try to further reduce the the memory cost of the CNN-based application at the expense of
application throughput decrease. To do so, we introduce data processing by parts (explained in Section 2.5) combined
with buffers reuse (as proposed in Section 5) to the CNN-based application. We note that unlike the methodology in [17],
where the data processing by parts has been originally proposed, Step 2 of our methodology does not introduce data
processing by parts into every layer of every CNN used by the application. Instead, Step 2 searches for a subset of
layers such that data processing by parts in these layers combined with buffers reuse introduces a balanced memory-
throughput trade-off to the CNN-based application. This step is performed automatically using our buffers reduction
algorithm proposed in Section 6. As explained in Section 2.5, the introduction of data processing by parts in a CNN
requires the layers of the CNN to be executed in a specific order, defined by a proper schedule. Therefore, our buffers
reduction algorithm also finds and enforces a specific schedule in the CNNs used by the application. As an output, Step
2 provides a CNN-based application with buffers reuse and data processing by parts.

At Step 3, we use the CNN-based application, obtained at Step 2, to derive the final CNN-based application provided
as output by our methodology. This step is described in Section 7.
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5 BUFFERS REUSE ALGORITHM

In this section, we present our buffers reuse algorithm, Algorithm 1, which is a greedy algorithm. It visits, one-by-one,
every edge in every CNN of a CNN-based application and allocates a CNN buffer to this edge.When possible, Algorithm 1
reuses CNN buffers among the visited edges, thereby introducing memory reuse into the CNN-based application and
reducing the application memory cost. Algorithm 1 accepts as an input a CNN-based application with naive buffers
allocation, explained in Section 2.3. As an output Algorithm 1 produces a set of buffers 𝐵, reused among all the CNNs of

Algorithm 1: Buffers reuse
Input: 𝐴𝑃𝑃𝑖𝑛 = ( {𝐶𝑁𝑁 1, ...,𝐶𝑁𝑁𝑁 , 𝐵𝑛𝑎𝑖𝑣𝑒 , 𝑃, 𝐽 , {𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1, ..., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 |𝑃 | }})
Result: 𝐵

1 𝐵 ← ∅;
2 for 𝑃𝑚 ∈ 𝑃 do
3 for 𝑒𝑛

𝑖 𝑗
∈ 𝑃𝑚 .𝐸 do

4 𝐵𝑟𝑒𝑢𝑠𝑒 ← ∅;
5 for 𝐵𝑘 ∈ 𝐵 do
6 𝑠𝑢𝑖𝑡𝑠 = 𝑡𝑟𝑢𝑒 ;
7 for 𝑒𝑟𝑧𝑞 ∈ 𝐵𝑘 .𝑒𝑑𝑔𝑒𝑠 do
8 find 𝑃𝑥 : 𝑒𝑟𝑧𝑞 ∈ 𝑃𝑥 ;
9 if𝑚 ≠ 𝑥 then
10 if ∃𝐽𝑟 ∈ 𝐽 : {𝑃𝑚, 𝑃𝑥 } ∈ 𝐽𝑟 then
11 𝑠𝑢𝑖𝑡𝑠 = 𝑓 𝑎𝑙𝑠𝑒 ;

12 else
13 𝑠𝑡𝑎𝑟𝑡𝑧 ← find in 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑚 first step of 𝑙𝑟𝑧 ;
14 𝑒𝑛𝑑𝑞 ← find in 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑚 last step of 𝑙𝑟𝑞 ;
15 𝑠𝑡𝑎𝑟𝑡𝑖 ← find in 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑚 first step of 𝑙𝑛

𝑖
;

16 𝑒𝑛𝑑 𝑗 ← find in 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑚 last step of 𝑙𝑛
𝑗
;

17 if [𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑 𝑗 ] ∩ [𝑠𝑡𝑎𝑟𝑡𝑧 , 𝑒𝑛𝑑𝑞 ] ≠ ∅ then
18 𝑠𝑢𝑖𝑡𝑠 = 𝑓 𝑎𝑙𝑠𝑒 ;

19 if 𝑠𝑢𝑖𝑡𝑠 = 𝑡𝑟𝑢𝑒 then
20 𝐵𝑟𝑒𝑢𝑠𝑒 ← 𝐵𝑟𝑒𝑢𝑠𝑒 + 𝐵𝑘 ;

21 if 𝐵𝑟𝑒𝑢𝑠𝑒 = ∅ then
22 𝑒𝑑𝑔𝑒𝑠 ← ∅; 𝑒𝑑𝑔𝑒𝑠 ← 𝑒𝑑𝑔𝑒𝑠 + 𝑒𝑛

𝑖 𝑗
;

23 find 𝐵𝑧 in 𝐵𝑛𝑎𝑖𝑣𝑒 such that 𝑒𝑛
𝑖 𝑗
∈ 𝐵𝑧 .𝑒𝑑𝑔𝑒𝑠 ;

24 𝐵𝑏𝑒𝑠𝑡 = new shared buffer (𝑒𝑑𝑔𝑒𝑠 , 𝐵𝑧 .𝑠𝑖𝑧𝑒) ;
25 𝐵 ← 𝐵 + 𝐵𝑏𝑒𝑠𝑡 ;
26 else
27 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 = 𝑖𝑛𝑓 ;
28 for 𝐵𝑘 ∈ 𝐵𝑟𝑒𝑢𝑠𝑒 do
29 find 𝐵𝑧 in 𝐵𝑛𝑎𝑖𝑣𝑒 such that 𝑒𝑛

𝑖 𝑗
∈ 𝐵𝑧 .𝑒𝑑𝑔𝑒𝑠 ;

30 𝑐𝑜𝑠𝑡 =𝑚𝑎𝑥 (𝐵𝑧 .𝑠𝑖𝑧𝑒 − 𝐵𝑘 .𝑠𝑖𝑧𝑒, 0) ;
31 if 𝑐𝑜𝑠𝑡 < 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 then
32 𝐵𝑏𝑒𝑠𝑡 = 𝐵𝑘 ;
33 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 = 𝑐𝑜𝑠𝑡 ;

34 𝐵𝑏𝑒𝑠𝑡 .𝑒𝑑𝑔𝑒𝑠 ← 𝐵𝑏𝑒𝑠𝑡 .𝑒𝑑𝑔𝑒𝑠 + 𝑒𝑛𝑖 𝑗 ;
35 𝐵𝑏𝑒𝑠𝑡 .𝑠𝑖𝑧𝑒 = 𝐵𝑏𝑒𝑠𝑡 .𝑠𝑖𝑧𝑒 + 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 ;

36 return 𝐵
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Table 8. Reused CNN buffers

𝐵 𝐵1 𝐵2 𝐵3 𝐵4

edges 𝑒112, 𝑒
1
34, 𝑒

2
12 𝑒123, 𝑒

1
45, 𝑒

2(1)
23 𝑒124, 𝑒

2(2)
23 𝑒234

size 8192 16384 8192 10

the CNN-based application. An example of buffers 𝐵 generated by Algorithm 1 for the example CNN-based application
𝐴𝑃𝑃 , explained in Section 2.3, is given in Table 8.

