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Convolutional Neural Networks (CNNs) are biologically inspired computational models that are at the heart of many modern computer
vision and natural language processing applications. Some of the CNN-based applications are executed on mobile and embedded
devices. Execution of CNNs on such devices places numerous demands on the CNNs, such as high accuracy, high throughput, low
memory cost, and low energy consumption. These requirements are very difficult to satisfy at the same time, so CNN execution
at the edge typically involves trade-offs (e.g. high CNN throughput is achieved at the cost of decreased CNN accuracy). In existing
methodologies, such trade-offs are either chosen once and remain unchanged during a CNN-based application execution, or are
adapted to the properties of the CNN input data. However, the application needs can also be significantly affected by the changes in
the application environment, such as a change of the battery level in the edge device. Thus, CNN-based applications need a mechanism
that allows to dynamically adapt their characteristics to the changes in the application environment at run-time. Therefore, in this
paper, we propose a scenario-based run-time switching (SBRS) methodology, that implements such a mechanism.
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1 INTRODUCTION

Convolutional neural networks (CNNs) [30] are biologically inspired graph computational models, highly optimized to
process large amounts of dimensional data. They have the ability to automatically, effectively and adaptively extract
and process high- and low-level abstractions from their input data. These abilities have allowed CNNs to become
dominant in various computer vision tasks and natural language processing tasks, such as image classification, object
detection, segmentation, and others [22]. Many modern applications, that use CNNs for solving their respective tasks,
require the execution of these CNNs at edge devices, such as mobile phones and embedded devices [24, 43]. Examples of
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such applications are: object tracking in drones [9], navigation for self-driving cars [26], street surveillance in wireless
cameras [1], and other [24]. Providing execution of CNNs in such applications is challenging due to the high demands
placed on the CNNs by both the application and edge device. The most common of these demands are:

(1) high accuracy. The CNN should be able to properly perform a task, for which it is designed;
(2) high throughput. Typically, the applications, moved to the edge, require CNNs to provide real-time response;
(3) low memory cost. Most of the edge devices have a limited amount of memory available;
(4) low energy cost. The energy of battery-powered edge devices, like e.g. drones, is also strictly limited.

To ensure that a CNN conforms to the requirements (1) to (4) mentioned above, special techniques such as platform-
aware CNN design [3, 5, 8, 21, 28, 32, 35], or CNN compression [2, 13, 15, 27, 29] are utilized. Unfortunately, these
techniques typically involve trade-offs between the mentioned requirements [24]. For example, CNN weights com-
pression techniques [2, 15] ensure a low CNN memory cost, but decrease the CNN accuracy. Thus, for a CNN-based
application executed at the edge, only a priority subset of these requirements can be highly optimized. The selection of
the priority requirements for a CNN-based application is typically performed once, during the CNN design, and remains
static during the CNN inference run-time. In practice, these priorities are often affected by the application environment,
and can change during the application run-time. For example, a CNN-based road traffic monitoring application, executed
on a drone [9], can have different priorities, dependent on the situation on the roads and the level of the device’s battery.
If the traffic is heavy, the application should provide high throughput and high accuracy to process its input data, which
typically means high energy cost. However, during a traffic jam, when the high throughput is not required, or in case
the battery of the drone is running low, the application would function optimally by prioritizing energy efficiency
over the high throughput. This example shows that CNN-based applications need a mechanism that can adapt their
characteristics to the changes in the application environment (such as a change of the situation on the roads or a change
of the device’s battery level) at the application run-time. Moreover, such a mechanism should provide a high level
of responsiveness, e.g., if a drone battery is running low, the CNN-based application, executed on the drone, should
switch to an energy-efficient mode as soon as possible. However, to the best of our knowledge, neither existing Deep
Learning (DL) methodologies [2, 3, 5, 8, 13, 15, 21, 27, 28, 32, 35] for resource-efficient CNN execution at the edge, nor
existing embedded systems design methodologies [23, 36, 44] for execution of run-time adaptive applications at the
edge, provide such a mechanism.

Therefore, in this paper, we propose a novel scenario-based run-time switching (SBRS) methodology for CNN-based
applications, executed at the edge. In our methodology, we associate a CNN-based application with several scenarios.
Every scenario is a CNN, specifically designed to conform to certain application’s needs for accuracy, throughput,
memory cost, and energy cost (see Section 6). During the application execution, the application environment can trigger
the application to switch between the scenarios, thereby adapting the characteristics of a CNN-based application to
changes in the application environment. To capture multiple application scenarios and allow for run-time switching
between these scenarios, we represent a CNN-based application with SBRS using the novel SBRS Model of Computation
(MoC), proposed in Section 7. We note that, being associated with multiple scenarios where every scenario is a CNN,
the CNN-based application with SBRS can have high memory cost. As explained above, high memory cost is undesired
for applications executed at the edge. To reduce the application memory cost, we introduce, as part of the SBRS MoC,
the efficient reuse of components (layers and edges) among the different scenarios, and within every scenario. To ensure
high application responsiveness to a scenarios switch request, we propose the SBRS transition protocol (see Section 9).
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The SBRS transition protocol specifies switching from the old application scenario to a new application scenario so that
both old and new scenarios remain consistent, and the new scenario starts to execute as soon as possible.

Paper contributions

In this paper, we propose a novel scenario-based run-time switching (SBRS) methodology. Our methodology provides
run-time adaptation of a CNN-based application, executed at the edge, to changes in the application environment. The
SBRS methodology, proposed in Section 5, is our main novel contribution. Other important novel contributions within
the methodology, are: 1) An approach for automated derivation of scenarios, associated with a CNN-based application
(see Section 6); 2) A SBRS application model, which captures a CNN-based application with several scenarios (see
Section 7); 3) An algorithm for automated derivation of a SBRS application model from a set of application scenarios (see
Section 8); 4) A transition protocol for efficient switching between the CNN-based application scenarios (see Section 9).

2 RELATEDWORK

The platform-aware neural architecture search (NAS) methodologies, proposed in [3, 8, 21, 28, 32, 35] and reviewed in
survey [5], allow for automated generation of CNNs that solve the same problem, and are characterized with different
accuracy, throughput, energy cost and memory cost. However, these methodologies do not propose a mechanism for
run-time switching between these CNNs, while such mechanism is necessary to ensure that application needs are best
served at every moment in time. In contrast to the NAS methodologies from [3, 5, 8, 21, 28, 32, 35], our methodology
proposes such a mechanism, and ensures that application needs are best served at every moment in time.

The methodologies presented in [12, 14, 16, 25, 31, 34] propose resource-efficient runtime-adaptive CNN execution
at the edge. These methodologies represent a CNN as a dynamic computational graph, where for every CNN input
sample only a subset of the graph nodes is utilized to compute the corresponding CNN output. The subset of graph
nodes is selected during the application run-time by special control mechanisms (e.g., control nodes, augmenting
the CNN graph topology). The utilization of only a subset of graph nodes at every CNN computational step can
increase the CNN throughput and accuracy, and typically reduces the CNN energy cost. However, the methodologies
in [12, 14, 16, 25, 31, 34] cannot adapt a CNN to changes in the application environment, like changes of the device’s
battery level, which affect the CNN needs during the run-time. The adaptation in these methodologies is driven either
by the complexity of the CNN input data [12, 14, 25, 31, 34] or by the number of floating-point operations (FLOPs),
required to perform the CNN functionality [12, 16], while the changes in the application environment often cannot be
captured in the CNN input data or estimated using FLOPs. In contrast to these methodologies, our SBRS methodology
adapts a CNN-based application to the changes in the application environment, and therefore, allows to best serve the
application needs, affected by such changes.

A number of embedded systems design methodologies, proposed in [23, 36, 44], allow for efficient execution of
runtime-adaptive scenario-based applications at the edge. These methodologies represent an application, executed at
the edge, in a specific model of computation (MoC), able to capture the functionality of a runtime-adaptive application
associated with several scenarios, and ensure efficient run-time switching between the application scenarios. However,
the methodologies in [23, 36, 44] cannot be (directly) applied to CNN-based applications due to a significant semantic
difference between the MoCs, utilized in these methodologies and the CNN model [19], typically utilized by CNN-based
applications. First of all, the MoCs utilized in [23, 36, 44] lack means for explicit definition of various CNN-specific
features, such as CNN parameters and hyperparameters, while, as we show in Section 7, explicit definition of these
features is required for the application analysis. Secondly, theMoCs utilized inmethodologies [23, 36, 44] are not accepted
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(a)𝐶𝑁𝑁 1 (b)𝐶𝑁𝑁 2

Fig. 1. CNN computational model

as input by existing Deep Learning (DL) frameworks, such as Keras [4] or TensorRT [38], widely used for efficient design,
deployment and execution of CNN-based applications at the edge. In our methodology, we propose a novel application
model, inspired by the methodologies [23, 36, 44], to represent a run-time adaptive CNN-based application and ensure
efficient switching between the CNN-based application scenarios. However, unlike the methodologies [23, 36, 44], our
methodology 1) explicitly defines and utilizes CNN-specific features for efficient execution of CNN-based applications
at the edge, and 2) allows for utilization of existing DL frameworks for design, deployment, and execution of the
CNN-based application at the edge.

3 BACKGROUND

In this section, we provide a brief description of the CNN computational model (Section 3.1) and CNN execution at the
edge (Section 3.2). This section is essential for understanding the proposed methodology.

3.1 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a computational model [22], commonly represented as a directed acyclic
computational graph CNN(𝐿, 𝐸) with a set of nodes 𝐿, also called layers, and a set of edges 𝐸. An example of a CNN
model with |𝐿 | = 5 layers and |𝐸 | = 4 edges is given in Figure 1(a). Every layer 𝑙𝑖 ∈ 𝐿 represents part of the CNN
functionality. It performs operator 𝑜𝑝𝑖 (such as Convolution, Pooling, etc.), parametrized with hyper-parameters ℎ𝑦𝑝𝑖
(such as kernel size, stride, etc.) and learnable parameters 𝑝𝑎𝑟𝑖 (such as weights and biases). Operator 𝑜𝑝𝑖 of layer 𝑙𝑖
accepts as an input the data, provided by the layer’s input edges 𝐼𝑖 , and produces the result of the data transformation
onto its output edges 𝑂𝑖 . We define a layer as a tuple 𝑙𝑖 = (𝑜𝑝𝑖 , ℎ𝑦𝑝𝑖 , 𝑝𝑎𝑟𝑖 , 𝐼𝑖 ,𝑂𝑖 ), where 𝑜𝑝𝑖 is the operator of 𝑙𝑖 ; ℎ𝑦𝑝𝑖
are the hyper-parameters of 𝑙𝑖 ; 𝑝𝑎𝑟𝑖 are the learnable parameters of 𝑙𝑖 ; 𝐼𝑖 and 𝑂𝑖 are the input and output edges of 𝑙𝑖 ,
respectively. An example of a CNN layer 𝑙12 = (𝐶𝑜𝑛𝑣, {𝑘 : 5, 𝑠 : 1}, {𝑊 1

2 , 𝐵
1
2}, {𝑒

1
12}, {𝑒

1
23}) is shown in Figure 1(a). Layer

𝑙12 performs Convolutional operator 𝑜𝑝12 = 𝐶𝑜𝑛𝑣 , parametrized with two hyper-parameters (kernel size 𝑘 = 5 and stride 𝑠
= 1) and parameters 𝑝𝑎𝑟12 = {𝑊 1

2 , 𝐵
1
2}, where𝑊

1
2 are the layer weights and 𝐵12 are the layer biases. Operator 𝑜𝑝

1
2 accepts

as an input the data, provided by input edges 𝐼12 = {𝑒112}, and produces output data onto output edges 𝑂1
2 = {𝑒123}.

Every edge 𝑒𝑖 𝑗 ∈ 𝐸 specifies a data dependency between layers 𝑙𝑖 and 𝑙 𝑗 , so that data produced by layer 𝑙𝑖 is accepted
as an input by layer 𝑙 𝑗 . An example of edge 𝑒112, which represents a data dependency between layers 𝑙11 and 𝑙12 , is shown
in Figure 1(a), where layer 𝑙12 accepts as an input the data, produced by layer 𝑙11 . The data produced and accepted
by the CNN layers is stored in multidimensional arrays, called 𝑡𝑒𝑛𝑠𝑜𝑟𝑠 [22]. In this paper, every data tensor has the
shape [𝑁,𝐶,𝐻,𝑊 ], where 𝑁,𝐶,𝐻,𝑊 are the tensor batch size [22], the number of channels, the height and the width,
respectively. For example, the data exchanged between layers 𝑙11 and 𝑙12 , shown in Figure 1(a), is stored in tensor
[1,3,32,32] with batch size = 1, number of channels = 3, height and width = 32.
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3.2 CNN execution at the edge

When executed on an edge device, a CNN utilizes the device memory and computational resources to execute all of
its layers 𝐿 in order, determined by its edges 𝐸. Typically, CNN layers are executed in sequential order, i.e., a CNN
execution can be represented as |𝐿 | computational steps, where at every 𝑖-th computational step, CNN layer 𝑙𝑖 ∈ 𝐿 is
executed.

The CNN execution at the edge is typically characterized byAccuracy, Throughput,Memory cost, and Energy cost [5,
24, 43], hereinafter referred as ATME characteristics. The accuracy, typically measured in percents, characterizes
the fraction of correct predictions generated by a CNN from the total number of predictions generated by the CNN.
The throughput, typically measured in frames per second (fps), characterizes the speed with which the CNN is able
to process input data and produce output data. The memory cost, typically measured in Megabytes (MB), specifies
the total amount of memory required to execute a CNN. The energy cost, measured in Joules, specifies the amount of
energy consumed by a CNN to process one input frame.

4 MOTIVATIONAL EXAMPLE

In this section, we show the necessity of devising a new methodology for execution of adaptive CNN-based applications
at the edge. To do so, we present a simple example of a CNN-based application where the requirements change at
run-time due to the changes in its environment. The application is discussed in the context of the existing methodologies
reviewed in Section 2, and the scenario-based run-time switching (SBRS), our proposed methodology.

