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On the Improved Hard Real-Time Scheduling of Cyclo-Static Dataflow
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Recently, it has been shown that the hard real-time scheduling theory can be applied to streaming applica-
tions modeled as acyclic Cyclo-Static Dataflow (CSDF) graphs. However, this recent approach is not always
efficient in terms of throughput and processor utilization. Therefore, in this article, we propose an improved
hard real-time scheduling approach to schedule streaming applications modeled as acyclic CSDF graphs
on a Multiprocessor System-on-Chip (MPSoC) platform. The proposed approach converts each actor in a
CSDF graph to a set of real-time periodic tasks. The conversion enables application of many hard real-time
scheduling algorithms that offer fast calculation of the required number of processors for scheduling the
tasks. In addition, we propose a method to reduce the graph latency when the converted tasks are scheduled
as real-time periodic tasks. We evaluate the performance and time complexity of our approach in comparison
to several existing scheduling approaches. Experiments on a set of real-life streaming applications demon-
strate that our approach (1) results in systems with higher throughput and better processor utilization in
comparison to the existing hard real-time scheduling approach for CSDF graphs, while requiring compara-
ble time for the system derivation; (2) delivers shorter application latency by applying the proposed method
for graph latency reduction while providing better throughput and processor utilization when compared
to the existing hard real-time scheduling approach; (3) gives the same throughput as the existing periodic
scheduling approach for CSDF graphs, but requires much shorter time to derive the task schedule and tasks’
parameters (periods, start times, and so on); and (4) gives the throughput that is equal to or very close to the
maximum achievable throughput of an application obtained via self-timed scheduling, but requires much
shorter time to derive the schedule. The total time needed for the proposed conversion approach and the
calculation of the minimum number of processors needed to schedule the tasks and the calculation of the
size of communication buffers between tasks is in the range of seconds.
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1. INTRODUCTION

Modern streaming applications have high computational demands, and should deliver
high-quality output. As a huge amount of data should be processed in a “short” time in-
terval, parallel processing is a natural solution. The processing power of Multiprocessor

Authors’ addresses: J. Spasic, D. Liu, E. Cannella, and T. Stefanov, Leiden Institute of Advanced Com-
puter Science, Leiden University, The Netherlands, 2333CA, Niels Bohrweg 1; emails: {j.spasic, d.liu,
t.p.stefanov}@liacs.leidenuniv.nl, emanuele.cannella@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1539-9087/2016/08-ART68 $15.00
DOI: http://dx.doi.org/10.1145/2932188

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 4, Article 68, Publication date: August 2016.

http://dx.doi.org/10.1145/2932188
http://dx.doi.org/10.1145/2932188


68:2 J. Spasic et al.

System-on-Chip (MPSoC) platforms perfectly matches the computational requirements
of streaming applications. In modern MPSoCs, it is desirable to execute multiple appli-
cations, a mixture of streaming applications and control (hard) real-time applications,
simultaneously in order to efficiently utilize the resources in an MPSoC. To deliver
high-quality output of multiple running applications, together with the ability to dy-
namically start/stop applications without affecting other already running applications,
streaming applications have tight timing requirements that often make it necessary
to treat them as hard real-time applications [Moreira et al. 2005]. Designing such an
embedded system imposes several challenges: a streaming application should be repre-
sented in a way that reveals the parallelism of the application, and it should be mapped
and scheduled on a platform such that the timing requirements are satisfied.

To address these challenges, several parallel Models-of-Computation (MoCs), for ex-
ample, Synchronous Data Flow (SDF) [Lee and Messerschmitt 1987] and Cyclo-Static
Dataflow (CSDF) [Bilsen et al. 1996], have been adopted as the parallel application
specification. Within an MoC, an application is represented as a set of concurrently
executing and communicating tasks. Thus, the parallelism is explicitly specified in
the model. Two primary performance metrics of streaming applications are through-
put and latency. Throughput is defined by the number of samples that an application
can produce during a given time interval. Latency is the elapsed time between the
arrival of a sample to an application and the output of the processed sample by the
application. Apart from guaranteeing a certain throughput and latency for each ap-
plication running on a platform, modern embedded systems should be able to accept
or stop applications at runtime without violating the timing requirements of the other
running applications. This property is called temporal isolation between the applica-
tions. Many algorithms from the classical hard real-time multiprocessor scheduling
theory can perform fast admission and scheduling decisions for the incoming applica-
tions while providing hard real-time guarantees and temporal isolation between the
applications. Moreover, these algorithms enable several efficient and fast approaches
to compute the number of processors required to schedule the applications instead of
performing a complex design space exploration. Such an approach for computing the
number of processors for scheduling the applications is given in Section 5.6; it is, in the
worst case, of a polynomial time complexity.

Recently, Bamakhrama and Stefanov [2013] proposed a framework to schedule
streaming applications modeled as acyclic CSDF graphs as a set of real-time peri-
odic tasks on an MPSoC platform. They also derive the minimum number of processors
needed to schedule the applications on a platform. However, in that framework, the
authors use the same worst-case execution time (WCET) value for all execution phases
of a task in the CSDF graph, although a task in the CSDF graph may have a different
WCET value for every phase. The authors simply take and use the maximum WCET
value among the WCET values for all phases of a task. By doing this, the cyclically
changing execution nature of an application modeled by the CSDF model is hidden,
which leads to underestimation of the throughput, overestimation of the latency, and
underutilization of processors. In another recent work, Bodin et al. [2013], the authors
proposed a framework to evaluate a lower bound of the maximum throughput of a pe-
riodically scheduled CSDF-modeled application. However, the authors do not provide a
method to determine the number of processors required for scheduling the application.
Moreover, their approach does not ensure temporal isolation among applications, that
is, the schedule of applications has to be recalculated once a new application comes in
the system; thus, it may be possible that the previously calculated throughput of an
application can no longer be reached.

In this article, we address the drawbacks of Bamakhrama and Stefanov [2013] and
Bodin et al. [2013] by considering different WCET values for a task’s phases in an
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acyclic CSDF graph and enabling temporal isolation of applications while providing
hard real-time guarantees. The contributions of this article are the following:

—We prove that, considering a different WCET value for each execution phase of a
task, we can convert the execution phases of each task in an acyclic CSDF graph
to strictly periodic real-time tasks. This enables the use of many hard real-time
scheduling algorithms to schedule such tasks with a certain guaranteed throughput
and latency (Theorem 5.10).

—We prove that our scheduling approach gives equal or higher throughput than the
existing hard real-time scheduling approach for acyclic CSDF graphs (Theorem 5.11).

—We propose a method for reducing the latency of an acyclic CSDF graph scheduled
as a set of strictly periodic real-time tasks (Section 5.5.2).

—We show, on a set of real-life streaming applications, that scheduling each execution
phase of a CSDF task as a strictly periodic task and considering different WCET per
phase lead not only to tighter guarantee on the throughput of an application but also
to better utilization of processor resources (Section 6.1).

—We demonstrate, on a set of real-life streaming applications, that the total time re-
quired by our approach to derive the schedule of the tasks, calculate the minimum
number of processors needed to schedule the tasks, and calculate the size of communi-
cation buffers between tasks is comparable to the time required by the existing hard
real-time scheduling approach for CSDF graphs. In addition, we show that the total
time needed by our approach is much shorter in comparison to the existing periodic
scheduling and self-timed scheduling approaches for CSDF graphs (Section 6.2).

—We show, on a set of real-life streaming applications, that the latency of the applica-
tions scheduled by our scheduling approach can be reduced by our proposed latency
reduction method in most cases to the desirable latency values while keeping higher
or equal application throughput and requiring an equal or smaller number of pro-
cessors in comparison to the existing scheduling approaches (Section 6.3).

Scope of the work. In this work, we assume that a given CSDF graph is acyclic.
However, even with this limitation, our approach is still applicable to many real-life
streaming applications because Thies and Amarasinghe [2010] have shown that around
90% of streaming applications can be modeled as acyclic CSDF graphs. We assume a
homogeneous MPSoC platform with predictable communication infrastructure, that
is, the communication infrastructure provides guaranteed communication latency. We
use the worst-case communication latency to compute the WCET of a task, which, in
our approach, includes the worst-case time needed for the tasks’ computation and the
worst-case time needed to perform intertask data communication on the considered
platform.

The remainder of the article is organized as follows: Section 2 gives an overview of
the related work. Section 3 introduces the background necessary to understand the
proposed scheduling method. Section 4 gives a motivational example. The proposed
scheduling method is described in Section 5. Experimental evaluation of the approach
is presented in Section 6, and Section 7 contains our conclusions.

2. RELATED WORK

Research on scheduling of streaming applications modeled by parallel MoCs has been
active for a long period of time. In this section, we compare our approach with some
of the existing hard real-time scheduling approaches for streaming applications and
with the scheduling approaches that do not provide hard real-time guarantees but are
similar to our approach.

Hausmans et al. [2013] proposes a two-parameter (σ , ρ) workload characterization to
reduce the difference between the worst-case throughput, determined by the analysis,
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and the actual throughput of the application. They consider different execution times
for a task’s phases; then, they use the average worst-case execution time to improve
the minimum guaranteed throughput/latency. Similar to their approach, we consider
different execution times for a task’s phases in a CSDF graph. But, in contrast to
their approach, we convert a task’s phases to classical periodic hard real-time tasks,
which allows us to calculate the minimum number of processors required to guarantee
certain throughput and latency in a fast and analytical way for global scheduling and
in a polynomial time for partitioned scheduling by using our algorithm, presented in
Section 5.6.

