
14

Scenario Based Run-Time Switching for Adaptive
CNN-Based Applications at the Edge

SVETLANA MINAKOVA, Leiden University

DOLLY SAPRA, University of Amsterdam

TODOR STEFANOV, Leiden University

ANDY D. PIMENTEL, University of Amsterdam

Convolutional Neural Networks (CNNs) are biologically inspired computational models that are at the heart

of many modern computer vision and natural language processing applications. Some of the CNN-based appli-

cations are executed on mobile and embedded devices. Execution of CNNs on such devices places numerous

demands on the CNNs, such as high accuracy, high throughput, low memory cost, and low energy consump-

tion. These requirements are very difficult to satisfy at the same time, so CNN execution at the edge typically

involves trade-offs (e.g., high CNN throughput is achieved at the cost of decreased CNN accuracy). In existing

methodologies, such trade-offs are either chosen once and remain unchanged during a CNN-based applica-

tion execution, or are adapted to the properties of the CNN input data. However, the application needs can

also be significantly affected by the changes in the application environment, such as a change of the battery

level in the edge device. Thus, CNN-based applications need a mechanism that allows to dynamically adapt

their characteristics to the changes in the application environment at run-time. Therefore, in this article, we

propose a scenario-based run-time switching (SBRS) methodology, that implements such a mechanism.

CCS Concepts: • Computing methodologies→ Neural networks; • Computer systems organization

→ Embedded software;

Additional Key Words and Phrases: Convolutional neural networks, run-time adaptation, execution at the

edge

ACM Reference format:

Svetlana Minakova, Dolly Sapra, Todor Stefanov, and Andy D. Pimentel. 2022. Scenario Based Run-Time

Switching for Adaptive CNN-Based Applications at the Edge. ACM Trans. Embedd. Comput. Syst. 21, 2, Arti-

cle 14 (February 2022), 33 pages.

https://doi.org/10.1145/3488718

1 INTRODUCTION

Convolutional neural networks (CNNs) [30] are biologically inspired graph computational
models, highly optimized to process large amounts of dimensional data. They have the ability

This project has received funding from the European Union’s Horizon 2020 Research and Innovation program under grant

agreement No. 780788.

Authors’ addresses: S. Minakova and T. Stefanov, Leiden University, Niels Bohrweg 1, Leiden, South Holland, The Nether-

lands, 2333 CA; emails: {s.minakova, t.p.stefanov}@liacs.leidenuniv.nl; D. Sapra and A. D. Pimentel, University of Amster-

dam, Science Park 904, Amsterdam, North Holland, The Netherlands, 1098 XH; email: a.d.pimentel@uva.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1539-9087/2022/02-ART14 $15.00

https://doi.org/10.1145/3488718

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

https://doi.org/10.1145/3488718
mailto:permissions@acm.org
https://doi.org/10.1145/3488718

14:2 S. Minakova et al.

to automatically, effectively, and adaptively extract and process high- and low-level abstractions
from their input data. These abilities have allowed CNNs to become dominant in various computer
vision tasks and natural language processing tasks, such as image classification, object detection,
segmentation, and others [22]. Many modern applications, that use CNNs for solving their respec-
tive tasks, require the execution of these CNNs at edge devices, such as mobile phones and embed-
ded devices [24, 43]. Examples of such applications are: object tracking in drones [9], navigation
for self-driving cars [26], street surveillance in wireless cameras [1], and other [24]. Providing ex-
ecution of CNNs in such applications is challenging due to the high demands placed on the CNNs
by both the application and edge device. The most common of these demands are:

(1) high accuracy. The CNN should be able to properly perform a task, for which it is designed;
(2) high throughput. Typically, the applications, moved to the edge, require CNNs to provide

real-time response;
(3) low memory cost. Most of the edge devices have a limited amount of memory available;
(4) low energy cost. The energy of battery-powered edge devices, like e.g., drones, is also

strictly limited.

To ensure that a CNN conforms to the requirements (1) to (4) mentioned above, special tech-
niques such as platform-aware CNN design [3, 5, 8, 21, 28, 32, 35], or CNN compression [2, 13, 15,
27, 29] are utilized. Unfortunately, these techniques typically involve trade-offs between the men-
tioned requirements [24]. For example, CNN weights compression techniques [2, 15] ensure a low
CNN memory cost, but decrease the CNN accuracy. Thus, for a CNN-based application executed
at the edge, only a priority subset of these requirements can be highly optimized. The selection
of the priority requirements for a CNN-based application is typically performed once, during the
CNN design, and remains static during the CNN inference run-time. In practice, these priorities
are often affected by the application environment, and can change during the application run-time.
For example, a CNN-based road traffic monitoring application, executed on a drone [9], can have
different priorities, dependent on the situation on the roads and the level of the device’s battery. If
the traffic is heavy, the application should provide high throughput and high accuracy to process
its input data, which typically means high energy cost. However, during a traffic jam, when the
high throughput is not required, or in case the battery of the drone is running low, the application
would function optimally by prioritizing energy efficiency over the high throughput. This exam-
ple shows that CNN-based applications need a mechanism that can adapt their characteristics to
the changes in the application environment (such as a change of the situation on the roads or
a change of the device’s battery level) at the application run-time. Moreover, such a mechanism
should provide a high level of responsiveness, e.g., if a drone battery is running low, the CNN-
based application, executed on the drone, should switch to an energy-efficient mode as soon as
possible. However, to the best of our knowledge, neither existing Deep Learning (DL) method-
ologies [2, 3, 5, 8, 13, 15, 21, 27, 28, 32, 35] for resource-efficient CNN execution at the edge, nor
existing embedded systems design methodologies [23, 36, 44] for execution of run-time adaptive
applications at the edge, provide such a mechanism.

Therefore, in this article, we propose a novel scenario-based run-time switching (SBRS)
methodology for CNN-based applications, executed at the edge. In our methodology, we associate
a CNN-based application with several scenarios. Every scenario is a CNN, specifically designed
to conform to certain application’s needs for accuracy, throughput, memory cost, and energy cost
(see Section 6). During the application execution, the application environment can trigger the ap-
plication to switch between the scenarios, thereby adapting the characteristics of a CNN-based
application to changes in the application environment. To capture multiple application scenarios
and allow for run-time switching between these scenarios, we represent a CNN-based application

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:3

with SBRS using the novel SBRS Model of Computation (MoC), proposed in Section 7. We note
that, being associated with multiple scenarios where every scenario is a CNN, the CNN-based
application with SBRS can have high memory cost. As explained above, high memory cost is unde-
sired for applications executed at the edge. To reduce the application memory cost, we introduce,
as part of the SBRS MoC, the efficient reuse of components (layers and edges) among the different
scenarios, and within every scenario. To ensure high application responsiveness to a scenarios

switch request (SSR), we propose the SBRS transition protocol (see Section 9). The SBRS transi-
tion protocol specifies switching from the old application scenario to a new application scenario
so that both old and new scenarios remain consistent, and the new scenario starts to execute as
soon as possible.

Article contributions. In this article, we propose a novel SBRS methodology. Our methodology
provides run-time adaptation of a CNN-based application, executed at the edge, to changes in
the application environment. The SBRS methodology, proposed in Section 5, is our main novel
contribution. Other important novel contributions within the methodology, are: (1) An approach
for automated derivation of scenarios, associated with a CNN-based application (see Section 6); (2)
A SBRS application model, which captures a CNN-based application with several scenarios (see
Section 7); (3) An algorithm for automated derivation of a SBRS application model from a set of
application scenarios (see Section 8); (4) A transition protocol for efficient switching between the
CNN-based application scenarios (see Section 9).

2 RELATED WORK

The platform-aware neural architecture search (NAS) methodologies, proposed in [3, 8, 21, 28,
32, 35] and reviewed in survey [5], allow for automated generation of CNNs that solve the same
problem, and are characterized with different accuracy, throughput, energy cost, and memory cost.
However, these methodologies do not propose a mechanism for run-time switching between these
CNNs, while such mechanism is necessary to ensure that application needs are best served at every
moment in time. In contrast to the NAS methodologies from [3, 5, 8, 21, 28, 32, 35], our methodology
proposes such a mechanism, and ensures that application needs are best served at every moment
in time.

The methodologies presented in [12, 14, 16, 25, 31, 34] propose resource-efficient runtime-
adaptive CNN execution at the edge. These methodologies represent a CNN as a dynamic com-
putational graph, where for every CNN input sample only a subset of the graph nodes is utilized
to compute the corresponding CNN output. The subset of graph nodes is selected during the ap-
plication run-time by special control mechanisms (e.g., control nodes, augmenting the CNN graph
topology). The utilization of only a subset of graph nodes at every CNN computational step can
increase the CNN throughput and accuracy, and typically reduces the CNN energy cost. However,
the methodologies in [12, 14, 16, 25, 31, 34] cannot adapt a CNN to changes in the application
environment, like changes of the device’s battery level, which affect the CNN needs during the
run-time. The adaptation in these methodologies is driven either by the complexity of the CNN
input data [12, 14, 25, 31, 34] or by the number of floating-point operations (FLOPs), required
to perform the CNN functionality [12, 16], while the changes in the application environment often
cannot be captured in the CNN input data or estimated using FLOPs. In contrast to these method-
ologies, our SBRS methodology adapts a CNN-based application to the changes in the application
environment, and therefore, allows to best serve the application needs, affected by such changes.

A number of embedded systems design methodologies, proposed in [23, 36, 44], allow for effi-
cient execution of runtime-adaptive scenario-based applications at the edge. These methodologies
represent an application, executed at the edge, in a specific MoC, able to capture the functionality

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:4 S. Minakova et al.

Fig. 1. CNN computational model.

of a runtime-adaptive application associated with several scenarios, and ensure efficient run-time
switching between the application scenarios. However, the methodologies in [23, 36, 44] cannot be
(directly) applied to CNN-based applications due to a significant semantic difference between the
MoCs, utilized in these methodologies and the CNN model [19], typically utilized by CNN-based
applications. First of all, the MoCs utilized in [23, 36, 44] lack means for explicit definition of var-
ious CNN-specific features, such as CNN parameters and hyperparameters, while, as we show in
Section 7, explicit definition of these features is required for the application analysis. Secondly, the
MoCs utilized in methodologies [23, 36, 44] are not accepted as input by existing DL frameworks,
such as Keras [4] or TensorRT [38], widely used for efficient design, deployment, and execution of
CNN-based applications at the edge. In our methodology, we propose a novel application model,
inspired by the methodologies [23, 36, 44], to represent a run-time adaptive CNN-based application
and ensure efficient switching between the CNN-based application scenarios. However, unlike the
methodologies [23, 36, 44], our methodology (1) explicitly defines and utilizes CNN-specific fea-
tures for efficient execution of CNN-based applications at the edge, and (2) allows for utilization
of existing DL frameworks for design, deployment, and execution of the CNN-based application
at the edge.

3 BACKGROUND

In this section, we provide a brief description of the CNN computational model (Section 3.1) and
CNN execution at the edge (Section 3.2). This section is essential for understanding the proposed
methodology.

3.1 Convolutional Neural Network (CNN)

A CNN is a computational model [22], commonly represented as a directed acyclic computational
graph CNN(L,E) with a set of nodes L, also called layers, and a set of edges E. An example of
a CNN model with |L| = 5 layers and |E | = 4 edges is given in Figure 1(a). Every layer li ∈ L
represents part of the CNN functionality. It performs operator opi (such as Convolution, Pooling,
etc.), parametrized with hyper-parameters hypi (such as kernel size, stride, etc.) and learnable
parameters pari (such as weights and biases). Operator opi of layer li accepts as an input the
data, provided by the layer’s input edges Ii , and produces the result of the data transformation
onto its output edges Oi . We define a layer as a tuple li = (opi ,hypi ,pari , Ii ,Oi), where opi is the
operator of li ; hypi are the hyper-parameters of li ; pari are the learnable parameters of li ; Ii and
Oi are the input and output edges of li , respectively. An example of a CNN layer l1

2 = (Conv, {k :

5, s : 1}, {W 1
2 ,B

1
2}, {e1

12}, {e1
23}) is shown in Figure 1(a). Layer l1

2 performs Convolutional operator

op1
2 = Conv , parametrized with two hyper-parameters (kernel size k = 5 and stride s = 1) and

parameters par 1
2 = {W 1

2 ,B
1
2}, whereW 1

2 are the layer weights and B1
2 are the layer biases. Operator

op1
2 accepts as an input the data, provided by input edges I 1

2 = {e1
12}, and produces output data onto

output edges O1
2 = {e1

23}.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:5

Every edge ei j ∈ E specifies a data dependency between layers li and lj , so that data produced
by layer li is accepted as an input by layer lj . An example of edge e1

12, which represents a data

dependency between layers l1
1 and l1

2 , is shown in Figure 1(a), where layer l1
2 accepts as an input the

data, produced by layer l1
1 . The data produced and accepted by the CNN layers is stored in multidi-

mensional arrays, called tensors [22]. In this article, every data tensor has the shape [N ,C,H ,W],
where N ,C,H ,W are the tensor batch size [22], the number of channels, the height and the width,
respectively. For example, the data exchanged between layers l1

1 and l1
2 , shown in Figure 1(a), is

stored in tensor [1, 3, 32, 32] with batch size = 1, number of channels = 3, height and width = 32.