The example application performs CNN-based image recognition on a battery powered unmanned aerial vehicle
(UAV). The UAV battery capacity defines a power budget, which is available for both the flight and CNN-based application
execution. The distribution of the power budget between the flight and application is irregular, and depends on the
weather conditions, which can change during the run-time (the UAV flight). In a calm weather, the UAV requires less
power to fly and can thus spend more power on the CNN-based application. Conversely, when the weather is windy,
the UAV requires a large amount of power to fly, and therefore has less power available for the CNN-based application.
The weather prediction at the application design time is an impossible task. Nevertheless, the CNN-based application
should be designed such that it: 1) meets the power constraint, imposed on the application by the UAV battery and
affected by weather conditions; 2) demonstrates high image recognition accuracy (the higher the better).

Figure 2 illustrates an example of how the execution of such CNN-based application will transpire, when designed
using the existing methodologies and our SBRS. Subplots (a), (b), (c) juxtapose the power available for the application
execution (dashed line), against the power used by the application (solid line) during the UAV flight, which lasts 2 hours.
The power available for the application execution is dependant on the UAV battery capacity and weather conditions. In
this example, we assume that the CNN-based application is allowed to use up to 12 Watts of power in turbulent weather
(0 to 0.1 hours and 1.0 to 1.5 hours) and up to 32 Watts of power in calm weather (0.1 to 1.0 hours and 1.5 to 2.0 hours).
However, the actual power used by the application is ultimately determined by the application design methodology.
Further, the subplots (d), (e), (f) show the image recognition accuracy demonstrated by the application. Subplots (g), (h),
(i) show the current charge state (solid line) and minimum charge level (dashed line) of the UAV battery. If the current
battery charge reaches the minimum allowed battery level, it may lead to an emergency landing of the UAV.

As a first case, we discuss the multi-objective NAS methodologies [3, 8, 21, 28, 32, 35] for the execution of the example
application, that are typically designed and utilized without considering a run-time changing environment. In these
methodologies, a CNN is obtained via an automated multi-objective search and characterized with constant accuracy
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(a) (b) (c)

(d) (e) (f)

(g)

Emergency 

   landing

(h) (i)

Fig. 2. Execution of a CNN-based application, affected by the application environment and designed using different methodologies

and power consumption. To guarantee that the application meets a power constraint, such a CNN has to account
for the worst-case scenario, i.e., when the weather is always windy and therefore only 12 Watts are available for the
application execution at any moment. In our illustrative example, such a CNN is characterized with 11.2 Watts of power
and 82% accuracy (see Figure 2(a) and Figure 2(d), respectively). As shown in Figure 2(g), when the UAV reaches its
destination after 2 hours of flight, it still has ≈50% battery charge left. On the one hand, it means that the application
always meets the power constraint. On the other hand, the application could have spent ≈40% remaining UAV battery
charge by utilizing a more accurate CNN, though demanding additional power . In other words, the methodologies

in [3, 8, 21, 28, 32, 35] can guarantee that the application meets the given platform-aware constraint, but cannot guarantee

efficient use of available platform resources.
As a second case, when the application is designed using data-driven adaptive methodologies, such as [12, 14,

25, 31, 34], the CNN execution is sensitive to the input data complexity. To process "easy" images, they may use a
lower resolution or fewer layers, whereas processing "hard" images requires more computation. In this manner, an
adaptive CNN-based application is able to adapt its power consumption depending on the input data complexity, while
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demonstrating similar accuracy for all the inputs. However, such a CNN cannot adapt to the changing environmental
conditions, which can not be explicitly captured in the input images. The application power consumption can change
during the application run-time, based on the input images, although these changes may conflict with the application’s
requirements, driven by the weather conditions. For example, in Figure 2(b), between 1.0 and 1.25 hours, the CNN
consumes significant amount of power despite the necessity to switch to the low power mode. This may lead to increased
UAV power consumption over the flight duration and, eventually, to the violation of the application power constraint,
causing an emergency landing as illustrated in Figure 2(h). Thus, the methodologies in [12, 14, 25, 31, 34] are not suitable

for CNN-based applications executed at the edge in changing environment, because these can neither properly adapt the

application to the environment variations, nor guarantee that the application constantly meets platform-aware constraints.
Another case of adaptive CNN-based application methodologies, is where the application can adaptively change the

number of floating-point operations (FLOPs) spent on the image recognition, such as those in [12, 16]. However, as
shown in numerous works [7, 32, 33] FLOPs is an inaccurate indicator for real-world platform-aware characteristics
such as power consumption or throughput. These characteristics depend on many other factors, for instance, the
ability of the platform to perform parallel computations, time and energy overheads caused by the data transfers,
internal hardware limitations, etc. Consequently, the number of FLOPs spent during the application run-time, neither
guarantee that the application meets power constraint nor estimate the application efficiency in terms of real-world
platform-aware characteristics. In other words, even though, the methodologies in [12, 16] enable run-time CNN adaptivity,

these cannot be directly deployed for applications with real-world platform-aware requirements and constraints.
To summarize, the existing works lack a methodology to design an adaptive CNN-based application, for real-world

platform-aware requirements and constraints, specifically affected by the environment variations at run-time. The
motivation behind our current proposal, SBRS, is to enable such run-time adaptivity. To design an application using our
SBRS, we perform multi-objective NAS, similar to those in [3, 8, 21, 28, 32, 35]. However, unlike these methodologies, we
derive multiple CNNs for each scenario. For example, the first scenario for our example application for windy weather,
can have an associated CNN with 11.2 Watts power consumption and 82% accuracy. The second scenario, for calm
weather, is represented by a CNN with 31.0 Watts power consumption and 89% accuracy. At run-time, the application
switches between these scenarios, based on the weather conditions. Additionally, our methodology explicitly defines
the switching mechanism based on triggers generated due to an environment change at run-time. The execution of the
CNN-based application with SBRS is shown in Figure 2 (c), (f), (i). Particularly, Figure 2(i) highlights that the application
meets the given power constraint, i.e. the UAV battery charge does not go below the minimum level before 2 hours, and
SBRS uses all available power to achieve higher application accuracy in comparison with Figure 2(d). Thus, by switching
among the scenarios, SBRS guarantees that a CNN-based application, affected by the environment, meets platform-aware

constraints while efficiently exploiting the available platform resources to improve its accuracy.

5 SBRS METHODOLOGY

In this section, we present our novel scenario-based run-time switching (SBRS) methodology, which allows for run-time
adaptation of a CNN-based application, executed at the edge, to changes in the application environment. The general
structure of our methodology is given in Figure 3. Our methodology accepts as an input a baseline CNN and one or more
requirements sets, associated with the CNN-based application. A baseline CNN is an existing CNN (e.g., AlexNet [22],
ResNet [22], or another), proven to achieve good results at solving a CNN-based application task (e.g., classification). The
requirements sets describe a scope of needs, associated with the devised application. Every application requirements set
𝑟 = (𝑟𝑎, 𝑟𝑡 , 𝑟𝑚, 𝑟𝑒 ) specifies the application priority for high accuracy (𝑟𝑎), high throughput (𝑟𝑡 ), low memory cost (𝑟𝑚),
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Fig. 3. SBRS methodology

and low energy cost (𝑟𝑒 ), respectively. One application can have one or several sets of requirements, characterising the
application needs at different times of the application execution. The requirements sets are defined by the application
designer at the application design time. As an output, our methodology provides a CNN-based application with SBRS
capabilities, able to adapt its characteristics to the changes in the application environment during the application
run-time.

Our methodology consists of three main steps, performed offline. At Step 1, for every set of application requirements
𝑟 , accepted as an input by our methodology, we derive an application scenario, i.e., a CNN which conforms to the given
set 𝑟 of application requirements. To perform this step, we use the automated platform-aware Neural Architecture Search
(NAS), explained in detail in Section 6. At Step 2, we use the scenarios generated by Step 1, and the algorithm proposed
in Section 8, to automatically derive a SBRS MoC of a CNN-based application with scenarios. The SBRS MoC, proposed
in Section 7, captures the scenarios associated with the CNN-based application, and allows for run-time switching
among these scenarios. Moreover, the SBRS MoC features efficient reuse of the components (layers and edges) among
and within application scenarios, thereby ensuring efficient utilization of the platform memory by the CNN-based
application with SBRS. Finally, at Step 3, we use the SBRS MoC derived at Step 2 to design a final implementation of the
CNN-based application with SBRS. The final implementation of the CNN-based application performs the application
functionality with run-time adaptive switching among the application scenarios, illustrated in Section 4, and following
the switching protocol presented in Section 9.

6 SCENARIOS DERIVATION

In this section, we discuss the automated derivation of application scenarios, which essentially generates a collection of
CNNs. Each CNN services a different set of requirements, that are determined by its associated scenario. The derivation
process builds upon an existing evolutionary Neural Architecture Search (NAS) methodology [42], which searches for
the best CNN in terms of a high accuracy only. We extend this NAS algorithm to focus on multiple objectives, namely
the ATME characteristics, to arrive at the pareto front, which is a set of CNNs with pareto optimality w.r.t. all the given
objectives. In a pareto optimal set, none of the objectives can be further improved without worsening some of the other
objectives.

Our multi-objective search algorithm is based on an evolutionary approach, which consists of a population of
individual CNNs, and the population evolves over multiple iterations. In each iteration, the CNN models are trained
on the given dataset and are evaluated against each objective. After all evaluations, the best models found so far are
Manuscript submitted to ACM



SBRS 9

Fig. 4. An example of cluster design from a given baseline CNN. Layers of the same type are grouped into a cluster. The cluster is
further made flexible to allow more layers and neurons per layer which are then constrained by definite bounds.

chosen to be parents for the next iteration, which are then altered through genetic operators, to create models for the
next iteration. In other words, the models that are not as good as the rest of the population are removed, and replaced
by new models created from the better performing ones. In this manner, the design space of possible CNNs is explored
in a natural evolution based process. The purpose of doing this iteratively is to slowly improve the population as a
whole, where newly selected individuals (the new generation) perform better than the older generation on at least one
of the evaluation objectives.

Genotype Creation

Genotype refers to the blueprint of the search space to perform an evolutionary optimization algorithm. All the possible
CNN designs are encoded into a genotype to define a general structure of a CNN model architecture, along with bounds
and constraints on various parameters. In our current work, this genotype is created using the baseline CNN, which is
provided as an input to the SBRS methodology.

The baseline CNN is analyzed first and then split into multiple clusters, each containing consecutive layers of the
same type and same feature map size. In a typical CNN, until a feature map size reduction layer, such as maxpool, is
encountered, the feature map size can be kept unchanged through optimal padding. Figure 4 illustrates an example of
cluster formation for a simple CNN. All the convolutional layers operating in succession, without any maxpool layer,
are grouped as one cluster.

The channel depth may vary in a cluster and all its layers, which means that the number of neurons per layer are
changeable in any cluster. These clusters are then made flexible and adaptable, by allowing them to have slightly
different numbers of layers than the baseline CNN. Moreover, cluster constraints are defined at this step, such as
minimum and maximum number of layers in the cluster, along with bounds on the number of neurons per layer. In the
example shown in Figure 4, the cluster 𝐶1 of convolutional layers is now bounded with minimum 2 and maximum 4
layers, where each layer can have between 16 and 64 neurons.

In evolutionary terms, the sequence of clusters along with their bounds define the genotype for the evolutionary
NAS. Formally, a genotype, with 𝐼 and 𝑂 as input and output layers, can be defined as:

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = {𝐼 ,𝐶1,𝐶2 ...𝐶𝑙 ,𝑂},

where, Cluster 𝐶𝑘 = {𝐶𝑡𝑦𝑝𝑒
𝑘

, 𝛽𝑚𝑖𝑛
𝑘

, 𝛽𝑚𝑎𝑥
𝑘

, 𝜂𝑙𝑜𝑤
𝑘

, 𝜂
𝑢𝑝

𝑘
, 𝜋𝑘 }
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Fig. 5. An example of a crossover operation. The Cluster at position 1 is selected for a crossover between two CNN models. Two
Layers in the first CNN are swapped with three layers in the second CNN.

Every cluster𝐶𝑘 in the genotype has layers of the same type defined by𝐶𝑡𝑦𝑝𝑒
𝑘

, such as convolution, fully connected or
pooling. The bounds on the number of layers in the cluster are specified by 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 as minimum and maximum
values. This means that if a cluster has 𝑏 layers, then 𝛽𝑚𝑖𝑛

𝑘
≤ 𝑏 ≤ 𝛽𝑚𝑎𝑥

𝑘
. The cluster also puts constraints on the number

of neurons per layer through 𝜂𝑙𝑜𝑤
𝑘

and 𝜂𝑢𝑝
𝑘

, and other possible layer specific parameters, 𝜋𝑘 , such as kernel size and
stride in a convolutional layer. For a layer 𝑙𝑘𝑖 in cluster 𝐶𝑘 , represented by the tuple (𝑜𝑝𝑘𝑖 , ℎ𝑦𝑝𝑘𝑖 , 𝑝𝑎𝑟𝑘𝑖 , 𝐼𝑘𝑖 ,𝑂𝑘𝑖 ), the
operator 𝑜𝑝𝑘𝑖 is always the same as 𝐶𝑡𝑦𝑝𝑒

𝑘
, and its hyper-parameters ℎ𝑦𝑝𝑘𝑖 are selected from the parameters specified

by 𝜋𝑘 . The learnable parameters (weights and biases), 𝑝𝑎𝑟𝑘𝑖 , are dependent on the number of neurons in the layer 𝜂𝑘𝑖
and other hyper-parameters, so 𝑝𝑎𝑟𝑘𝑖 = 𝑓 (𝜂𝑘𝑖 , ℎ𝑦𝑝𝑘𝑖 ), where 𝜂𝑙𝑜𝑤𝑘 ≤ 𝜂𝑘𝑖 ≤ 𝜂

𝑢𝑝

𝑘
.

To initialize the population, a random selection of CNNs is derived from the genotype definition. Every CNN
architecture in the population has exactly the same number of clusters as defined by the genotype, however the number
of layers and number of neurons per layer can be randomly polled from the cluster bounds, thus creating a variety of
architectures.

The edges defined in the CNN computational model are not explicitly stated in the genotype definition. It is implied
that edges between layers of a cluster are an intrinsic part of the corresponding cluster. On the other hand, the edges
that connect clusters to each other are external to the cluster definition and are maintained in an unchanged manner
during all genetic operations.