Unlike the naive CNN buffers allocation given in Table 1, the buffers in Table 8 are reused among CNNs and within
the CNNs of application 𝐴𝑃𝑃 . For example, as shown in Column 2 in Table 8, CNN buffer 𝐵1, generated by Algorithm 1,
is reused among edges 𝑒112 and 𝑒

1
34 of 𝐶𝑁𝑁 1 and edge 𝑒212 of 𝐶𝑁𝑁 2. We note that according to Equation 3, explained

in Section 2.4, the reused buffers 𝐵, produced by Algorithm 1, occupy 32778* 𝑑𝑎𝑡𝑎_𝑏𝑦𝑡𝑒𝑠 bytes of memory, while the
initial, non-reuse buffers, given in Table 1 in Section 2.3, occupy 59658* 𝑑𝑎𝑡𝑎_𝑏𝑦𝑡𝑒𝑠 bytes of memory.

In Line 1, Algorithm 1 sets the CNN buffers 𝐵 to an empty set. In Lines 4 to 35, Algorithm 1 visits every edge 𝑒𝑛
𝑖 𝑗
of

every partition 𝑃𝑚 ∈ 𝑃 of the CNN-based application. In Line 4, Algorithm 1 creates an empty list 𝐵𝑟𝑒𝑢𝑠𝑒 of existing
CNN buffers that can be assigned to edge 𝑒𝑛

𝑖 𝑗
. In Lines 5 to 18, Algorithm 1 checks every buffer 𝐵𝑘 ∈ 𝐵, and determines

if buffer 𝐵𝑘 can be assigned to edge 𝑒𝑛
𝑖 𝑗
. Buffer 𝐵𝑘 cannot be assigned to edge 𝑒𝑛

𝑖 𝑗
if it is already assigned to another edge

𝑒𝑟𝑧𝑞 , used by the CNN-based application simultaneously with edge 𝑒𝑛
𝑖 𝑗
, i.e., if: 1) edges 𝑒𝑟𝑧𝑞 and 𝑒𝑛

𝑖 𝑗
belong to different

partitions and the CNN-based application exploits parallelism between these partitions (conditions in Line 9 and Line
10 are met). For example, buffer 𝐵1 of application 𝐴𝑃𝑃 , assigned to edge 𝑒212 of partition 𝑃2 cannot be also assigned
to edge 𝑒234 of partition 𝑃3 because the application 𝐴𝑃𝑃 exploits pipeline parallelism between partitions 𝑃2 and 𝑃3;
2) edges 𝑒𝑟𝑧𝑞 and 𝑒𝑛

𝑖 𝑗
, belong to one and the same partition (condition in Line 9 is not met) and simultaneously use

the platform memory. To determine whether edges 𝑒𝑟𝑧𝑞 and 𝑒𝑛
𝑖 𝑗

use the platform memory simultaneously, in Lines
13 to 16 Algorithm 1 takes the schedule of partition 𝑃𝑚 , i.e, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑚 , and finds in this schedule intervals (in steps)
when the platform memory is used by edges 𝑒𝑟𝑧𝑞 and 𝑒𝑛

𝑖 𝑗
. Edge 𝑒𝑟𝑧𝑞 starts to use the platform memory when layer 𝑙𝑟𝑧

is first executed, i.e., when layer 𝑙𝑟𝑧 first writes data associated with edge 𝑒𝑟𝑧𝑞 to the platform memory. Edge 𝑒𝑟𝑧𝑞 stops
using the platform memory when layer 𝑙𝑟𝑞 is last executed, i.e., when layer 𝑙𝑟𝑞 reads the (last part of) data associated
with edge 𝑒𝑟𝑧𝑞 from the platform memory. Analogously, edge 𝑒𝑛

𝑖 𝑗
starts to use the platform memory when layer 𝑙𝑛

𝑖

is first executed and stops using the platform memory when layer 𝑙𝑛
𝑗
is last executed. Thus, edges 𝑒𝑟𝑧𝑞 and 𝑒𝑛

𝑖 𝑗
use

the platform memory simultaneously if the steps interval of memory usage of 𝑒𝑟𝑧𝑞 overlaps with the interval of 𝑒𝑛
𝑖 𝑗
,

i.e., if the condition in Line 17 is met. For example, buffer 𝐵2 of the example application 𝐴𝑃𝑃 , assigned to edge 𝑒123 of
partition 𝑃1 cannot be also assigned to edge 𝑒124 of partition 𝑃1. The layers within partition 𝑃1 are executed according to
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1 = {{𝑙11 }, {𝑙

1
2 }, {𝑙

1
3 }, {𝑙

1
4 }, {𝑙

1
5 }}, explained in Section 2.3. According to 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1, edge 𝑒123 uses the platform

memory in steps interval [2,3], and edge 𝑒124 uses the platform memory in steps interval [2,4]. Intervals [2,3] and [2,4]
overlap, which means that edges 𝑒123 and 𝑒

1
24 use the platform memory simultaneously and cannot be assigned to one

buffer. If neither of conditions 1) and 2) mentioned above is met, buffer 𝐵𝑘 can be reused for storage of data associated
with edge 𝑒𝑛

𝑖 𝑗
and is added to the list 𝐵𝑟𝑒𝑢𝑠𝑒 in Line 20.

In Lines 21 to 35 Algorithm 1 finds a reuse buffer 𝐵𝑏𝑒𝑠𝑡 , which is best suited to store the data associated with edge 𝑒𝑛
𝑖 𝑗
.

If list 𝐵𝑟𝑒𝑢𝑠𝑒 , created in Lines 4 to 20, is empty (the condition in Line 21 is met), in Lines 21 to 25, Algorithm 1 defines
𝐵𝑏𝑒𝑠𝑡 as a new buffer and allocates this buffer to edge 𝑒𝑛

𝑖 𝑗
. The size of buffer 𝐵𝑏𝑒𝑠𝑡 is computed as the size of buffer

𝐵𝑧 ∈ 𝐵𝑛𝑎𝑖𝑣𝑒 allocated to edge 𝑒𝑛
𝑖 𝑗
in the naive buffers allocation.
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Otherwise, in Lines 27 to 35, Algorithm 1 selects 𝐵𝑏𝑒𝑠𝑡 from the list 𝐵𝑟𝑒𝑢𝑠𝑒 . Buffer 𝐵𝑏𝑒𝑠𝑡 is selected such that the
increase in memory cost, computed in Line 30, and introduced by reusing of buffer 𝐵𝑏𝑒𝑠𝑡 to store data associated with
edge 𝑒𝑛

𝑖 𝑗
is minimal. In Lines 34 to 35, Algorithm 1 assigns buffer 𝐵𝑏𝑒𝑠𝑡 to edge 𝑒𝑛

𝑖 𝑗
and increases the size of buffer 𝐵𝑏𝑒𝑠𝑡

by the memory cost 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 , introduced into the CNN-based application by reuse of buffer 𝐵𝑏𝑒𝑠𝑡 for storage of data
associated with edge 𝑒𝑛

𝑖 𝑗
. Finally, in Line 36, Algorithm 1 returns the CNN buffers 𝐵.