Bouakaz et al. [2012] propose an analysis framework for hard real-time applications,
modeled as Affine Dataflow Graphs (ADFs). The actors in an ADF graph are scheduled
as periodic tasks. The ADF model proposed in Bouakaz et al. [2012] extends the CSDF
model, thus is more expressive than the CSDF. However, in their approach, only one
value is considered as the WCET value of a task, while we consider a different WCET
value per each phase of a task, thereby efficiently exploiting the cyclic nature of the
CSDF model and providing a tighter throughput guarantee.

Bodin et al. [2013] propose a framework to derive the maximum throughput of a
CSDF graph under a periodic schedule and to calculate the buffer sizes in the graph
with a throughput constraint. Both problems are represented as LP problems and
solved approximately. Similar to our work, their work considers different execution
times for each phase of a task. However, it is not explicitly given in Bodin et al. [2013]
how to compute the number of processors needed to schedule the graph according
to the derived schedule. One possible way is to look at the derived schedules and
find the maximum number of active tasks at any given point in time. However, this
procedure has an exponential time complexity in the worst case. In contrast, in our
case, the conversion of the CSDF task’s phases to classical periodic hard real-time tasks
enables fast and analytical calculation of the minimum number of processors for global
scheduling of the tasks, and a polynomial time derivation of the number of processors
for partitioned scheduling by using our algorithm, presented in Section 5.6.

The closest to our work, in terms of scope and methods proposed to schedule stream-
ing applications modeled as acyclic CSDF graphs, is the work in Bamakhrama and
Stefanov [2013]. Bamakhrama and Stefanov [2013] convert each task in a CSDF graph
to a periodic task by deriving parameters such as period and start time. Then, they use
hard real-time schedulability analysis to determine the minimum number of proces-
sors required to execute the derived task set. Our approach differs from Bamakhrama
and Stefanov [2013] as follows: we use different WCET values for each execution phase
of a task and each phase is converted to a periodic task; in Bamakhrama and Stefanov
[2013], only one WCET value is used for a task and every execution of a task is periodic
with a calculated period. By considering different WCET values for each task phase
and converting each phase to a periodic task, we can guarantee tighter throughput and
better utilization of processor resources.

3. BACKGROUND

In this section, we first introduce the application model, that is, the CSDF MoC, followed
by the system model that we use. We then review the scheduling framework proposed
in Bamakhrama and Stefanov [2013], which we use as a main reference point for
comparison with our approach presented in Section 5.

3.1. Cyclo-Static Dataflow (CSDF)

An application modeled as a CSDF [Bilsen et al. 1996] is a directed graph G = (V, E)
that consists of a set of actors V that communicate with each other through a set of
communication channels E. Actors represent a certain functionality of the application,
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Fig. 1. A CSDF graph G.

while communication channels are FIFOs representing data dependency and trans-
ferring data tokens between the actors. Every actor τi ∈ V has an execution sequence
[ fi(1), fi(2), . . . , fi(Pi)] of length Pi, that is, it has Pi phases. The kth time that actor
τi is fired, it executes the function fi(((k − 1) mod Pi) + 1). As a consequence, the ex-
ecution time of actor τi is also a sequence [CC

i (1), CC
i (2), . . . , CC

i (Pi)] consisting of the
worst-case computation time values for each phase. Similarly, every output channel
eu of an actor τi has a predefined token production sequence [xu

i (1), xu
i (2), . . . , xu

i (Pi)].
Analogously, token consumption on every input channel eu of an actor τi is a prede-
fined sequence [yu

i (1), yu
i (2), . . . , yu

i (Pi)], called consumption sequence. The total number
of tokens on a channel eu produced by τi during its first n invocations and the total
number of tokens consumed on the same channel by τ j during its first n invocations
are Xu

i (n) = ∑n
l=1 xu

i (((l − 1) mod Pi) + 1) and Y u
j (n) = ∑n

l=1 yu
j (((l − 1) mod Pj) + 1),

respectively.
Figure 1 shows an example of a CSDF graph. For instance, actor τ1 has 3 phases,

its execution time sequence (in time units) is [CC
1 (1), CC

1 (2), CC
1 (3)] = [3, 1, 1], and its

token production sequence on channel e1 is [1, 0, 0].
An acyclic CSDF graph can be partitioned into a number of levels, denoted by L, in

a way similar to topological sort. In that way, all input actors belong to level 1, the
actors from level 2 have all immediate predecessors in level 1, the actors from level 3
have immediate predecessors in level-2, and can also have immediate predecessors in
level 1, and so on.

An important property of the CSDF model is the ability to derive a schedule for the
actors at design time. In order to derive a valid static schedule for a CSDF graph at
design time, it has to be consistent and live.

THEOREM 3.1 (FROM BILSEN ET AL. [1996]). In a CSDF graph G, a repetition vector
�q = [q1, q2, . . . , qN]T is given by

�q = P · �r, with Pjk =
{

Pj if j = k
0 otherwise , (1)

where �r = [r1, r2, . . . , rN]T is a positive integer solution of the balance equation

� · �r = �0 (2)

and where the topology matrix � ∈ Z
|E|×|V | is defined by

�uj =
⎧⎨
⎩

Xu
j (Pj) if actor τ j produces on channel eu

−Y u
j (Pj) if actor τ j consumes from channel eu

0 otherwise.
(3)

A CSDF graph G is said to be consistent if a positive integer solution �r = [r1, r2, . . . , rN]T

exists for the balance equation, Equation (2). We call �r aggregated repetition vector. If a
deadlock-free schedule can be found, G is said to be live. An entry qi ∈ �q represents the
number of invocations of an actor τi in a graph iteration of G. Similarly, an entry ri ∈ �r
represents the number of invocations of a phase of an actor τi in a graph iteration of G.
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For graph G shown in Figure 1, the repetition vector �q is [6, 2, 2]T and the aggregated
repetition vector �r is [2, 1, 2]T . Throughout this article, all CSDF graphs are assumed
to be consistent and live.

3.2. System Model

In this work, we consider a system composed of a set � = {π1, π2, . . . , πm} of m identical
processors. The processors execute a task set T = {τ1, τ2, . . . , τn} of n periodic tasks,
which can be preempted at any time. A periodic task τi ∈ T is defined by a 4-tuple
τi = (Si, Ci, Di, Ti), where Si is the start time of τi in absolute time units, Ci is the
WCET, Di is the deadline of τi in relative time units, and Ti is the task period in
relative time units, where Ci ≤ Di ≤ Ti. If Di = Ti, then τi is said to have an implicit-
deadline. Otherwise, if Di < Ti, then τi is said to have a constrained deadline. If all
the tasks in a task set T are implicit-deadline periodic tasks, then we say that T is an
implicit-deadline periodic (IDP) task set. Otherwise, we say that T is a constrained-
deadline periodic (CDP) task set.

The utilization of task τi, denoted as ui, where ui ∈ (0, 1], is defined as ui = Ci/Ti.
For a task set T , uT is the total utilization of T given by uT = ∑

τi∈T ui. Similarly, the
density of task τi is δi = Ci/Di and the total density of T is δT = ∑

τi∈T δi. The total
utilization of a task set directly determines the minimum number of processors needed
to schedule the task set. Given a system � of m identical processors and a task set T , a
necessary condition for T to be scheduled on � such that all deadlines are met is given
by uT ≤ m. This condition is also a sufficient condition for scheduling an IDP task set T
on �. Thus, the absolute minimum number of processors needed to schedule a periodic
task set T with deadlines equal to periods is given by Baruah et al. [1993]:

mOPT = �uT �. (4)

Scheduling such T on mOPT processors is possible only by using optimal scheduling
algorithms [Davis and Burns 2011], which are either global or hybrid. However, global
and hybrid scheduling algorithms require task migration. Several sufficient tests for
global scheduling of a CDP task set are given in Davis and Burns [2011]. The other class
of scheduling algorithms for IDP and CDP task sets are partitioned algorithms that
do not require task migration. With partitioned scheduling, tasks are first allocated
to processors. Then, the tasks on each processor are scheduled using a uniprocessor
scheduling algorithm. The minimum number of processors needed to schedule a task
set T assuming partitioned scheduling is given by the following:

mPAR = min
x∈N

{x-part. of T ∧ ∀i ∈ [1, x] : Ti is sched. on πi}. (5)

Note that mOPT is the lower bound on the number of processors mPAR needed by parti-
tioned scheduling algorithms.

3.3. Strictly Periodic Scheduling of CSDF

In Bamakhrama and Stefanov [2013], a real-time strictly periodic scheduling (SPS)
framework for acyclic CSDF graphs is proposed. In this framework, every actor τi in a
CSDF graph G is converted to a real-time periodic task by computing the task param-
eters Si, Di, Ti, and Ci, where Ci is computed as the maximum WCET value of actor τi,
that is, Ci = max1≤ϕ≤Pi {Ci(ϕ)}, where Ci(ϕ) contains the worst-case computation, the
worst-case data read, and the worst-case data write times of a phase ϕ of actor τi. To
execute graph G strictly periodically, period Ti for each actor τi is computed as

Ti = lcm(�q)
qi

⌈
maxτ j∈V {Cj · qj}

lcm(�q)

⌉
,∀τi ∈ V, (6)

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 4, Article 68, Publication date: August 2016.



On the Improved Hard Real-Time Scheduling of Cyclo-Static Dataflow 68:7

Fig. 2. (a) The SPS and (b) ISPS of graph G in Fig-
ure 1.