Genetic Operators

Various genetic operators are crucial building blocks of any evolutionary algorithm. They not only define how the
population moves forward from one iteration to next, but are also crucial in making sure that a maximum design space
is explored during the search. We define two genetic operators, namely mutation and crossover, to perform alterations
on the CNN models at every iteration.
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The mutation operator randomly selects a layer from a randomly selected cluster and one of the parameters is changed
by a small value. For example, the mutation can alter the number of neurons in the genotype of the selected convolutional
layer. To which extent the mutation can alter the layer in one iteration is defined by algorithm configurations and is
simultaneously constrained by the corresponding cluster bounds.

In contrast, a crossover operator selects two individuals from the population and swaps a whole cluster between
these two models. The swap occurs for a specific but randomly chosen cluster position. Depending upon the cluster
bounds, the number of layers present in the chosen models at the same cluster position, can be vastly different. For
instance, as illustrated in Figure 5, a cluster consisting of two convolutional layers in a model, can perform the swap
with another cluster containing three convolutional layers in the second model. By replacing a section of the model
with a dissimilar number of layers, the algorithm allows for exploration of rather different model structures. However,
the crossover operator is disruptive, and more training is needed to recover the loss incurred due to this operation.
Crossover in abundance can prevent the algorithm from converging, hence the rate of crossover is reduced as the
iterations continue.

CNNs ATME evaluation

In this section, we describe the evaluation of CNN ATME characteristics, explained in Section 3.2, utilized by the
platform-aware multi-objective evolutionary NAS.

6.0.1 Accuracy. To evaluate the efficiency of a CNN, we use a state-of-the-art cross-validation technique [39]. In this
technique, a CNN efficiency metric is measured by application of a CNN to a special set of data, called validation
dataset [39]. The most popularly used metric, CNN accuracy, is computed as the number of correctly processed input
frames to the total number of the CNN input frames.

It is important to note that even though we refer to evaluation of a CNN as accuracy, it is possible to use any other
evaluation metric suitable to the application. For instance, F-1 score, precision, recall, PR-AUC (Area under curve for
precision recall) are some of the metrics used for CNNs for imbalanced datasets.

6.0.2 Memory. The CNN memory cost𝑀 is computed as:

𝑀 =
∑
𝑙𝑖 ∈𝐿
( |𝑝𝑎𝑟𝑖 | ∗ 𝑠𝑖𝑧𝑒𝑝∈𝑝𝑎𝑟 +

∑
𝑒𝑖 𝑗 ∈𝑂𝑖

|𝑌𝑖 | ∗ 𝑠𝑖𝑧𝑒𝑦∈𝑌𝑖 ) (1)

Where |𝑝𝑎𝑟𝑖 | is the total number of the learnable parameters of layer 𝑙𝑖 ; 𝑠𝑖𝑧𝑒𝑝∈𝑝𝑎𝑟 is the amount of memory in MB,
occupied by one learnable parameter; 𝑌𝑖 is the data tensor, produced by layer 𝑙𝑖 onto its every output edge 𝑒𝑖 𝑗 ∈ 𝑂𝑖 ;
𝑠𝑖𝑧𝑒𝑦∈𝑌𝑖 is the amount of memory in MB, occupied by one element of data in 𝑌𝑖 .

6.0.3 Throughput and Energy. The CNN throughput 𝑇 is computed as:

𝑇 = 𝑁 /
∑
𝑙𝑖 ∈𝐿

𝑡𝑖 (2)

where 𝑁 is the CNN batch size, i.e., the number of frames, processed by every CNN layer 𝑙𝑖 [22];
∑
𝑙𝑖 ∈𝐿 𝑡𝑖 is the time

in seconds, required to perform execution of the CNN CNN(L, E), represented as a sequence of |𝐿 | computational steps,
where at every step a CNN layer 𝑙𝑖 ∈ 𝐿 is executed (see Section 3.1); 𝑡𝑖 is the time required to execute layer 𝑙𝑖 ∈ 𝐿.
Analogously, the CNN energy cost 𝜉 is computed as:
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𝜉 =
∑
𝑙𝑖 ∈𝐿

𝜉𝑖/𝑁 (3)

where 𝜉𝑖 is the energy cost (in Joules) associated with the execution of CNN layer 𝑙𝑖 . We note that execution time 𝑡𝑖
and energy cost 𝜉𝑖 , associated with CNN layer 𝑙𝑖 and utilized in Equation 2 and Equation 3, are notoriously hard to
evaluate analytically [5]. Therefore, in our methodology, we obtain 𝑡𝑖 and 𝜉𝑖 by performing measurements on the target
edge device.

Algorithm

Here, we describe the multi-objective evolutionary NAS Algorithm utilized to obtain the pareto set w.r.t. the ATME
characteristics. The partial training of all the models in the population and evolutionary architecture exploration
through genetic operators are performed in every iteration. Partial training refers to training for a short interval or
using a subset of the total dataset. The partial training techniques allows a CNN architecture to be searched during the
training process itself [42]. Algorithm 1 outlines the complete approach.

The algorithm starts with𝐶𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 (), creating the genotype from a given baseline CNN. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛()
then generates a population of neural networks of size 𝑁𝑝 using the genotype created and initializes them by training
them for an epoch. Afterwards, this iterative algorithm runs for 𝑁𝑔 generations.

𝑇𝑟𝑎𝑖𝑛() trains all individuals with randomly selected data from the training dataset for one epoch using 𝜏𝑝𝑎𝑟𝑎𝑚𝑠 train-
ing parameters, such as learning rate and batch size. The pareto set 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓 𝑟 is initially an empty set.𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛()
evaluates the population using the ATME evaluation parameters as previously described. 𝑁𝑆𝐺𝐴𝐼𝐼𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛() selects
the (1 − Ω)% best individuals using non-dominatd sorting of all individuals based on multiple objectives, as defined
by the NSGA-II selection algorithm [17]. The pareto set is updated using the best individuals found so far. To keep
the population size constant, Ω% randomly selected individuals are added back to the pool.𝑀𝑢𝑡𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛() and
𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛() are the evolutionary operators, which select individuals from the population with a selection
probability of 𝑃𝑚 and 𝑃𝑟 , respectively. The population is updated with genetically modified individuals while models

Algorithm 1:Multi-objective Evolutionary NAS
Evolutionary Inputs :𝑁𝑔 , 𝑁𝑝 , 𝑃𝑟 , 𝑃𝑚 , Ω,𝐶𝑁𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

Training Inputs :𝜏𝑝𝑎𝑟𝑎𝑚𝑠

1 𝐺𝑡𝑦𝑝𝑒 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 (𝐶𝑁𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 )
2 ℘𝑜 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑁𝑝 ,𝐺𝑡𝑦𝑝𝑒 )
3 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓 𝑟 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐸𝑚𝑝𝑡𝑦 ()
4 for 𝑖 ← 0 .... 𝑁𝑔 do
5 ℘𝑖 ← 𝑇𝑟𝑎𝑖𝑛 (℘𝑖−1, 𝜏𝑝𝑎𝑟𝑎𝑚𝑠 )
6 𝐴𝑇𝑀𝐸𝑖 ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (℘𝑖 )
7 ℘𝑏𝑒𝑠𝑡 ← 𝑁𝑆𝐺𝐴𝐼𝐼𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (Ω,℘𝑖 , 𝐴𝑇𝑀𝐸𝑖 )
8 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓 𝑟 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑒𝑡𝑜 (𝑃𝑎𝑟𝑒𝑡𝑜 𝑓 𝑟 ,℘𝑏𝑒𝑠𝑡 )
9 ℘𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐹𝑟𝑜𝑚 (Ω,℘𝑖 )

10 update ℘𝑖 ← ℘𝑏𝑒𝑠𝑡 + ℘𝑟

11 ℘𝑚𝑢 ← 𝑀𝑢𝑡𝑎𝑡𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (℘𝑖 , 𝑃𝑚)
12 ℘𝑟𝑐 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (℘𝑖 , 𝑃𝑟 )
13 ℘𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 ← 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ()
14 update ℘𝑖 ← ℘𝑚𝑢 + ℘𝑟𝑐 + ℘𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

15 end
16 return 𝑃𝑎𝑟𝑒𝑡𝑜 𝑓 𝑟
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Fig. 6. An example of scenario selection. First, a simple ranking is applied to evaluated objectives. Next, the scenario requirements set
(𝑟𝑎 = 0.4, 𝑟𝑡 = 0.3, 𝑟𝑚 = 0.1, 𝑟𝑒 = 0.2) is used to compute the weighted ranks for the given scenario. Finally, the aggregated rank is
calculated and the model with the lowest rank value (𝐶𝑁𝑁6) is selected as the model associated with this scenario.

that did not get selected to have an alteration stay in the population unchanged. Finally, when the predefined number
of iterations have been performed, the algorithm returns the pareto set (i.e., final pareto front) constructed through all
the iterations.

Scenario Selection

The scenario selection task, which follows the pareto set creation, refers to the selection of the appropriate model
designated for each scenario. Every intended scenario is depicted by a requirements set 𝑟 = (𝑟𝑎, 𝑟𝑡 , 𝑟𝑚, 𝑟𝑒 ), where
𝑟𝑎, 𝑟𝑡 , 𝑟𝑚, 𝑟𝑒 refers to the importance of accuracy, throughput, memory and energy, respectively. Together, these variables
constitute the influence factor of each objective in the scenario by assigning a weight value to the requirements such
that 𝑟𝑎 + 𝑟𝑡 + 𝑟𝑚 + 𝑟𝑒 = 1.0. For example, in a scenario where only high accuracy is pivotal, i.e. 𝑟𝑎 = 1.0, the requirements
set is 𝑟 = (1.0, 0, 0, 0). However, in a scenario where all the objectives are equally important, the requirements set
becomes 𝑟 = (0.25, 0.25, 0.25, 0.25). For a complex scenario where the throughput and energy are critical factors and
accuracy is still moderately significant, the requirements set may be represented as 𝑟 = (0.2, 0.4, 0, 0.4).

The next task is to post-process all the CNN models in the pareto set, for instance adding BatchNorm layers after
every Conv layer. These CNNs are not fully trained yet by the Algorithm 1, hence they are further trained, to achieve
the best possible accuracy. Subsequently, hardware metrics can once more be evaluated at this point, especially if the
structure of the CNN was modified, such as by adding or removing some layers. For every CNN model in the pareto set,
each objective is separately ranked from 1 to 𝑁 , where 1 is the best value of an objective (in the set), and 𝑁 , on the
other hand, is the worst. The ranking dominance concept, introduced in [41], has been extended here with weighted
aggregation of ranks based on requirements set to derive a suitable CNN model to represent a scenario.

For a model 𝐶𝑁𝑁𝑖 , having a rank 𝑅𝑂𝑖 for a given objective 𝑂 , and associated requirement value 𝑟𝑜 , its weighted
rank𝑤𝑅𝑂𝑖 for the objective in consideration is computed as 𝑟𝑜 ∗ 𝑅𝑂𝑖 . Subsequently, for each scenario, the weighted
ranks are aggregated using the following equation

𝑤𝑅𝑠𝑐𝑛 =
∑
∀𝑂 ∈Θ

(𝑟𝑜 ∗ 𝑅𝑂𝑖 ) (4)
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Fig. 7. An example of the SBRS MoC

where Θ is the set of all objectives. For the specific objectives in this work, i.e. Accuracy (Λ), Throughput (𝑇 ),
Memory(𝑀) and Energy (𝜉) for a model 𝐶𝑁𝑁𝑖 , the equation translates to

𝑤𝑅𝑠𝑐𝑛 = (𝑟𝑎 ∗ 𝑅Λ𝑖
) + (𝑟𝑡 ∗ 𝑅𝑇𝑖 ) + (𝑟𝑚 ∗ 𝑅𝑀𝑖

) + (𝑟𝑒 ∗ 𝑅𝜉𝑖 ) (5)

After the computation of weighted rank, 𝑤𝑅𝑠𝑐𝑛 , for each scenario, the lowest rank value is considered to be the
best model representing that scenario. The weighted ranks and their respective aggregation is computed for each
scenario in the application. In a situation where two or more models have the lowest rank value, a random model
amongst them may be chosen. Alternatively, the ranks can be computed again with a slightly altered requirements
set, such as assigning slightly higher importance to the accuracy requirement. Figure 6 exemplifies the process of a
scenario selection where the scenario requirements set is (𝑟𝑎 = 0.4, 𝑟𝑡 = 0.3, 𝑟𝑚 = 0.1, 𝑟𝑒 = 0.2), i.e., in this scenario all
requirements have varying degrees of importance: high accuracy being the most crucial and memory being the least
important one.

7 SBRS APPLICATION MODEL

In this section, we propose a SBRS MoC, which models a CNN-based application with scenarios. The SBRS MoC
captures multiple scenarios associated with a CNN-based application, and allows for run-time switching among these
scenarios. Every scenario in the SBRS MoC is a CNN, as explained in Section 3.1. Figure 7 shows an example of the
SBRS MoC, which models a CNN-based application associated with two scenarios: scenario CNN1 shown in Figure 1(a)
and explained in Section 3.1, and scenario CNN2 shown Figure 1(b). In this section, we use the example from Figure 7
to explain the SBRS MoC in detail. The SBRS MoC is formally defined as a scenarios supergraph, augmented with a
control node 𝑐 and a set of control edges 𝐸𝑐 .