6 BUFFERS REDUCTION ALGORITHM

In this section, we present our buffers sizes reduction algorithm, Algorithm 2. This algorithm introduces data processing
by parts (explained in Section 2.5) and buffers reuse (as proposed in Section 5) to a CNN-based application. To enable a
balanced memory-throughput trade-off in the application, data processing by parts is introduced only in a subset of
layers used by the application. To find this subset, Algorithm 2 uses a multi-objective Genetic Algorithm (GA) [25]:
a well-known heuristic approach, widely used for finding optimal solutions for complex design space exploration
problems.

Algorithm 2 accepts as inputs: 1) a CNN-based application with naive buffers allocation, explained in Section 2.3; 2)
a list of reused buffers 𝐵 obtained using Algorithm 1, presented in Section 5; 3) Constraints𝑀𝑐 and 𝑇𝑐 posed on the
application. The memory constraint𝑀𝑐 specifies the maximum amount of memory (in MegaBytes) that can be occupied
by the CNN-based application. The throughput constraint 𝑇𝑐 is defined as a set {𝑇𝑐1 , ...,𝑇

𝑐
𝑁
}, where 𝑇𝑐𝑛 , 𝑛 ∈ [1, 𝑁 ]

specifies the minimum throughput (in fps) which has to be demonstrated by 𝐶𝑁𝑁𝑛 used by the application; 4) A set of
standard user-defined GA parameters 𝐺𝐴_𝑝𝑎𝑟 such as initial population size, number of GA iterations, mutation and
crossover probabilities [25]. As outputs, Algorithm 2 provides: 1) a CNN-based application functionally equivalent to
the input application but utilizing data processing by parts and buffers reuse as explained above. Compared to the input
application, the output application is characterized with reduced memory cost and possibly decreased throughput. Also,
due to the utilization of data processing by parts, the output application may execute CNN layers in a different order
than the input application; 2) a set of phases Φ which specifies the number of phases in every layer of every CNN used
by the application. These two outputs are required to generate the final application as proposed in Section 7.

As an example, taking CNN-based application 𝐴𝑃𝑃 = ({𝐶𝑁𝑁 1,𝐶𝑁𝑁 2}, 𝐵𝑛𝑎𝑖𝑣𝑒 , 𝑃 , 𝐽 , {{{𝑙11 }, {𝑙
1
2 }, {𝑙

1
3 }, {𝑙

1
4 }, {𝑙

1
5 }},

{{𝑙21 }, {𝑙
2
2 }}, {{𝑙

2
3 }, {𝑙

2
4 }}}) introduced in Section 2.3, reused buffers 𝐵 shown in Table 8, constraints𝑀𝑐 = 0.02MegaBytes

(20000 bytes), 𝑇𝑐 = {0, 0}, and standard GA parameters 𝐺𝐴_𝑝𝑎𝑟 [25], Algorithm 2 produces as output application
𝐴𝑃𝑃 ′ = ({𝐶𝑁𝑁 1,𝐶𝑁𝑁 2},𝐵𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , 𝑃 , 𝐽 , {{𝑙11 }, {𝑙

1
2 }, [{𝑙

1
3 }, {𝑙

1
4 }, {𝑙

1
5 }]x32}, {{𝑙

2
1 }, {𝑙

2
2 }}, {{𝑙

2
3 }, {𝑙

2
4 }}}) and a set of phases

Φ = {(𝑙11 , 1), (𝑙
1
2 , 1), (𝑙

1
3 , 32), (𝑙

1
4 , 32), (𝑙

1
5 , 32), (𝑙

2
1 , 1), (𝑙

2
2 , 1), (𝑙

2
2 , 1), (𝑙

2
2 , 1)}. Application 𝐴𝑃𝑃 ′ uses buffers 𝐵𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ,

produced by Algorithm 2 and shown in Table 9. We note that according to Equation 3, the reduced CNN buffers
produced by Algorithm 2 occupy 19712* 𝑑𝑎𝑡𝑎_𝑏𝑦𝑡𝑒𝑠 bytes of memory (see Table 9), while the CNN buffers obtained
by only using buffers reuse occupy 32778* 𝑑𝑎𝑡𝑎_𝑏𝑦𝑡𝑒𝑠 bytes of memory (see Table 8). The difference occurs because,
besides buffers reuse, Algorithm 2 introduces data processing by parts to layers 𝑙13 , 𝑙

1
4 , and 𝑙

1
5 of 𝐶𝑁𝑁 1. To enable for

buffers reduction with data processing by parts, Algorithm 2 enforces a specific execution order for the layers of𝐶𝑁𝑁 1

which processes data by parts. This is expressed in 𝐴𝑃𝑃 ′ through 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ′1 = {{𝑙
1
1 }, {𝑙

1
2 }, [{𝑙

1
3 }, {𝑙

1
4 }, {𝑙

1
5 }]x32}. The set

Table 9. reduced CNN buffers

𝐵 𝐵1 𝐵2 𝐵3 𝐵4

edges 𝑒112, 𝑒
1
34,𝑒

2
12 𝑒123, 𝑒

2(1)
23 𝑒124, 𝑒

2(2)
23 𝑒145, 𝑒

2
34

size 3072 8192 8192 256

Table 10. Chromosome

𝑙11 𝑙12 𝑙13 𝑙14 𝑙15 𝑙21 𝑙22 𝑙23 𝑙24
0 0 1 1 1 0 0 0 0
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Algorithm 2: Buffers reduction
Input: 𝐴𝑃𝑃𝑖𝑛 = ( {𝐶𝑁𝑁 1, ...,𝐶𝑁𝑁𝑁 }, 𝐵𝑛𝑎𝑖𝑣𝑒 , 𝑃, 𝐽 , {𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1, ..., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 |𝑃 | }), 𝐵,𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = (𝑀𝑐 ,𝑇𝑐 ),𝐺𝐴_𝑝𝑎𝑟
Result: 𝐴𝑃𝑃𝑜𝑢𝑡 = ( {𝐶𝑁𝑁 1, ...,𝐶𝑁𝑁𝑁 }, 𝐵𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , 𝑃, 𝐽 , {𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒′1, ..., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒′|𝑃 | }),Φ