Table I. Throughput, Latency and
Number of Processors for G Under

Different Scheduling Schemes

SPS ISPS
R L m R L m

1/18 30 2 1/10 25 2

where lcm(�q) is the least common multiple of all repetition entries in �q. Once the actor
periods are computed, the throughput of each actor τi can be computed as 1/Ti, while
the throughput of a graph G is equal to 1/(qiTi). Bamakhrama and Stefanov [2013] also
provide a method for calculating the latency of a CSDF graph scheduled in a strictly
periodic fashion. In addition, the framework computes the minimum buffer size for each
channel in a graph such that actors, that is, tasks, can be executed in strictly periodic
fashion. Converting the actors to periodic tasks enables fast analytical calculation of
the minimum number of processors needed to schedule the application. The strictly
periodic schedule of all actors in G, given in Figure 1, is shown in Figure 2(a), under
the assumption that data read and write times are 0 (for the sake of simplicity).
For example, actor τ2 executes periodically with the calculated period T2 = 9. Note
that, for every actor phase, the same WCET value is considered, that is, for actor τ2,
we have two phases 1 and 2 and the considered WCET value C2 for each phase is
C2 = max{C2(1), C2(2)} = max{CC

2 (1), CC
2 (2)} = max{2, 3} = 3.

4. MOTIVATIONAL EXAMPLE

The goal of this section is to show that the SPS approach [Bamakhrama and Stefanov
2013] introduced in Section 3.3 is not efficient in terms of throughput, latency, and
utilization of processor resources. We analyze two different schedules of the CSDF
graph G in Figure 1 to demonstrate the need to consider different WCET values of
actor phases and the drawback of strictly periodic schedule between actor phases. The
first schedule that we consider is SPS. This schedule is visualized in Figure 2(a). Each
execution of an actor is periodic, with the period computed by Equation (6) and the
relative deadline equal to the period. Moreover, every execution phase of an actor is
assumed to have the same WCET value. The throughput R, latency L of G, and the
required number of processors m are given in Table I under SPS.

However, by taking the same value as the WCET for all execution phases of an actor,
the cyclic behavior of the CSDF actors is hidden. Assume that we convert each actor
τi in G to a set of Pi IDP tasks considering different WCET values for each execution
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phase, and execute them as periodic tasks. The execution schedule of this task set is
given in Figure 2(b). Again, here we assume that data read and write times are 0.
For example, actor τ2 is converted to 2 IDP tasks τ2(1) and τ2(2), in which each task
is executed periodically with a period equal to 10. Moreover, the WCET values of the
tasks τ2(1) and τ2(2) are not the same, but τ2(1) has WCET C2(1) = 2 and τ2(2) has
WCET C2(2) = 3, as the original specification in Figure 1.

We can see from Table I under ISPS (improved strictly periodic scheduling) that,
by scheduling G this way, we can obtain almost 2 times higher graph throughput and
shorter graph latency while resources in terms of the required number of processors
are the same compared with SPS; thus, the processor resources are better utilized in
the case of ISPS. This is especially important in the case of a timing constraint because
it may happen that the graph cannot meet the constraint when scheduled under SPS.
Here, the throughput and latency under ISPS are calculated by using our approach
described in Section 5. The required number of processors for both SPS and ISPS is
calculated by Equation (4). Moreover, the number of processors needed for partitioned
scheduling in both cases is the same as the number needed for global scheduling given
by Equation (4). We can see from the motivational example that the SPS approach
from Bamakhrama and Stefanov [2013] yields to lower throughput and larger latency
of a graph by using the same value for the WCET of each phase of an actor and by
strictly periodic scheduling of all executions of the actor. Thus, different WCET values
for actor phases should be considered and the constraint on strictly periodic scheduling
between the actor phases should be removed.

5. IMPROVED HARD REAL-TIME SCHEDULING OF CSDF

In this section, we present our scheduling framework, called improved strictly periodic
scheduling (ISPS), which enables a conversion of every actor of an acyclic CSDF graph
to a set of periodic tasks. Each set of periodic tasks corresponding to an actor has
as many elements as the number of phases of that actor. By taking into account the
WCET value of each phase of an actor in a graph, the proposed approach computes the
parameters Si and Ti of tasks corresponding to the actor and the minimum buffer sizes
of the communication channels such that ISPS is guaranteed to exist.

The proposed conversion procedure is given in Algorithm 1. First, the periods of
tasks corresponding to actors are calculated in Lines 1 and 2, explained in Section 5.1.
Then, relative deadlines Di of the tasks corresponding to an actor τi are selected from
the range Di ∈ [max1≤ϕ≤Pi {Ci(ϕ)}, Ťi], Lines 3 through 6. For example, to minimize the
number of processors needed to schedule the converted tasks, one should select relative
deadlines of the tasks to be equal to the corresponding task periods, that is, Di = Ťi.
On the other hand, to reduce the graph latency, one should use our latency reduction
method proposed in Section 5.5.2. The start times for each task set corresponding to
an actor are computed in Lines 7 through 12; for details, see Section 5.2. Finally, the
buffer sizes of the communication channels are derived in Lines 13 and 14; for details,
see Section 5.3.

5.1. Deriving Periods of Tasks

The first step in constructing the ISPS of a CSDF graph is to derive the valid period
for each periodic task corresponding to a phase of an actor in the graph. To calculate
the periods, we introduce the following definitions:

Definition 5.1. For each actor τi in an acyclic CSDF graph G, the WCET sequence
Ci = [Ci(1), Ci(2), . . . , Ci(Pi)] represents the sequence of the WCET values, measured
in time units, for each execution phase of τi. The WCET value Ci(ϕ) for a phase ϕ is
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ALGORITHM 1: Procedure to Convert a CSDF Graph to a Set of Periodic Tasks
Input: A CSDF graph G = (V, E).
Output: For each actor τi ∈ V , a set of periodic tasks Tτi = {τi(1), . . . , τi(Pi)}, and for each

channel eu ∈ E, the size of the buffer bu.
1 for actor τi ∈ V do
2 Compute the minimum common period Ťi by using Equation (10);

3 for actor τi ∈ V do
4 Select deadline Di , where Di ∈ [max1≤ϕ≤Pi {Ci(ϕ)}, Ťi];
5 for phase ϕ of τi , 1 ≤ ϕ ≤ Pi do
6 τi(ϕ) = (0, Ci(ϕ), Di, Ťi);

7 for actor τi ∈ V do
8 Compute the start time of the first phase Si(1) by using Equation (14);
9 τi(1) = (Si(1), Ci(1), Di, Ťi);

10 for phase ϕ of τi , 2 ≤ ϕ ≤ Pi do
11 Compute the start time of the ϕth phase Si(ϕ) by using Equation (12);
12 τi(ϕ) = (Si(ϕ), Ci(ϕ), Di, Ťi);

13 for communication channel eu ∈ E do
14 Compute the buffer size bu by using Equation (18);

given by

Ci(ϕ) =
⎛
⎝C R ·

∑
er∈in(τi )

yr
i (ϕ)

⎞
⎠ + CC

i (ϕ) +
⎛
⎝CW ·

∑
ew∈out(τi )

xw
i (ϕ)

⎞
⎠ , (7)

where C R represents the platform-dependent worst-case time needed to read a single
token from an input channel er from the set of input channels in(τi) of actor τi; analo-
gously, CW is the worst-case time needed to write a single token to an output channel
ew from the set of output channels out(τi) of τi; yr

i (ϕ) and xw
i (ϕ) is the number of tokens

read from er and written to ew by τi, respectively, during its execution phase ϕ; and
CC

i (ϕ) is the worst-case computation time of τi in its phase ϕ.

Definition 5.2. For each actor τi in an acyclic CSDF graph G, the maximum WCET
value MCi is given by MCi = max1≤ϕ≤Pi {Ci(ϕ)}.

Definition 5.3. For an acyclic CSDF graph G, an aggregated execution vector
�AC, where �AC ∈ N

N, represents the aggregated WCET values of the actors in G and its
elements are given by ACi = ∑Pi

ϕ=1 Ci(ϕ), where Ci(ϕ) is the WCET value of τi ’s phase ϕ.

Each actor τi ∈ V in graph G is converted to a periodic task set Tτi =
{τi(1), . . . , τi(Pi)}.

Definition 5.4. A task τi(ϕ) corresponding to a phase ϕ of an actor τi, where 1 ≤ ϕ ≤ Pi,
in an acyclic CSDF graph G is a strictly periodic task if and only if the time period
between any two consecutive firings of that task is constant.

All tasks belonging to a periodic task set Tτi corresponding to an actor τi have the
same period Ti, which we call the common period.

Definition 5.5. For an acyclic CSDF graph G, a common period vector �T , where
�T ∈ N

N, represents the periods, measured in time units, of periodic task sets corre-
sponding to actors in G. Ti ∈ �T is common period of a periodic task set corresponding
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to actor τi ∈ V . �T is given by the solution to both

r1T1 = r2T2 = · · · = rN−1TN−1 = rNTN (8)

and
�T − �AC ≥ �0, (9)

where ri ∈ �r and �r is the aggregated repetition vector introduced in Section 3.1.

LEMMA 5.6. For an acyclic CSDF graph G, the minimum common period vector �̌T is
given by

Ťi = lcm(�r)
ri

⌈
maxτ j∈V {ACj · rj}

lcm(�r)

⌉
,∀τi ∈ V, (10)

where lcm(�r) is the least common multiple of all phase repetition entries in �r.

PROOF. The proof can be found in Spasic et al. [2015]; see proof of Lemma 1.

For the CSDF graph in Figure 1, the derived minimum common periods in time units
are [Ť1, Ť2, Ť3] = [5, 10, 5].