3.2 CNN Execution at the Edge

When executed on an edge device, a CNN utilizes the device memory and computational resources
to execute all of its layers L in order, determined by its edges E. Typically, CNN layers are executed
in sequential order, i.e., a CNN execution can be represented as |L| computational steps, where at
every ith computational step, CNN layer li ∈ L is executed.

The CNN execution at the edge is typically characterized by Accuracy, Throughput, Memory
cost, and Energy cost [5, 24, 43], hereinafter referred as ATME characteristics. The accuracy, typ-
ically measured in percents, characterizes the fraction of correct predictions generated by a CNN
from the total number of predictions generated by the CNN. The throughput, typically measured
in frames per second (fps), characterizes the speed with which the CNN is able to process input
data and produce output data. The memory cost, typically measured in Megabytes (MB), speci-
fies the total amount of memory required to execute a CNN. The energy cost, measured in Joules,
specifies the amount of energy consumed by a CNN to process one input frame.

4 MOTIVATIONAL EXAMPLE

In this section, we show the necessity of devising a new methodology for execution of adaptive
CNN-based applications at the edge. To do so, we present a simple example of a CNN-based ap-
plication where the requirements change at run-time due to the changes in its environment. The
application is discussed in the context of the existing methodologies reviewed in Section 2, and
the SBRS, our proposed methodology.

The example application performs CNN-based image recognition on a battery powered
unmanned aerial vehicle (UAV). The UAV battery capacity defines a power budget, which is
available for both the flight and CNN-based application execution. The distribution of the power
budget between the flight and application is irregular, and depends on the weather conditions,
which can change during the run-time (the UAV flight). In a calm weather, the UAV requires less
power to fly and can thus spend more power on the CNN-based application. Conversely, when
the weather is windy, the UAV requires a large amount of power to fly, and therefore has less
power available for the CNN-based application. The weather prediction at the application design
time is an impossible task. Nevertheless, the CNN-based application should be designed such that
it: (1) meets the power constraint, imposed on the application by the UAV battery and affected by
weather conditions; (2) demonstrates high image recognition accuracy (the higher the better).

Figure 2 illustrates an example of how the execution of such CNN-based application will tran-
spire, when designed using the existing methodologies and our SBRS. Subplots (a), (b), (c) juxta-
pose the power available for the application execution (dashed line), against the power used by
the application (solid line) during the UAV flight, which lasts 2 hours. The power available for the
application execution is dependant on the UAV battery capacity and weather conditions. In this
example, we assume that the CNN-based application is allowed to use up to 12 Watts of power
in turbulent weather (0 to 0.1 hours and 1.0 to 1.5 hours) and up to 32 Watts of power in calm

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:6 S. Minakova et al.

Fig. 2. Execution of a CNN-based application, affected by the application environment and designed using

different methodologies.

weather (0.1 to 1.0 hours and 1.5 to 2.0 hours). However, the actual power used by the applica-
tion is ultimately determined by the application design methodology. Furthermore, the subplots
(d), (e), (f) show the image recognition accuracy demonstrated by the application. Subplots (g), (h),
(i) show the current charge state (solid line) and minimum charge level (dashed line) of the UAV
battery. If the current battery charge reaches the minimum allowed battery level, it may lead to an
emergency landing of the UAV.

As a first case, we discuss the multi-objective NAS methodologies [3, 8, 21, 28, 32, 35] for the
execution of the example application, that are typically designed and utilized without considering
a run-time changing environment. In these methodologies, a CNN is obtained via an automated
multi-objective search and characterized with constant accuracy and power consumption. To
guarantee that the application meets a power constraint, such a CNN has to account for the
worst-case scenario, i.e., when the weather is always windy and therefore only 12 Watts are
available for the application execution at any moment. In our illustrative example, such a CNN is
characterized with 11.2 Watts of power and 82% accuracy (see Figures 2(a) and 2(d), respectively).
As shown in Figure 2(g), when the UAV reaches its destination after 2 hours of flight, it still
has ≈50% battery charge left. On the one hand, it means that the application always meets the
power constraint. On the other hand, the application could have spent ≈40% remaining UAV

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:7

battery charge by utilizing a more accurate CNN, though demanding additional power. In other
words, the methodologies in [3, 8, 21, 28, 32, 35] can guarantee that the application meets the given

platform-aware constraint, but cannot guarantee efficient use of available platform resources.
As a second case, when the application is designed using data-driven adaptive methodologies,

such as [12, 14, 25, 31, 34], the CNN execution is sensitive to the input data complexity. To pro-
cess “easy” images, they may use a lower resolution or fewer layers, whereas processing “hard”
images requires more computation. In this manner, an adaptive CNN-based application is able to
adapt its power consumption depending on the input data complexity, while demonstrating simi-
lar accuracy for all the inputs. However, such a CNN cannot adapt to the changing environmental
conditions, which can not be explicitly captured in the input images. The application power con-
sumption can change during the application run-time, based on the input images, although these
changes may conflict with the application’s requirements, driven by the weather conditions. For
example, in Figure 2(b), between 1.0 and 1.25 hours, the CNN consumes significant amount of
power despite the necessity to switch to the low power mode. This may lead to increased UAV
power consumption over the flight duration and, eventually, to the violation of the application
power constraint, causing an emergency landing as illustrated in Figure 2(h). Thus, the methodolo-

gies in [12, 14, 25, 31, 34] are not suitable for CNN-based applications executed at the edge in changing

environment, because these can neither properly adapt the application to the environment variations,

nor guarantee that the application constantly meets platform-aware constraints.
Another case of adaptive CNN-based application methodologies, is where the application can

adaptively change the number of FLOPs spent on the image recognition, such as those in [12, 16].
However, as shown in numerous works [7, 32, 33] FLOPs is an inaccurate indicator for real-world
platform-aware characteristics such as power consumption or throughput. These characteristics
depend on many other factors, for instance, the ability of the platform to perform parallel com-
putations, time and energy overheads caused by the data transfers, internal hardware limitations,
and so on. Consequently, the number of FLOPs spent during the application run-time, neither
guarantee that the application meets power constraint nor estimate the application efficiency in
terms of real-world platform-aware characteristics. In other words, even though, the methodologies

in [12, 16] enable run-time CNN adaptivity, these cannot be directly deployed for applications with

real-world platform-aware requirements and constraints.
To summarize, the existing works lack a methodology to design an adaptive CNN-based applica-

tion, for real-world platform-aware requirements and constraints, specifically affected by the en-
vironment variations at run-time. The motivation behind our current proposal, SBRS, is to enable
such run-time adaptivity. To design an application using our SBRS, we perform multi-objective
NAS, similar to those in [3, 8, 21, 28, 32, 35]. However, unlike these methodologies, we derive
multiple CNNs for each scenario. For example, the first scenario for our example application for
windy weather, can have an associated CNN with 11.2 Watts power consumption and 82% accuracy.
The second scenario, for calm weather, is represented by a CNN with 31.0 Watts power consump-
tion and 89% accuracy. At run-time, the application switches between these scenarios, based on
the weather conditions. Additionally, our methodology explicitly defines the switching mechanism
based on triggers generated due to an environment change at run-time. The execution of the CNN-
based application with SBRS is shown in Figure 2(c), (f), (i). Particularly, Figure 2(i) highlights that
the application meets the given power constraint, i.e., the UAV battery charge does not go below
the minimum level before 2 hours, and SBRS uses all available power to achieve higher application
accuracy in comparison with Figure 2(d). Thus, by switching among the scenarios, SBRS guarantees

that a CNN-based application, affected by the environment, meets platform-aware constraints while

efficiently exploiting the available platform resources to improve its accuracy.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:8 S. Minakova et al.

Fig. 3. SBRS methodology.

5 SBRS METHODOLOGY

In this section, we present our novel SBRS methodology, which allows for run-time adaptation of
a CNN-based application, executed at the edge, to changes in the application environment. The
general structure of our methodology is given in Figure 3. Our methodology accepts as an input a
baseline CNN and one or more requirements sets, associated with the CNN-based application. A
baseline CNN is an existing CNN (e.g., AlexNet [22], ResNet [22], or another), proven to achieve
good results at solving a CNN-based application task (e.g., classification). The requirements sets
describe a scope of needs, associated with the devised application. Every application requirements
set r = (ra , rt , rm , re) specifies the application priority for high accuracy (ra), high throughput (rt),
low memory cost (rm), and low energy cost (re), respectively. One application can have one or
several sets of requirements, characterizing the application needs at different times of the appli-
cation execution. The requirements sets are defined by the application designer at the application
design time. As an output, our methodology provides a CNN-based application with SBRS capa-
bilities, able to adapt its characteristics to the changes in the application environment during the
application run-time.

Our methodology consists of three main steps, performed offline. At Step 1, for every set of appli-
cation requirements r , accepted as an input by our methodology, we derive an application scenario,
i.e., a CNN which conforms to the given set r of application requirements. To perform this step,
we use the automated platform-aware NAS, explained in detail in Section 6. At Step 2, we use the
scenarios generated by Step 1, and the algorithm proposed in Section 8, to automatically derive
a SBRS MoC of a CNN-based application with scenarios. The SBRS MoC, proposed in Section 7,
captures the scenarios associated with the CNN-based application, and allows for run-time switch-
ing among these scenarios. Moreover, the SBRS MoC features efficient reuse of the components
(layers and edges) among and within application scenarios, thereby ensuring efficient utilization
of the platform memory by the CNN-based application with SBRS. Finally, at Step 3, we use the
SBRS MoC derived at Step 2 to design a final implementation of the CNN-based application with
SBRS. The final implementation of the CNN-based application performs the application function-
ality with run-time adaptive switching among the application scenarios, illustrated in Section 4,
and following the switching protocol presented in Section 9.

6 SCENARIOS DERIVATION

In this section, we discuss the automated derivation of application scenarios, which essentially
generates a collection of CNNs. Each CNN services a different set of requirements, that are

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:9

Fig. 4. An example of cluster design from a given baseline CNN. Layers of the same type are grouped into

a cluster. The cluster is further made flexible to allow more layers and neurons per layer which are then

constrained by definite bounds.

determined by its associated scenario. The derivation process builds upon an existing evolution-
ary NAS methodology [42], which searches for the best CNN in terms of a high accuracy only.
We extend this NAS algorithm to focus on multiple objectives, namely the ATME characteristics,
to arrive at the pareto front, which is a set of CNNs with pareto optimality w.r.t. all the given
objectives. In a pareto optimal set, none of the objectives can be further improved without
worsening some of the other objectives.

Our multi-objective search algorithm is based on an evolutionary approach, which consists of
a population of individual CNNs, and the population evolves over multiple iterations. In each
iteration, the CNN models are trained on the given dataset and are evaluated against each objective.
After all evaluations, the best models found so far are chosen to be parents for the next iteration,
which are then altered through genetic operators, to create models for the next iteration. In other
words, the models that are not as good as the rest of the population are removed, and replaced by
new models created from the better performing ones. In this manner, the design space of possible
CNNs is explored in a natural evolution based process. The purpose of doing this iteratively is to
slowly improve the population as a whole, where newly selected individuals (the new generation)
perform better than the older generation on at least one of the evaluation objectives.

Genotype Creation. Genotype refers to the blueprint of the search space to perform an evolution-
ary optimization algorithm. All the possible CNN designs are encoded into a genotype to define a
general structure of a CNN model architecture, along with bounds and constraints on various pa-
rameters. In our current work, this genotype is created using the baseline CNN, which is provided
as an input to the SBRS methodology.

The baseline CNN is analyzed first and then split into multiple clusters, each containing con-
secutive layers of the same type and same feature map size. In a typical CNN, until a feature map
size reduction layer, such as maxpool, is encountered, the feature map size can be kept unchanged
through optimal padding. Figure 4 illustrates an example of cluster formation for a simple CNN.
All the convolutional layers operating in succession, without any maxpool layer, are grouped as
one cluster.

The channel depth may vary in a cluster and all its layers, which means that the number of neu-
rons per layer are changeable in any cluster. These clusters are then made flexible and adaptable,
by allowing them to have slightly different numbers of layers than the baseline CNN. Moreover,
cluster constraints are defined at this step, such as minimum and maximum number of layers in the
cluster, along with bounds on the number of neurons per layer. In the example shown in Figure 4,
the cluster C1 of convolutional layers is now bounded with minimum 2 and maximum 4 layers,
where each layer can have between 16 and 64 neurons.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:10 S. Minakova et al.

In evolutionary terms, the sequence of clusters along with their bounds define the genotype
for the evolutionary NAS. Formally, a genotype, with I and O as input and output layers, can be
defined as:

Genotype = {I ,C1,C2...Cl ,O },

where, Cluster Ck =
{
C

type

k
, βmin

k , βmax
k ,ηlow

k ,η
up

k
,πk

}
.