1 𝐴𝑃𝑃𝑜𝑢𝑡 ← ({𝐶𝑁𝑁 1, ...,𝐶𝑁𝑁𝑁 }, 𝐵, 𝑃, 𝐽 , {𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒1, ..., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 |𝑃 | }) ;
2 𝑀 = compute memory cost of 𝐴𝑃𝑃𝑜𝑢𝑡 , using Equation 1;
3 if 𝑀 ≤ 𝑀𝑐 then
4 Φ← {(𝑙𝑛

𝑖
, 1) }, 𝑛 ∈ [1, 𝑁 ], 𝑖 ∈ [1, |𝐿𝑛 | ];

5 return (𝐴𝑃𝑃𝑜𝑢𝑡 ,Φ) ;
6 𝑋 ← binary string of length

∑𝑁
𝑛=1 |𝐿𝑛 |;

7 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 =𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 (𝐴𝑃𝑃𝑖𝑛, 𝑋 ),−𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐴𝑃𝑃𝑖𝑛, 𝑋, 1), ...,−𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐴𝑃𝑃𝑖𝑛, 𝑋, 𝑁 )) ;
8 𝑝𝑎𝑟𝑒𝑡𝑜 ← 𝐺𝐴(𝑋,𝐺𝐴_𝑝𝑎𝑟, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠) ;
9 𝑆 ← ∅;

10 for 𝑋 ∈ 𝑝𝑎𝑟𝑒𝑡𝑜 do
11 if 𝑀 = 𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 (𝐴𝑃𝑃𝑖𝑛, 𝑋 ) ≤ 𝑀𝑐 ∧𝑇𝑛 = 𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝐴𝑃𝑃𝑖𝑛, 𝑋,𝑛) ≥ 𝑇𝑐

𝑛 ∈ 𝑇𝑐 , 𝑛 ∈ [1, 𝑁 ] then
12 𝑆 ← 𝑆 ∪𝑋 ;

13 if 𝑆 ≠ ∅ then
14 𝑋𝑏𝑒𝑠𝑡 = select from 𝑆 chromosome 𝑋 with minimal memory footprint𝑀 = 𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 (𝐴𝑃𝑃𝑖𝑛, 𝑋 ) ;
15 else
16 𝑋𝑏𝑒𝑠𝑡 = select from 𝑝𝑎𝑟𝑒𝑡𝑜 chromosome 𝑋 with minimal memory footprint𝑀 = 𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 (𝐴𝑃𝑃𝑖𝑛, 𝑋 ) ;
17 (𝐴𝑃𝑃𝑜𝑢𝑡 ,Φ) ← 𝐷𝑒𝑟𝑖𝑣𝑒𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐵𝑢𝑓 𝑓 𝑠 (𝐴𝑃𝑃𝑖𝑛, 𝑋𝑏𝑒𝑠𝑡 ) ;
18 return (𝐴𝑃𝑃𝑜𝑢𝑡 ,Φ) ;

19 Function 𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦(𝐴𝑃𝑃𝑖𝑛, 𝑋):
20 (𝐴𝑃𝑃𝑋 ,Φ) ← 𝐷𝑒𝑟𝑖𝑣𝑒𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐵𝑢𝑓 𝑓 𝑠 (𝐴𝑃𝑃𝑖𝑛, 𝑋 ) ;
21 𝑀 = compute memory cost of 𝐴𝑃𝑃𝑋 , using Equation 1;
22 return𝑀 ;

23 Function 𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝐴𝑃𝑃𝑖𝑛, 𝑋,𝑛):
24 (𝐴𝑃𝑃𝑋 ,Φ) ← 𝐷𝑒𝑟𝑖𝑣𝑒𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐵𝑢𝑓 𝑓 𝑠 (𝐴𝑃𝑃𝑖𝑛, 𝑋 ) ;
25 𝑇𝑛 = evaluate throughput of𝐶𝑁𝑁𝑛 used by 𝐴𝑃𝑃𝑋 and executed with phases Φ;
26 return𝑇𝑛 ;

27 Function 𝐷𝑒𝑟𝑖𝑣𝑒𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑊𝑖𝑡ℎ𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐵𝑢𝑓 𝑓 𝑠(𝐴𝑃𝑃𝑖𝑛, 𝑋):
28 𝐵𝑚𝑖𝑛 ← ∅; Φ← ∅;
29 for 𝑃𝑝 ∈ 𝐴𝑃𝑃𝑖𝑛 do
30 Φ𝑝 ← {(𝑙𝑛𝑖 , Equation 6 (𝑋 .𝑙𝑛

𝑖
))}, 𝑙𝑛

𝑖
∈ 𝑃𝑝 .𝐿;

31 𝐺𝑝 (𝐴𝑝 ,𝐶𝑝 ) ← CNN-to-CSDF (𝑃𝑝 ,Φ𝑝 ) [17];
32 𝐵𝑚𝑖𝑛

𝑝 , 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒′𝑝 ← use SDF3 [28] to derive minimum-sized buffers and a schedule that enables execution of
partition 𝑃𝑝 represented as CSDF model𝐺𝑝 with these buffers;

33 𝐵𝑚𝑖𝑛 ← 𝐵𝑚𝑖𝑛 ∪ 𝐵𝑚𝑖𝑛
𝑝 ;

34 Φ← Φ ∪ Φ𝑝 ;

35 𝐴𝑃𝑃𝑝𝑎𝑟𝑡𝑠 ← ({𝐶𝑁𝑁 1, ...,𝐶𝑁𝑁𝑁 }, 𝐵𝑚𝑖𝑛, 𝑃, 𝐽 , {𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒′1, ..., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒′|𝑃 | }) ;
36 𝐵𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ← Algorithm 1 (𝐴𝑃𝑃𝑝𝑎𝑟𝑡𝑠 );
37 𝐴𝑃𝑃𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = ( {𝐶𝑁𝑁 1, ...,𝐶𝑁𝑁𝑁 }, 𝐵𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , 𝑃, 𝐽 , {𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒′1, ..., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒′|𝑃 | })
38 return (𝐴𝑃𝑃𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ,Φ) ;

Φ specifies that each of layers 𝑙13 , 𝑙
1
4 , and 𝑙

1
5 in 𝐶𝑁𝑁 1 performs 32 phases (processes its input data by 32 parts), while

layers 𝑙11 , 𝑙
1
2 of 𝐶𝑁𝑁 1 and all layers of 𝐶𝑁𝑁 2 perform one phase (do not process data by parts).

In Lines 1 to 3, Algorithm 2 checks if utilization of only buffers reuse is sufficient to meet the memory constraint.
To perform the check, in Line 1, Algorithm 2 generates an application that employs only buffers reuse (uses buffers
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𝐵, obtained using Algorithm 1). In Lines 2 and 3, Algorithm 2 checks whether this application meets the memory
constraint. If so (the condition in Line 3 is met), in Line 5, Algorithm 2 performs an early exit. It returns as an output
the application, generated in Line 1. It also returns the set of phases Φ generated in Line 4 specifying that every layer in
every CNN in the application performs one phase, i.e., does not process data by parts.