THEOREM 5.7. For any acyclic CSDF graph G, for which G has L topological sort
levels, a periodic schedule exists with start times Si(ϕ), ϕ ∈ [1, Pi], for each level-k actor
τi ∈ V given by

Si(1) = (k − 1) · 2α (11)

and

Si(φ) = Si(φ − 1) + Ci(φ − 1), ∀ φ ∈ [2, Pi], (12)

such that every phase of an actor τi ∈ V is strictly periodic with a constant period Ti ∈ �̌T
and every communication channel eu = (τi, τ j) ∈ E has a bounded buffer capacity, given
by

bu = (l − k + 1) · 2Xu
i (Piri), (13)

where α = r1T1 = · · · = rNTN is the iteration period of G, τi is a level-k actor and τ j is a
level-l actor, l ≥ k.

PROOF. The proof can be found in Spasic et al. [2015]; see proof of Theorem 2.

5.2. Deriving the Earliest Start Time of Actor’s First Phase

In order to represent an actor of a CSDF graph as a set of strictly periodic tasks, in The-
orem 5.7, we already introduced the start times of phases of the actors corresponding
to different levels. However, although start times given by Equation (12) are minimal
relative to the start time of the corresponding first phase Si(1), start times Si(1) given
by Equation (11) are not minimal. Minimizing the start times is very important since
it has a direct impact on the latency of the graph and the buffer sizes of the communi-
cation channels. Therefore, the earliest (minimal) start times of an actor’s first phase
Si(1) are derived here.

LEMMA 5.8. For an acyclic CSDF graph G, the earliest start time of the first phase of
an actor τ j ∈ V , denoted Sj(1), under ISPS is given by

Sj(1) =
{

0 if prec(τ j) = ∅
maxτi∈prec(τ j ){Si→ j(1)} if prec(τ j) �= ∅ , (14)
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where prec(τ j) is the set of predecessors of τ j , and Si→ j(1) is given by

Si→ j(1) = min
t∈[0,Si (1)+α+�i (Pi )]

{
t : prdS

[Si (1),max{Si (1),t}+k)
(τi, eu)

≥ cnsS

[t,max{Si (1),t}+k]
(τ j, eu),∀k ∈ [0, α + �i(Pi)]

}
, (15)

where Si(1) is the earliest start time of the first phase of a predecessor actor τi , α = riTi =
rjTj, �i(Pi) = Si(Pi) − Si(1), prdS

[ts,te)(τi, eu) is the number of tokens produced by τi into
channel eu during the time interval [ts, te), and cnsS

[ts,te](τ j, eu) is the number of tokens
consumed by τ j from channel eu during the time interval [ts, te].

PROOF. The proof can be found in Spasic et al. [2015]; see proof of Lemma 2.

NOTE. We derive the earliest start times assuming that token production happens as
late as possible (at the deadlines) and token consumption happens as early as possible
(at the beginning of the execution of each phase). The cumulative production and the
cumulative consumption functions can be computed efficiently by

prdS

[ts,te)
(τi, eu) =

⎧⎪⎪⎨
⎪⎪⎩

Xu
i

((⌊
te−ts

Ti

⌋
− 1 +

⌊
�
Ti

⌋)
· Pi + k1

)
if te − ts ≥ Ti

Xu
i (k2) if Di ≤ te − ts ≤ Ti

0 if te − ts < Di

, (16)

with � = (te − ts) mod Ti + Ti − Di, k1 = maxl∈[1,Pi ]{l : � mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, k2 =

maxl∈[1,Pi ]{l : te − ts − Di ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

cnsS

[ts,te]
(τi, eu) =

⎧⎨
⎩Y u

i

(⌊
te−ts

Ti

⌋
+ k

)
if te ≥ ts

0 if te < ts
, (17)

with k = maxl∈[1,Pi ]{l : (te − ts) mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

For example, the derived earliest start times for phases of actor τ2 in G, shown in
Figure 1, are S2(1) = 8 and S2(2) = S2(1) + C2(1) = 10, as illustrated in Figure 2(b).

5.3. Deriving Channel Buffer Sizes

Equation (13) in Theorem 5.7 shows that ISPS has bounded buffer sizes bu. These buffer
sizes bu are sufficient, but not minimal. Therefore, we want to derive the minimum
buffer sizes that guarantee periodic execution of tasks corresponding to actor phases.

LEMMA 5.9. For an acyclic CSDF graph G, the minimum buffer size bu of a commu-
nication channel eu = (τi, τ j) under ISPS is given by

bu = max
k∈[0,α+� j (Pj )]

{
prdB

[Si (1),max{Si (1),Sj (1)}+k]
(τi, eu) − cnsB

[Sj (1),max{Si (1),Sj (1)}+k)
(τ j, eu)

}
, (18)

where Si(1) is the earliest start time of the first phase of a predecessor actor τi , α = riTi =
rjTj, � j(Pj) = Sj(Pj) − Sj(1), prdB

[ts,te](τi, eu) is the number of tokens produced by τi into
channel eu during the time interval [ts, te], and cnsB

[ts,te)(τ j, eu) is the number of tokens
consumed by τ j from channel eu during the time interval [ts, te).

PROOF. The proof can be found in Spasic et al. [2015]; see proof of Lemma 3.
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NOTE. We want to derive the minimum buffer size such that the derived buffer size
is always valid regardless of when the actor phases are actually scheduled to produce/
consume during its common period. Hence, we assume that token production happens
as early as possible (at the beginning of the execution of each phase) and token con-
sumption happens as late as possible (at the deadlines). The corresponding cumulative
production and consumption functions can be computed efficiently by

prdB

[ts,te)
(τi, eu) =

⎧⎨
⎩Xu

i

(⌊
te−ts

Ti

⌋
+ k

)
if te ≥ ts

0 if te < ts
, (19)

with k = maxl∈[1,Pi ]{l : (te − ts) mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

cnsB

[ts,te)
(τi, eu) =

⎧⎪⎪⎨
⎪⎪⎩

Y u
i

((⌊
te−ts

Ti

⌋
− 1 +

⌊
�
Ti

⌋)
· Pi + k1

)
if te − ts ≥ Ti

Y u
i (k2) if Di ≤ te − ts ≤ Ti

0 if te − ts < Di

, (20)

with � = (te − ts) mod Ti + Ti − Di, k1 = maxl∈[1,Pi ]{l : � mod Ti ≥ ∑l−1
ϕ=0 Ci(ϕ)}, k2 =

maxl∈[1,Pi ]{l : te − ts − Di ≥ ∑l−1
ϕ=0 Ci(ϕ)}, and Ci(0) = 0.

For the example graph G given in Figure 1, the calculated buffer sizes in tokens are
[b1, b2, b3] = [4, 15, 4].

5.4. Hard Real-Time Schedulability

We give now a theorem that summarizes the presented results for our improved strictly
periodic scheduling:

THEOREM 5.10. For an acyclic CSDF graph G, let TG be a set of periodic task sets Tτi

such that Tτi corresponds to τi ∈ V . Tτi consists of Pi periodic tasks given by

τi(ϕ) = (Si(ϕ), Ci(ϕ), Di, Ti), 1 ≤ ϕ ≤ Pi, (21)

where Si(ϕ) is the earliest start time of a phase ϕ of actor τi given by Equations (14)
and (12), Ci(ϕ) is the WCET value of a phase ϕ given by Equation (7), Di is the relative
deadline, max1≤ϕ≤Pi {Ci(ϕ)} ≤ Di ≤ Ti, and Ti is the period of Tτi given by Equation (10).
TG is schedulable on m processors using a hard real-time scheduling algorithm A for
periodic tasks if

(1) A is partitioned Earliest Deadline First (EDF), partitioned Rate Monotonic (RM),
partitioned Deadline Monotonic (DM) or hierarchical global hard real-time schedul-
ing algorithm,

(2) TG satisfies the schedulability test of A on m processors,
(3) every communication channel eu ∈ E has a capacity of at least bu tokens, where bu

is given by Equation (18).

PROOF. According to Theorem 5.7, the graph is converted into strictly periodic tasks.
The task set Tτi corresponding to an actor τi, should be scheduled in a way that preserves
the dependency between the actor phases. The hard real-time scheduling algorithms
that can do this are partitioned Earliest Deadline First (EDF), Rate Monotonic (RM)
[Liu and Layland 1973] and Deadline Monotonic (DM) [Leung and Whitehead 1982],
or hierarchical [Holman and Anderson 2006; Lipari and Bini 2003]. In the case of
the partitioned algorithms, tasks that correspond to phases of an actor should be
allocated to the same processor and scheduled by EDF or DM because the deadlines
of the phases are in the same order as the phases themselves, thereby preserving the
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data dependencies between the phases, or by RM fixed priority scheduler, in which ties
should be broken in favor of jobs arriving earlier in a system. In hierarchical scheduling,
a set of tasks are grouped together and scheduled as a single entity, called server task or
supertask. When the entity is scheduled, one of its tasks is selected to execute according
to an internal scheduling policy. Hence, the supertasks/servers are scheduled globally,
while the scheduling of the tasks within a supertask/server is done locally, that is, it
is analogous to scheduling on a uniprocessor. By grouping the tasks that correspond to
phases of an actor with data-dependent phases into a supertask/server and scheduling
them by a scheduler that preserves their order (e.g., EDF) the synchronization problem
of such dependent tasks is solved.

5.5. Performance Analysis

Once an acyclic CSDF graph has been converted to a set of strictly periodic tasks, the
calculated task parameters are used for performance analysis of the graph, that is, for
analysis of the graph’s throughput and latency.