Every cluster Ck in the genotype has layers of the same type defined by C
type

k
, such as convo-

lution, fully connected, or pooling. The bounds on the number of layers in the cluster are spec-
ified by βmin and βmax as minimum and maximum values. This means that if a cluster has b
layers, then βmin

k
≤ b ≤ βmax

k
. The cluster also puts constraints on the number of neurons

per layer through ηlow
k

and η
up

k
, and other possible layer specific parameters, πk , such as ker-

nel size and stride in a convolutional layer. For a layer lki in cluster Ck , represented by the tuple

(opki ,hypki ,parki , Iki ,Oki), the operator opki is always the same asC
type

k
, and its hyper-parameters

hypki are selected from the parameters specified by πk . The learnable parameters (weights and bi-
ases), parki , are dependent on the number of neurons in the layer ηki and other hyper-parameters,

so parki = f (ηki ,hypki), where ηlow
k
≤ ηki ≤ η

up

k
.

To initialize the population, a random selection of CNNs is derived from the genotype definition.
Every CNN architecture in the population has exactly the same number of clusters as defined by
the genotype, however, the number of layers and number of neurons per layer can be randomly
polled from the cluster bounds, thus creating a variety of architectures.

The edges defined in the CNN computational model are not explicitly stated in the genotype
definition. It is implied that edges between layers of a cluster are an intrinsic part of the corre-
sponding cluster. On the other hand, the edges that connect clusters to each other are external to
the cluster definition and are maintained in an unchanged manner during all genetic operations.

Genetic Operators. Various genetic operators are crucial building blocks of any evolutionary
algorithm. They not only define how the population moves forward from one iteration to next,
but are also crucial in making sure that a maximum design space is explored during the search.
We define two genetic operators, namely mutation and crossover, to perform alterations on the
CNN models at every iteration.

The mutation operator randomly selects a layer from a randomly selected cluster and one of the
parameters is changed by a small value. For example, the mutation can alter the number of neurons
in the genotype of the selected convolutional layer. To which extent the mutation can alter the layer
in one iteration is defined by algorithm configurations and is simultaneously constrained by the
corresponding cluster bounds.

In contrast, a crossover operator selects two individuals from the population and swaps a whole
cluster between these two models. The swap occurs for a specific but randomly chosen cluster
position. Depending upon the cluster bounds, the number of layers present in the chosen models
at the same cluster position, can be vastly different. For instance, as illustrated in Figure 5, a cluster
consisting of two convolutional layers in a model, can perform the swap with another cluster
containing three convolutional layers in the second model. By replacing a section of the model
with a dissimilar number of layers, the algorithm allows for exploration of rather different model
structures. However, the crossover operator is disruptive, and more training is needed to recover
the loss incurred due to this operation. Crossover in abundance can prevent the algorithm from
converging, hence the rate of crossover is reduced as the iterations continue.

CNNs ATME evaluation. In this section, we describe the evaluation of CNN ATME characteris-
tics, explained in Section 3.2, utilized by the platform-aware multi-objective evolutionary NAS.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:11

Fig. 5. An example of a crossover operation. The Cluster at position 1 is selected for a crossover between two

CNN models. Two Layers in the first CNN are swapped with three layers in the second CNN.

6.0.1 Accuracy. To evaluate the efficiency of a CNN, we use a state-of-the-art cross-validation
technique [39]. In this technique, a CNN efficiency metric is measured by application of a CNN to
a special set of data, called validation dataset [39]. The most popularly used metric, CNN accuracy,
is computed as the number of correctly processed input frames to the total number of the CNN
input frames.

It is important to note that even though we refer to evaluation of a CNN as accuracy, it is possible
to use any other evaluation metric suitable to the application. For instance, F-1 score, precision,
recall, PR-AUC (Area under curve for precision recall) are some of the metrics used for CNNs for
imbalanced datasets.

6.0.2 Memory. The CNN memory cost M is computed as:

M =
∑

li ∈L

��
�|pari | ∗ sizep∈par +

∑

ei j ∈Oi

|Yi | ∗ sizey∈Yi

��
	 , (1)

where |pari | is the total number of the learnable parameters of layer li ; sizep∈par is the amount
of memory in MB, occupied by one learnable parameter; Yi is the data tensor, produced by layer
li onto its every output edge ei j ∈ Oi ; sizey∈Yi

is the amount of memory in MB, occupied by one
element of data in Yi .

6.0.3 Throughput and Energy. The CNN throughput T is computed as:

T = N /
∑

li ∈L

ti , (2)

where N is the CNN batch size, i.e., the number of frames, processed by every CNN layer li [22];∑
li ∈L ti is the time in seconds, required to perform execution of the CNN CNN(L, E), represented

as a sequence of |L| computational steps, where at every step a CNN layer li ∈ L is executed (see
Section 3.1); ti is the time required to execute layer li ∈ L. Analogously, the CNN energy cost ξ is

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:12 S. Minakova et al.

computed as:

ξ =
∑

li ∈L

ξi/N , (3)

where ξi is the energy cost (in Joules) associated with the execution of CNN layer li . We note that
execution time ti and energy cost ξi , associated with CNN layer li and utilized in Equations (2) and
(3), are notoriously hard to evaluate analytically [5]. Therefore, in our methodology, we obtain ti
and ξi by performing measurements on the target edge device.

Algorithm. Here, we describe the multi-objective evolutionary NAS Algorithm utilized to obtain
the pareto set w.r.t. the ATME characteristics. The partial training of all the models in the popula-
tion and evolutionary architecture exploration through genetic operators are performed in every
iteration. Partial training refers to training for a short interval or using a subset of the total dataset.
The partial training techniques allows a CNN architecture to be searched during the training pro-
cess itself [42]. Algorithm 1 outlines the complete approach.

The algorithm starts with CreateGenotype (), creating the genotype from a given baseline
CNN. InitializePopulation() then generates a population of neural networks of size Np using the
genotype created and initializes them by training them for an epoch. Afterwards, this iterative
algorithm runs for Nд generations.
Train() trains all individuals with randomly selected data from the training dataset for one

epoch using τpar ams training parameters, such as learning rate and batch size. The pareto set
Paretof r is initially an empty set. EvaluatePopulation() evaluates the population using the
ATME evaluation parameters as previously described. NSGAIISelection() selects the (1 − Ω)%
best individuals using non-dominatd sorting of all individuals based on multiple objectives,
as defined by the NSGA-II selection algorithm [17]. The pareto set is updated using the best
individuals found so far. To keep the population size constant, Ω% randomly selected individuals
are added back to the pool. MutatePopulation() and CrossoverPopulation() are the evolutionary
operators, which select individuals from the population with a selection probability of Pm and Pr ,

ALGORITHM 1: Multi-Objective Evolutionary NAS

Evolutionary Inputs :Nд , Np , Pr , Pm , Ω, CNNbaseline

Training Inputs :τpar ams

1 Gtype ← CreateGenotype (CNNbaseline)

2 ℘o ← InitializePopulation(Np ,Gtype)

3 Paretof r ← InitializeEmpty ()

4 for i ← 0 Nд do

5 ℘i ← Train(℘i−1,τpar ams)

6 ATMEi ← EvaluatePopulation(℘i)

7 ℘best ← NSGAIISelection(Ω, ℘i ,ATMEi)

8 Paretof r ← updatePareto(Paretof r , ℘best)

9 ℘r ← randomFrom(Ω, ℘i)

10 update ℘i ← ℘best + ℘r

11 ℘mu ← MutatePopulation(℘i , Pm)

12 ℘rc ← CrossoverPopulation(℘i , Pr)

13 ℘r emaininд ← UnchanдedPopulation()

14 update ℘i ← ℘mu + ℘rc + ℘r emaininд

15 end

16 return Paretof r

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:13

respectively. The population is updated with genetically modified individuals while models that
did not get selected to have an alteration stay in the population unchanged. Finally, when the
predefined number of iterations have been performed, the algorithm returns the pareto set (i.e.,
final pareto front) constructed through all the iterations.

Scenario Selection. The scenario selection task, which follows the pareto set creation, refers to
the selection of the appropriate model designated for each scenario. Every intended scenario is
depicted by a requirements set r = (ra , rt , rm , re), where ra , rt , rm , re refers to the importance of
accuracy, throughput, memory, and energy, respectively. Together, these variables constitute the
influence factor of each objective in the scenario by assigning a weight value to the requirements
such that ra +rt +rm +re = 1.0. For example, in a scenario where only high accuracy is pivotal, i.e.,
ra = 1.0, the requirements set is r = (1.0, 0, 0, 0). However, in a scenario where all the objectives
are equally important, the requirements set becomes r = (0.25, 0.25, 0.25, 0.25). For a complex
scenario where the throughput and energy are critical factors and accuracy is still moderately
significant, the requirements set may be represented as r = (0.2, 0.4, 0, 0.4).

The next task is to post-process all the CNN models in the pareto set, for instance, adding Batch-

Norm layers after every Conv layer. These CNNs are not fully trained yet by the Algorithm 1, hence
they are further trained, to achieve the best possible accuracy. Subsequently, hardware metrics can
once more be evaluated at this point, especially if the structure of the CNN was modified, such as
by adding or removing some layers. For every CNN model in the pareto set, each objective is sepa-
rately ranked from 1 to N , where 1 is the best value of an objective (in the set), and N , on the other
hand, is the worst. The ranking dominance concept, introduced in [41], has been extended here
with weighted aggregation of ranks based on requirements set to derive a suitable CNN model to
represent a scenario.

For a modelCNNi , having a rank ROi for a given objectiveO , and associated requirement value
ro , its weighted rankwROi for the objective in consideration is computed as ro ∗ROi . Subsequently,
for each scenario, the weighted ranks are aggregated using the following equation

wRscn =
∑

∀O ∈Θ

(ro ∗ ROi), (4)

where Θ is the set of all objectives. For the specific objectives in this work, i.e., Accuracy (Λ),
Throughput (T), Memory(M), and Energy (ξ) for a model CNNi , the equation translates to

wRscn = (ra ∗ RΛi
) + (rt ∗ RTi

) + (rm ∗ RMi
) + (re ∗ Rξi

). (5)

After the computation of weighted rank, wRscn , for each scenario, the lowest rank value is
considered to be the best model representing that scenario. The weighted ranks and their respective
aggregation is computed for each scenario in the application. In a situation where two or more
models have the lowest rank value, a random model amongst them may be chosen. Alternatively,
the ranks can be computed again with a slightly altered requirements set, such as assigning slightly
higher importance to the accuracy requirement. Figure 6 exemplifies the process of a scenario
selection where the scenario requirements set is (ra = 0.4, rt = 0.3, rm = 0.1, re = 0.2), i.e., in
this scenario all requirements have varying degrees of importance: high accuracy being the most
crucial and memory being the least important one.

7 SBRS APPLICATION MODEL

In this section, we propose a SBRS MoC, which models a CNN-based application with scenarios.
The SBRS MoC captures multiple scenarios associated with a CNN-based application, and allows
for run-time switching among these scenarios. Every scenario in the SBRS MoC is a CNN, as
explained in Section 3.1. Figure 7 shows an example of the SBRS MoC, which models a CNN-based

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:14 S. Minakova et al.

Fig. 6. An example of scenario selection. First, a simple ranking is applied to evaluated objectives. Next, the

scenario requirements set (ra = 0.4, rt = 0.3, rm = 0.1, re = 0.2) is used to compute the weighted ranks

for the given scenario. Finally, the aggregated rank is calculated and the model with the lowest rank value

(CNN6) is selected as the model associated with this scenario.

Fig. 7. An example of the SBRS MoC.

application associated with two scenarios: scenario CNN1 shown in Figure 1(a) and explained in
Section 3.1, and scenario CNN2 shown Figure 1(b). In this section, we use the example from Figure 7
to explain the SBRS MoC in detail. The SBRS MoC is formally defined as a scenarios supergraph,
augmented with a control node c and a set of control edges Ec .