Otherwise, Algorithm 2 performs a GA-based search to find a set of layers that have to process data by parts. To this
end, Algorithm 2 uses a standard GA with two-parent crossover and a single-gene mutation as presented in [25] and
two problem-specific GA attributes: a chromosome and a fitness function [25]. The chromosome is a representation
of a GA solution as a set of parameters (genes), joined into a string [25]. In Algorithm 2, a chromosome 𝑋 specifies
data processing by parts in a CNN-based application. It is defined in Line 6 as a string of length

∑𝑁
𝑛=1 |𝐿𝑛 |, where 𝑁 is

number of CNNs used by the application, |𝐿𝑛 | is the total number of layers in the 𝑛-th CNN used by the application.
Every gene of the chromosome takes value 0 or 1 and specifies whether a layer processes data by parts (gene=1) or
not (gene=0). Table 10 gives an example of a chromosome, which specifies data processing by parts as in the example
application 𝐴𝑃𝑃 ′, mentioned above.

The fitness-function evaluates the quality of GA solutions, represented as chromosomes, and guides the GA-based
search. During the search, the fitness function should be minimized or maximized. The fitness function used by
Algorithm 2 is defined in Line 7. It specifies that during the GA-based search Algorithm 2 tries to: 1) minimize the
application memory cost𝑀 ; 2) maximize (minimize the negative) throughput 𝑇𝑛 of every CNN used by the application.
To evaluate a chromosome in terms of memory and throughput, Algorithm 2 uses function 𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 and function
𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 , explained in Section 6.2.

In Line 8, Algorithm 2 performs the GA-based search, which delivers a set of pareto-optimal solutions (chromosomes)
called a pareto-front [25]. From this pareto-front, in Lines 9 to 16, Algorithm 2 selects the best chromosome, i.e., a
chromosome which ensures that the CNN-based application has minimum memory footprint, while, if possible, meets
the memory and throughput constraints posed on the application. In Lines 9 to 12, Algorithm 2 defines subset 𝑆 of the
pareto-front. All chromosomes in subset 𝑆 enable the CNN-based application to meet the memory and throughput
constraints. If such a subset exists (the condition in Line 13 is met), in Line 14, Algorithm 2 selects the best chromosome
from this subset. Otherwise, in Line 16, Algorithm 2 selects the best chromosome from the pareto-front.

In Line 17, Algorithm 2 uses the input application 𝐴𝑃𝑃𝑖𝑛 and the best chromosome 𝑋𝑏𝑒𝑠𝑡 selected in Lines 9
to 16, to generate the output application 𝐴𝑃𝑃𝑜𝑢𝑡 and a set of phases Φ performed by layers of application 𝐴𝑃𝑃𝑜𝑢𝑡 .
The output application uses both data processing by parts and buffers reuse, and is characterized with reduced
memory cost and possibly decreased throughput compared to the input application. The generation of application
𝐴𝑃𝑃𝑜𝑢𝑡 and set Φ from the input application 𝐴𝑃𝑃𝑖𝑛 and the best chromosome 𝑋𝑏𝑒𝑠𝑡 is performed using function
𝐷𝑒𝑟𝑖𝑣𝑒𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑊 𝑖𝑡ℎ𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐵𝑢𝑓 𝑓 𝑠 , explained in Section 6.1. Finally, in Line 18, Algorithm 2 returns application
𝐴𝑃𝑃𝑜𝑢𝑡 and set Φ.

6.1 Derivation of a CNN-based application with data processing by parts and buffers reuse

To generate an application, functionally equivalent to the input application 𝐴𝑃𝑃𝑖𝑛 but using the data processing
by parts as specified in chromosome 𝑋 and buffers reuse as proposed in Section 5, Algorithm 2 uses function
𝐷𝑒𝑟𝑖𝑣𝑒𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑊 𝑖𝑡ℎ𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐵𝑢𝑓 𝑓 𝑠 defined in Lines 27 to 38. In Line 28, Algorithm 2 defines an empty set 𝐵𝑚𝑖𝑛

of buffers with minimum size and no reuse, and an empty set of phases Φ. In Lines 29 to 34, Algorithm 2 visits every
partition 𝑃𝑝 in the input application 𝐴𝑃𝑃𝑖𝑛 . In Line 30, Algorithm 2 uses chromosome 𝑋 and Equation 6 to compute the
number of phases Φ1

𝑛 performed by every layer 𝑙𝑛
𝑖
in partition 𝑃𝑝 . If gene 𝑋 .𝑙𝑛

𝑖
of chromosome 𝑋 specifies that layer 𝑙𝑛

𝑖
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processes data by parts (i.e., 𝑋 .𝑙𝑛
𝑖
= 1), the number of phases Φ𝑛

𝑖
for this layer is determined using Table 2, explained in

Section 2.5. Otherwise, the number of phases Φ𝑛
𝑖
for layer 𝑙𝑛

𝑖
is set to 1, which means that layer 𝑙𝑛

𝑖
does not process data

by parts.

Φ𝑛𝑖 (𝑥) =

determine using Table 2 if 𝑥 = 1

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

In Line 31 to 32, Algorithm 2 obtains a set of buffers 𝐵𝑚𝑖𝑛𝑝 for partition 𝑃𝑝 , where every buffer 𝐵𝑘 ∈ 𝐵𝑚𝑖𝑛𝑝 is allocated
to an edge in partition 𝑃𝑝 , and is characterized with minimum size. Together with buffers 𝐵𝑚𝑖𝑛𝑝 , Algorithm 2 obtains
specific schedule 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ′𝑝 , which enables to correctly execute partition 𝑃𝑝 with buffers 𝐵𝑚𝑖𝑛𝑝 . To do so, Algorithm 2
converts every CNN partition into a functionally equivalent CSDF model (Line 31) using the CNN-to-CSDF conversion
procedure in [17] and feeds the obtained CSDF models to the SDF3 embedded systems design and analysis tool [28]. In
Lines 33 and 34, Algorithm 2 accumulates the minimum sized buffers and phases obtained in Lines 30 to 32 in sets 𝐵𝑚𝑖𝑛

and Φ, respectively. In Line 35, Algorithm 2 generates application𝐴𝑃𝑃𝑝𝑎𝑟𝑡𝑠 which processes data by parts as specified in
chromosome 𝑋 without buffers reuse. In Lines 36 to 37, Algorithm 2 introduces buffers reuse into application 𝐴𝑃𝑃𝑝𝑎𝑟𝑡𝑠 ,
thereby obtaining application 𝐴𝑃𝑃𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , returned as output by function 𝐷𝑒𝑟𝑖𝑣𝑒𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑊 𝑖𝑡ℎ𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐵𝑢𝑓 𝑓 𝑠 .