5.5.1. Throughput Analysis Under ISPS. The throughput of a graph G scheduled by ISPS
is given by

R(G) = 1
α

= 1

riŤi
, τi ∈ V, (22)

where Ťi is calculated by Equation (10). Given that during one graph iteration, every
actor τi ∈ V is executed qi times, the throughput of each actor is calculated as

Ri = qi

α
= Pi

Ťi
, τi ∈ V . (23)

THEOREM 5.11. For any acyclic CSDF graph G scheduled by ISPS, the throughput of
the graph is never less than the graph throughput when G is scheduled by SPS.

PROOF. The throughput of a graph scheduled under SPS is 1/αSPS = 1/(qiT SPS
i ),

τi ∈ V . If the same graph is scheduled under our ISPS, then its throughput
is 1/αISPS = 1/(riT ISPS

i ), τi ∈ V . By using Equations (6) and (10) and denoting
u = maxτ j∈V {rj

∑Pj

ϕ=1 Cj(ϕ)} and w = maxτ j∈V {qj max1≤ϕ≤Pj {Cj(ϕ)}}, we can write the
relation that we want to prove, that is, αISPS ≤ αSPS, as follows:

lcm(�r)
⌈

u
lcm(�r)

⌉
≤ lcm(�q)

⌈
w

lcm(�q)

⌉
. (24)

We have that u ≤ w. Given that the least common multiple of positive integer
numbers can be found using prime factorization, and the relation between vectors
�r = [r1, . . . , rN]T and �q = P · �r = [P1r1, . . . , PNrN]T , we have that lcm(�q) is divisible by
lcm(�r).

Finally, to prove the relation in Equation (24), we consider the following cases (with
regard to divisibility by the corresponding lcm term): Case 1: workloads on both sides
of Inequality (24) are divisible by the corresponding lcm terms. By removing the ceiling
operation, we obtain inequality u ≤ w, which always holds. Case 2: u is divisible by
lcm(�r). We can represent the ceiling operation on the right-hand side as (w + lcm(�q) −
wmod(lcm(�q)))/ lcm(�q). In the worst case, wmod(lcm(�q)) is equal to lcm(�q) − 1. By
putting this into Inequality (24), we obtain u ≤ w+1, which holds. Case 3: w is divisible
by lcm(�q) (also divisible by lcm(�r)). We can represent uand w as ku lcm(�r)+u mod (lcm(�r))
and kw lcm(�r), respectively, for some integer constants ku and kw, ku < kw. We represent
the ceiling operation as in Case 2; thus, Inequality (24) becomes u + lcm(�r) − umod
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(lcm(�r)) ≤ w. Now, by putting the ku-representation of u and kw-representation of w,
the inequality becomes ku + 1 ≤ kw, which is true; thus, Inequality (24) holds. Case 4:
workloads on both sides of Inequality (24) are not divisible by the corresponding lcm
terms. Similar to Case 2 and Case 3, we can represent the ceiling operation through
the modulo operation. In the worst case, we have on the right-hand side the smallest
possible value, w + 1, which means that this value now is divisible by both lcm(�q) and
lcm(�r). In the worst case, u = w, which means that u also needs only 1 unit to be
rounded up to a value divisible by lcm(�r). Thus, Inequality (24) becomes w + 1 ≤ w + 1,
which holds.

5.5.2. Latency Analysis Under ISPS. The latency of G scheduled by ISPS is given by

L(G) = max
win→out∈W

{
Sout(gC

out) + Dout − Sin(gP
in)

}
, (25)

where W is the set of all paths from any input actor τin to any output actor τout, and
win→out is one path of the set. Sout(gC

out) and Sin(gP
in) are the earliest start times of the

first phase of τout with nonzero token consumption (phase gC
out) and the first phase of

τin with nonzero token production (phase gP
in) on a path win→out ∈ W, respectively. Dout

is the relative deadline of τout.
From Equation (25), we can see that the latency of a graph depends on start times and

deadlines of the graph’s actors. Given that actor start times are dependent on deadlines
(see Section 5.2), in order to reduce the latency, we should reduce actor deadlines, that
is, we should change the token production times. However, given that reducing the
deadlines increases the number of processors required to schedule the graph, we are
interested in selecting the deadlines that lead to required graph latency while the
number of processors needed to obtain that latency is minimized. To select deadlines
properly, we devise the solution approach presented in this section that formulates the
problem of selecting task deadlines under a given latency constraint while the number
of processors is minimized when a CSDF graph is converted to real-time periodic tasks
by using our ISPS approach as a mathematical programming problem. In order to
formulate our problem as a mathematical programming problem, we need to rewrite
the start-time computation in a proper form.

LEMMA 5.12. For an acyclic CSDF graph G, the earliest start time of the first phase
of an actor τ j ∈ V , denoted Sj(1), under ISPS is given by

Sj(1) =
{

0 if prec(τ j) = ∅
maxτi∈prec(τ j ){Si(1) + (Smin

i→ j(1) − Smin
i (1) − MCi) + Di} if prec(τ j) �= ∅ , (26)

where prec(τ j) is the set of predecessors of τ j ; and Si(1), MCi, and Di are the earliest
start time of the first phase, the maximum WCET (Definition 5.2), and deadline of the
predecessor actor τi , respectively. Smin

i (1) is the earliest start time of the first phase of τi
given by Equation (14) when Dk = MCk,∀τk ∈ V , and Smin

i→ j(1) is given by Equation (15)
when Dk = MCk,∀τk ∈ V .

PROOF. Let us consider an arbitrary channel eu = (τi, τ j) in a CSDF graph G = (V, E).
Actor τ j starts execution of its first phase after τi has started and fired a certain
number of times. This number of firings is independent from the execution speed of
the actors and depends only on the production and consumption rates of τi and τ j on
eu, where cumulative production and cumulative consumption functions are given by
Equations (16) and (17). Suppose that Dk = MCk,∀τk ∈ V . The production (prdS) and
consumption (cnsS) curves of τi and τ j are shown in Figure 3. Interval � in Figure 3
can be calculated as

� = Smin
i→ j(1) − Smin

i (1) − MCi. (27)

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 4, Article 68, Publication date: August 2016.



On the Improved Hard Real-Time Scheduling of Cyclo-Static Dataflow 68:15

Fig. 3. Production and consumption curves on edge eu = (τi, τ j ).

Now, suppose that Dk > MCk,∀τk ∈ V . The production curve will move to the right
for certain time units, and the new start time of the first phase of τi is Si(1). If the
consumption curve does not move, the relation between production and consumption
given by Equation (15) will be violated, that is, it will happen in some point in time
that cumulative consumption is greater than cumulative production. This means that
we have to move the consumption curve to the right by the same number of time units
such that the new start time Si→ j(1) satisfies Equation (15). Hence, interval � will stay
the same, and it is given by

� = Si→ j(1) − Si(1) − Di. (28)

By rewriting Equations (27) and (28), we obtain

Si→ j(1) = Si(1) + (Smin
i→ j(1) − Smin

i (1) − MCi) + Di. (29)

We can derive from Equation (26) the following set of linear inequality constraints,
in which the number of linear inequality constraints is equal to the number of edges
in the CSDF:

Si(1) + (
Smin

i→ j(1) − Smin
i (1) − MCi

) + Di ≤ Sj(1),∀eu ∈ E. (30)

In addition, we can rewrite Equation (25) as follows:

L(G) = max
win→out∈W

⎧⎨
⎩Sout(1) +

gC
out−1∑
k=1

Cout(k) + Dout − Sin(1) −
gP

in−1∑
k=1

Cin(k)

⎫⎬
⎭ . (31)

Since the number of processors needed to schedule CDP tasks depends on the total
density δsum of the tasks [Davis and Burns 2011], our objective is to minimize δsum in
order to minimize the number of processors. Therefore, we formulate our optimization
problem as follows:

Minimize δsum =
∑
τk∈V

ACk

Dk
(32a)

subject to Sout(1) + Dout − Sin(1) ≤ L −
gC

out−1∑
k=1

Cout(k) +
gP

in−1∑
k=1

Cin(k), ∀win→out ∈ W

(32b)
Si(1) + Di − Sj(1) ≤ −(

Smin
i→ j(1) − Smin

i (1) − MCi
)
, ∀eu ∈ E (32c)

−Dk ≤ −MCk, Dk ≤ Tk, ∀τk ∈ V, (32d)
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ALGORITHM 2: Procedure to Derive the Number of Processors
Input: A CSDF graph G = (V, E), a partitioned scheduling algorithm A, an allocation

heuristic H.
Output: Number of processors mPAR, task allocation alloc.

1 for actor τi in V do
2 Compute the minimum common period Ťi by using Equation (10);

3 utotal = 0;
4 U ← ∅; (the set of allocation units, initially empty)
5 for actor τi ∈ V do
6 ui = 0;
7 for phase ϕ of τi , 1 ≤ ϕ ≤ Pi do
8 ui(ϕ) = Ci (ϕ)

Ťi
;

9 ui = ui + ui(ϕ);
10 utotal = utotal + ui(ϕ);

11 U = U ∪ ui ;

12 mPAR = mOPT = �utotal�;
13 Reorder elements of U if required by an allocation heuristic H;
14 for u ∈ U do
15 � = {π1, π2, . . . , πmPAR};
16 Apply bin-packing allocation heuristic H to u on π j ∈ � and check the schedulability

test of algorithm A on π j ;
17 if u is not allocated to any π j ∈ � then
18 Allocate u on a new processor πmPAR+1;
19 mPAR = mPAR + 1;

20 return mPAR, alloc;

where Equation (32a) is the objective function and Dk is an optimization variable. The
objective function Equation (32a) has |V | optimization variables and is subject to a
latency constraint L. Therefore, Equation (32b) comes from Equation (31). For each
channel in a graph, we have Equation (30), which can be rewritten as Equation (32c).
In addition, Equation (32d) bounds all optimization variables in the objective function.
Si(1) and Sj(1) (including Sin(1), Sout(1)) are implicit variables that are not in the
objective function Equation (32a), but still need to be considered in the optimization
procedure. L, gP

in, gC
out, Smin

i→ j(1), Smin
i (1), MCk, and Tk are constants. Given that all

variables are integers and both the objective function and the constraints are convex,
problem Equation (32) is an integer convex programming (ICP) problem [Liu et al.
2014], which can be solved by using existing convex programming solvers, for example,
CVX solver [Grant and Boyd 2014].