The scenarios supergraph G (L,E) captures all components (layers and edges) in every sce-
nario CNNs (Ls ,Es) of a CNN-based application with scenarios. It has a set of layers L, such that
every layer lsi of every scenario CNNs is captured by the functionally equivalent layer ln ∈ L, and
a set of edges E, such that every edge es

i j of every scenario CNNs is captured by the functionally

equivalent edge enk ∈ E. Table 1 shows the mapping of the components of scenarios CNN1 and
CNN2, given in Rows 3 and 5 in Table 1, respectively, onto functionally equivalent components of
the scenarios supergraph G (L,E) of the SBRS MoC, given in Row 2 in Table 1. For example, Col-
umn 5 in Table 1 shows that layer l3 in the scenarios supergraph captures layer l2

3 of scenario CNN2.
Analogously, Column 10 in Table 1 shows that edge e23 of the scenarios supergraph captures edge
e2

23 of scenario CNN2.
To allow for efficient utilization of platform memory by a CNN-based application with scenarios,

the SBRS MoC allows for full or partial reuse of components among the application scenarios. For
example, as shown in Column 3 in Table 1, layer l1 of the scenarios supergraph captures layer l1

1

of scenario CNN1 and layer l2
1 of scenario CNN2, i.e., layer l1 of the scenarios supergraph is reused

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:15

Table 1. Capturing of Scenarios’ Components (Layers and Edges) in the Scenarios Supergraph

layers edges

G component l1 l2 l3 l4 l5 l6 e12 e23 e24 e34 e45 e56

CNN 1

component l1
1 l1

2

-

l1
3 l1

4 l1
5 e1

12 - e1
23 - e1

34 e1
45

control par. -
O2 = p1 par4 = p2 =

- - - - - - - -= {e24} {W 1
3 ,B

1
3};

I4 = p3 = {e24}

CNN 2

component l2
1 l2

2 l2
3 l2

4 l2
5 l2

6 e2
12 e2

23 - e2
34 e2

45 e2
56

control par. -
O2 = p1

-
par4 = p2 =

- - - - - - - -= {e23} {W 2
4 ,B

2
4};

I4 = p3 = {e34}

reuse

op1, op2,

-

op4, op5, op6,

e12 - - - e45 e56
hyp1, hyp2, hyp4, hyp5, hyp6,
par1, par2, O4 par5, par6,
I1,O1 I2 I5,O5 I6,O6

between scenarios CNN1 and CNN2. Moreover, as shown in Row 7, Column 3 in Table 1, every
attribute of layer l1 (operator opi , hyperparameters hyp1, etc.) is reused between scenarios CNN1

and CNN2, i.e., layer l1 is fully reused between the scenarios. An example of partial reuse is given
in Column 6 in Table 1, where layer l4 of the scenarios supergraph captures layer l1

3 of scenario

CNN1 and layer l2
4 of scenario CNN2. As shown in Row 7, Column 6 in Table 1, only attributes op4,

hyp4, and O4 of layer l4 are reused among the scenarios CNN1 and CNN2. The attributes of layer
l4 that are not reused between the scenarios (i.e., par4 and I4) are specified via run-time adaptive
control parameters, introduced into the scenarios supergraph by the SBRS MoC. For example, as
shown in Row 4 and Row 6, Column 6 in Table 1, attributes par4 and I4 of supergraph layer l4 are
specified by control parameters p2 and p3, respectively. During the application run-time, control
parameter p2 takes values from the set {{W 1

3 ,B
1
3}, {W 2

4 ,B
2
4}} and control parameter p3 takes values

from the set {{e24}, {e34}}. When p2 = {W 1
3 ,B

1
3} and p3 = {e24}, supergraph layer l4 is functionally

equivalent to layer l1
3 of scenario CNN1. When p2 = {W 2

4 ,B
2
4} and p3 = {e34}, supergraph layer l4 is

functionally equivalent to layer l2
4 of scenario CNN2.

The control node c of the SBRS MoC is a special node that communicates with the application
environment, and determines the execution of scenarios in the application supergraph as well as
the switching between these scenarios. It defines the execution of every scenario CNNs (Ls ,Es)
associated with the CNN-based application as an execution sequence ϕs , functionally equivalent
to the execution order of the layers of scenario CNNs (Ls ,Es) as explained in Section 3.2. Every
computational step ϕs

i ∈ ϕs , i ∈ [1, |Ls |] involves the execution of scenarios supergraph layer ln ,
capturing layer lsi . If layer ln is associated with control parameters, stepϕs

i specifies values for these
parameters such that layer ln becomes functionally equivalent to layer lsi . For example, the exe-

cution sequence of scenario CNN1 is specified as ϕ1 = {(l1, ∅), (l2, {(p1, {e24})}), (l4, {(p2, {W 1
3 ,B

1
3}),

(p3, {e24})}), (l5, ∅), (l6, ∅)}, where at stepϕ1
1 = (l1, ∅) layer l1 of the scenarios supergraph, capturing

layer l1
1 of scenario CNN1, is executed. The ∅ in step ϕ1

1 specifies that there are no control param-

eter values set during the execution of ϕ1
1; at step ϕ1

2 = (l2, {(p1, {e24})} layer l2 of the scenarios
supergraph is executed with control parameter p1={e24}, etc.

During the application run-time, control node c can receive a scenario switch request (SSR)
from the application environment. The received request can trigger the control node to switch
from the current (also called “old”) scenario CNNo , executed by the node, to a new scenario CNNn ,
more suitable for the application needs. The switching from scenario CNNo to scenario CNNn is
performed under the SBRS transition protocol, which will be explained in Section 9.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:16 S. Minakova et al.

The set of control edges Ec specifies control dependencies between the control node c and the
supergraph layersL. Every control edge ecn ∈ Ec transfers control data, such as the aforementioned
control parameters needed for the layer execution, from control node c to supergraph layer ln .

8 SBRS MOC AUTOMATED DERIVATION

In this section, we propose an algorithm (see Algorithm 2) that automatically derives the SBRS
MoC, as explained in Section 7, from a set of S application scenarios {CNNs }, s ∈ [1, S], provided
by the platform-aware NAS (see Section 6). Algorithm 2 accepts as inputs the set of scenarios
{CNNs }, s ∈ [1, S], and a set of adaptive layer attributes A.

The set A controls the amount of components reuse exploited by the SBRS MoC by explicitly
specifying which attributes of the SBRS MoC layers are run-time adaptive. The more layers’ at-
tributes are specified in the set A, the more components reuse is exploited by the SBRS MoC. For
example, A = ∅ specifies that the layers of the SBRS MoC have no runtime-adaptive attributes,
i.e., only fully equivalent layers (and their input/output edges) are reused among the scenarios. If
A = {par }, in addition to reuse of fully equivalent layers, the SBRS MoC reuses layers that have
different parameters (weights and biases) but matching operator, hyperparameters, and sets of
input/output edges.

As an output, Algorithm 2 provides an SBRS MoC, which captures application scenarios
{CNNs }, s ∈ [1, S], and exploits components reuse specified by the set A. Figure 7 provides an
example of a SBRS MoC, derived using Algorithm 2 for scenarios {CNN1,CNN2}, as shown in
Figure 1(a) and Figure 1(b), respectively, and set A = {par , I ,O } of adaptive layer attributes.

In Lines 1 to 24, Algorithm 2 generates the scenarios supergraph of the SBRS MoC. In Line 1,
it defines an empty set of scenarios supergraph layers L, an empty set of scenarios supergraph
edges E, an empty set of control parameters Π, and an empty set of reused layers Lr euse . In Lines 3
to 9, Algorithm 2 adds layers to the supergraph layers set L. For every layer lsi of every scenario
CNNs , Algorithm 2 first checks if set L contains a layer ln that can be reused to capture layer lsi .
To perform the check, Algorithm 2 uses Equation (6), which compares those attributes of layers lsi
and ln that are not run-time adaptive (i.e., they are not specified in the set of adaptive attributes
A). If every of those attributes match, layer ln is used to capture the functionality of layer lsi (Lines
5 to 6 in Algorithm 2). Otherwise, a new layer l , capturing the functionality of layer lsi , is added to
the scenarios supergraph (Lines 8 to 9 in Algorithm 2).

eq(lsi , ln ,A) =
⎧⎪⎨⎪⎩
true if attrn = attr s

i ,∀attr � A
f alse otherwise

(6)

Analogously, in Lines 10 to 17, Algorithm 2 adds edges to the supergraph edges set E such
that (1) every edge es

i j of every scenario CNNs is captured in a supergraph edge ekn , and

(2) functionally equivalent edges are reused among the scenarios. To check the functional equiva-
lence of a supergraph edge ekn and edge es

i j of scenario CNNs , Algorithm 2 uses Equation (7).

eq(es
i j , enk ,A) =

⎧⎪⎨⎪⎩
true if eq(lsi , ln ,A) ∧ eq(lsj , lk ,A)

f alse otherwise
(7)

In Lines 18 to 24, Algorithm 2 introduces control parameters into the reused layers of the scenar-
ios supergraph to capture those attributes that cannot be reused among the scenarios. For example,
to capture attribute I4 of scenarios supergraph layer l4, shown in Figure 7, Algorithm 2 introduces
control parameter p3 into layer l4 (as explained in Section 7).

In Lines 25 to 46, Algorithm 2 augments the scenarios supergraph, derived in Lines 2 to 24,
with a control node c and a set of control edges Ec . In Line 25, it defines a control node c with an

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:17

ALGORITHM 2: Application Model Derivation

Input: {CNNs }, s ∈ [1, S]; A
Result: G (L,E, c,Ec)

1 L ← ∅; E ← ∅; Π ← ∅; Lr euse ← ∅;
2 for CNNs (Ls ,Es), s ∈ [1, S] do
3 for lsi ∈ L

s do
4 if ∃ln ∈ L : eq(lsi , ln ,A) //Equation (6) then
5 if ln � Lr euse then
6 Lr euse ← Lr euse + ln ;

7 else
8 l ← new layer (ops

i ,hyp
s
i ,par

s
i , ∅, ∅);

9 L ← L + l ;

10 for es
i j ∈ E

s do

11 if �ekn ∈ E : eq(ekn , e
s
i j ,A) //Equation (7) then

12 lk = lk ∈ L : eq(lsi , lk ,A);
13 ln = ln ∈ L : eq(lsj , ln ,A);

14 ekn ← new edge (lk , ln);
15 E ← E + ekn ;
16 lk .Ok ← lk .Ok + ekn ;
17 ln .In ← ln .In + ekn ;

18 for ln ∈ Lr euse do
19 for attr ∈ ln do
20 for lsi ∈ L

s : eq(lsi , ln ,A), s ∈ [1, S] do
21 sattr = attr s

i ∈ l
s
i : attr s

i .name = attr .name ;
22 if sattr.value � attr.value ∧ attr.value � Π then
23 attr = new control parameter p;
24 Π ← Π + p;

25 ϕ ← ∅; c ← new control node (ϕ);
26 for CNNs (Ls ,Es), s ∈ [1, S] do
27 ϕs = ∅;
28 for i ∈ [1, |Ls |] do
29 l = ln ∈ L : eq(lsi , ln ,A);
30 P ← ∅;
31 for attr ∈ l : attr .value = pq ∈ Π do
32 sattr = attr s

i ∈ l
s
i : attr s

i .name = attr .name;
33 if attr .name = I ∨ attr .name = O then
34 value ← ∅;
35 for es

i j ∈ sattr .value do

36 e = enk ∈ E : eq(es
i j , enk ,A);

37 value ← value + e;

38 else
39 value = sattr .value ;

40 P ← P + (pq ,value);

41 ϕs ← ϕs + (l , P);

42 ϕ ← ϕ + ϕs ;

43 Ec ← ∅;
44 for ln ∈ L do
45 ecn ← new control edge (c , ln);
46 Ec ← Ec + ecn ;

47 return G (L,E, c,Ec)

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:18 S. Minakova et al.

empty set of execution sequences ϕ. In Lines 26 to 42 it generates execution sequence ϕs for every
scenario CNNs , captured by the scenarios supergraph, and adds the sequence ϕs to the set ϕ of the
control node c . Every computational step ϕs

i , i ∈ [1, |Ls |] of the sequence ϕs is derived in Lines 28
to 41 of Algorithm 2. In Line 29, Algorithm 2 determines layer l of scenarios supergraph, capturing
functionality of layer lsi of scenario CNNs . In Lines 30 to 40, Algorithm 2 derives set P of parameter-
value pairs that specifies the values for every control parameter pq associated with layer l . In Lines
31 to 40, Algorithm 2 visits every attribute attr of layer l , specified as control parameter pq , and
determines the value taken by the parameter pq (and, therefore, by attribute attr) at the execution
step ϕs

i . In Line 32, Algorithm 2 finds attribute sattr of layer lsi , corresponding to the attribute attr
of layer l . For example, if attribute attr ∈ l is a set of parameters par of layer l , Algorithm 2 finds
attribute sattr ∈ lsi , which is a set parameters par s

i of layer lsi . If attribute attr , specified by the
control parameter pq , is a list of input or output edges of layer l (the condition in Line 33 is met),
the value for parameter pq is specified in Lines 34 to 37 of Algorithm 2, as a subset of supergraph
edges, functionally equivalent to the corresponding subset of edges in scenario CNNs . Otherwise,
the value of parameter pq is specified in Line 39 of Algorithm 2 as the value of attribute sattr of
layer lsi . In Lines 43 to 46, Algorithm 2 creates a set of control edges Ec , such that for every scenarios
supergraph layer ln , set Ec contains a control edge ecn , representing control dependency between
layer ln and the control node c . Finally, in Line 47, Algorithm 2 returns the SBRS MoC, capturing
the functionality of every scenario CNNs , s ∈ [1, S], associated with the CNN-based application.

9 TRANSITION PROTOCOL

In this section, we present our novel transition protocol, called SBRS-TP, that ensures efficient
switching between scenarios of a CNN-based application, represented using the SBRS MoC. As
explained in Section 7, the control node c of the SBRS MoC can perform switching from an old
application scenario CNNo to a new application scenario CNNn , upon receiving a SSR from the
application environment. In the SBRS MoC, where the execution of scenarios CNNo and CNNn

is represented using execution sequences ϕo and ϕn , respectively, switching between scenarios
CNNo and CNNn means switching between the sequences ϕo and ϕn . We evaluate the efficiency
of such switching by the response delay Δ, defined as the time between a SSR arrival during the
execution of the current scenario CNNo , and the production of the first output data by the new
scenario CNNn . The larger the delay Δ is, the less responsive the application is during a scenarios
transition, thus the less efficient the switching is.