6.2 Memory and throughput evaluation

The memory and throughput of a GA solution, i.e., a chromosome, are evaluated using function 𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 defined
in Lines 19 to 22 of Algorithm 2 and function 𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 defined in Lines 23 to 24 of Algorithm 2. Both functions
accept as inputs the CNN-based application 𝐴𝑃𝑃𝑖𝑛 and chromosome 𝑋 . From the application 𝐴𝑃𝑃𝑖𝑛 and chromosome
𝑋 , functions 𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 and 𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 generate application 𝐴𝑃𝑃𝑋 as explained in Section 6.1. Function
𝐸𝑣𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦 computes the memory cost of application 𝐴𝑃𝑃𝑋 using Equation 1. Function 𝐸𝑣𝑎𝑙𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 evaluates
the throughput of 𝐶𝑁𝑁𝑛 used by application 𝐴𝑃𝑃𝑋 . The throughout of 𝐶𝑁𝑁𝑛 is estimated using measurements on
the platform or a third-party throughput evaluation tool.

7 FINAL APPLICATION DERIVATION

In this section, we show how we perform the last step of our methodology, where we derive the final CNN-based
application with reduced memory cost and possibly decreased throughput from the CNN-based application with data
processing by parts and buffers reuse obtained using Algorithm 2, explained in Section 6. To derive the final CNN-based
application, we use a DL framework, such as TensorRT [19], and custom extensions. The DL framework is used to
implement and execute the CNNs and the CNN buffers within the application. The custom extensions are used to enable
alternative (different from layer-by-layer) execution order within every CNN partition and among CNN partitions. The
alternative execution order is required for processing data by parts and exploiting pipeline parallelism in the CNN-based
application.

8 EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our methodology. The experiments are performed in two steps. First, in
Section 8.1, we compare our proposed methodology to the existing memory reuse methodologies proposed in [23]
and [17]. Then, in Section 8.2, we further study the impact of our proposed methodology on real-world applications
and demonstrate how our methodology can be used jointly with orthogonal memory reduction methodologies such as
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CNN quantization. The applications considered in our experiments belong to three categories: 1) applications utilizing
one CNN which is executed in a commonly adopted sequential fashion (layer-by-layer); 2) applications utilizing one
CNN and exploiting pipeline parallelism available among layers of the CNN as explained in Section 2.2; 3) multi-CNN
applications. By performing the experiments on the applications from these common categories, we study the efficiency
of our methodology for a wide range of CNN-based applications.

8.1 Comparison to existing memory reuse methodologies

In this section we evaluate the efficiency of our methodology in comparison with the existing memory reuse method-
ologies proposed in [23] and [17]. The comparison between our methodology and the methodologies in [23] and [17] in
terms of memory reduction principles is summarized in Table 11.

Table 11. Comparison of the memory reduction principles and features associated with the memory reuse methodologies in [23], [17],
and our proposed methodology

memory reuse principle or feature [23] [28] our methodology
buffers reuse, i.e. reuse of platform memory, allocated to store output
data of different CNN layers

no yes yes

data processing by parts, i.e. reuse of platform memory, allocated to
store partitions of input data of CNN layers

yes no yes

pipeline parallelism awareness no no yes
reuse of platform memory among multiple CNNs no no yes
memory-throughput trade-off yes, unbalanced no yes, balanced

To evaluate the efficiency of our methodology and study the impact of the memory reuse principles and features
summarized in Table 11 on CNN-based applications, we apply our methodology and the methodologies in [23] and [17]
to six real-world CNN-based applications from the three common categories, introduced in Section 8. The applications
are listed in Column 1 in Table 12. To perform their functionality, the CNN-based applications utilize the state-of-the-art
CNNs listed in Column 2.

We measure and compare the applications memory cost, when it is: 1) reduced using our methodology; 2) not reduced,
i.e. every CNN edge has its own CNN buffer allocated, similar to the example CNN-based application, explained in
Section 2.3; 3) reduced using the methodology in [23]; 4) reduced using the methodology in [17].

Taking into account that both the related work in [17] and our methodology can decrease the throughput of CNNs,
we also measure and compare the throughput of every CNN utilized by the CNN-based applications. To measure the
applications memory cost and the CNNs throughput, we execute the CNNs on the NVIDIA Jetson TX2 embedded
platform [20]. Every CNN is implemented using the Tensorrt DL framework [19], the best-known and state-of-the-art
for CNNs execution on the Jetson TX2, and is executed with batch size = 1, typical for CNNs execution at the edge and
native floating-point 32 data precision.

The results of our experiments are given in Columns 3 to 11 of Table 12, where Column 3 lists memory constraints
(in MegaBytes) posed on the CNN-based applications; Columns 4 to 7 show the applications memory cost; Columns 8
to 11 show the throughput (in frames per second) of the CNNs utilized by the applications.

Columns 4 to 7 show the memory cost of the CNN-based applications. As shown in Columns 4 to 7, when compared
to the applications deployed without memory reduction, our methodology demonstrates 2.3 to 5.9 times memory
reduction, with the minimum of (380/162) ≈ 2.3 times memory reduction achieved for application 5 and the maximum
of (161.33/27.30) ≈ 5.9 times memory reduction achieved for application 2. Analogously, when compared to the most
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Table 12. Experimental Results

Application Memory (MB) Throughput (fps)
No CNN(s) Memory

constraint (MB)
no re-
duction

[23] [17] ours no re-
duction

[23] [17] ours

CNN-based applications with one CNN and no exploitation of task-level (pipeline) parallelism

1 MobileNet V2 1.0
25

58.63 20.32 16.2
20.32

46 46 40
46

15 14.98 41
min 14.90 40.5

2 EfficientNet B0
150

161.33 39.14 42.97
39.14

168.35 168.35 98
168.35

40 39.14 168.35
min 27.30 128.5

CNN-based applications, exploiting pipeline parallelism, as proposed in [18]

3 MobileNet V2 1.0
30

61.69 20.32 17.38
30

49 46 43
49

15 15.92 43.65
min 15.92 43.65

4 EfficientNet B0
150

163.65 39.14 44.18
45

170.3 168.35 98.8
170.3

50 45 170.3
min 31.34 124.24

Multi-CNN applications

5

Inception V2

380 175 226

175
94 94 67 94

Mobilenet V1 0.25 200 432 432 183 432
ResNet V1 50 55 55 46 55
Inception V2

162
94 94 67 75

Mobilenet V1 0.25 min 432 432 183 244
ResNet 50 55 55 46 47

6

DenseNet121

625 291 184

161
52 52 37 52

Mobilenet V1 1.0 500 59 59 50 59
Resnet v1 50 55 55 46 55
DenseNet121

155
52 52 37 41

Mobilenet V1 1.0 min 59 59 50 54
Resnet v1 50 55 55 46 49

relevant related work (the methodologies in [23] and [17]), our methodology achieves 7% to 30% memory reduction
with minimum and maximum memory reduction achieved for application 5 and application 2, respectively. As shown
in Columns 4 to 7, for every CNN-based application our methodology enables for more memory reduction than the
methodologies in [23] and [17]. For example, the memory cost of application 1 can be reduced to 14.90 MB by our
methodology and to 20.32 MB and 16.2 MB by the methodologies in [23] and [17], respectively. The difference occurs
because our methodology combines the strength of both methodologies and extends the memory reuse among multiple
CNNs.