5.6. Deriving the Number of Processors

As introduced in Section 3.2, by using Equation (4), one can compute the absolute min-
imum number of processors mOPT needed to schedule the tasks with deadlines equal
to the periods. The tasks can be scheduled on mOPT if an optimal scheduling algorithm
is used. The optimal scheduling algorithms are either global or hybrid; thus, they re-
quire task migration. On the other hand, the partitioned scheduling algorithms do not
require task migration. In that case, the tasks are first allocated to the processors;
then, the tasks on each processor are scheduled using a uniprocessor scheduling al-
gorithm. The problem of allocating tasks onto processors is similar to the bin-packing
problem, and can be solved using either exact or approximate allocation algorithms.
The disadvantage of using an exact algorithm is its high computational complexity.
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Therefore, many heuristics exist for task partitioning such as First-Fit, Best-Fit, Worst-
Fit, and so on [Coffman, Jr. et al. 1996], which have, in the worst case, a polynomial
time complexity.

The procedure to calculate the number of processors required for the partitioned
scheduling of the task set obtained by the conversion procedure described in Section 5
(see Algorithm 1) is given in Algorithm 2. Algorithm 2 takes as input a CSDF graph
G, a partitioned scheduling algorithm A, and an allocation heuristic H. The minimum
common period for each actor is calculated in Lines 1 and 2 of the algorithm. Once
the periods are calculated, then the total utilization of the converted task set and the
utilization per task set corresponding to an actor are calculated in Lines 3 through 10.
Line 11 in Algorithm 2 ensures that the task set corresponding to an actor is considered
as one scheduling entity, that is, one allocation unit. The absolute minimum number
of processors mOPT for scheduling the tasks is computed in Line 12. Some allocation
heuristics require a preprocessing step to be performed on the tasks before applying the
heuristic. This preprocessing step is usually sorting the tasks based on some criteria,
such as their utilization. That step is done in Algorithm 2 in Line 13. The following lines
find the number of processors and the allocation of tasks to processors. Given that mOPT
is the lower bound on the number of processors mPAR needed by partitioned scheduling
algorithms, Algorithm 2 starts with the task partitioning on mOPT processors. If the
tasks pass the schedulability test on all mPAR processors—for example, in the case of
IDP tasks and EDF scheduler, the utilization of the tasks allocated to a processor is not
greater than 1—then, the algorithm returns mPAR and the corresponding allocation of
the tasks to the processors alloc.

Let us now analyze the time complexity of Algorithm 2 in the worst case. The first
for loop in Lines 1 and 2 takes linear time to calculate the minimum common period
of each actor, that is, its time complexity is O(|V |). The second for loop in Lines 5
through 11 has a nested for loop; thus, its time complexity in the worst case is given
by O(|V |P), where P is the maximum number of execution phases per actor, that is,
P = maxτi∈V {Pi}. If the task sorting in Line 13 should be performed prior to performing
the task allocation, it will have O(|V |P log(|V |P)) time complexity given that the max-
imum number of tasks is |V |P. The for loop in Lines 14 through 19 implements the
allocation of the tasks to the processors by applying a particular allocation heuristic
and scheduling algorithm. Given that the maximum number of tasks is |V |P and the
maximum number of processors needed to allocate and schedule a CSDF graph is equal
to the number of actors in the graph |V |, the time complexity of finding the number of
processors mPAR and the feasible task allocation is O(|V |P log |V |) [Pereira Zapata and
Mejı́a Alvarez 2004; Baruah and Fisher 2005]. Thus, we can conclude that the runtime
of Algorithm 2 is polynomial and its complexity is O(|V |P log |V |) or O(|V |P log(|V |P))
if the preprocessing step is performed.

6. EVALUATION

We evaluate our approach in terms of its performance and time complexity by per-
forming experiments on the benchmarks given in Table II. Columns 3, 4, and 5 in
Table II give for each benchmark the number of actors |V |, the number of channels |E|
in the corresponding CSDF graph of a benchmark, and the number of periodic tasks
|T | obtained after converting the actors of the CSDF graph by our approach to a set
of periodic tasks T . The WCETs of actors in the benchmarks are given in clock cycles
[Bodin et al. 2013] or in time units [Benazouz et al. 2010; Wiggers et al. 2007]. If
the execution times of a benchmark are not given [Bilsen et al. 1996; Pellizzoni et al.
2009; Oh and Ha 2004], certain values based on a static analysis are assumed. The
execution times of the benchmark [Zitnick and Kanade 2000] are obtained from the
measurements of the benchmark running on a MicroBlaze processor.
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Table II. Benchmarks Used for Evaluation

Domain Benchmark |V | |E| |T | Source

Medical Heart pacemaker 4 3 67 [Pellizzoni et al. 2009]
Communication Reed Solomon Decoder (RSD) 6 6 904 [Benazouz et al. 2010]
Financial BlackScholes 41 40 261 [Bodin et al. 2013]

Computer Vision
Disparity map 5 6 11 [Zitnick and Kanade 2000]

Pdetect 58 76 4045 [Bodin et al. 2013]

Audio processing
CELP algorithm 9 10 167 [Bilsen et al. 1996]

CD2DAT rate converter 6 5 22 [Oh and Ha 2004]
MP3 Playback 4 3 8 [Wiggers et al. 2007]

Image processing JPEG2000 240 703 639 [Bodin et al. 2013]

Our approach is evaluated by comparison to 3 related scheduling approaches—
strictly periodic scheduling (SPS), proposed in Bamakhrama and Stefanov [2013]; peri-
odic scheduling (PS), presented in Bodin et al. [2013]; and self-timed scheduling (STS),
given in Stuijk et al. [2008]. We implemented our approach in Python. The SPS ap-
proach was implemented in Python within the darts tool set [Bamakhrama 2012]. The
approach in Stuijk et al. [2008] was implemented in C++ within the SDF3 tool set
[Stuijk et al. 2006]. In addition, we implemented the approach in Bodin et al. [2013]
in Python as well. We formulated both LP problems [Bodin et al. 2013] for finding the
period of a graph, and for finding the start times and the buffer sizes as integer linear
programming (ILP) problems, and we added the constraint that the periods of all actors
in a graph have to be integers. We used CPLEX Optimization Studio [IBM 2012] to
solve the ILP problems and mixed-integer disciplined convex programming (MIDCP)
in CVX [Grant and Boyd 2014] to solve our latency reduction problem. We ran all the
experiments on a Dell PowerEdge T710 server running Ubuntu 11.04 (64b) Server OS.

6.1. Performance of the ISPS Approach

The main objective of the evaluation is to compare the throughput of streaming ap-
plications and the required number of processors to guarantee the throughput when
scheduled by our ISPS with the throughput and the number of processors under SPS
[Bamakhrama and Stefanov 2013], PS [Bodin et al. 2013], and STS [Stuijk et al. 2008].
In addition, we compare our ISPS and the other scheduling approaches in terms of
application latency and memory resources needed to implement the communication
channels.

We used the sdf3analysis-csdf tool from SDF3 [Stuijk et al. 2006] to obtain the
maximum achievable throughput of a graph, which is the throughput under STS, and to
compute the minimum buffer sizes required to achieve that throughput. Unfortunately,
the sdf3analysis-csdf tool does not support the latency calculation and the calculation
of the number of processors. Thus, we were not able to compare them with our approach.
We were also not able to obtain the number of processors for a graph scheduled under
PS, because the calculation of the number of processors was not considered in Bodin
et al. [2013].

Results of the performance evaluation are given in Table III. We report the through-
put of the output actors under ISPS, calculated by Equation (23), in the second column
of Table III. Here t.u. denotes the corresponding time unit of a benchmark. Columns
7, 12, and 15 show the ratio between the throughput of the output actors under our
ISPS and SPS, and PS and STS, respectively. Given that the main objective of this
experiment is to evaluate the throughput of the benchmarks scheduled under ISPS
and the minimum number of processors needed to obtain that throughput, our ISPS
approach converts the CSDF graphs of the benchmarks to IDP tasks, which minimizes
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the number of processors required to schedule the benchmarks. For processor require-
ments in the case of ISPS and SPS, we compute the minimum number of processors for
IDP tasks under optimal and partitioned First-Fit Decreasing (Utilization) EDF (FFD-
EDF) schedulers by using Equation (4) and Algorithm 2 for ISPS, and Equations (4)
and (5) for SPS (see Columns 4, 5, 9, and 10). By comparing the throughputs under
ISPS and SPS, we can see that, for the majority of the benchmarks, the throughput
under our ISPS is higher than the corresponding throughput under SPS. Only in two
cases are the throughputs the same for both schedules. The first case is MP3 Playback,
in which the bottleneck actor (the actor with the biggest workload over one iteration
period) is the same under both SPS and ISPS, and that actor has only one phase;
thus, the influence of a different WCET for actor phases on throughput cannot be seen.
However, the influence can be seen from the required number of processors needed for
scheduling of MP3 Playback by optimal schedulers, which is smaller in the case of our
ISPS. The second case is CD2DAT. For this benchmark, lcm(�q) and lcm(�r) are equal and
much higher than the maximum workload of actors over an iteration period for both
SPS and ISPS, which leads to the same iteration period for both schedules. However,
the WCET awareness of ISPS leads to a smaller number of processors. Note that if we
want to schedule a task set on a smaller number of processors than the one calculated
by Equation (4) or Equation (5)/Algorithm 2, we should scale up the computed actor
periods by the same scaling factor [Zhai et al. 2013]. Hence, to schedule CD2DAT by
SPS on the same number of processors required by ISPS, we need to scale up actor
periods by 2, which will lead to a decrease in throughput by 2. Thus, ISPS outperforms
SPS in terms of throughput when CD2DAT is scheduled on 1 processor. Benchmarks
JPEG2000 and RSD can achieve much better throughput when scheduled under ISPS;
but, in that case, they require a larger number of processors to be scheduled. Note
that the throughputs of these two benchmarks cannot be increased under SPS even
when the number of processors is increased. If we apply the period scaling technique
[Zhai et al. 2013] for these two benchmarks to schedule them under ISPS on the same
number of processors as required under SPS, the throughput values for JPEG2000 and
RSD under our ISPS are 3.93 and 11.2 times higher, respectively, as given in Column 7
in parentheses, than the corresponding values under SPS. Therefore, we can conclude
that, in all cases, the minimum number of processors required to guarantee certain
throughput under our ISPS is smaller than or equal to the minimum number of pro-
cessors under SPS while the throughput under ISPS is increased in most cases; thus,
processors are better utilized.