The most intuitive way of switching between scenarios CNNo and CNNn , hereinafter referred to
as naive switching, is to start the execution of the new scenario CNNn after all computational steps
of the old scenario CNNo are executed. An example of the naive switching is shown in Figure 8(a),
where the CNN-based application represented by the SBRS MoC from Figure 7 switches from
scenario CNN1 to scenario CNN2 upon receiving a SSR at the first execution step of scenario CNN1.
The upper axis in Figure 8(a) shows steps ϕi , i ∈ [1, 11], performed by the control node c during
the scenarios switching. For example, Figure 8(a) shows that at step ϕ1 (upon SSR arrival), control
node c schedules step ϕ1

1 of scenario CNN1 for execution. The lower axis in Figure 8(a) indicates
the start and end time of every step ϕi performed by the control node c . Every rectangle, annotated
with layer ln in Figure 8(a), shows the time needed to execute layer ln . The response delay Δ of
the naive switching, shown in Figure 8(a), is computed as 18–0.5 = 17.5, where 0.5 is the time of
SSR arrival and 18 is the time when scenario CNN2 produces its first output, i.e., finishes its last
step ϕ2

6.
We note that this response delay can be reduced. Figure 8(b) shows an example of an alternative

switching mechanism, referred to as the SBRS-TP transition protocol. Unlike in the naive switching,
in SBRS-TP, every step ϕ2

i , i ∈ [1, 6] of the new scenario CNN2 is executed as soon as possible.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:19

Fig. 8. Switching from scenario CNN1 to scenario CNN2.

For example, step ϕ2
1 of the new scenario CNN2 is executed at step ϕ2, where ϕ2 is the earliest

step after the SSR arrival, at which step ϕ2
1 can be executed. Step ϕ2

1 cannot be executed earlier,
i.e., at step ϕ1, due to the components reuse. As explained in Section 7, layer l1 and the platform
resources allocated for execution of this layer are reused between scenarios CNN1 and CNN2, and
thus cannot be used by scenarios CNN1 and CNN2 simultaneously. At step ϕ1, layer l1 is used by
scenario CNN1, executing stepϕ1

1, and therefore, cannot be used for execution of stepϕ2
1 of scenario

CNN2. However, step ϕ2
1 of the new scenario CNN2 can be executed at step ϕ2, in parallel with step

ϕ1
2 of the old scenario CNN1, because no components reuse occurs between these steps: stepϕ1

2 uses

layer l2 for its execution, while step ϕ2
1 uses layer l1 (where l1 � l2) for its execution. Analogously,

step ϕ2
2 of the new scenario CNN2 is executed at step ϕ3, where ϕ3 is the earliest step after the SSR

arrival, at which step ϕ2
2 can be executed. As explained in Section 7, according to the execution

order adopted by scenario CNN2, step ϕ2
2 should be executed after step ϕ2

1. Thus, in the example

shown in Figure 8(b), step ϕ2
2 should start after step ϕ2, at which step ϕ2

1 is executed. Moreover,

step ϕ2
2 of the new scenario CNN2 cannot be executed at step ϕ2, because at step ϕ2 reused layer l2,

required for execution of step ϕ2
2, is occupied by step ϕ1

2 of scenario CNN1. However, step ϕ2
2 can

be executed at step ϕ3, when layer l2 that is required for execution of step ϕ2
2 is not occupied by

scenario CNN1, and step ϕ2
1 is already executed. The response delay Δ of the switching mechanism

shown in Figure 8(b) is 13–0.5 = 12.5, and is much smaller than the response delay Δ = 17.5 of
the naive switching shown in Figure 8(a). Thus, the switching mechanism shown in Figure 8(b) is
more efficient compared to the naive switching.

Our methodology performs efficient switching between scenarios of a CNN-based application
using the SBRS-TP transition protocol, as illustrated in Figure 8(b). The SBRS-TP is carried out
in two phases: the analysis phase, and the scheduling phase. The analysis phase is performed
during the application design time, for every pair (CNNo , CNNn), with o � n, of the CNN-based
application scenarios. During this phase, for every step ϕn

i of the new scenario CNNn , SBRS-TP
derives a minimum delay in steps xo→n

1→i between step ϕn
i and the first step ϕo

1 of the old scenario
CNNo . The delay xo→n

1→i is computed with respect to the data dependencies within scenarios CNNo

and CNNn , and the components reuse between these scenarios, as discussed above. An example

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:20 S. Minakova et al.

ALGORITHM 3: SBRS-TP Analysis Phase

Input: ϕo ,ϕn

Result: Xo→n

1 Xo→n ← ∅; x = 0;
2 for i ∈ [1, |Ln |] do
3 (lk , P

n) ← ϕn
i ;

4 for ϕo
j ∈ ϕ

o do

5 (lz , P
o) ← ϕo

j ;

6 if k = z then
7 if j ≥ x then
8 x = j;

9 Xo→n ← Xo→n + x ;
10 x = x + 1;

11 return Xo→n

of delay xo→n
1→i is delay x1→2

1→3 = 3 of step ϕ2
3, shown in Figure 8(b). Delay x1→2

1→3 = 3 specifies that

step ϕ2
3 of the new scenario CNN2 cannot start earlier than 3 steps after the first step ϕ1

1 of the old

scenario CNN1 has started, i.e., earlier than step ϕ4.
The analysis phase of the SBRS-TP is presented in Algorithm 3. Algorithm 3 accepts as in-

puts execution sequences ϕo and ϕn , representing the old scenario CNNo and the new scenario
CNNn , respectively. As an output, Algorithm 3 provides a set X o→n , where every element xo→n

1→i ∈
X o→n ,with i ∈ [1, |Ln |], is the minimum delay in steps between step ϕn

i of the new scenario CNNn

and the first step ϕo
1 of the old scenario CNNo . An example of set X o→n generated by Algorithm 3

for the scenario switching, shown in Figure 8(b), is the set X 1→2 = {1, 2, 3, 4, 5, 6}. In Line 1, Algo-
rithm 3 defines an empty set X o→n and a variable x , equal to 0. Variable x is a temporary variable
used to store delay xo→n

1→i of every execution step ϕn
i in Lines 2 to 10 of Algorithm 3. In Lines 2 to 10,

Algorithm 3 visits every step ϕn
i of the new scenario CNNn and computes delay xo→n

1→i associated
with this step. In Lines 4 to 8, Algorithm 3 increases delay xo→n

1→i , stored in variable x , with respect
to the components reuse, as discussed above. It visits every step ϕo

j of the old scenario CNNo , and if

step ϕo
j and step ϕn

i share a reused layer (the condition in Line 6 is met), it delays the execution of

step ϕn
i until step ϕo

j is finished. In Line 9, Algorithm 3 adds the delay of step ϕn
i , stored in variable

x , to the set X o→n . In Line 10, Algorithm 3 increases the delay by one step, thereby defining an ini-
tial delay for the next step ϕn

i+1 of the new scenario CNNn . Finally, in Line 11, Algorithm 3 returns
the set X o→n . The set X o→n derived using Algorithm 3 for every pair of scenarios (CNNo , CNNn)
is stored in the control node c of the scenarios supergraph, and used by the scheduling phase of
the SBRS-TP at the application run-time.

The scheduling phase of the SBRS-TP is performed by the control node c during the application
run-time, upon arrival of an SSR. During this phase, control node c performs switching from the
old scenario CNNo to the new scenario CNNn , such that the steps of the new scenario CNNn are
executed as soon as possible with respect to the data dependencies within scenario CNNn and
the components reuse between scenarios CNNo and CNNn (as discussed above). The scheduling
phase of the SBRS-TP is given in Algorithm 4. It accepts as inputs execution sequences ϕo and ϕn

of the old scenario CNNo and the new scenario CNNn , respectively, and the set X o→n derived by
Algorithm 3 for scenarios CNNo and CNNn at the SBRS-TP analysis phase. In Line 1, Algorithm 4
defines variables i , j, and q, representing indexes of the current step ϕn

i of the new scenario CNNn ,
current step ϕo

j in the old scenario CNNo , and current step ϕq performed by the control node c ,

respectively. Upon SSR arrival, i = 1, q = 1, and j = stepo
SSR

where stepo
SSR
≥ 1 is the step in the

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:21

ALGORITHM 4: SBRS-TP Scheduling Phase

Input: ϕo ,ϕn ,Xo→n

1 q = 1; i = 1; j = stepo
SSR

;

2 wait until step ϕo
j is finished; j = j + 1; q = q + 1;

3 while j ≤ |Lo | do
4 start ϕo

j ; j = j + 1;

5 if q ≥ xo→n
1→i − step

o
SSR
+ 2 then

6 start ϕn
i ; i = ((i + 1) mod |Ln |);

7 wait until started scenarios’ steps are finished; q = q + 1;

8 while i ≤ |Ln | do
9 start ϕn

i ;
10 wait until ϕn

i finishes; i = i + 1; q = q + 1;

old scenario CNNo at which the SSR arrived. For the example shown in Figure 8(b), stepo
SSR
= 1

because SSR arrives at step ϕ1
1 of the old scenario CNN1. In Line 2, Algorithm 4 performs the first

step ϕ1 of the scenarios switching. During this step, Algorithm 4 waits until step ϕo
j , during which

the SSR arrived, finishes. In Lines 3 to 7, Algorithm 4 schedules the remaining steps of the old
scenario CNNo , until scenario CNNo is finished (the condition in Line 3 is false) and, if possible,
schedules steps of the new scenario CNNn in parallel with the steps of the old scenario CNNo .
Step ϕn

i of the new scenario CNNn can start in parallel with step ϕo
j of the old scenario CNNo if

the minimum distance xo→n
1→i between steps ϕo

1 and ϕn
i is observed (the condition in Line 5 is met).

In Line 7, Algorithm 4 waits until the steps of scenarios CNNo and CNNn , started in Lines 4 to 6,
finish. In Lines 8 to 10, Algorithm 4 schedules the remaining steps of scenario CNNn , until scenario
CNNn produces an output data (the condition in Line 8 is false). After Algorithm 4 finishes, scenario
CNNn becomes the current scenario and will be executed for every input given to the CNN-based
application until the next SSR.

10 EXPERIMENTAL STUDY

To evaluate our novel SBRS methodology, we perform an experiment, where we apply our method-
ology to three real-world CNN-based applications with scenarios. We conduct our experiment
in four steps. The first three steps perform in-depth per-step analysis of our methodology and
demonstrate the merits of our methodology through two real-world CNN-based applications from
different domains. The fourth step compares our methodology to the most relevant existing work.

In Step 1 (Section 10.2), we use the platform-aware NAS, explained in Section 6, to automatically
derive a set of application scenarios for three CNN-based applications, explained in details in
Section 10.1. We show the time required to derive the scenarios, and the ATME characteristics
of every derived scenario. By performing this experiment, we evaluate the effectiveness of our
platform-aware NAS, and show the diversity of the application scenarios, derived by this approach
for the real-world CNN-based applications.

In Step 2 (Section 10.3), we use Algorithm 2, proposed in Section 8, to automatically generate
SBRS MoCs for the CNN-based applications, derived at Step 1. For every application, we generate
two SBRS MoCs with different sets of adaptive layer attributes A: A = {I ,O,par } and A = {I ,O },
respectively. We measure and compare the memory cost of every CNN-based application, when
the application is represented as (1) the SBRS MoCs with A = {I ,O,par }; (2) an SBRS MoC with
A = {I ,O }; 3) a set of scenarios, where every scenario is represented as a CNN model, explained
in Section 3.1. By performing this experiment, we evaluate the efficiency of the memory reuse,
exploited by the SBRS MoC, proposed in Section 7.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:22 S. Minakova et al.

In Step 3 (Section 10.4), we measure and compare the responsiveness of the CNN-based appli-
cations, represented as SBRS MoCs, derived in Step 2, during the scenarios of switching, when
switching is performed: (1) under the SBRS-TP transition protocol; (2) using the naive switching
mechanism. By performing this experiment, we evaluate the efficiency of the SBRS-TP transition
protocol, proposed in Section 9.

In Step 4 (Section 10.5), we perform a comparative study, where we compare our SBRS methodol-
ogy with the most relevant existing work. As explained in Section 2 and demonstrated in Section 4,
none of the existing works currently can design an adaptive CNN-based application, which consid-
ers platform-aware requirements and constraints that are specifically affected by the environment
changes at run-time. Within this context, none of the existing works is completely comparable to
our methodology. Nonetheless, we perform a partial comparison between our methodology and
the most relevant existing work. Among the existing works, reviewed in Section 2 and Section 4,
the MSDNet adaptive CNN work [12] is the most relevant to our methodology. Similarly to our
methodology and unlike other reviewed existing work, the methodology in [12] associates a CNN-
based application with multiple alternative CNNs that are characterized with different trade-offs
between accuracy and resources utilization, and can be used to process application inputs of any
complexity. Additionally, both the work in [12] and our methodology provide means to reduce the
memory cost of a CNN-based application by reusing the memory among the alternative CNNs. In
this sense, the methodology in [12] and our SBRS methodology can be compared via (1) CNNs,
designed for a specific dataset and edge platform; (2) run-time adaptive trade-offs between appli-
cation accuracy and resources utilization; and (3) memory efficiency. In Section 10.5, we perform
such comparison, using the image recognition CIFAR-10 dataset [6].