The scenarios supergraph 𝐺 (𝐿, 𝐸) captures all components (layers and edges) in every scenario CNN𝑠 (𝐿𝑠 , 𝐸𝑠 ) of
a CNN-based application with scenarios. It has a set of layers 𝐿, such that every layer 𝑙𝑠

𝑖
of every scenario CNN𝑠 is

captured by the functionally equivalent layer 𝑙𝑛 ∈ 𝐿, and a set of edges 𝐸, such that every edge 𝑒𝑠
𝑖 𝑗
of every scenario

CNN𝑠 is captured by the functionally equivalent edge 𝑒𝑛𝑘 ∈ 𝐸. Table 1 shows the mapping of the components of
scenarios CNN1 and CNN2, given in Rows 3 and 5 in Table 1, respectively, onto functionally equivalent components of
the scenarios supergraph 𝐺 (𝐿, 𝐸) of the SBRS MoC, given in Row 2 in Table 1. For example, Column 5 in Table 1 shows
that layer 𝑙3 in the scenarios supergraph captures layer 𝑙23 of scenario CNN2. Analogously, Column 10 in Table 1 shows
that edge 𝑒23 of the scenarios supergraph captures edge 𝑒223 of scenario CNN2.
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Table 1. Capturing of scenarios’ components (layers and edges) in the scenarios supergraph

layers edges
𝐺 component 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6 𝑒12 𝑒23 𝑒24 𝑒34 𝑒45 𝑒56

𝐶𝑁𝑁 1

component 𝑙11 𝑙12

-

𝑙13 𝑙14 𝑙15 𝑒112 - 𝑒123 - 𝑒134 𝑒145

control par. -
𝑂2=𝑝1 𝑝𝑎𝑟4=𝑝2=

- - - - - - - -={𝑒24 } {𝑊 1
3 , 𝐵

1
3 };

𝐼4=𝑝3={𝑒24 }

𝐶𝑁𝑁 2

component 𝑙21 𝑙22 𝑙23 𝑙24 𝑙25 𝑙26 𝑒212 𝑒223 - 𝑒234 𝑒245 𝑒256

control par. -
𝑂2=𝑝1

-
𝑝𝑎𝑟4=𝑝2=

- - - - - - - -={𝑒23 } {𝑊 2
4 , 𝐵

2
4 };

𝐼4=𝑝3={𝑒34 }

reuse

𝑜𝑝1, 𝑜𝑝2,

-

𝑜𝑝4, 𝑜𝑝5, 𝑜𝑝6,

𝑒12 - - - 𝑒45 𝑒56
ℎ𝑦𝑝1, ℎ𝑦𝑝2, ℎ𝑦𝑝4, ℎ𝑦𝑝5, ℎ𝑦𝑝6,
𝑝𝑎𝑟1, 𝑝𝑎𝑟2, 𝑂4 𝑝𝑎𝑟5, 𝑝𝑎𝑟6,
𝐼1,𝑂1 𝐼2 𝐼5,𝑂5 𝐼6,𝑂6

To allow for efficient utilization of platform memory by a CNN-based application with scenarios, the SBRS MoC
allows for full or partial reuse of components among the application scenarios. For example, as shown in Column
3 in Table 1, layer 𝑙1 of the scenarios supergraph captures layer 𝑙11 of scenario CNN1 and layer 𝑙21 of scenario CNN2,
i.e., layer 𝑙1 of the scenarios supergraph is reused between scenarios CNN1 and CNN2. Moreover, as shown in Row 7,
Column 3 in Table 1, every attribute of layer 𝑙1 (operator 𝑜𝑝𝑖 , hyperparameters ℎ𝑦𝑝1, etc.) is reused between scenarios
CNN1 and CNN2, i.e., layer 𝑙1 is fully reused between the scenarios. An example of partial reuse is given in Column
6 in Table 1, where layer 𝑙4 of the scenarios supergraph captures layer 𝑙13 of scenario CNN1 and layer 𝑙24 of scenario
CNN2. As shown in Row 7, Column 6 in Table 1, only attributes 𝑜𝑝4, ℎ𝑦𝑝4, and 𝑂4 of layer 𝑙4 are reused among the
scenarios CNN1 and CNN2. The attributes of layer 𝑙4 that are not reused between the scenarios (i.e., 𝑝𝑎𝑟4 and 𝐼4) are
specified via run-time adaptive control parameters, introduced into the scenarios supergraph by the SBRS MoC. For
example, as shown in Row 4 and Row 6, Column 6 in Table 1, attributes 𝑝𝑎𝑟4 and 𝐼4 of supergraph layer 𝑙4 are specified
by control parameters 𝑝2 and 𝑝3, respectively. During the application run-time, control parameter 𝑝2 takes values from
the set {{𝑊 1

3 , 𝐵
1
3}, {𝑊

2
4 , 𝐵

2
4}} and control parameter 𝑝3 takes values from the set {{𝑒24}, {𝑒34}}. When 𝑝2 = {𝑊 1

3 , 𝐵
1
3}

and 𝑝3 = {𝑒24}, supergraph layer 𝑙4 is functionally equivalent to layer 𝑙13 of scenario CNN1. When 𝑝2 = {𝑊 2
4 , 𝐵

2
4} and

𝑝3 = {𝑒34}, supergraph layer 𝑙4 is functionally equivalent to layer 𝑙24 of scenario CNN2.
The control node 𝑐 of the SBRS MoC is a special node that communicates with the application environment, and

determines the execution of scenarios in the application supergraph as well as the switching between these scenarios.
It defines the execution of every scenario CNN𝑠 (𝐿𝑠 , 𝐸𝑠 ) associated with the CNN-based application as an execution
sequence 𝜙𝑠 , functionally equivalent to the execution order of the layers of scenario CNN𝑠 (𝐿𝑠 , 𝐸𝑠 ) as explained in
Section 3.2. Every computational step 𝜙𝑠

𝑖
∈ 𝜙𝑠 , 𝑖 ∈ [1, |𝐿𝑠 |] involves the execution of scenarios supergraph layer 𝑙𝑛 ,

capturing layer 𝑙𝑠
𝑖
. If layer 𝑙𝑛 is associated with control parameters, step 𝜙𝑠

𝑖
specifies values for these parameters such

that layer 𝑙𝑛 becomes functionally equivalent to layer 𝑙𝑠
𝑖
. For example, the execution sequence of scenario CNN1 is

specified as 𝜙1 = {(𝑙1, ∅), (𝑙2, {(𝑝1, {𝑒24})}), (𝑙4, {(𝑝2, {𝑊 1
3 , 𝐵

1
3}), (𝑝3, {𝑒24})}), (𝑙5, ∅), (𝑙6, ∅)}, where at step 𝜙

1
1 = (𝑙1, ∅)

layer 𝑙1 of the scenarios supergraph, capturing layer 𝑙11 of scenario CNN1, is executed. The ∅ in step 𝜙11 specifies that
there are no control parameter values set during the execution of 𝜙11 ; at step 𝜙12 = (𝑙2, {(𝑝1, {𝑒24})} layer 𝑙2 of the
scenarios supergraph is executed with control parameter 𝑝1={𝑒24}, etc.

During the application run-time, control node 𝑐 can receive a scenario switch request (SSR) from the application
environment. The received request can trigger the control node to switch from the current (also called "old") scenario
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CNN𝑜 , executed by the node, to a new scenario CNN𝑛 , more suitable for the application needs. The switching from
scenario CNN𝑜 to scenario CNN𝑛 is performed under the SBRS transition protocol, which will be explained in Section 9.

The set of control edges 𝐸𝑐 specifies control dependencies between the control node 𝑐 and the supergraph layers 𝐿.
Every control edge 𝑒𝑐𝑛 ∈ 𝐸𝑐 transfers control data, such as the aforementioned control parameters needed for the layer
execution, from control node 𝑐 to supergraph layer 𝑙𝑛 .

8 SBRS MOC AUTOMATED DERIVATION

In this section, we propose an algorithm (see Algorithm 2) that automatically derives the SBRS MoC, as explained in
Section 7, from a set of 𝑆 application scenarios {CNN𝑠 }, 𝑠 ∈ [1, 𝑆], provided by the platform-aware NAS (see Section 6).
Algorithm 2 accepts as inputs the set of scenarios {CNN𝑠 }, 𝑠 ∈ [1, 𝑆], and a set of adaptive layer attributes 𝐴.

The set 𝐴 controls the amount of components reuse exploited by the SBRS MoC by explicitly specifying which
attributes of the SBRS MoC layers are run-time adaptive. The more layers’ attributes are specified in the set 𝐴, the more
components reuse is exploited by the SBRS MoC. For example, 𝐴 = ∅ specifies that the layers of the SBRS MoC have
no runtime-adaptive attributes, i.e., only fully equivalent layers (and their input/output edges) are reused among the
scenarios. If 𝐴 = {𝑝𝑎𝑟 }, in addition to reuse of fully equivalent layers, the SBRS MoC reuses layers that have different
parameters (weights and biases) but matching operator, hyperparameters, and sets of input/output edges.

As an output, Algorithm 2 provides an SBRS MoC, which captures application scenarios {CNN𝑠 }, 𝑠 ∈ [1, 𝑆], and
exploits components reuse specified by the set𝐴. Figure 7 provides an example of a SBRSMoC, derived using Algorithm 2
for scenarios {CNN1,CNN2}, as shown in Figure 1(a) and Figure 1(b) respectively, and set 𝐴 = {𝑝𝑎𝑟, 𝐼 ,𝑂} of adaptive
layer attributes.

In Lines 1 to 24, Algorithm 2 generates the scenarios supergraph of the SBRS MoC. In Line 1, it defines an empty set
of scenarios supergraph layers 𝐿, an empty set of scenarios supergraph edges 𝐸, an empty set of control parameters Π,
and an empty set of reused layers 𝐿𝑟𝑒𝑢𝑠𝑒 . In Lines 3 to 9, Algorithm 2 adds layers to the supergraph layers set 𝐿. For
every layer 𝑙𝑠

𝑖
of every scenario CNN𝑠 , Algorithm 2 first checks if set 𝐿 contains a layer 𝑙𝑛 that can be reused to capture

layer 𝑙𝑠
𝑖
. To perform the check, Algorithm 2 uses Equation 6, which compares those attributes of layers 𝑙𝑠

𝑖
and 𝑙𝑛 that

are not run-time adaptive (i.e., they are not specified in the set of adaptive attributes 𝐴). If every of those attributes
match, layer 𝑙𝑛 is used to capture the functionality of layer 𝑙𝑠

𝑖
(Lines 5 to 6 in Algorithm 2). Otherwise, a new layer 𝑙 ,

capturing the functionality of layer 𝑙𝑠
𝑖
, is added to the scenarios supergraph (Lines 8 to 9 in Algorithm 2).

𝑒𝑞(𝑙𝑠𝑖 , 𝑙𝑛, 𝐴) =

𝑡𝑟𝑢𝑒 if 𝑎𝑡𝑡𝑟𝑛 = 𝑎𝑡𝑡𝑟𝑠

𝑖
,∀𝑎𝑡𝑡𝑟 ∉ 𝐴

𝑓 𝑎𝑙𝑠𝑒 otherwise
(6)

Analogously, in Lines 10 to 17, Algorithm 2 adds edges to the supergraph edges set 𝐸 such that 1) every edge 𝑒𝑠
𝑖 𝑗
of

every scenario CNN𝑠 is captured in a supergraph edge 𝑒𝑘𝑛 , and 2) functionally equivalent edges are reused among the
scenarios. To check the functional equivalence of a supergraph edge 𝑒𝑘𝑛 and edge 𝑒𝑠

𝑖 𝑗
of scenario CNN𝑠 , Algorithm 2

uses Equation 7.

𝑒𝑞(𝑒𝑠𝑖 𝑗 , 𝑒𝑛𝑘 , 𝐴) =

𝑡𝑟𝑢𝑒 if 𝑒𝑞(𝑙𝑠

𝑖
, 𝑙𝑛, 𝐴) ∧ 𝑒𝑞(𝑙𝑠𝑗 , 𝑙𝑘 , 𝐴)

𝑓 𝑎𝑙𝑠𝑒 otherwise
(7)

In Lines 18 to 24, Algorithm 2 introduces control parameters into the reused layers of the scenarios supergraph to
capture those attributes that cannot be reused among the scenarios. For example, to capture attribute 𝐼4 of scenarios
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Algorithm 2: Application model derivation
Input: {CNN𝑠 }, 𝑠 ∈ [1, 𝑆 ]; 𝐴
Result:𝐺 (𝐿, 𝐸, 𝑐, 𝐸𝑐 )

1 𝐿 ← ∅; 𝐸 ← ∅; Π ← ∅; 𝐿𝑟𝑒𝑢𝑠𝑒 ← ∅;
2 for CNN𝑠 (𝐿𝑠 , 𝐸𝑠 ), 𝑠 ∈ [1, 𝑆 ] do
3 for 𝑙𝑠

𝑖
∈ 𝐿𝑠 do

4 if ∃𝑙𝑛 ∈ 𝐿 : 𝑒𝑞 (𝑙𝑠
𝑖
, 𝑙𝑛, 𝐴) //Equation 6 then

5 if 𝑙𝑛 ∉ 𝐿𝑟𝑒𝑢𝑠𝑒 then
6 𝐿𝑟𝑒𝑢𝑠𝑒 ← 𝐿𝑟𝑒𝑢𝑠𝑒 + 𝑙𝑛 ;

7 else
8 𝑙 ← new layer (𝑜𝑝𝑠

𝑖
, ℎ𝑦𝑝𝑠

𝑖
, 𝑝𝑎𝑟𝑠

𝑖
, ∅, ∅) ;

9 𝐿 ← 𝐿 + 𝑙 ;

10 for 𝑒𝑠
𝑖 𝑗
∈ 𝐸𝑠 do

11 if �𝑒𝑘𝑛 ∈ 𝐸 : 𝑒𝑞 (𝑒𝑘𝑛, 𝑒𝑠𝑖 𝑗 , 𝐴) //Equation 7 then
12 𝑙𝑘 = 𝑙𝑘 ∈ 𝐿 : 𝑒𝑞 (𝑙𝑠

𝑖
, 𝑙𝑘 , 𝐴) ;

13 𝑙𝑛 = 𝑙𝑛 ∈ 𝐿 : 𝑒𝑞 (𝑙𝑠
𝑗
, 𝑙𝑛, 𝐴) ;

14 𝑒𝑘𝑛 ← new edge (𝑙𝑘 , 𝑙𝑛 );
15 𝐸 ← 𝐸 + 𝑒𝑘𝑛 ;
16 𝑙𝑘 .𝑂𝑘 ← 𝑙𝑘 .𝑂𝑘 + 𝑒𝑘𝑛 ;
17 𝑙𝑛 .𝐼𝑛 ← 𝑙𝑛 .𝐼𝑛 + 𝑒𝑘𝑛 ;