Column 12 in Table III shows the ratio of the maximum throughput of the output
actors achieved by our ISPS to the maximum throughput of the output actors achieved
by PS. We can see that both approaches give the same throughput for all benchmarks,
which is expected given that PS schedules phases of an actor in a CSDF graph statically
within a period of the actor; thus, the scheduling granularity is similar between these
two approaches.

Table III shows, in Column 15, the ratio of the maximum throughput of the output
actors achieved by our approach to the absolute maximum throughput of the output
actors achieved by self-timed scheduling of actor firings, which is the optimal scheduling
in terms of throughput. We can see that the throughput under ISPS is equal to or very
close to the throughput under STS for the majority of the benchmarks. Differences in
the throughput appear as a result of the ceiling operation during the calculation of actor
common periods in Equation (10). The biggest difference is in the case of the CD2DAT
benchmark. For this benchmark, lcm(�r) is much higher than the maximum workload
of actors over an iteration period; thus, the calculated actor periods are underutilized,
which leads to lower throughput. The throughput value N/A for JPEG2000 indicates
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that the SDF3 tool set [Stuijk et al. 2006] returned an infeasible throughput (most
likely related to an integer overflow).

Let us now analyze the latency and the memory resources needed to implement
the communication channels of the benchmarks. The graph latency under our ISPS is
calculated by Equation (25) for IDP tasks and shown in Column 3 of Table III. Column 8
shows the ratio between the graph latency under our ISPS and SPS. As we can see
from Columns 4, 5, and 7 through 10 in Table III: for 4 benchmarks (highlighted in the
table) under ISPS, we obtain higher throughput and smaller latency than under SPS
without increasing the number of processors (with JPEG2000 and RSD scheduled on
the same number of processors as in the case of the SPS); for the other 3 benchmarks
(BlackScholes, Disp. map, Pdetect) the obtained increase in throughput is less than the
increase in latency on a platform with the same (or 1 less for BlackScholes under ISPS,
partitioned scheduling) number of processors. For the other 2 benchmarks, we obtained
the same throughput with an increase in latency, but also with a decrease in the number
of processors. For the tested benchmarks, the calculated buffer sizes under ISPS are
never smaller than the buffer sizes under SPS (see Column 11 in Table III). The highest
ratio in buffer sizes between ISPS and SPS is obtained for BlackScholes and CD2DAT.
However, the actual increase in communication memory resources is 215KB and less
than 1KB, respectively, which is acceptable given the size of the memory available in
modern embedded systems. Note that both latency and buffer sizes under our ISPS can
be reduced by carefully selecting deadlines for individual actors (actor phases). This
will be shown in Section 6.3.

Column 13 gives the ratio of the maximum latency of benchmarks under our ISPS
to the latency of benchmarks under PS. Although Bodin et al. [2013] do not provide
the latency calculation for their PS, we were able to extract the latency information
from the start times obtained by solving the ILP problem. However, for benchmarks
JPEG2000 and Pdetect, we could not get a solution from the ILP solver after more than
1 day; thus, we could not calculate the latency for these two benchmarks. As we can
see, the latency of benchmarks under ISPS is always larger than the latency under
PS. As mentioned earlier, reducing the latency under ISPS can be done by carefully
selecting deadlines for individual actors (actor phases), as shown in Section 6.3. More-
over, ISPS reports the maximum latency while PS reports the actual latency under a
certain schedule. The ratio of the calculated buffer sizes under ISPS to the calculated
buffer sizes under PS and STS is given in Columns 14 and 16, respectively. Again, for
benchmarks JPEG2000 and Pdetect under PS, we could not get a solution from the ILP
solver after more than 1 day. Similarly, for benchmarks RSD, BlackScholes, Pdetect,
and CELP under STS, we could not get a solution for longer than 1 day. As mentioned
before, value N/A for JPEG2000 indicates that the SDF3 tool set returned an infeasible
throughput; thus, the buffer sizes were not calculated. As we can see, the buffer sizes
under PS and STS are always smaller than the buffer sizes under ISPS. The highest
ratio in buffer sizes between ISPS and PS is obtained for BlackScholes and CD2DAT,
with the actual increase in communication memory resources of 232KB and less than
1KB, respectively. The highest increase in buffer sizes under ISPS when compared to
STS is less than 1KB. The reason for the difference in the buffer sizes is that, in both
PS and STS approaches, it is assumed that the production of tokens happens at the
end of the actor firing and the consumption happens at the start of the firing, while in
our case (and in SPS case) the worst-case scenario is considered, that is, the production
of tokens happens at the earliest possible start of the actor firing (at start times), while
the consumption happens at the latest possible end of the actor firing (at deadlines).
Note that, in an implementation of a dataflow application, data may be consumed from
input channels and produced to output channels at arbitrary points in time during an
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actor firing. To guarantee that buffer overflow/underflow does not occur, buffer sizes
have to be sufficiently large. Thus, the assumption in PS and STS limits the actual
implementation of reading and writing of tokens, while the buffers calculated in our
case are valid regardless of the actual point in time when reading and writing of to-
kens happens. Thus, our approach does not limit the implementation of the reading
and writing of tokens. Moreover, the buffer sizes calculated in PS and STS are valid
for that specific schedule and the specific production/consumption pattern, while in the
case of our ISPS, the computed buffer sizes are valid for any schedule of actor firings
during its period and for any production/consumption pattern during its firing.

6.2. Time Complexity of the ISPS Approach

In this section, we evaluate the efficiency of our ISPS approach in terms of the execution
time of our algorithms to calculate the throughput of an application, and to find a
schedule and buffer sizes of communication channels. The execution times are given in
Table IV. We compare these execution times with the corresponding execution times of
related approaches—SPS, PS, and STS.

Let us first analyze the time needed to calculate the throughput of an application.
The execution times needed to find the application throughput under ISPS, SPS, PS,
and STS are given in Columns 2, 4, 6, and 8, respectively. As we can see, the times
spent on calculating the throughput of an application under ISPS and SPS are similar
and much shorter than the time needed for solving the ILP problem to find the appli-
cation throughput under PS and the time spent on finding the maximum achievable
throughput of the application, that is, the throughput under STS. Thus, our approach
outperforms PS and STS in terms of time required to calculate the throughput of an
application. Given that, in most cases, ISPS gives higher throughput of an application
than SPS within almost the same time, we can say that ISPS outperforms SPS as well.

Next, we compare the time needed to derive the start times of actor firings, that is,
the schedule, and the buffer sizes of communication channels. These times are given
in Columns 3, 5, 7, and 9, for ISPS, SPS, PS, and STS, respectively. By comparing the
times under ISPS and SPS, we can see that both approaches find the start times and
the buffer sizes within less than 4s in most cases, and within 1min in two cases. Then,
we compare ISPS with PS. In all but two cases, ISPS is faster than PS. For those two
cases (CD2DAT and MP3 Playback), the ILP problems for PS are not complex; thus, they
can be solved very fast. As shown in Table IV, ISPS gives a solution for those two cases
within 1s, and within 1min. On the other hand, for benchmarks Pdetect and JPEG2000,
we could not get a solution from the ILP solver for PS after more than 1d, while our
ISPS produced the results in a couple of seconds and within 1min. By comparing to
STS, our ISPS approach is always much faster. Moreover, for 4 benchmarks, we were
not able to get the solution to the buffer sizing problem under STS after more than 1d.