10.1 Experimental Setup

We demonstrate the merits of our methodology through three applications from two different
domains, namely Human Activity Recognition (HAR) and image classification. We used the
PAMAP2 [40] dataset for HAR and the Pascal VOC [20] and CIFAR-10 [6] datasets for image
classification. PAMAP2 has data from body-worn sensors and predicts the activity performed by
the wearer, while Pascal VOC and CIFAR-10 are multi-label image classification datasets with
20 classes and 10 classes, respectively. The sensor data in PAMAP2 is downsampled to 30 Hz
and a sliding window approach with a window size of 3s (100 samples) and a step size of 660ms
(22 samples) is used to segment the sequences.

The main features and requirements for each CNN-based application are listed in Table 2.
Column 1 lists applications names, corresponding to the names of the datasets, the applications
are using. Hereinafter, we refer to the applications by their names; Column 2 shows the task
performed by the applications; Column 3 lists the baseline CNN that was deployed to perform the
application tasks; Column 4 lists the real-world datasets, which were used to train and validate
the applications’ baseline CNNs; Column 5 shows sets of application requirements ri , i ∈ [1, S],
where every set ri characterizes a scenario, associated with the CNN-based application, S is
the total number of CNN-based application scenarios. The applications use extremely different
baseline CNNs (from the deep and complex ResNet based topology [18] to the small and shallow
PAMAP topology) and diverse datasets (from the large Pascal VOC [20] dataset to the small
PAMAP2 [40] and CIFAR-10 [6] datasets). The ResNet based baseline topologies for VOC and
CIFAR-10 application are custom Resnets, both of which are smaller than the popular ResNet-18.
This leads to diversity in scenarios and SBRS MoCs, derived for these applications and, thereby
providing a sufficient basis for evaluation of the effectiveness of our methodology.

To explore the design space in our experimental study (Step 1), we first define clusters as derived
from the baseline CNNs used for all the datasets. These clusters are shown in Table 3 for the VOC

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:23

Table 2. CNN-based Applications

App. task baseline CNN dataset app. requirements sets

Pascal VOC Image recongition ResNet [18] Pascal VOC [20] r1=(1.0, 0.0, 0.0, 0.0)
r2=(0.7, 0.0, 0.3, 0.0)
r3=(0.6, 0.1, 0.0, 0.3)
r4=(0.5, 0.5, 0.0, 0.0)
r5=(0.1, 0.1, 0.4, 0.4)

PAMAP2 Human activity monitoring PAMAP (CNN-2) [10] PAMAP2 [40] r1=(1.0, 0.0, 0.0, 0.0)
r2=(0.2, 0.4, 0.0, 0.4)
r3=(0.5, 0.0, 0.0, 0.5)
r4=(0.5, 0.5, 0.0, 0.0)

CIFAR-10 Image recognition ResNet [18] CIFAR-10 [6] r1=(1.0, 0.0, 0.0, 0.0)
r2=(0.25, 0.25, 0.25, 0.25)
r3=(0.5, 0.25, 0.0, 0.25)
r4=(0.5, 0.0, 0.0, 0.5)

Table 3. VOC Search Space

Cluster Type Layers Neurons Kernel
βmin βmax ηlow ηup Kmin Kmax

C1:Conv 1 3 16 96 3 × 3 7 × 7
C2:MaxP - - - - 2 × 2 -
C3:Conv+Res 1 5 16 96 3 × 3 7 × 7
C4:MaxP - - - - 2 × 2 -
C5:Conv+Res 1 5 32 128 3 × 3 7 × 7
C6:MaxP - - - - 2 × 2 -
C7:Conv+Res 1 5 32 128 3 × 3 7 × 7
C8:MaxP - - - - 2 × 2 -
C9:Conv+Res 1 5 64 256 3 × 3 7 × 7
C10:MaxP - - - - 2 × 2 -
C11:GlbAvgP - - - - 2 × 2 -

Table 4. CIFAR-10 Search Space

Cluster Type Layers Neurons Kernel
βmin βmax ηlow ηup Kmin Kmax

C1:Conv 1 3 32 64 3 × 3 7 × 7
C2:Conv+Res 2 4 32 128 3 × 3 7 × 7
C3:MaxP - - - - 2 × 2 -
C4:Conv+Res 2 4 64 256 3 × 3 7 × 7
C5:Conv+Res 2 4 64 256 3 × 3 7 × 7
C6:MaxP - - - - 2 × 2 -
C7:Conv+Res 2 5 128 512 3 × 3 7 × 7
C8:Conv+Res 2 5 128 1024 3 × 3 7 × 7
C9:MaxP - - - - 2 × 2 -
C10:FC 1 3 256 1024 - -

Table 5. PAMAP2 Search Space

Cluster Type Layers Neurons Kernel
βmin βmax ηlow ηup Kmin Kmax

C1:Conv 2 7 64 128 3 × 1 7 × 1
C2:MaxP - - - - 2 × 1 -
C3:Conv 2 7 96 256 3 × 1 7 × 1
C4:GlbMaxP - - - - 2 × 1 -
C5:FC 1 4 128 512 - -

dataset, Table 5 for the PAMAP2 dataset, and Table 4 for the CIFAR-10 dataset. In these tables,
Column 1 depicts the cluster-ID with the abbreviated layer types. Conv, MaxP, GlbAvgP, GlbMaxP,
and FC are abbreviations for convolution, max-pool, global average pool, global max pool, and fully
connected, respectively. Conv+Res is a special cluster where all layers are convolutional, but there
is a residual connection [18] from the input edge to the cluster until the output edge. This residual
connection is maintained (or repaired) as needed during the architecture modification through
evolutionary operators. The Conv+Res cluster is designed based on the ResNet v1 [18] family of
neural networks. Since the CNNs are automatically generated based on the provided constraints
by the NAS, they are not identical to any popular ResNet variant, such as, ResNet-18 or ResNet-128.
The rest of the columns define cluster specific bounds, namely, the number of layers, the neurons
per layer, and the kernel sizes.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:24 S. Minakova et al.

Table 6. Algorithm Parameters for DSE

Parameter VOC PAMAP2 CIFAR10

Mutation change rate ϱm 0.10 0.12 0.12

Mutation probability Pm 0.3 0.3 0.3

Initial Crossover probability Pr (0) 0.3 0.4 0.3

Population size Np 60 50 100

No of iterations Nд 30 60 120

Population replacement rate Ω 0.02 0.03 0.02

Training Parameters τpar ams

Training size per iteration 1 epoch 1/5 epoch 1/8 epoch

Optimizer Adam Adam Adam

Learning rate 1e−3 1e−4 1e−3

Batch size 10 50 64

Once the clusters are defined, the next step is to perform the multi-objective evolutionary NAS
using Algorithm 1 as defined in Section 6. Table 6 lists the values for all parameters of Algorithm 1.
Column 1 shows the parameters along with their symbol in Column 2. Columns 3, 4, and 5 are the
respective parameter values used in the experiments for VOC, PAMAP2, and CIFAR-10.

To perform the measurements, required for Step 2 and Step 3 in our experimental study, for every
application listed in Table 2, we first use Algorithm 2, explained in Section 7, to automatically
derive two SBRS MoCs with different sets of adaptive attributes A. Then for every SBRS MoC,
we design an executable application, performing the functionality of the SBRS MoC, and execute
this application on the NVIDIA Jetson TX2 embedded platform [37]. To implement the executable
applications, we use the TensorRT DL library [38], providing state-of-the-art performance of DL
inference on the NVIDIA Jetson TX2 embedded device [37], and custom C++ code. The TensorRT
library is used to implement the functionality of CNN layers and edges. The custom C++ code
implements the run-time adaptive functionality of the applications.

10.2 Automated Scenarios Derivation

The scenarios for all the applications were derived using a two step process. First, an exploration
of the defined search space was performed using Algorithm 1. This exploration resulted in a pareto
front, consisting of CNNs with evaluated objectives, such that an objective can not be improved
further without worsening at least one other objective. Figures 9(a), 9(b), and 9(c) illustrate the
pareto front for Pascal VOC, PAMAP2, and CIFAR-10, respectively. These pareto fronts do not
include memory evaluations to allow for a comprehensible visualization, since the actual pareto
fronts created by Algorithm 1 are four dimensional. For the Pascal VOC dataset, which is an im-
balanced set, the F1-score was used as the efficiency evaluation metric to compare the partially
trained CNNs during the search. The exploration took 6 days with 8 GPUs for the image recog-
nition application (i.e., Pascal VOC dataset). It took 2.5 days on 4 GPUs for the CIFAR-10 dataset,
and 10 hours on 1 GPU for the HAR application (PAMAP2 dataset).

The CNNs in the pareto fronts were modified further, by adding a batch normalization layer
after every convolutional layer. Subsequently, these models were trained for 250 epochs for Pascal
VOC and CIFAR-10 and 100 epochs for PAMAP2. Once the CNNs are trained, all the objectives are
evaluated again to make sure they correctly reflect the modifications applied to the CNNs.

Second, all objectives are ranked individually and rank based weighted aggregation was per-
formed, as described in Section 6, using the requirement sets from Table 2 for the three applica-
tions. The selected CNNs for each scenario after rank aggregation are presented in Tables 7, 8, and
9 for Pascal VOC, PAMAP2, and CIFAR-10, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:25

Fig. 9. Pareto fronts based on 3 evaluation parameters, namely, accuracy (F1-score for Pascal VOC), through-

put and energy.

Table 7. VOC Scenarios

Req. set PR-AUC Thr. (fps) Mem. (MB) Energy (J)

r1 77.78 15.41 292.61 0.384
r2 76.28 21.78 210.69 0.281
r3 77.69 20.26 242.72 0.291
r4 73.99 59.27 155.48 0.101
r5 72.85 75.07 130.21 0.078

Table 8. PAMAP2 Scenarios

Req. set PR-AUC Thr. (fps) Mem. (MB) Energy (J)

r1 94.17 510.20 10.02 0.0083
r2 91.34 1,333.33 4.30 0.0033
r3 92.56 970.87 4.86 0.0037
r4 92.93 1,052.63 4.11 0.0039

Table 9. CIFAR-10 Scenarios

Req. set PR-AUC Thr. (fps) Mem. (MB) Energy (J)

r1 94.86 231.80 52.87 0.0242
r2 92.84 754.15 13.07 0.0055
r3 93.46 538.79 18.30 0.0081
r4 94.46 403.71 28.07 0.0121

The first column in the tables shows the requirements set ID (as already described in Table 2),
followed by the evaluation metric, throughput, memory, and energy for the associated CNNs for
each scenario. As the evaluation metric, the accuracy was computed for PAMAP2, and CIFAR-10,
while PR-AUC (Area under precision-recall curve) was used for Pascal-VOC. The PR-AUC is
calculated as the average of precision scores calculated for each recall threshold. PR-AUC was
chosen over F1-score to evaluate the fully trained CNNs. F1-score is based on threshold based
class assignments, and is more useful to perform comparisons between partially trained models
(during the NAS). Once a CNN is fully trained, the PR-AUC, which is based on the prediction
scores and ordering of these predictions, is more insightful for multi-label classification.

The scenarios that were eventually automatically derived in the experiments, showcase a com-
pelling representation of the application requirements. For instance, the Pascal VOC have contrast-
ing requirements in r1 and r5; r1 demands the best possible model efficiency, while on the other
hand, r5 demands low memory and energy usage. In line with the requirements, the scenario for
r1 has the best associated CNN in terms of high PR-AUC score, though with a high memory and
energy cost. Whereas, the CNN for r5 consumes significantly less memory and energy than the
former, but with a lower PR-AUC score. In yet another example, if the CNNs for r1 and r2 are
compared, it is observed that both demand high efficiency, while r2 additionally demands a lower
memory footprint. The scenario that was derived for r2 requires almost 25% less memory at the
cost of a small dip in the PR-AUC score.

For the PAMAP2 application, a similar CNN ensemble with various requirement sets is automat-
ically derived. For example, r1 and r2 requirement sets place contradicting demands: r1 demands
higher accuracy, whereas r2 has more focus on energy and throughput. The derived CNN for r1

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:26 S. Minakova et al.

Table 10. SBRS MoC Memory Reuse Efficiency Evaluation

Application A
Memory use (MB)

memory reduction (%)
MSBRS Mnaive

Pascal VOC
{I ,O, PAR} 230

1,032
78

{I ,O } 547 47

PAMAP 2
{I ,O, PAR} 22.43

23.28
3.64

{I ,O } 23.21 0.31

CIFAR-10
{I ,O, PAR} 83.3

112.31
25.9

{I ,O } 107.17 4.57

has high accuracy, while the CNN for r2 has lower accuracy, but ≈2.5× better throughput and more
than halves the energy usage.

Comparably, CNNs are derived for the CIFAR-10 application in the same manner. To illustrate,
r1 and r2 requirement sets purposefully differ from each other in their demands. r1 requires high
accuracy, whereas r2 considers all of the measured characteristics to have the same importance.
Comparing the derived CNNs for r1 and r2, it is clearly observable that r1 CNN has a high accuracy,
while r2 CNN with a lower accuracy, performs better on all other parameters. These experiments
clearly illustrate that our scenario derivation enables automatic generation of diverse CNNs with
different ATME characteristics.