18 for 𝑙𝑛 ∈ 𝐿𝑟𝑒𝑢𝑠𝑒 do
19 for 𝑎𝑡𝑡𝑟 ∈ 𝑙𝑛 do
20 for 𝑙𝑠

𝑖
∈ 𝐿𝑠 : 𝑒𝑞 (𝑙𝑠

𝑖
, 𝑙𝑛, 𝐴), 𝑠 ∈ [1, 𝑆 ] do

21 𝑠𝑎𝑡𝑡𝑟 = 𝑎𝑡𝑡𝑟𝑠
𝑖
∈ 𝑙𝑠

𝑖
: 𝑎𝑡𝑡𝑟𝑠

𝑖
.𝑛𝑎𝑚𝑒 = 𝑎𝑡𝑡𝑟 .𝑛𝑎𝑚𝑒 ;

22 if sattr.value ≠ attr.value ∧ attr.value ∉ Π then
23 𝑎𝑡𝑡𝑟 = new control parameter 𝑝 ;
24 Π ← Π + 𝑝 ;

25 𝜙 ← ∅; 𝑐 ← new control node (𝜙);
26 for CNN𝑠 (𝐿𝑠 , 𝐸𝑠 ), 𝑠 ∈ [1, 𝑆 ] do
27 𝜙𝑠 = ∅;
28 for 𝑖 ∈ [1, |𝐿𝑠 | ] do
29 𝑙 = 𝑙𝑛 ∈ 𝐿 : 𝑒𝑞 (𝑙𝑠

𝑖
, 𝑙𝑛, 𝐴) ;

30 𝑃 ← ∅;
31 for 𝑎𝑡𝑡𝑟 ∈ 𝑙 : 𝑎𝑡𝑡𝑟 .𝑣𝑎𝑙𝑢𝑒 = 𝑝𝑞 ∈ Π do
32 𝑠𝑎𝑡𝑡𝑟 = 𝑎𝑡𝑡𝑟𝑠

𝑖
∈ 𝑙𝑠

𝑖
: 𝑎𝑡𝑡𝑟𝑠

𝑖
.𝑛𝑎𝑚𝑒 = 𝑎𝑡𝑡𝑟 .𝑛𝑎𝑚𝑒 ;

33 if 𝑎𝑡𝑡𝑟 .𝑛𝑎𝑚𝑒 = 𝐼 ∨ 𝑎𝑡𝑡𝑟 .𝑛𝑎𝑚𝑒 = 𝑂 then
34 𝑣𝑎𝑙𝑢𝑒 ← ∅;
35 for 𝑒𝑠

𝑖 𝑗
∈ 𝑠𝑎𝑡𝑡𝑟 .𝑣𝑎𝑙𝑢𝑒 do

36 𝑒 = 𝑒𝑛𝑘 ∈ 𝐸 : 𝑒𝑞 (𝑒𝑠
𝑖 𝑗
, 𝑒𝑛𝑘 , 𝐴) ;

37 𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑢𝑒 + 𝑒 ;

38 else
39 𝑣𝑎𝑙𝑢𝑒 = 𝑠𝑎𝑡𝑡𝑟 .𝑣𝑎𝑙𝑢𝑒 ;
40 𝑃 ← 𝑃 + (𝑝𝑞, 𝑣𝑎𝑙𝑢𝑒) ;
41 𝜙𝑠 ← 𝜙𝑠 + (𝑙, 𝑃 ) ;
42 𝜙 ← 𝜙 + 𝜙𝑠 ;
43 𝐸𝑐 ← ∅;
44 for 𝑙𝑛 ∈ 𝐿 do
45 𝑒𝑐𝑛 ← new control edge (𝑐 , 𝑙𝑛 );
46 𝐸𝑐 ← 𝐸𝑐 + 𝑒𝑐𝑛 ;
47 return𝐺 (𝐿, 𝐸, 𝑐, 𝐸𝑐 )
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supergraph layer 𝑙4, shown in Figure 7, Algorithm 2 introduces control parameter 𝑝3 into layer 𝑙4 (as explained in
Section 7).

In Lines 25 to 46, Algorithm 2 augments the scenarios supergraph, derived in Lines 2 to 24, with a control node
𝑐 and a set of control edges 𝐸𝑐 . In Line 25, it defines a control node 𝑐 with an empty set of execution sequences 𝜙 .
In Lines 26 to 42 it generates execution sequence 𝜙𝑠 for every scenario CNN𝑠 , captured by the scenarios supergraph,
and adds the sequence 𝜙𝑠 to the set 𝜙 of the control node 𝑐 . Every computational step 𝜙𝑠

𝑖
, 𝑖 ∈ [1, |𝐿𝑠 |] of the sequence

𝜙𝑠 is derived in Lines 28 to 41 of Algorithm 2. In Line 29, Algorithm 2 determines layer 𝑙 of scenarios supergraph,
capturing functionality of layer 𝑙𝑠

𝑖
of scenario CNN𝑠 . In Lines 30 to 40, Algorithm 2 derives set 𝑃 of parameter-value

pairs that specifies the values for every control parameter 𝑝𝑞 associated with layer 𝑙 . In Lines 31 to 40, Algorithm 2
visits every attribute 𝑎𝑡𝑡𝑟 of layer 𝑙 , specified as control parameter 𝑝𝑞 , and determines the value taken by the parameter
𝑝𝑞 (and, therefore, by attribute 𝑎𝑡𝑡𝑟 ) at the execution step 𝜙𝑠

𝑖
. In Line 32, Algorithm 2 finds attribute 𝑠𝑎𝑡𝑡𝑟 of layer 𝑙𝑠

𝑖
,

corresponding to the attribute 𝑎𝑡𝑡𝑟 of layer 𝑙 . For example, if attribute 𝑎𝑡𝑡𝑟 ∈ 𝑙 is a set of parameters 𝑝𝑎𝑟 of layer 𝑙 ,
Algorithm 2 finds attribute 𝑠𝑎𝑡𝑡𝑟 ∈ 𝑙𝑠

𝑖
, which is a set parameters 𝑝𝑎𝑟𝑠

𝑖
of layer 𝑙𝑠

𝑖
. If attribute 𝑎𝑡𝑡𝑟 , specified by the control

parameter 𝑝𝑞 , is a list of input or output edges of layer 𝑙 (the condition in Line 33 is met), the value for parameter 𝑝𝑞 is
specified in Lines 34 to 37 of Algorithm 2, as a subset of supergraph edges, functionally equivalent to the corresponding
subset of edges in scenario CNN𝑠 . Otherwise, the value of parameter 𝑝𝑞 is specified in Line 39 of Algorithm 2 as the
value of attribute 𝑠𝑎𝑡𝑡𝑟 of layer 𝑙𝑠

𝑖
. In Lines 43 to 46, Algorithm 2 creates a set of control edges 𝐸𝑐 , such that for every

scenarios supergraph layer 𝑙𝑛 , set 𝐸𝑐 contains a control edge 𝑒𝑐𝑛 , representing control dependency between layer 𝑙𝑛
and the control node 𝑐 . Finally, in Line 47, Algorithm 2 returns the SBRS MoC, capturing the functionality of every
scenario CNN𝑠 , 𝑠 ∈ [1, 𝑆], associated with the CNN-based application.

9 TRANSITION PROTOCOL

In this section, we present our novel transition protocol, called SBRS-TP, that ensures efficient switching between
scenarios of a CNN-based application, represented using the SBRS MoC. As explained in Section 7, the control node 𝑐 of
the SBRS MoC can perform switching from an old application scenario CNN𝑜 to a new application scenario CNN𝑛 , upon
receiving a scenario switch request (SSR) from the application environment. In the SBRS MoC, where the execution
of scenarios CNN𝑜 and CNN𝑛 is represented using execution sequences 𝜙𝑜 and 𝜙𝑛 , respectively, switching between
scenarios CNN𝑜 and CNN𝑛 means switching between the sequences 𝜙𝑜 and 𝜙𝑛 . We evaluate the efficiency of such
switching by the response delay Δ, defined as the time between a SSR arrival during the execution of the current
scenario CNN𝑜 , and the production of the first output data by the new scenario CNN𝑛 . The larger the delay Δ is, the
less responsive the application is during a scenarios transition, thus the less efficient the switching is.

The most intuitive way of switching between scenarios CNN𝑜 and CNN𝑛 , hereinafter referred to as naive switching,
is to start the execution of the new scenario CNN𝑛 after all computational steps of the old scenario CNN𝑜 are executed.
An example of the naive switching is shown in Figure 8(a), where the CNN-based application represented by the SBRS
MoC from Figure 7 switches from scenario CNN1 to scenario CNN2 upon receiving a SSR at the first execution step of
scenario CNN1. The upper axis in Figure 8(a) shows steps 𝜙𝑖 , 𝑖 ∈ [1, 11], performed by the control node 𝑐 during the
scenarios switching. For example, Figure 8(a) shows that at step 𝜙1 (upon SSR arrival), control node 𝑐 schedules step 𝜙11
of scenario CNN1 for execution. The lower axis in Figure 8(a) indicates the start and end time of every step 𝜙𝑖 performed
by the control node 𝑐 . Every rectangle, annotated with layer 𝑙𝑛 in Figure 8(a), shows the time needed to execute layer 𝑙𝑛 .
The response delay Δ of the naive switching, shown in Figure 8(a), is computed as 18 − 0.5 = 17.5, where 0.5 is the time
of SSR arrival and 18 is the time when scenario CNN2 produces its first output, i.e., finishes its last step 𝜙26 .
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(a) naive

(b) SBRS-TP

Fig. 8. Switching from scenario CNN1 to scenario CNN2

We note that this response delay can be reduced. Figure 8(b) shows an example of an alternative switching mechanism,
referred to as the SBRS-TP transition protocol. Unlike in the naive switching, in SBRS-TP, every step 𝜙2

𝑖
, 𝑖 ∈ [1, 6] of the

new scenario CNN2 is executed as soon as possible. For example, step 𝜙21 of the new scenario CNN2 is executed at step
𝜙2, where 𝜙2 is the earliest step after the SSR arrival, at which step 𝜙21 can be executed. Step 𝜙21 cannot be executed
earlier, i.e., at step 𝜙1, due to the components reuse. As explained in Section 7, layer 𝑙1 and the platform resources
allocated for execution of this layer are reused between scenarios CNN1 and CNN2, and thus cannot be used by scenarios
CNN1 and CNN2 simultaneously. At step 𝜙1, layer 𝑙1 is used by scenario CNN1, executing step 𝜙11 , and therefore, cannot
be used for execution of step 𝜙21 of scenario CNN2. However, step 𝜙21 of the new scenario CNN2 can be executed at step
𝜙2, in parallel with step 𝜙12 of the old scenario CNN1, because no components reuse occurs between these steps: step 𝜙12
uses layer 𝑙2 for its execution, while step 𝜙21 uses layer 𝑙1 (where 𝑙1 ≠ 𝑙2) for its execution. Analogously, step 𝜙22 of the
new scenario CNN2 is executed at step 𝜙3, where 𝜙3 is the earliest step after the SSR arrival, at which step 𝜙22 can be
executed. As explained in Section 7, according to the execution order adopted by scenario CNN2, step 𝜙22 should be
executed after step 𝜙21 . Thus, in the example shown in Figure 8(b), step 𝜙22 should start after step 𝜙2, at which step 𝜙21 is
executed. Moreover, step 𝜙22 of the new scenario CNN2 cannot be executed at step 𝜙2, because at step 𝜙2 reused layer 𝑙2,
required for execution of step 𝜙22 , is occupied by step 𝜙12 of scenario CNN1. However, step 𝜙22 can be executed at step
𝜙3, when layer 𝑙2 that is required for execution of step 𝜙22 is not occupied by scenario CNN1, and step 𝜙21 is already
executed. The response delay Δ of the switching mechanism shown in Figure 8(b) is 13− 0.5 = 12.5, and is much smaller
than the response delay Δ = 17.5 of the naive switching shown in Figure 8(a). Thus, the switching mechanism shown in
Figure 8(b) is more efficient compared to the naive switching.

Our methodology performs efficient switching between scenarios of a CNN-based application using the SBRS-TP
transition protocol, as illustrated in Figure 8(b). The SBRS-TP is carried out in two phases: the analysis phase, and the
scheduling phase. The analysis phase is performed during the application design time, for every pair (CNN𝑜 , CNN𝑛),
with 𝑜 ≠ 𝑛, of the CNN-based application scenarios. During this phase, for every step 𝜙𝑛

𝑖
of the new scenario CNN𝑛 ,

SBRS-TP derives a minimum delay in steps 𝑥𝑜→𝑛1→𝑖 between step 𝜙𝑛
𝑖
and the first step 𝜙𝑜1 of the old scenario CNN𝑜 . The
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Algorithm 3: SBRS-TP analysis phase
Input: 𝜙𝑜 , 𝜙𝑛
Result: 𝑋𝑜→𝑛

1 𝑋𝑜→𝑛 ← ∅; 𝑥 = 0;
2 for 𝑖 ∈ [1, |𝐿𝑛 | ] do
3 (𝑙𝑘 , 𝑃𝑛) ← 𝜙𝑛

𝑖
;

4 for 𝜙𝑜
𝑗
∈ 𝜙𝑜 do

5 (𝑙𝑧 , 𝑃𝑜 ) ← 𝜙𝑜
𝑗
;

6 if 𝑘 = 𝑧 then
7 if 𝑗 ≥ 𝑥 then
8 𝑥 = 𝑗 ;

9 𝑋𝑜→𝑛 ← 𝑋𝑜→𝑛 + 𝑥 ;
10 𝑥 = 𝑥 + 1;
11 return 𝑋𝑜→𝑛

Algorithm 4: SBRS-TP scheduling phase
Input: 𝜙𝑜 , 𝜙𝑛, 𝑋𝑜→𝑛

1 𝑞 = 1; 𝑖 = 1; 𝑗 = 𝑠𝑡𝑒𝑝𝑜
𝑆𝑆𝑅

;
2 wait until step 𝜙𝑜

𝑗
is finished; 𝑗 = 𝑗 + 1; 𝑞 = 𝑞 + 1;

3 while 𝑗 ≤ |𝐿𝑜 | do
4 start 𝜙𝑜

𝑗
; 𝑗 = 𝑗 + 1;

5 if 𝑞 ≥ 𝑥𝑜→𝑛
1→𝑖

− 𝑠𝑡𝑒𝑝𝑜
𝑆𝑆𝑅
+ 2 then

6 start 𝜙𝑛
𝑖
; 𝑖 = ( (𝑖 + 1) mod |𝐿𝑛 |) ;

7 wait until started scenarios’ steps are finished; 𝑞 = 𝑞 + 1;
8 while 𝑖 ≤ |𝐿𝑛 | do
9 start 𝜙𝑛

𝑖
;

10 wait until 𝜙𝑛
𝑖
finishes; 𝑖 = 𝑖 + 1; 𝑞 = 𝑞 + 1;

delay 𝑥𝑜→𝑛1→𝑖 is computed with respect to the data dependencies within scenarios CNN𝑜 and CNN𝑛 , and the components
reuse between these scenarios, as discussed above. An example of delay 𝑥𝑜→𝑛1→𝑖 is delay 𝑥1→2

1→3 = 3 of step 𝜙23 , shown in
Figure 8(b). Delay 𝑥1→2

1→3 = 3 specifies that step 𝜙23 of the new scenario CNN2 cannot start earlier than 3 steps after the
first step 𝜙11 of the old scenario CNN1 has started, i.e., earlier than step 𝜙4.