Columns 8, 10 and 11 show that the reduction of the applications memory cost by the methodology in [17] and our
methodology may decrease the throughput of CNNs utilized by a CNN-based application. For example, as shown in
Row 4, the throughput of Mobilenet V2 CNN is: 1) decreased to 40 fps by the methodology in [17]; 2) may be decreased
to 41 or 40.5 fps by our methodology. However, our methodology: 1) does not decrease the CNN throughput when
the memory constraint is 25 MB; 2) decreases the CNN throughput by 46 − 41 = 5 fps when the memory constraint
is 15 MB; 3) decreases the CNN throughput by 46 − 40.5 = 5.5 fps when the memory constraint is 0, whereas the
methodology in [17] always decreases the throughput of Mobilenet V2 CNN by 46 − 40 = 6 fps. The difference occurs
because, unlike the methodology in [17], our methodology searches for an optimal (balanced) memory-throughput
trade-off (see Algorithm 2).
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Columns 8 to 9 show that the methodology in [23] does not introduce throughput decrease into the CNN-based
applications exploiting no task-level parallelism and multi-CNN applications. However, [23] can decrease the throughput
of CNNs in the CNN-based applications that exploit pipeline parallelism. For example, it decreases the throughput of
EfficientNet B0 CNN, shown in Row 8. The throughput decrease occurs because the methodology in [23] reuses CNN
buffers which may be simultaneously accessed by different partitions of a CNN-based application, and thus prevents
exploitation of pipeline parallelism in the CNN-based application. Unlike the methodology in [23], our proposed
methodology does not reuse such buffers and thus enables for exploitation of pipeline parallelism.

Columns 4 to 7, Rows 10 to 13 show that for multi-CNN applications our methodology enables more memory
reduction than the methodology in [23] and the methodology in [17]. For example, our methodology is able to reduce
the memory of multi-CNN application 6, shown in Rows 12 to 13 in Table 12 to 155 MB. This is ≈ 2 times more
memory reduction than offered by the methodology in [23] and ≈ 15% more memory reduction than offered by the
methodology in [17]. The difference occurs because: 1) our methodology combines memory reuse principles offered by
the methodologies in [23] and [17]; 2) Unlike the methodologies in [23] and [17], our methodology reuses memory
among different CNNs as well as within the CNNs.

As demonstrated in this section, our methodology enables for up to 5.9 times memory reduction compared to
deployment of CNN-based applications without memory reduction and 7% to 30% memory reduction compared to other
memory reduction methodologies that reduce the CNN memory cost without CNN accuracy decrease.

8.2 Joint use of CNN quantization and our proposed methodology

In this section, we further study the impact of our proposed methodology on real-world applications and demonstrate
how our methodology can be used jointly with orthogonal memory reduction methodologies such as CNN quantization.
We apply the quantization methodology offered by the TensorFlow DL framework [1] and our proposed methodology to
four CNN-based applications, executed on the NVIDIA Jetson TX2 edge platform [20]. The applications are summarized
in Table 13 and explained in details in Section 8.2.1. To study the impact of joint use of our methodology and the
quantization methodology, we measure and compare the accuracy, memory cost, and throughput of the CNNs used by
the applications after the applications’ memory cost is decreased using: 1) quantization and no memory reuse; 2) our
methodology combined with quantization. The measurements are presented in Section 8.2.2. The comparison of the
measurements along with analysis and conclusions are presented in Section 8.2.3.

8.2.1 Experimental setup. The applications that we use to study the effectiveness of our methodology when used
jointly with CNN quantization, are summarized in Table 13. Column 1 lists the applications’ names. Column 2 lists the
CNNs used by the applications. All the CNNs perform image classification on the ImageNet dataset [9], composed of
RGB images with 224 pixels height and width. The baseline topology and weights of every CNN are taken from the
applications library of the TensorFlow DL framework [1], which is well-known and widely used for CNNs design and

Table 13. Applications

application CNN(s) requirements
T (fps) M (MB)

Mobilenet-sequential Mobilenet V2 75 8
Resnet-sequential Resnet-50 75 26

Mobilenet-pipelined Mobilenet V2 80 30

multi-CNN Mobilenet V2 32 30Resnet-50 32
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training. For execution at the edge, the CNNs are implemented using the Tensorrt DL framework [19], which is the
best-known DL framework for CNNs execution on the NVIDIA Jetson TX2 edge platform. Columns 3 and 4 specify
requirements, posed on the CNNs by the applications, and passed as inputs to our proposed methodology. Column 3
specifies the minimum throughput (in frames per second) which the CNNs are expected to demonstrate during their
inference on the NVIDIA Jetson TX2 platform. Column 4 specifies the maximum amount of memory (in MegaBytes)
which the CNNs can occupy.

8.2.2 Experimental results. The experimental results for the four CNN-based applications, summarized in Table 13, are
shown in Figure 5. They are shown as bar plots that compare the characteristics of the CNNs used by the applications
when the applications’ memory cost is reduced using: 1) quantization with no memory reuse (the light-grey bars); our
methodology combined with quantization (the dark-grey bars). Every plot shows a comparison for the CNNs with
half-, mixed- and int-quantization offered by the TensorFlow DL framework, as well as for the baseline CNNs with no
quantization and original 32-bit floating-point weights and data precision. The types of quantization offered by the
TensorFlow DL framework are summarized in Table 3 and explained in details in Section 3. The bar plots are organized
in a matrix. Every row corresponds to a CNN-based application. Every column corresponds to a characteristic of the
CNNs used by the application: the CNN accuracy (the first column), the CNN throughput (the second column)1, and
the CNN memory cost (the third column). For example, the bar plot in Figure 5(b), located in the first row and second
column, shows the throughput of the Mobilenet V2 CNN, used by the Mobilenet-sequential application. Every bar is
annotated with the value of the respective characteristic. For example, Figure 5(b) shows that the Mobilenet V2 CNN
with half-quantization demonstrates 79 fps throughput after the quantization and no memory reuse. The difference
in height between the light-grey bars and the dark-grey bars demonstrates the reduction (decrease) of the respective
characteristics. For example, Figure 5(b) shows that our methodology decreases the throughput of the Mobilenet V2
CNN with half-quantization by 79 − 71 = 8 fps.

8.2.3 Analysis and conclusions. In this section, we compare and analyse the experimental results, presented in Sec-
tion 8.2.2.