10.3 SBRS MoC Memory Reuse Efficiency

In this experiment, we measure and compare the memory cost of every CNN-based application,
presented in Table 2 in Section 10, when the application is represented as: (1) an SBRS MoC with
a set of adaptive layer attributes A = {I ,O,par }; (2) an SBRS MoC with a set of adaptive layer
attributes A = {I ,O }; (3) a set of scenarios, where every scenario is represented as a CNN and no
memory is reused within or among the CNNs. The results of this experiment are given in Table 10.
In Table 10, Column 1 lists the CNN-based applications with scenarios, explained in Section 10.1.
Column 2 shows the sets of adaptive layer attributes A, used by Algorithm 2 to generate the SBRS
MoCs for the CNN-based applications. Column 3 shows the memory use MSBRS (in MB) of the
CNN-based applications, represented as the SBRS MoCs. As shown in Columns 2 and 3 of Table 10,
the more attributes are specified in the set A, the more memory is reused by the application, and
the application memory cost is less. For example, as shown in Rows 3–4, Columns 2–3 in Table 10,
Pascal VOC uses 230 MB of platform memory, when generated with A = {I ,O,par } and 547 MB of
platform memory, when generated with A = {I ,O }. Column 4 in Table 10 shows the memory use
Mnaive (in MB) of the CNN-based applications, when every application is represented as a set of
scenarios and no memory reuse is exploited by the application. Column 5 in Table 10 shows the
memory reduction (in %), enabled by the memory reuse, exploited by our proposed SBRS MoC. The
memory reduction is computed as (Mnaive − MSBRS)/Mnaive ∗ 100%, where MSBRS and Mnaive

are listed in Columns 3 and 4, respectively. As shown in Column 5, the memory reuse, exploited
by the SBRS MoC, varies for different applications: Pascal VOC (Row 3 to Row 4) demonstrates
high (47%–78%) memory reduction; PAMAP2 (Row 5 to Row 6) demonstrates low (0.31%–3.64%)
memory reduction; CIFAR-10 (Row 7 to Row 8) demonstrates (4.57%–25.9%) memory reduction,
which is higher, compared to PAMAP2 but lower than Pascal VOC. The difference occurs due to
the different amounts of components reuse exploited by the Pascal VOC, PAMAP2, and CIFAR-10
applications . Pascal VOC has 5 scenarios, where every scenario is a deep CNN with a larger number
of similar layers. In other words, Pascal VOC is characterized by a large amount of repetitive
CNN components, reused by the SBRS MoC (see Section 8), which leads to a significant memory

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:27

Fig. 10. SBRS-TP efficiency evaluation.

reduction. PAMAP2 has 4 scenarios, compared to 5 scenarios of Pascal VOC, and every scenario in
PAMAP2 has less layers and edges than the scenarios of Pascal VOC. Thus, in PAMAP2, the SBRS
MoC can reuse only a small number of components, which leads to a small memory reduction.
CIFAR-10 has 4 scenarios, and every scenario in CIFAR-10 has less layers and edges than the
scenarios of Pascal VOC, but more layers and edges than the scenarios of PAMAP2. Thus, in CIFAR-
10, the SBRS MoC can reuse less components than in Pascal VOC, but more components than in
PAMAP2.

10.4 SBRS-TP Efficiency

In this experiment, for every CNN-based application, explained in Section 10.1, and represented
as two functionally equivalent SBRS MoCs with sets of adaptive attributes A = {I ,O } and
A = {I ,O,par }, respectively, we measure and compare the application responsiveness during the
scenarios switching, when the switching is performed using: (1) the naive switching mechanism;
(2) the SBRS-TP transition protocol. The results of this experiment for Pascal VOC, PAMAP2, and
CIFAR-10 are shown as bar charts in Figure 10, subplots (a), (b), and (c), respectively. Every pair
(o,n), shown along the horizontal axis in the subplots denotes switching between a pair (CNN o ,
CNN n), o � n of the application scenarios, performed upon arrival of a SSR at the first step of
the old scenario (stepo

SSR
=1). For example, pair (2, 1) shown in Figure 10(b), denotes switching

between scenarios CNN 2 and CNN 1 of PAMAP2, performed at the fist step of scenario CNN 2.
Every such switching is associated with 3 bars, showing the switching delay Δ (in milliseconds),
when switching is performed: (1) using the naive switching mechanism;1 (2) using the SBRS-TP
for an SBRS MoC with A = {I ,O,par }; (3) using the SBRS-TP for an SBRS MoC with A = {I ,O }.
The higher the corresponding bar is (i.e., the larger response delay Δ is), the less efficient is the
switching. For example, switching (2, 1), shown in Figure 10(b), is associated with (1) a bar of
height 0.8; (2) a bar of height 0.7; (3) a bar of height 0.4. The bar of height 0.8, showing delay Δ of
the naive switching, is the highest among the bars. Thus, the switching between scenariosCNN 2

and CNN 1 of PAMAP2 is least efficient, when performed using the naive switching mechanism.
The difference in height of bars, corresponding to one switching, shows the relative efficiency of
different switching methods expressed via these bars. For example, the switching (2, 1), shown in
Figure 10(b), is 0.8 - 0.4 = 0.4 ms less efficient when performed using naive switching (bar of height
0.8) than when performed using SBRS-TP for an SBRS with A = {I ,O } (bar of height 0.4).

1One bar is sufficient to show the delay of the naive switching for SBRS MoCs with A = {I, O } and A = {I, O, par },
respectively, because, as explained in Section 9, the naive switching is not affected by the application components reuse,

determined by the set A

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:28 S. Minakova et al.

As shown in Figure 10: (1) the switching delay Δ is typically lower when the switching is
performed using the SBRS-TP, compared to the switching performed using the naive switching
mechanism. Thus, the SBRS-TP is, in general, more efficient than the naive switching mechanism;
(2) When the switching is performed under the SBRS-TP, the switching delay Δ is typically lower
for an SBRS MoC withA = {I ,O } than for a functionally equivalent SBRS MoC withA = {I ,O,par }.
The difference occurs because among these SBRS MoCs, the one with A = {I ,O,par } typically
reuses more CNN components than the one with A = {I ,O } (see Section 7). As explained in
Section 9, reuse of the application components can cause an increase in switching delays, when the
switching is performed under the SBRS-TP. Thus, the switching performed under the SBRS-TP is
more efficient when performed in an SBRS MoC with A = {I ,O } than in a functionally equivalent
SBRS MoC with A = {I ,O,par }. Analogously, the relative efficiency of the SBRS-TP compared to
the naive switching is lower for Pascal VOC than for PAMAP2 or CIFAR-10 because, as explained
in Section 10.3, Pascal VOC exploits more components reuse than PAMAP2 or CIFAR-10.

10.5 Comparative Study

In this section, we compare our SBRS methodology to the MSDNet adaptive CNN methodol-
ogy [12]. MSDNet proposes an adaptive CNN-based application which allows multiple exit points
in a large neural network, depending upon the input complexity and hardware resources budget
allocated to the application. Similarly to our methodology, the methodology in [12] associates a
CNN-based application with multiple alternative CNNs that are characterized with different trade-
offs between accuracy and resources utilization, and can be used to process application inputs of
any complexity. In this sense, the methodology in [12] and our SBRS methodology can be compared
via (1) CNNs, designed for a specific dataset and edge platform; (2) run-time adaptive trade-offs
between application accuracy and resources utilization; (3) memory efficiency.

First of all, we compare the CNNs, obtained using our SBRS methodology and the MSDNet
methodology to perform image classification on the CIFAR-10 dataset [6]. We refer to these CNNs
as to SBRS points and MSDNet points, respectively. The MSDNet points, i.e., subgraphs or exits of
the MSDNet CNN, are derived using the official implementation of the MSDNet methodology [11],
executed with design and training parameters specified for the CIFAR-10 dataset in [12]. In to-
tal, there are six MSDNet points. The SBRS points are obtained using the platform-aware four-
objective NAS, described in Section 6. In total, we obtained eight SBRS points that are pareto-
optimal in terms of the ATME characteristics. These points are not the final scenarios as portrayed
in Table 9, but the pareto-optimal CNNs resulting from NAS. The scenarios are derived based on
a weighted ranking from this pareto set of CNNs, as discussed in Section 6.

To compare the MSDNet points with our SBRS points, we have evaluated the ATME characteris-
tics of all the points on the same hardware. The accuracy characteristic is measured using the cross-
validation technique, explained in Section 6.0.1. The platform-aware characteristics (throughput,
memory, and energy) are measured on the NVIDIA Jetson TX2 edge platform [37].

The SBRS and MSDNet points comparison is shown in Figure 11. Considering that it is not
easy to draw and understand four-dimensional plots, the comparison is represented as three two-
dimensional plots, subplots (a), (b), and (c), each comparing one of the platform-aware CNNs char-
acteristics to the CNNs accuracy. The accuracy (the higher the better) is always on the vertical
axis with different platform-aware characteristics on the horizontal axis: energy (the lower the
better), throughput (the higher the better), and memory cost (the lower the better), respectively.
Each subplot shows the six points for MSDNet and those SBRS points that are pareto-optimal in
terms of respective platform-aware characteristics.

Beside the visualization, these plots also provide insight into the key difference between our
SBRS methodology and MSDNet. It can be clearly observed in Figure 11 that the SBRS points are

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:29

Fig. 11. Comparison among SBRS and MSDNet [12] points.

able to achieve similar accuracy when compared to the MSDNet points, but with lower energy cost,
higher throughput, and lower memory cost. We believe that the reason for this direct distinction is
caused by the optimization, applied (through the NAS) by our methodology, to every SBRS point
to meet the platform-aware needs, while the MSDNet CNN does not provide such optimization.
The plots in Figure 11 undoubtedly reveal that our SBRS points are a better choice for using them
as scenarios in our SBRS methodology compared to the MSDNet points because none of the MS-
DNet points pareto-dominates our SBRS points but many of our SBRS points pareto-dominate the
MSDNet points.

To further study the efficiency of our proposed methodology, we compare accuracy and through-
put characteristics of the MSDNet CNN and the SBRS MoC, both constructed for an example CNN-
based application. The example application performs classification on the CIFAR-10 dataset, and
is affected by the application environment at run-time.

The MSDNet CNN is constructed according to the design and training parameters specified
for the CIFAR-10 dataset in the original MSDNet work [12]. It has six exits, characterized with
different accuracy and throughput. During the application run-time, the MSDNet CNN can yield
data from different exits, thereby offering various trade-offs between the application accuracy and
throughput. We evaluate these trade-offs by executing the MSDNet CNN with an anytime pre-

diction setting [12]. This setting allows the MSDNet CNN to switch among its subgraphs (exits),
thereby adapting the MSDNet CNN to changes in the application environment. We note that in
the original work [12] the switching among the MSDNet CNN exits is driven by a resource budget
given in FLOPs, not by a throughput requirement. However, conceptually, it is possible to extend
the MSDNet CNN with a throughput-driven adaptive mechanism. In this experiment, we emulate
execution of the MSDNet CNN with such a mechanism in order to enable direct comparison of the
MSDNet CNN with our SBRS MoC.

The SBRS MoC is obtained by using our methodology, presented in Section 5. As input, our
methodology accepts a custom baseline CNN from ResNet [18] family, presented in Table 4, and
three sets of application requirements. In the first set r1 = {0.1, 0.9, 0, 0}, the application prioritizes
high throughput over high accuracy. In the second set r2 = {0.5, 0.5, 0, 0}, high throughput and
high accuracy are equally important for the application. In the third set r3 = {0.9, 0.1, 0, 0}, the
application prioritizes high accuracy over high throughput. The obtained SBRS MoC has three
scenarios corresponding to the three sets of requirements r1, r2, and r3. During the application run-
time the SBRS MoC can switch among its scenarios, thereby offering various trade-offs between
application accuracy and throughput, and adapting the application to changes in the application
environment at run-time.

The comparison, in terms of accuracy and throughput characteristics of the aforementioned
MSDNet CNN and the SBRS MoC, is visualized in Figure 12. The horizontal axis shows throughput

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

14:30 S. Minakova et al.

Fig. 12. Comparison between SBRS, MoC, and MSDNet CNN [12], performing classification on the CIFAR-

10 dataset with throughput-driven adaptive mechanism.

(in fps). The vertical axis shows accuracy (in %). The two step-wise curves in Figure 12 represent
the relationships between the accuracy and the throughput, exhibited by the MSDNet CNN and
SBRS MoC. Each flat segment of the step-wise curves represents a scenario in the SBRS MoC or
an exit in MSDNet CNN. For example, the flat segment of the MSDNet curve, characterized with
throughput between 231 and 392 fps and accuracy of 0.918%, represents exit 2 of the MSDNet
CNN. Each cross marker or triangle marker represents a switching point between SBRS MoC
scenarios or MSDNet CNN exits, respectively. As explained above, run-time switching among
the scenarios or exits occurs when the application is affected by changes in its environment at
run time. Figure 12 illustrates such changes in the application environment as the two vertical
dashed lines, representing demands of minimum throughput, imposed on the application by the
environment at run time. For example, at the start of the application execution, the environment
demands that the application must have throughput of no less than 200 fps with as high as
possible accuracy. In this case, the MSDNet CNN yields data from exit 3, demonstrating 0.931%
accuracy, and the SBRS MoC executes in scenario 3, demonstrating 0.949% accuracy. Later, the
application environment changes and demands that the application must have throughput of no
less than 394 fps. Thus, the MSDNet CNN starts to yield data from exit 1, demonstrating 0.902%
accuracy, and the SBRS MoC switches to scenario 2, demonstrating 0.946% accuracy.