The analysis phase of the SBRS-TP is presented in Algorithm 3. Algorithm 3 accepts as inputs execution sequences
𝜙𝑜 and 𝜙𝑛 , representing the old scenario CNN𝑜 and the new scenario CNN𝑛 , respectively. As an output, Algorithm 3
provides a set 𝑋𝑜→𝑛 , where every element 𝑥𝑜→𝑛1→𝑖 ∈ 𝑋

𝑜→𝑛,with 𝑖 ∈ [1, |𝐿𝑛 |], is the minimum delay in steps between
step 𝜙𝑛

𝑖
of the new scenario CNN𝑛 and the first step 𝜙𝑜1 of the old scenario CNN𝑜 . An example of set 𝑋𝑜→𝑛 generated

by Algorithm 3 for the scenario switching, shown in Figure 8(b), is the set 𝑋 1→2 = {1, 2, 3, 4, 5, 6}. In Line 1, Algorithm 3
defines an empty set 𝑋𝑜→𝑛 and a variable 𝑥 , equal to 0. Variable 𝑥 is a temporary variable used to store delay 𝑥𝑜→𝑛1→𝑖 of
every execution step 𝜙𝑛

𝑖
in Lines 2 to 10 of Algorithm 3. In Lines 2 to 10, Algorithm 3 visits every step 𝜙𝑛

𝑖
of the new

scenario CNN𝑛 and computes delay 𝑥𝑜→𝑛1→𝑖 associated with this step. In Lines 4 to 8, Algorithm 3 increases delay 𝑥𝑜→𝑛1→𝑖 ,
stored in variable 𝑥 , with respect to the components reuse, as discussed above. It visits every step 𝜙𝑜

𝑗
of the old scenario

CNN𝑜 , and if step 𝜙𝑜
𝑗
and step 𝜙𝑛

𝑖
share a reused layer (the condition in Line 6 is met), it delays the execution of step

𝜙𝑛
𝑖
until step 𝜙𝑜

𝑗
is finished. In Line 9, Algorithm 3 adds the delay of step 𝜙𝑛

𝑖
, stored in variable 𝑥 , to the set 𝑋𝑜→𝑛 . In

Line 10, Algorithm 3 increases the delay by one step, thereby defining an initial delay for the next step 𝜙𝑛
𝑖+1 of the

new scenario CNN𝑛 . Finally, in Line 11, Algorithm 3 returns the set 𝑋𝑜→𝑛 . The set 𝑋𝑜→𝑛 derived using Algorithm 3
for every pair of scenarios (CNN𝑜 , CNN𝑛) is stored in the control node 𝑐 of the scenarios supergraph, and used by the
scheduling phase of the SBRS-TP at the application run-time.
Manuscript submitted to ACM



SBRS 21

The scheduling phase of the SBRS-TP is performed by the control node 𝑐 during the application run-time, upon
arrival of an SSR. During this phase, control node 𝑐 performs switching from the old scenario CNN𝑜 to the new
scenario CNN𝑛 , such that the steps of the new scenario CNN𝑛 are executed as soon as possible with respect to the
data dependencies within scenario CNN𝑛 and the components reuse between scenarios CNN𝑜 and CNN𝑛 (as discussed
above). The scheduling phase of the SBRS-TP is given in Algorithm 4. It accepts as inputs execution sequences 𝜙𝑜

and 𝜙𝑛 of the old scenario CNN𝑜 and the new scenario CNN𝑛 , respectively, and the set 𝑋𝑜→𝑛 derived by Algorithm 3
for scenarios CNN𝑜 and CNN𝑛 at the SBRS-TP analysis phase. In Line 1, Algorithm 4 defines variables 𝑖 , 𝑗 , and 𝑞,
representing indexes of the current step 𝜙𝑛

𝑖
of the new scenario CNN𝑛 , current step 𝜙𝑜

𝑗
in the old scenario CNN𝑜 , and

current step 𝜙𝑞 performed by the control node 𝑐 , respectively. Upon SSR arrival, 𝑖 = 1, 𝑞 = 1, and 𝑗 = 𝑠𝑡𝑒𝑝𝑜
𝑆𝑆𝑅

where
𝑠𝑡𝑒𝑝𝑜

𝑆𝑆𝑅
≥ 1 is the step in the old scenario CNN𝑜 at which the SSR arrived. For the example shown in Figure 8(b),

𝑠𝑡𝑒𝑝𝑜
𝑆𝑆𝑅

= 1 because SSR arrives at step 𝜙11 of the old scenario CNN1. In Line 2, Algorithm 4 performs the first step 𝜙1
of the scenarios switching. During this step, Algorithm 4 waits until step 𝜙𝑜

𝑗
, during which the SSR arrived, finishes. In

Lines 3 to 7, Algorithm 4 schedules the remaining steps of the old scenario CNN𝑜 , until scenario CNN𝑜 is finished (the
condition in Line 3 is false) and, if possible, schedules steps of the new scenario CNN𝑛 in parallel with the steps of the
old scenario CNN𝑜 . Step 𝜙𝑛

𝑖
of the new scenario CNN𝑛 can start in parallel with step 𝜙𝑜

𝑗
of the old scenario CNN𝑜 if the

minimum distance 𝑥𝑜→𝑛1→𝑖 between steps 𝜙𝑜1 and 𝜙𝑛
𝑖
is observed (the condition in Line 5 is met). In Line 7, Algorithm 4

waits until the steps of scenarios CNN𝑜 and CNN𝑛 , started in Lines 4 to 6, finish. In Lines 8 to 10, Algorithm 4 schedules
the remaining steps of scenario CNN𝑛 , until scenario CNN𝑛 produces an output data (the condition in Line 8 is false).
After Algorithm 4 finishes, scenario CNN𝑛 becomes the current scenario and will be executed for every input given to
the CNN-based application until the next SSR.

10 EXPERIMENTAL STUDY

To evaluate our novel SBRS methodology, we perform an experiment, where we apply our methodology to three
real-world CNN-based applications with scenarios. We conduct our experiment in four steps. The first three steps
perform in-depth per-step analysis of our methodology and demonstrate the merits of our methodology through two
real-world CNN-based applications from different domains. The fourth step compares our methodology to the most
relevant existing work.

In Step 1 (Section 10.2), we use the platform-aware NAS, explained in Section 6, to automatically derive a set of
application scenarios for three CNN-based applications, explained in details in Section 10.1. We show the time required
to derive the scenarios, and the ATME characteristics of every derived scenario. By performing this experiment, we
evaluate the effectiveness of our platform-aware NAS, and show the diversity of the application scenarios, derived by
this approach for the real-world CNN-based applications.

In Step 2 (Section 10.3), we use Algorithm 2, proposed in Section 8, to automatically generate SBRS MoCs for the
CNN-based applications, derived at Step 1. For every application, we generate two SBRS MoCs with different sets of
adaptive layer attributes 𝐴: 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 } and 𝐴 = {𝐼 ,𝑂}, respectively. We measure and compare the memory cost
of every CNN-based application, when the application is represented as 1) the SBRS MoCs with 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 }; 2) an
SBRS MoC with 𝐴 = {𝐼 ,𝑂}; 3) a set of scenarios, where every scenario is represented as a CNN model, explained in
Section 3.1. By performing this experiment, we evaluate the efficiency of the memory reuse, exploited by the SBRS
MoC, proposed in Section 7.

In Step 3 (Section 10.4), we measure and compare the responsiveness of the CNN-based applications, represented as
SBRS MoCs, derived in Step 2, during the scenarios switching, when switching is performed: 1) under the SBRS-TP
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Table 2. CNN-based applications

App. task baseline CNN dataset app. requirements sets
Pascal VOC Image recongition ResNet [18] Pascal VOC[20] 𝑟1=(1.0, 0.0, 0.0, 0.0)

𝑟2=(0.7, 0.0, 0.3, 0.0)
𝑟3=(0.6, 0.1, 0.0, 0.3)
𝑟4=(0.5, 0.5, 0.0, 0.0)
𝑟5=(0.1, 0.1, 0.4, 0.4)

PAMAP2 Human activity monitoring PAMAP (CNN-2) [10] PAMAP2 [40] 𝑟1=(1.0, 0.0, 0.0, 0.0)
𝑟2=(0.2, 0.4, 0.0, 0.4)
𝑟3=(0.5, 0.0, 0.0, 0.5)
𝑟4=(0.5, 0.5, 0.0, 0.0)

CIFAR-10 Image recognition ResNet [18] CIFAR-10 [6] 𝑟1=(1.0, 0.0, 0.0, 0.0)
𝑟2=(0.25, 0.25, 0.25, 0.25)
𝑟3=(0.5, 0.25, 0.0, 0.25)
𝑟4=(0.5, 0.0, 0.0, 0.5)

transition protocol; 2) using the naive switching mechanism. By performing this experiment, we evaluate the efficiency
of the SBRS-TP transition protocol, proposed in Section 9.

In Step 4 (Section 10.5), we perform a comparative study, where we compare our SBRS methodology with the most
relevant existing work. As explained in Section 2 and demonstrated in Section 4, none of the existing works currently
can design an adaptive CNN-based application, which considers platform-aware requirements and constraints that
are specifically affected by the environment changes at run-time. Within this context, none of the existing works is
completely comparable to our methodology. Nonetheless, we perform a partial comparison between our methodology
and the most relevant existing work. Among the existing works, reviewed in Section 2 and Section 4, the MSDNet
adaptive CNN work [12] is the most relevant to our methodology. Similarly to our methodology and unlike other
reviewed existing work, the methodology in [12] associates a CNN-based application with multiple alternative CNNs
that are characterized with different trade-offs between accuracy and resources utilization, and can be used to process
application inputs of any complexity. Additionally, both the work in [12] and our methodology provide means to reduce
the memory cost of a CNN-based application by reusing the memory among the alternative CNNs. In this sense, the
methodology in [12] and our SBRS methodology can be compared via 1) CNNs, designed for a specific dataset and edge
platform; 2) run-time adaptive trade-offs between application accuracy and resources utilization; 3) memory efficiency.
In Section 10.5, we perform such comparison, using the image recognition CIFAR-10 dataset [6].

10.1 Experimental setup

We demonstrate the merits of our methodology through three applications from two different domains, namely Human
Activity Recognition (HAR) and image classification. We used the PAMAP2 [40] dataset for HAR and the Pascal VOC [20]
and CIFAR-10 [6] datasets for image classification. PAMAP2 has data from body-worn sensors and predicts the activity
performed by the wearer, while Pascal VOC and CIFAR-10 are multi-label image classification datasets with 20 classes
and 10 classes, respectively. The sensor data in PAMAP2 is downsampled to 30 Hz and a sliding window approach with
a window size of 3s (100 samples) and a step size of 660ms (22 samples) is used to segment the sequences.

The main features and requirements for each CNN-based application are listed in Table 2. Column 1 lists applications
names, corresponding to the names of the datasets, the applications are using. Hereinafter, we refer to the applications
by their names; Column 2 shows the task performed by the applications; Column 3 lists the baseline CNN that
was deployed to perform the application tasks; Column 4 lists the real-world datasets, which were used to train
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Table 3. VOC Search Space

Cluster Type Layers Neurons Kernel
𝛽𝑚𝑖𝑛 𝛽𝑚𝑎𝑥 𝜂𝑙𝑜𝑤 𝜂𝑢𝑝 𝐾𝑚𝑖𝑛 𝐾𝑚𝑎𝑥

𝐶1:Conv 1 3 16 96 3x3 7x7
𝐶2:MaxP - - - - 2x2 -
𝐶3:Conv+Res 1 5 16 96 3x3 7x7
𝐶4:MaxP - - - - 2x2 -
𝐶5:Conv+Res 1 5 32 128 3x3 7x7
𝐶6:MaxP - - - - 2x2 -
𝐶7:Conv+Res 1 5 32 128 3x3 7x7
𝐶8:MaxP - - - - 2x2 -
𝐶9:Conv+Res 1 5 64 256 3x3 7x7
𝐶10:MaxP - - - - 2x2 -
𝐶11:GlbAvgP - - - - 2x2 -

Table 4. CIFAR-10 Search Space

Cluster Type Layers Neurons Kernel
𝛽𝑚𝑖𝑛 𝛽𝑚𝑎𝑥 𝜂𝑙𝑜𝑤 𝜂𝑢𝑝 𝐾𝑚𝑖𝑛 𝐾𝑚𝑎𝑥

𝐶1:Conv 1 3 32 64 3x3 7x7
𝐶2:Conv+Res 2 4 32 128 3x3 7x7
𝐶3:MaxP - - - - 2x2 -
𝐶4:Conv+Res 2 4 64 256 3x3 7x7
𝐶5:Conv+Res 2 4 64 256 3x3 7x7
𝐶6:MaxP - - - - 2x2 -
𝐶7:Conv+Res 2 5 128 512 3x3 7x7
𝐶8:Conv+Res 2 5 128 1024 3x3 7x7
𝐶9:MaxP - - - - 2x2 -
𝐶10:FC 1 3 256 1024 - -

Table 5. PAMAP2 Search Space

Cluster Type Layers Neurons Kernel
𝛽𝑚𝑖𝑛 𝛽𝑚𝑎𝑥 𝜂𝑙𝑜𝑤 𝜂𝑢𝑝 𝐾𝑚𝑖𝑛 𝐾𝑚𝑎𝑥

𝐶1:Conv 2 7 64 128 3x1 7x1
𝐶2:MaxP - - - - 2x1 -
𝐶3:Conv 2 7 96 256 3x1 7x1
𝐶4:GlbMaxP - - - - 2x1 -
𝐶5:FC 1 4 128 512 - -

and validate the applications’ baseline CNNs; Column 5 shows sets of application requirements 𝑟𝑖 , 𝑖 ∈ [1, 𝑆], where
every set 𝑟𝑖 characterizes a scenario, associated with the CNN-based application, 𝑆 is the total number of CNN-based
application scenarios. The applications use extremely different baseline CNNs (from the deep and complex ResNet
based topology [18] to the small and shallow PAMAP topology) and diverse datasets (from the large Pascal VOC [20]
dataset to the small PAMAP2 [40] and CIFAR-10 [6] datasets). The ResNet based baseline topologies for VOC and
CIFAR-10 application are custom Resnets, both of which are smaller than the popular ResNet-18. This leads to diversity
in scenarios and SBRS MoCs, derived for these applications and, thereby providing a sufficient basis for evaluation of
the effectiveness of our methodology.