First, we compare the CNNs accuracy. To do that, we analyse the plots shown in the first column in Figure 5. We note
that the accuracy of the CNNs after quantization with no memory reuse matches the CNNs accuracy after quantization
combined with our methodology. In other words, our methodology does not reduce the CNNs accuracy. This is because
our methodology does not change the number and precision of CNN weights.

Second, we compare the throughput of the CNNs. To do that, we analyse the plots shown in the second column in
Figure 5. So, we see that our methodology may decrease the CNNs throughput. For example, Figure 5(b) shows that
our methodology decreases the throughput of the Mobilenet V2 CNN with half-quantization by 79 − 71 = 8 fps. As
explained in Section 2.5, the throughput decrease occurs due to the processing data by parts, utilized by our methodology.
However, the throughput decrease introduced by our methodology is small and is compensated by the throughput
increase, introduced by the quantization. For example, Figure 5(b) shows that the throughput of the Mobilenet V2 CNN
with half-quantization combined with our methodology is increased by 71 − 46 = 25 fps, compared to the CNN with no
quantization and no memory reuse (the latter CNN is represented as the light-grey ’baseline’ bar).

Finally, we compare the memory cost of the CNNs. To do that, we analyse the plots shown in the third column in
Figure 5. The plots show that our methodology enables to further reduce the memory cost of the quantized CNNs.

1The CNN throughput is not shown for the CNNswith int- andmixed-quantization because the Jetson TX2 platform does not support integer computations.
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Fig. 5. Experimental results
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For example, Figure 5(c) shows that our methodology reduces 3.7 times the memory cost of Mobilenet V2 CNN with
half-quantization. Analogously, Figure 5(i) shows that our methodology reduces 2.1 times the memory cost of Mobilenet
V2 CNN with half-quantization and pipelined execution. This means, that our methodology can be efficiently combined
with orthogonal quantization methodology to achieve high rates of CNN memory reduction. The effectiveness of the
methodologies joint use is explained by the orthogonality of the methodologies. The quantization methodology changes
the precision of the CNN data and weights, thereby reducing the CNN memory cost, i.e., the amount of platform
memory required to deploy and execute the CNN. Our methodology, orthogonal to the quantization, reuses the platform
memory allocated for the CNN deployment, thereby further reducing the CNN memory cost.

Based on the analysis presented above, we conclude that our methodology can be efficiently combined with the

orthogonal methodologies such as quantization. The joint use of our methodology and quantization enables to achieve high

rates of CNN memory reduction. Moreover, when our methodology is combined with quantization, the decrease of the CNN

throughput, introduced by our methodology is easily compensated by the CNN throughput increase, introduced by the

quantization.

9 RELATEDWORK

The most common CNN memory reduction methodologies, namely pruning and quantization, reviewed in surveys [6,
7, 11, 30], reduce the memory cost of CNN-based applications by reducing the number or size of CNN parameters
(weights and biases) [3]. However, at high CNN memory reduction rates these approaches decrease the CNN accuracy,
whereas high accuracy is very important for many CNN-based applications [3]. In contrast, our memory reduction
approach does not change the CNN model parameters and therefore does not decrease the CNN accuracy.

The knowledge distillation approaches, reviewed in surveys [7, 30], try to replace an initial CNN in a CNN-based
application by an alternative CNN with the same functionality but smaller size. However, these approaches involve
CNN training from scratch and do not guarantee that the accuracy of the initial CNN can be preserved. In contrast,
our memory reduction approach is a general systematic approach which always guarantees preservation of the CNN
accuracy.

The CNN buffers reuse methodologies, such as the methodology proposed in [23], and the methodologies reviewed
in [15], reduce the required CNN memory by reusing platform memory, allocated for storage of intermediate CNN
computational results. These methodologies can significantly reduce the CNN memory cost without decreasing the
CNN throughput or accuracy. However, these methodologies do not support reuse of the platform memory among
multiple CNNs. Reusing the memory among CNNs as well as within every CNN is vital for deployment of multi-CNN
applications, such as [26, 27, 29]. Thus, the methodologies in [15, 23] are not suitable for multi-CNN applications.
Moreover, these methodologies do not account for concurrent execution of CNN layers. Therefore, they are not applicable
to CNN-based applications, exploiting task-level (pipeline) parallelism [18, 31], available within the CNNs. In contrast
to these methodologies, our methodology is applicable to the CNN-based applications, exploiting pipeline parallelism,
and multi-CNN applications.

The CNN buffers reduction methodology proposed in [17] allows to significantly reduce the CNN-based application
memory cost at the expense of CNN throughput decrease. In this methodology, CNN layers process their input data by
parts and the device memory is reused to store different parts of the layers input data. However, this methodology
always tries to achieve a very low CNN memory cost at the expense of large CNN throughput decrease. In practice,
partial reduction of the CNN memory cost is often sufficient to fit a CNN-based application into a device with a given
memory constraint. In contrast to the methodology proposed in [17], our proposed methodology involves a balanced
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memory-throughput trade-off in a CNN-based application, and therefore does not involve unnecessary decrease of
CNN throughput.

The CNN layers fusion methodologies, such as the methodologies [4, 21] and the methodologies adopted by the
Deep Learning (DL) frameworks, such as the TensorRT DL framework [19] or the PyTorch DL framework [22], enable
to reduce the CNN memory cost by transforming the network into a simpler form but preserving the same overall
behavior. Being a part of the CNN model definition, the CNN layer fusion methodologies are orthogonal to our
proposed methodology and can be combined with our methodology for further CNN memory optimizations. In our
experimental study (Section 8) we implicitly use the CNN layers fusion by implementing the CNNs with the TensorRT
DL framework [19], which has built-in CNN layers fusion.

CONCLUSIONS

We propose a memory-throughput trade-off methodology for CNN-based applications at the edge. Our proposed
methodology significantly extends and combines two existing memory reuse methodologies. In addition to the reuse of
platform memory offered by the existing methodologies, our methodology offers support of pipeline parallelism, reuse
of memory among different CNNs, and a memory-throughput trade-off balancing mechanism. Thus, our methodology
offers a balanced memory-throughput trade-off for a wide range of CNN-based applications, including CNN-based
applications exploiting task-level (pipeline) parallelism and multi-CNN applications. The evaluation results show that
our methodology enables for up to 5.9 times memory reduction compared to deployment of CNN-based applications
with no memory reduction, and 7% to 30% memory reduction compared to other memory reduction methodologies
that reduce the CNN memory cost without CNN accuracy decrease. Additionally, our evaluation results show that
our methodology can be efficiently combined with orthogonal memory reduction methodologies such as quantization
to achieve high rates of CNN memory reduction. Moreover, when our methodology is combined with quantization,
the decrease of the CNN throughput introduced by our methodology at high CNN memory reduction rates, is easily
compensated by the CNN throughput increase, introduced by the quantization.
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