As shown in Figure 12, our SBRS MoC exhibits higher accuracy than the MSDNet CNN for any
throughput requirement, except when the application has to exhibit throughput lower or equal to
61 fps. In the latter case, the accuracy of our SBRS MoC is comparable (0.05% lower) to the accuracy
of the MSDNet CNN. We believe that the difference in accuracy between our SBRS MoC and the
MSDNet CNN occurs because the scenarios in the SBRS MoC are optimized for both high accuracy
and high throughput, whereas the exits of MSDNet are only optimized for high CNN accuracy.
Optimization for the platform-aware requirements performed during the SBRS MoC design enables
for more efficient utilization of the platform resources, and therefore for more efficient execution
of the application when high throughput is required.

Finally, we compare the memory efficiency between our SBRS methodology and the MSDNet
methodology. To do so, we compare the memory cost of the MSDNet CNN and the SBRS MoC,

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

SBRS 14:31

designed to perform classification on the CIFAR-10 dataset. The memory cost of our final applica-
tion equals 77.68 MB when the application is designed with adaptive parameters A = {I ,O, PAR},
and 97.6 MB when the application is designed with adaptive parameters A = {I ,O }. The memory
cost of the MSDNet CNN, designed for the CIFAR-10 dataset, is estimated as explained in
Section 6.0.2, and is equal to 103.76 MB. Thus, for the CIFAR-10 dataset, the memory efficiency of
our methodology is higher than the one of MSDNet. The difference occurs because: (1) unlike the
MSDNet methodology, our methodology reuses memory allocated to store intermediate compu-
tational results within every CNN as well as among different CNNs; (2) as shown in Figure 11(c),
the SBRS points obtained using our methodology and used by our final application require less
memory than comparable MSDNet points. It is fair to note that, since our methodology does not
enable for reuse of CNN parameters, it may prove less efficient than MSDNet for applications that
use CNNs characterized with large sizes of weights. However, such applications are not typical
for execution at the edge.

11 CONCLUSION

We have proposed a novel methodology, which provides run-time adaptation for CNN-based appli-
cations executed at the edge to changes in the application environment. We evaluated our proposed
methodology by designing three real-world run-time adaptive applications in the domains of HAR
and image classification, and executing these applications on the NVIDIA Jetson TX2 edge device.
The experimental results show that for real-world applications our methodology enables: (1) Effi-
cient automated design of CNNs, characterized with different accuracy, throughput, memory cost,
and energy consumption; (2) A high (up to 78%) degree of platform memory reuse for CNN-based
applications that execute CNNs with large amounts of similar components; (3) Efficient switching
between the application scenarios, using the novel SBRS-TP transition protocol proposed in our
methodology. Additionally, we compared our methodology to the run-time adaptive MSDNet CNN
methodology, which is the most relevant to our methodology among the related work. The com-
parison is performed by CNNs designed for the CIFAR-10 dataset and executed on the Jetson TX2
edge device. The comparison illustrates that the application designed using our methodology out-
performs the MSDNet CNN when executed under tight platform-aware requirements, and demon-
strates comparable accuracy against the MSDNet CNN when the platform-aware requirements are
relaxed. The difference can be attributed to the fact that unlike the MSDNet CNN, our methodology
optimizes the application in terms of both high accuracy and platform-aware characteristics.

REFERENCES

[1] Jungmo Ahn, Jeongyeup Paek, and JeongGil Ko. 2016. Machine learning-based image classification for wireless camera

sensor networks. In Proceedings of the 2016 IEEE 22nd International Conference on Embedded and Real-Time Computing

Systems and Applications. 103–103.

[2] Brandon Reagen, Udit Gupta, Robert Adolf, Michael M. Mitzenmacher, Alexander M. Rush, Gu-Yeon Wei, and David

Brooks. 2018. Weightless: Lossy weight encoding for deep neural network compression. In Proceedings of the 35th

International Conference on Machine Learning.

[3] Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Shih-Chieh Chang. 2018.

MONAS: Multi-objective neural architecture search using reinforcement learning. arXiv:1806.10332v2. Retrieved from

https://arxiv.org/abs/1806.10332.

[4] François Chollet. 2015. Keras. Retrieved April 2, 2021 from https://keras.io.

[5] An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-Huan Chang, Min Sun, Shih-Chieh Chang, Jia-Yu Pan,

Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. 2018. Searching toward pareto-optimal device-aware neural

architectures. In Proceedings of the International Conference on Computer-Aided Design. Association for Computing

Machinery. DOI:https://doi.org/10.1145/3240765.3243494

[6] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2013. CIFAR-10 (Canadian Institute for Advanced Research). Re-

trieved April 2, 2021 from http://www.cs.toronto.edu/~kriz/cifar.html.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

https://arxiv.org/abs/1806.10332
https://keras.io
https://doi.org/10.1145/3240765.3243494
http://www.cs.toronto.edu/~kriz/cifar.html

14:32 S. Minakova et al.

[7] Bichen Wu, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter

Vajda, and Yangqing Jia. 2019. FBNet: Hardware-aware efficient ConvNet design via differentiable neural architecture

search. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Computer Vision

Foundation/IEEE, 10734–10742. DOI:https://doi.org/10.1109/CVPR.2019.01099

[8] Chuan-Chi Wang, Ying-Chiao Liao, Ming-Chang Kao, Wen-Yew Liang, and Shih-Hao Hung. 2020. PerfNet: Platform-

aware performance modeling for deep neural networks. In Proceedings of the International Conference on Research in

Adaptive and Convergent Systems, 13–16.

[9] Christos Kyrkou, George Plastiras, Theo Theocharides, Stylianos I. Venieris, and Christos Bouganis. 2018. DroNet:

Efficient convolutional neural network detector for real-time UAV applications. In Proceedings of the 2018 Design,

Automation & Test in Europe Conference & Exhibition. 967–972. DOI:https://doi.org/10.23919/DATE.2018.8342149

[10] Fernando Moya Rueda, Gernot Fink, Rene Grzeszick, Sascha Feldhorst, and Michael Ten Hompel. 2018. Convolutional

neural networks for human activity recognition using body-worn sensors. Informatics 5, 2 (2018), 26.

[11] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Weinberger. 2018. MSDNet

Code. Retrieved September 7, 2021 from https://github.com/gaohuang/MSDNet.

[12] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Weinberger. 2018. Multi-scale

dense networks for resource efficient image classification. In Proceedings of the International Conference on Learning

Representations.

[13] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized neural

networks: Training neural networks with low precision weights and activations. The Journal of Machine Learning

Research 18, 1 (2017), 6869–6898.

[14] Ilias Theodorakopoulos, Vasileios K. Pothos, Dimitrios Kastaniotis, and Nikos Fragoulis. 2017. Parsimonious inference

on convolutional neural networks: Learning and applying on-line kernel activation rules. arXiv:1701.05221v5. Re-

trieved from https://arxiv.org/abs/1701.05221.

[15] Joseph Vinu, Saurav Muralidharan, Animesh Garg, Michael Garland, and Ganesh L. Gopalakrishnan. 2020. A

programmable approach to neural network compression. IEEE Micro 40, 5 (2020), 17–25. DOI:https://doi.org/10.1109/

mm.2020.3012391

[16] Jiahui Yu, Linjie Yang, Ning Xu, and Jianchao Yang. 2019. Slimmable neural networks. In Proceedings of the Interna-

tional Conference on Learning Representations.

[17] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182–197.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. DOI:https://doi.org/10.1109/CVPR.

2016.90

[19] Martin Abadi, Michael Isard, and Derek G. Murray. 2017. A computational model for TensorFlow: An introduction. In

Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. ACM,

New York, NY. DOI:https://doi.org/10.1145/3088525.3088527

[20] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. 2012. The PASCAL

Visual Object Classes Challenge 2012 (VOC2012) Results. Retrieved April 2, 2021 from http://www.pascal-network.

org/challenges/VOC/voc2012/workshop/index.html.

[21] Mohamed S. Abdelfattah, Lukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim, and Nicholas D. Lane. 2020. Best

of both worlds: Automl codesign of a cnn and its hardware accelerator. In Proceedings of the 57th ACM/EDAC/IEEE

Design Automation Conference. IEEE, 1–6.

[22] Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Mahmudul Hasan, Brian C. Van Esesn,

Abdul Awwal, and Vijayan K. Asari. 2018. The history began from AlexNet: A comprehensive survey on deep learning

approaches. arXiv:1803.01164v2. Retrieved from https://arxiv.org/abs/1803.01164.

[23] Ricardo Bonna, Denis S. Loubach, George Ungureanu, and Ingo Sander. 2019. Modeling and simulation of dynamic

applications using scenario-aware dataflow. ACM TODAES 24, 5 (2019). DOI:https://doi.org/10.1145/3342997

[24] Sergio Branco, Andre G. Ferreira, and Jorge Cabral. 2019. Machine learning in resource-scarce embedded systems,

FPGAs, and end-devices: A survey. Electronics 8, 11 (2019), 1289. DOI:https://doi.org/10.3390/electronics8111289

[25] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. 2017. Adaptive neural networks for efficient

inference. InProceedings of the 34th International Conference on Machine Learning, 527–536.

[26] Truong-Dong Do, Minh-Thien Duong, Quoc-Vu Dang, and My-Ha Le. 2018. Real-time self-driving car navigation

using deep neural network. In Proceedings of the 2018 4th International Conference on Green Technology and Sustainable

Development. 7–12.

[27] Tien-Ju Yang et al. 2017. Designing energy-efficient convolutional neural networks using energy-aware pruning. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.23919/DATE.2018.8342149
https://github.com/gaohuang/MSDNet
https://arxiv.org/abs/1701.05221
https://doi.org/10.1109/mm.2020.3012391
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3088525.3088527
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
https://arxiv.org/abs/1803.01164
https://doi.org/10.1145/3342997
https://doi.org/10.3390/electronics8111289

SBRS 14:33

[28] Weiwen Jiang and Xinyi Zhang. 2019. Accuracy vs. efficiency: Achieving both through fpga-implementation aware

neural architecture search. In Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[29] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018. A survey of model compression and acceleration for deep

neural networks. IEEE Signal Processing Magazine 35, 1 (2018), 126–136.

[30] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.

[31] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan Nguyen, Richard Baraniuk, Zhangyang Wang, and Yingyan

Lin. 2020. Dual dynamic inference: Enabling more efficient, adaptive and controllable deep inference. IEEE Journal of

Selected Topics in Signal Processing 14, 4 (2020), 623–633.

[32] Yhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Bowen Shi, Qi Tian, and Hongkai Xiong. 2020. Latency-aware

differentiable neural architecture search. arXiv:2001.06392v2. Retrieved from https://arxiv.org/abs/2001.06392.

[33] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. Not all ops are created equal! In Proceedings of the Systems

Modeling Language.

[34] Lanlan Liu and Jia Deng. 2018. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs by selective

execution. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 3675–3682.

[35] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V. Le. 2019.

MnasNet: Platform-Aware Neural Architecture Search for Mobile. In Proceedings of the 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition.

[36] Orlando Moreira. 2012. Temporal Analysis and Scheduling of Hard Real-Time Radios Running on a Multi-Processor. Ph.D.

Dissertation. Technical University Eindhoven.

[37] NVIDIA. 2016. Jetson TX2. Retrieved July 23, 2020 from https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2.

[38] NVIDIA. 2021. Tensorrt Framework. Retrieved August 5, 2020 from https://developer.nvidia.com/tensorrt.

[39] Payam Refaeilzadeh, Lei Tang, and Huan Liu. 2009. Cross-Validation. Springer US, 532–538.

[40] Attila Reiss. 2012. Retrieved August 5, 2020 from https://archive.ics.uci.edu/ml/datasets/PAMAP2Physical

ActivityMonitoring.

[41] Saku Kukkonen and Jouni Lampinen. 2007. Ranking-dominance and many-objective optimization. In Proceedings of

the 2007 IEEE Congress on Evolutionary Computation. 3983–3990. DOI:https://doi.org/10.1109/CEC.2007.4424990

[42] Dolly Sapra and Andy D. Pimentel. 2020. Constrained evolutionary piecemeal training to design convolutional neural

networks. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied

Intelligent Systems. Springer.

[43] Mario Vestias. 2019. A survey of convolutional neural networks on edge with reconfigurable computing. Algorithms

12, 8 (2019), 154.

[44] Jiali Teddy Zhai, Sobhan Niknam, and Todor Stefanov. 2018. Modeling, analysis, and hard real-time scheduling of

adaptive streaming applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 11

(2018), 2636–2648. DOI:https://doi.org/10.1109/TCAD.2018.2858365

Received April 2021; revised September 2021; accepted September 2021

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 2, Article 14. Publication date: February 2022.

https://arxiv.org/abs/2001.06392
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://developer.nvidia.com/tensorrt
https://archive.ics.uci.edu/ml/datasets/PAMAP2PhysicalActivityMonitoring
https://doi.org/10.1109/CEC.2007.4424990
https://doi.org/10.1109/TCAD.2018.2858365