In Table V, we report the execution time of calculating the minimum number of
processors needed to temporally schedule the tasks, obtained by the conversion of an
application by using our ISPS approach under global optimal and partitioned FFD-
EDF schedulers. In the case of global optimal scheduling, the minimum number of
processors is calculated by Equation (4), while the calculation procedure for FFD-EDF
partitioned scheduling is presented in Algorithm 2 in Section 5.6. As we can see, the
number of processors in the case of optimal scheduling can be calculated within 1ms
for most of the benchmarks, while in the case of partitioned scheduling, the calculation
is done within less than 12ms for most cases and within less than 420ms in two cases.
Thus, the calculation of the number of processors required to schedule an application
under our ISPS is very efficient. We obtained similar times for the calculation of the
number of processors under SPS and global and partitioned FFD-EDF schedulers. We
could not numerically compare the time complexity of our approach with regard to the
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Table IV. Time Complexity (In Seconds) of Different Scheduling Approaches

ISPS SPS PS STS

Benchmark tISPS
R tISPS

S&B tSPS
R tSPS

S&B tPS
R tPS

S&B tSTS
R tSTS

S&B

Pacemaker 1.24e-05 0.056 1.31e-05 0.007 0.19 0.34 0.004 1.52
RSD 1.62e-05 4 1.74e-05 3.3 115.11 146.66 0.06 > 1 day

BlackScholes 9.7e-05 1.13 9.46e-05 0.43 0.28 1.22 0.05 > 1 day
Disp. map 1.36e-05 0.0014 1.69e-05 0.00087 0.027 0.055 0.004 0.01
Pdetect 0.00014 3.52 0.00013 0.65 83.64 > 1 day 0.33 > 1 day
CELP 2.26e-05 0.097 2.43e-05 0.029 0.56 0.95 0.01 > 1 day

CD2DAT 1.67e-05 0.59 1.76e-05 0.66 0.061 0.17 0.004 108.56
MP3 Playback 1.41e-05 59.07 1.37e-05 55.87 0.021 0.034 0.004 3236.31

JPEG2000 0.00053 27.22 0.00053 3.55 0.51 > 1 day N/A N/A

Table V. Time Complexity (In Seconds) for
the Calculation of Number of Processors

Benchmark tISPS
mOPT

tISPS
mPAR

Pacemaker 4.51e-05 0.00095
RSD 0.00049 0.012

BlackScholes 0.00017 0.0077
Disp. map 1.19e-05 0.00037
Pdetect 0.0028 0.2
CELP 0.0001 0.0029

CD2DAT 1.72e-05 0.0021
MP3 Playback 9.06e-06 0.00039

JPEG2000 0.00048 0.42

PS approach because the calculation of the number of processors was not considered
in Bodin et al. [2013]. As mentioned already in Section 2, one possible way to find the
minimum number of processors under PS is to trace the schedules, but that procedure
has an exponential time complexity in the worst case, whereas our Algorithm 2 for find-
ing the minimum number of processors under ISPS has a polynomial time complexity
(see Section 5.6). Finding the minimum number of processors under STS requires com-
plex Design Space Exploration (DSE) procedures, with an exponential time complexity
in the worst case, to find the best allocation that delivers the maximum achievable
throughput. The SDF3 tool set used to compute the self-timed scheduling parameters
does not support such DSE for self-timed scheduling. Thus, we could not numerically
compare the time complexity of ISPS with the time complexity of STS. However, given
that ISPS finds the minimum number of processors for scheduling an application in
polynomial time in the worst case, as shown in Section 5.6, we can conclude that our
ISPS is faster than STS.

6.3. Reducing Latency Under ISPS

We have shown in the previous experiments that, when compared to the SPS approach,
our ISPS delivers larger graph latency in 5 out of 9 cases. When compared to the PS
approach, our ISPS approach always results in a graph schedule with larger graph
latency. If we want to reduce graph latency under ISPS, we could use the latency
reduction method presented in Section 5.5.2. We would like to see how close we are in
graph latency in comparison to the SPS and PS approaches after applying our latency
reduction method. Therefore, in this section, we present results obtained after applying
our latency reduction method introduced in Section 5.5.2 on the benchmarks given in
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Table VI. Performance of the ISPS Approach under Different Latency Constraints

Lconstraint = LSPS Lconstraint = LPS

Benchmark RISPS
out

RSPS
out

LISPS

LSPS mISPS
PAR mSPS

PAR
MISPS

MSPS
RISPS

out
RPS

out

LISPS

LPS mISPS
PAR

MISPS

MPS

Pacemaker 1.5 0.99 2 2 1.47 1 1 4 2.64
RSD 11.2 0.097 1 1 1.56 1 1 3 1.15

BlackScholes 1.33 1 18 17 5.7 1 1.16 41 6.86
Disp. map 1.03 0.95 2 2 1 1 1 5 1.33
Pdetect 1.0002 0.9 13 13 1.09 1 – 54 –
CELP 1.5 0.99 6 6 1.68 1 1.1 9 1.6

CD2DAT 1 1 2 2 4.75 1 3.35 6 8.8
MP3 Playback 1 1 4 4 1.13 1 1.1 4 1.26

JPEG2000 3.93 0.3 1 1 1.21 1 – 230 –

Table II. The results are given in Table VI. In order to apply our latency reduction
method, we should set a latency constraint. To compare our ISPS approach to the
SPS approach, we set the latency constraint to be equal to the graph latency obtained
under SPS, LSPS, and we apply our method for latency reduction. We can see from
Column 3 in Table VI that we significantly reduce latency for the benchmarks that
had higher latency under ISPS than SPS (see Column 8 in Table III), and that we
were able to meet the latency constraint LSPS for all benchmarks. Moreover, we see
that reduction in graph latency does not influence graph throughput, that is, the ratio
of graph throughput under ISPS to graph throughput under SPS in Column 2 is the
same as the corresponding ratio given in Column 7 in Table III with the period scaling
technique applied for benchmarks RSD and JPEG2000 under ISPS. Columns 4 through
6 give the results on resources in terms of the number of processors required by ISPS
and SPS, and the ratio between the ISPS and SPS approaches in buffer sizes needed
to implement communication channels in a graph. We find the minimum number
of processors under the partitioned First-Fit Increasing Deadlines EDF (FFID-EDF)
[Baruah and Fisher 2005] scheduler by using Algorithm 2 for ISPS and Equation (5)
for SPS and the FFD-EDF scheduler. We can see from Columns 2 through 5 that
our ISPS approach with our latency reduction method is able to schedule almost all
benchmarks on the same number of processors as the SPS approach while obtaining
better graph throughput and shorter graph latency. Only in one case, for benchmark
BlackScholes, does our approach need one processor more than the SPS approach.
However, our approach delivers better throughput for benchmark BlackScholes than
the SPS. Although the ratio between the buffer sizes under ISPS and the buffer sizes
under SPS, given in Column 6 in Table VI, is smaller than the corresponding ratio
in Table III, Column 11, the buffer sizes under ISPS are still always bigger than the
corresponding buffer sizes under SPS.

Columns 7 through 10 of Table VI give the results when our latency reduction method
is applied with the latency constraint dictated by the PS approach, LPS. Since we
could not obtain the solution from the ILP solver in the case of the PS approach
after 1d for Pdetect and JPEG2000 benchmarks (see Table III), we could not provide
latency and buffer sizes ratios for these two benchmarks. We can see from Column 8
in Table VI that we significantly reduce latency for all benchmarks (see Column 13
in Table III). However, in four cases—for benchmarks BlackScholes, CELP, CD2DAT,
and MP3 playback—our latency reduction method was not able to meet the latency
constraint LPS. The reason is that the PS approach gives the actual latency under a
static schedule, while our ISPS approach calculates the maximum latency for a CSDF
graph converted into real-time periodic tasks. For these 4 benchmarks, Column 8 gives
the shortest achievable latency under ISPS obtained by applying our latency reduction
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method. The ratio of the graph throughput under ISPS to the graph throughput under
PS is given in Column 7, and is the same as the corresponding ratio given in Column 12
in Table III. We report in Column 9 the minimum number of processors under ISPS and
FFID-EDF found by Algorithm 2. We can see that the number of processors needed by
all the benchmarks with reduced latency under ISPS is higher than the corresponding
number of processors given in Table III, Column 5, which is expected. The number
of processors for a graph scheduled under PS is not given because the calculation of
the number of processors was not considered in Bodin et al. [2013]. Although the ratio
between the buffer sizes under ISPS and the buffer sizes under PS, given in Column 10
in Table VI, is smaller than the corresponding ratio in Table III, Column 14, the buffer
sizes under ISPS are still always bigger than the buffer sizes under PS. As explained
previously, the reason for the difference in the buffer sizes is that the PS approach
considers a specific schedule and the specific production/consumption pattern, while
in the case of our ISPS, the computed buffer sizes are valid for any schedule of actor
firings during their deadlines and for any production/consumption pattern during its
firing.

We also measured the execution times of our ISPS approach enhanced with the
latency reduction method to find tasks’ deadlines and a schedule, that is, tasks’ start
times, such that the latency constraint is satisfied. In most cases, our latency reduction
method needed less than 1s, and in three cases less than 1min, to find tasks’ deadlines
and a schedule that meets the latency constraint.

7. CONCLUSIONS

In this article, we presented a scheduling approach that converts each actor in a CSDF
graph by considering different WCET values for each actor phase to a set of strictly
periodic tasks. As a result, a variety of hard real-time scheduling algorithms can be
applied to temporally schedule the graph on a platform with a calculated number
of processors with a certain guaranteed throughput and latency. In addition, we pre-
sented a method to reduce the graph latency when the converted tasks are scheduled as
real-time periodic tasks. The experiments on a set of real-life applications showed that
our ISPS approach gives a tighter guarantee on the throughput and better processor
utilization with an acceptable increase in terms of communication memory require-
ments when compared with the SPS hard real-time scheduling approach. By applying
our proposed latency reduction method, the ISPS delivers shorter graph latency while
providing better throughput and processor utilization than the SPS approach. When
compared with the PS approach, our proposed approach gives the same throughput
with increased communication memory, but takes much shorter time for deriving the
schedule, the calculation of the minimum number of processors, and the calculation
of the size of communication buffers. Finally, our approach gives the throughput that
is equal to or very close to the absolute maximum throughput achieved by the STS of
actor firings, but requires much shorter time to derive the schedule.
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