To explore the design space in our experimental study (Step 1), we first define clusters as derived from the baseline
CNNs used for all the datasets. These clusters are shown in Table 3 for the VOC dataset, Table 5 for the PAMAP2 dataset,
and Table 4 for the CIFAR-10 dataset. In these tables, Column 1 depicts the cluster-ID with the abbreviated layer types.
Conv, MaxP, GlbAvgP, GlbMaxP, FC are abbreviations for convolution, max-pool, global average pool, global max pool
and fully connected, respectively. Conv+Res is a special cluster where all layers are convolutional, but there is a residual
connection [18] from the input edge to the cluster until the output edge. This residual connection is maintained (or
repaired) as needed during the architecture modification through evolutionary operators. The Conv+Res cluster is
designed based on the ResNet v1 [18] family of neural networks. Since the CNNs are automatically generated based
on the provided constraints by the NAS, they are not identical to any popular ResNet variant, such as, ResNet-18 or
ResNet-128. The rest of the columns define cluster specific bounds, namely, the number of layers, the neurons per layer,
and the kernel sizes.

Once the clusters are defined, the next step is to perform the multi-objective evolutionary NAS using Algorithm 1 as
defined in Section 6. Table 6 lists the values for all parameters of Algorithm 1. Column 1 shows the parameters along
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Table 6. Algorithm parameters for DSE

Parameter VOC PAMAP2 CIFAR10
Mutation change rate 𝜚𝑚 0.10 0.12 0.12
Mutation probability 𝑃𝑚 0.3 0.3 0.3
Initial Crossover probability 𝑃𝑟 (0) 0.3 0.4 0.3
Population size 𝑁𝑝 60 50 100
No of iterations 𝑁𝑔 30 60 120
Population replacement rate Ω 0.02 0.03 0.02
Training Parameters 𝜏𝑝𝑎𝑟𝑎𝑚𝑠

Training size per iteration 1 epoch 1/5 epoch 1/8 epoch
Optimizer Adam Adam Adam
Learning rate 1𝑒−3 1𝑒−4 1𝑒−3
Batch size 10 50 64

with their symbol in Column 2. Columns 3, 4 and 5 are the respective parameter values used in the experiments for
VOC, PAMAP2 and CIFAR-10.

To perform the measurements, required for Step 2 and Step 3 in our experimental study, for every application listed
in Table 2, we first use Algorithm 2, explained in Section 7, to automatically derive two SBRS MoCs with different sets
of adaptive attributes 𝐴. Then for every SBRS MoC, we design an executable application, performing the functionality
of the SBRS MoC, and execute this application on the NVIDIA Jetson TX2 embedded platform [37]. To implement
the executable applications, we use the TensorRT Deep Learning library [38], providing state-of-the-art performance
of deep learning inference on the NVIDIA Jetson TX2 embedded device [37], and custom C++ code. The TensorRT
library is used to implement the functionality of CNN layers and edges. The custom C++ code implements the run-time
adaptive functionality of the applications.

10.2 Automated scenarios derivation

The scenarios for all the applications were derived using a two step process. First, an exploration of the defined search
space was performed using Algorithm 1. This exploration resulted in a pareto front, consisting of CNNs with evaluated
objectives, such that an objective can not be improved further without worsening at least one other objective. Figure 9(a),
Figure 9(b) and Figure 9(c) illustrate the pareto front for Pascal VOC, PAMAP2 and CIFAR-10, respectively. These pareto
fronts do not include memory evaluations to allow for a comprehensible visualization, since the actual pareto fronts
created by Algorithm 1 are four dimensional. For the Pascal VOC dataset, which is an imbalanced set, the F1-score was
used as the efficiency evaluation metric to compare the partially trained CNNs during the search. The exploration took
6 days with 8 GPUs for the image recognition application (i.e., Pascal VOC dataset). It took 2.5 days on 4 GPUs for the
CIFAR-10 dataset, and 10 hours on 1 GPU for the HAR application (PAMAP2 dataset).

The CNNs in the pareto fronts were modified further, by adding a batch normalization layer after every convolutional
layer. Subsequently, these models were trained for 250 epochs for Pascal VOC and CIFAR-10 and 100 epochs for PAMAP2.
Once the CNNs are trained, all the objectives are evaluated again to make sure they correctly reflect the modifications
applied to the CNNs.

Second, all objectives are ranked individually and rank based weighted aggregation was performed, as described in
Section 6, using the requirement sets from Table 2 for the three applications. The selected CNNs for each scenario after
rank aggregation are presented in Table 7, Table 8, and Table 9 for Pascal VOC, PAMAP2 and CIFAR-10, respectively.
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(a) Pascal VOC pareto front (b) PAMAP2 Pareto front (c) CIFAR-10 Pareto front

Fig. 9. Pareto fronts based on 3 evaluation parameters, namely, accuracy (F1-score for Pascal VOC), throughput and energy

Table 7. VOC scenarios

Req. set PR-AUC Thr.
(fps)

Mem.
(MB)

Energy
(J)

𝑟1 77.78 15.41 292.61 0.384
𝑟2 76.28 21.78 210.69 0.281
𝑟3 77.69 20.26 242.72 0.291
𝑟4 73.99 59.27 155.48 0.101
𝑟5 72.85 75.07 130.21 0.078

Table 8. PAMAP2 scenarios

Req. set PR-AUC Thr.
(fps)

Mem.
(MB)

Energy
(J)

𝑟1 94.17 510.20 10.02 0.0083
𝑟2 91.34 1333.33 4.30 0.0033
𝑟3 92.56 970.87 4.86 0.0037
𝑟4 92.93 1052.63 4.11 0.0039

Table 9. CIFAR-10 scenarios

Req. set PR-AUC Thr.
(fps)

Mem.
(MB)

Energy
(J)

𝑟1 94.86 231.80 52.87 0.0242
𝑟2 92.84 754.15 13.07 0.0055
𝑟3 93.46 538.79 18.30 0.0081
𝑟4 94.46 403.71 28.07 0.0121

The first column in the tables shows the requirements set ID (as already described in Table 2), followed by the
evaluation metric, throughput, memory, and energy for the associated CNNs for each scenario. As the evaluation metric,
the accuracy was computed for PAMAP2 , and CIFAR-10 , while PR-AUC (Area under precision-recall curve) was
used for Pascal-VOC. The PR-AUC is calculated as the average of precision scores calculated for each recall threshold.
PR-AUC was chosen over F1-score to evaluate the fully trained CNNs. F1-score is based on threshold based class
assignments, and is more useful to perform comparisons between partially trained models (during the NAS). Once a
CNN is fully trained, the PR-AUC, which is based on the prediction scores and ordering of these predictions, is more
insightful for multi-label classification.

The scenarios that were eventually automatically derived in the experiments, showcase a compelling representation
of the application requirements. For instance, the Pascal VOC have contrasting requirements in 𝑟1 and 𝑟5; 𝑟1 demands
best possible model efficiency, while on the other hand, 𝑟5 demands low memory and energy usage. In line with the
requirements, the scenario for 𝑟1 has the best associated CNN in terms of high PR-AUC score, though with a high
memory and energy cost. Whereas, the CNN for 𝑟5 consumes significantly less memory and energy than the former,
but with a lower PR-AUC score. In yet another example, if the CNNs for 𝑟1 and 𝑟2 are compared, it is observed that
both demand high efficiency, while 𝑟2 additionally demands a lower memory footprint. The scenario that was derived
for 𝑟2 requires almost 25% less memory at the cost of a small dip in the PR-AUC score.

For the PAMAP2 application, a similar CNN ensemble with various requirement sets is automatically derived. For
example, 𝑟1 and 𝑟2 requirement sets place contradicting demands: 𝑟1 demands higher accuracy, whereas 𝑟2 has more
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Table 10. SBRS MoC memory reuse efficiency evaluation

Application 𝐴
Memory use (MB) memory reduction (%)
𝑀𝑆𝐵𝑅𝑆 𝑀𝑛𝑎𝑖𝑣𝑒

Pascal VOC {𝐼 ,𝑂, 𝑃𝐴𝑅 } 230 1032 78
{𝐼 ,𝑂 } 547 47

PAMAP 2 {𝐼 ,𝑂, 𝑃𝐴𝑅 } 22.43 23.28 3.64
{𝐼 ,𝑂 } 23.21 0.31

CIFAR-10 {𝐼 ,𝑂, 𝑃𝐴𝑅 } 83.3 112.31 25.9
{𝐼 ,𝑂 } 107.17 4.57

focus on energy and throughput. The derived CNN for 𝑟1 has high accuracy, while the CNN for 𝑟2 has lower accuracy,
but ≈2.5x better throughput and more than halves the energy usage.

Comparably, CNNs are derived for the CIFAR-10 application in the same manner. To illustrate, 𝑟1 and 𝑟2 requirement
sets purposefully differ from each other in their demands. 𝑟1 requires high accuracy, whereas 𝑟2 considers all of the
measured characteristics to have the same importance. Comparing the derived CNNs for 𝑟1 and 𝑟2, it is clearly observable
that 𝑟1 CNN has a high accuracy, while 𝑟2 CNN with a lower accuracy, performs better on all other parameters. These
experiments clearly illustrate that our scenario derivation enables automatic generation of diverse CNNs with different
ATME characteristics.

10.3 SBRS MoC memory reuse efficiency

In this experiment, we measure and compare the memory cost of every CNN-based application, presented in Table 2 in
Section 10, when the application is represented as: 1) an SBRS MoC with a set of adaptive layer attributes𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 };
2) an SBRS MoC with a set of adaptive layer attributes 𝐴 = {𝐼 ,𝑂}; 3) a set of scenarios, where every scenario is
represented as a CNN and no memory is reused within or among the CNNs. The results of this experiment are given in
Table 10. In Table 10, Column 1 lists the CNN-based applications with scenarios, explained in Section 10.1. Column
2 shows the sets of adaptive layer attributes 𝐴, used by Algorithm 2 to generate the SBRS MoCs for the CNN-based
applications. Column 3 shows the memory use𝑀𝑆𝐵𝑅𝑆 (in MB) of the CNN-based applications, represented as the SBRS
MoCs. As shown in Columns 2 and 3 of Table 10, the more attributes are specified in the set 𝐴, the more memory
is reused by the application, and the application memory cost is less. For example, as shown in Rows 3-4, Columns
2-3 in Table 10, Pascal VOC uses 230 MB of platform memory, when generated with 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 } and 547 MB of
platform memory, when generated with 𝐴 = {𝐼 ,𝑂}. Column 4 in Table 10 shows the memory use𝑀𝑛𝑎𝑖𝑣𝑒 (in MB) of the
CNN-based applications, when every application is represented as a set of scenarios and no memory reuse is exploited
by the application. Column 5 in Table 10 shows the memory reduction (in %), enabled by the memory reuse, exploited
by our proposed SBRS MoC. The memory reduction is computed as (𝑀𝑛𝑎𝑖𝑣𝑒 −𝑀𝑆𝐵𝑅𝑆 )/𝑀𝑛𝑎𝑖𝑣𝑒 ∗ 100%, where𝑀𝑆𝐵𝑅𝑆

and 𝑀𝑛𝑎𝑖𝑣𝑒 are listed in Columns 3 and 4, respectively. As shown in Column 5, the memory reuse, exploited by the
SBRS MoC, varies for different applications: Pascal VOC (Row 3 to Row 4) demonstrates high (47% - 78%) memory
reduction; PAMAP2 (Row 5 to Row 6) demonstrates low (0.31% - 3.64%) memory reduction; CIFAR-10 (Row 7 to Row 8)
demonstrates (4.57% - 25.9%) memory reduction, which is higher, compared to PAMAP2 but lower than Pascal VOC.
The difference occurs due to the different amounts of components reuse exploited by the Pascal VOC, PAMAP2 , and
CIFAR-10 applications . Pascal VOC has 5 scenarios, where every scenario is a deep CNN with a larger number of
similar layers. In other words, Pascal VOC is characterised by a large amount of repetitive CNN components, reused
by the SBRS MoC (see Section 8), which leads to a significant memory reduction. PAMAP2 has 4 scenarios, compared
to 5 scenarios of Pascal VOC, and every scenario in PAMAP2 has less layers and edges than the scenarios of Pascal
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(a) Pascal VOC (b) PAMAP2 (c) CIFAR-10

Fig. 10. SBRS-TP efficiency evaluation

VOC. Thus, in PAMAP2, the SBRS MoC can reuse only a small number of components, which leads to a small memory
reduction. CIFAR-10 has 4 scenarios, and every scenario in CIFAR-10 has less layers and edges than the scenarios of
Pascal VOC, but more layers and edges than the scenarios of PAMAP2. Thus, in CIFAR-10, the SBRS MoC can reuse less
components than in Pascal VOC, but more components than in PAMAP2.

10.4 SBRS-TP efficiency

In this experiment, for every CNN-based application, explained in Section 10.1, and represented as two functionally
equivalent SBRS MoCs with sets of adaptive attributes 𝐴 = {𝐼 ,𝑂} and 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 }, respectively, we measure and
compare the application responsiveness during the scenarios switching, when the switching is performed using: 1) the
naive switching mechanism; 2) the SBRS-TP transition protocol. The results of this experiment for Pascal VOC, PAMAP2
and CIFAR-10 are shown as bar charts in Figure 10, subplots (a), (b), and (c), respectively. Every pair (𝑜, 𝑛), shown along
the horizontal axis in the subplots denotes switching between a pair (𝐶𝑁𝑁𝑜 ,𝐶𝑁𝑁𝑛), 𝑜 ≠ 𝑛 of the application scenarios,
performed upon arrival of a Scenarios Switch Request (SSR) at the first step of the old scenario (𝑠𝑡𝑒𝑝𝑜

𝑆𝑆𝑅
=1). For example,

pair (2, 1) shown in Figure 10(b), denotes switching between scenarios 𝐶𝑁𝑁 2 and 𝐶𝑁𝑁 1 of PAMAP2, performed at
the fist step of scenario 𝐶𝑁𝑁 2. Every such switching is associated with 3 bars, showing the switching delay Δ (in
milliseconds), when switching is performed: 1) using the naive switching mechanism 1; 1) using the SBRS-TP for an
SBRS MoC with 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 }; 3) using the SBRS-TP for an SBRS MoC with 𝐴 = {𝐼 ,𝑂}. The higher the corresponding
bar is (i.e., the larger response delay Δ is), the less efficient is the switching. For example, switching (2, 1), shown in
Figure 10(b), is associated with 1) a bar of height 0.8; 2) a bar of height 0.7; 3) a bar of height 0.4. The bar of height 0.8,
showing delay Δ of the naive switching, is the highest among the bars. Thus, the switching between scenarios 𝐶𝑁𝑁 2

and 𝐶𝑁𝑁 1 of PAMAP2 is least efficient, when performed using the naive switching mechanism. The difference in
height of bars, corresponding to one switching, shows the relative efficiency of different switching methods expressed
via these bars. For example, the switching (2, 1), shown in Figure 10(b), is 0.8 - 0.4 = 0.4 ms less efficient when performed
using naive switching (bar of height 0.8) than when performed using SBRS-TP for an SBRS with 𝐴 = {𝐼 ,𝑂} (bar of
height 0.4).

As shown in Figure 10: 1) the switching delay Δ is typically lower when the switching is performed using the
SBRS-TP, compared to the switching performed using the naive switching mechanism. Thus, the SBRS-TP is, in general,
more efficient than the naive switching mechanism; 2) When the switching is performed under the SBRS-TP, the

1One bar is sufficient to show the delay of the naive switching for SBRS MoCs with𝐴 = {𝐼 ,𝑂 } and𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 }, respectively, because, as explained
in Section 9, the naive switching is not affected by the application components reuse, determined by the set𝐴
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Fig. 11. Comparison among SBRS and MSDNet [12] points

switching delay Δ is typically lower for an SBRS MoC with 𝐴 = {𝐼 ,𝑂} than for a functionally equivalent SBRS MoC
with 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 }. The difference occurs because among these SBRS MoCs, the one with 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 } typically
reuses more CNN components than the one with 𝐴 = {𝐼 ,𝑂} (see Section 7). As explained in Section 9, reuse of the
application components can cause an increase in switching delays, when the switching is performed under the SBRS-TP.
Thus, the switching performed under the SBRS-TP is more efficient when performed in an SBRS MoC with 𝐴 = {𝐼 ,𝑂}
than in a functionally equivalent SBRS MoC with 𝐴 = {𝐼 ,𝑂, 𝑝𝑎𝑟 }. Analogously, the relative efficiency of the SBRS-TP
compared to the naive switching is lower for Pascal VOC than for PAMAP2 or CIFAR-10 because, as explained in
Section 10.3, Pascal VOC exploits more components reuse than PAMAP2 or CIFAR-10.

10.5 Comparative study

In this section, we compare our SBRS methodology to the MSDNet adaptive CNN methodology [12]. MSDNet proposes
an adaptive CNN-based application which allows multiple exit points in a large neural network, depending upon
the input complexity and hardware resources budget allocated to the application. Similarly to our methodology, the
methodology in [12] associates a CNN-based application with multiple alternative CNNs that are characterized with
different trade-offs between accuracy and resources utilization, and can be used to process application inputs of any
complexity. In this sense, the methodology in [12] and our SBRS methodology can be compared via 1) CNNs, designed
for a specific dataset and edge platform; 2) run-time adaptive trade-offs between application accuracy and resources
utilization; 3) memory efficiency.

First of all, we compare the CNNs, obtained using our SBRS methodology and the MSDNet methodology to perform
image classification on the CIFAR-10 dataset [6]. We refer to these CNNs as to SBRS points and MSDNet points, respec-
tively. The MSDNet points, i.e., subgraphs or 𝑒𝑥𝑖𝑡𝑠 of the MSDNet CNN, are derived using the official implementation
of the MSDNet methodology [11], executed with design and training parameters specified for the CIFAR-10 dataset
in [12]. In total, there are six MSDNet points. The SBRS points are obtained using the platform-aware four-objective
NAS, described in Section 6. In total, we obtained eight SBRS points that are pareto-optimal in terms of the ATME
characteristics. These points are not the final scenarios as portrayed in Table 9, but the pareto-optimal CNNs resulting
from NAS. The scenarios are derived based on a weighted ranking from this pareto set of CNNs, as discussed in Section 6.

To compare the MSDNet points with our SBRS points, we have evaluated the ATME characteristics of all the points
on the same hardware. The accuracy characteristic is measured using the cross-validation technique, explained in
Section 6.0.1. The platform-aware characteristics (throughput, memory, and energy) are measured on the NVIDIA
Jetson TX2 edge platform [37].
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The SBRS and MSDNet points comparison is shown in Figure 11. Considering that it is not easy to draw and
understand four-dimensional plots, the comparison is represented as three two-dimensional plots, subplots (a), (b) and
(c), each comparing one of the platform-aware CNNs characteristics to the CNNs accuracy. The accuracy (the higher the
better) is always on the vertical axis with different platform-aware characteristics on the horizontal axis: energy (the
lower the better), throughput (the higher the better) and memory cost (the lower the better), respectively. Each subplot
shows the six points for MSDNet and those SBRS points that are pareto-optimal in terms of respective platform-aware
characteristics.

Beside the visualization, these plots also provide insight into the key difference between our SBRS methodology
and MSDNet. It can be clearly observed in Figure 11 that the SBRS points are able to achieve similar accuracy when
compared to the MSDNet points, but with lower energy cost, higher throughput, and lower memory cost. We believe
that the reason for this direct distinction is caused by the optimization, applied (through the NAS) by our methodology,
to every SBRS point to meet the platform-aware needs, while the MSDNet CNN does not provide such optimization.
The plots in Figure 11 undoubtedly reveal that our SBRS points are a better choice for using them as scenarios in our
SBRS methodology compared to the MSDNet points because none of the MSDNet points pareto-dominates our SBRS
points but many of our SBRS points pareto-dominate the MSDNet points.

To further study the efficiency of our proposed methodology, we compare accuracy and throughput characteristics of
the MSDNet CNN and the SBRS MoC, both constructed for an example CNN-based application. The example application
performs classification on the CIFAR-10 dataset, and is affected by the application environment at run-time.

The MSDNet CNN is constructed according to the design and training parameters specified for the CIFAR-10 dataset
in the original MSDNet work [12]. It has six exits, characterized with different accuracy and throughput. During the
application run-time, the MSDNet CNN can yield data from different exits, thereby offering various trade-offs between
the application accuracy and throughput. We evaluate these trade-offs by executing the MSDNet CNN with an anytime

prediction setting [12]. This setting allows the MSDNet CNN to switch among its subgraphs (exits), thereby adapting
the MSDNet CNN to changes in the application environment. We note that in the original work [12] the switching
among the MSDNet CNN exits is driven by a resource budget given in FLOPs, not by a throughput requirement.
However, conceptually, it is possible to extend the MSDNet CNN with a throughput-driven adaptive mechanism. In this
experiment, we emulate execution of the MSDNet CNN with such a mechanism in order to enable direct comparison of
the MSDNet CNN with our SBRS MoC.

The SBRS MoC is obtained by using our methodology, presented in Section 5. As input, our methodology accepts
a custom baseline CNN from ResNet [18] family, presented in Table 4, and three sets of application requirements.
In the first set 𝑟1 = {0.1, 0.9, 0, 0}, the application prioritizes high throughput over high accuracy. In the second set
𝑟2 = {0.5, 0.5, 0, 0}, high throughput and high accuracy are equally important for the application. In the third set
𝑟3 = {0.9, 0.1, 0, 0}, the application prioritizes high accuracy over high throughput. The obtained SBRS MoC has three
scenarios corresponding to the three sets of requirements 𝑟1, 𝑟2, and 𝑟3. During the application run-time the SBRS MoC
can switch among its scenarios, thereby offering various trade-offs between application accuracy and throughput, and
adapting the application to changes in the application environment at run-time.

The comparison, in terms of accuracy and throughput characteristics of the aforementioned MSDNet CNN and the
SBRS MoC, is visualized in Figure 12. The horizontal axis shows throughput (in fps). The vertical axis shows accuracy
(in %). The two step-wise curves in Figure 12 represent the relationships between the accuracy and the throughput,
exhibited by the MSDNet CNN and SBRS MoC. Each flat segment of the step-wise curves represents a scenario in
the SBRS MoC or an exit in MSDNet CNN. For example, the flat segment of the MSDNet curve, characterized with
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Fig. 12. Comparison between SBRS MoC and MSDNet CNN [12], performing classification on the CIFAR-10 dataset with throughput-
driven adaptive mechanism

throughput between 231 and 392 fps and accuracy of 0.918%, represents exit 2 of the MSDNet CNN. Each cross marker
or triangle marker represents a switching point between SBRS MoC scenarios or MSDNet CNN exits, respectively. As
explained above, run-time switching among the scenarios or exits occurs when the application is affected by changes
in its environment at run time. Figure 12 illustrates such changes in the application environment as the two vertical
dashed lines, representing demands of minimum throughput, imposed on the application by the environment at run
time. For example, at the start of the application execution, the environment demands that the application must have
throughput of no less than 200 fps with as high as possible accuracy. In this case, the MSDNet CNN yields data from
exit 3, demonstrating 0.931% accuracy, and the SBRS MoC executes in scenario 3, demonstrating 0.949% accuracy. Later,
the application environment changes and demands that the application must have throughput of no less than 394 fps.
Thus, the MSDNet CNN starts to yield data from exit 1, demonstrating 0.902% accuracy, and the SBRS MoC switches to
scenario 2, demonstrating 0.946% accuracy.

As shown in Figure 12, our SBRS MoC exhibits higher accuracy than the MSDNet CNN for any throughput require-
ment, except when the application has to exhibit throughput lower or equal to 61 fps. In the latter case, the accuracy
of our SBRS MoC is comparable (0.05% lower) to the accuracy of the MSDNet CNN. We believe that the difference
in accuracy between our SBRS MoC and the the MSDNet CNN occurs because the scenarios in the SBRS MoC are
optimized for both high accuracy and high throughput, whereas the exits of MSDNet are only optimized for high CNN
accuracy. Optimization for the platform-aware requirements performed during the SBRS MoC design enables for more
efficient utilization of the platform resources, and therefore for more efficient execution of the application when high
throughput is required.

Finally, we compare the memory efficiency between our SBRS methodology and the MSDNet methodology. To
do so, we compare the memory cost of the MSDNet CNN and the SBRS MoC, designed to perform classification on
the CIFAR-10 dataset. The memory cost of our final application equals 77.68 MB when the application is designed
with adaptive parameters 𝐴 = {𝐼 ,𝑂, 𝑃𝐴𝑅}, and 97.6 MB when the application is designed with adaptive parameters
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𝐴 = {𝐼 ,𝑂}. The memory cost of the MSDNet CNN, designed for the CIFAR-10 dataset, is estimated as explained in
Section 6.0.2, and is equal to 103.76 MB. Thus, for the CIFAR-10 dataset, the memory efficiency of our methodology is
higher than the one of MSDNet. The difference occurs because: 1) unlike the MSDNet methodology, our methodology
reuses memory allocated to store intermediate computational results within every CNN as well as among different
CNNs; 2) as shown in Figure 11(c), the SBRS points obtained using our methodology and used by our final application
require less memory than comparable MSDNet points. It is fair to note that, since our methodology does not enable for
reuse of CNN parameters, it may prove less efficient than MSDNet for applications that use CNNs characterized with
large sizes of weights. However, such applications are not typical for execution at the edge.

11 CONCLUSION

We have proposed a novel methodology, which provides run-time adaptation for CNN-based applications executed at
the edge to changes in the application environment. We evaluated our proposed methodology by designing three real-
world run-time adaptive applications in the domains of Human Activity Recognition (HAR) and image classification,
and executing these applications on the NVIDIA Jetson TX2 edge device. The experimental results show that for
real-world applications our methodology enables: 1) Efficient automated design of CNNs, characterized with different
accuracy, throughput, memory cost and energy consumption; 2) A high (up to 78%) degree of platform memory reuse for
CNN-based applications that execute CNNs with large amounts of similar components; 3) Efficient switching between
the application scenarios, using the novel SBRS-TP transition protocol proposed in our methodology. Additionally, we
compared our methodology to the run-time adaptive MSDNet CNN methodology, which is the most relevant to our
methodology among the related work. The comparison is performed by CNNs designed for the CIFAR-10 dataset and
executed on the Jetson TX2 edge device. The comparison illustrates that the application designed using our methodology
outperforms the MSDNet CNN when executed under tight platform-aware requirements, and demonstrates comparable
accuracy against the MSDNet CNN when the platform-aware requirements are relaxed. The difference can be attributed
to the fact that unlike the MSDNet CNN, our methodology optimizes the application in terms of both high accuracy
and platform-aware characteristics.
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