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Automated Generation of Polyhedral Process Networks from
Affine Nested-Loop Programs with Dynamic Loop Bounds

DMITRY NADEZHKIN, HRISTO NIKOLOV, and TODOR STEFANOV,
Leiden Institute of Advanced Computer Science

The Process Networks (PNs) is a suitable parallel model of computation (MoC) used to specify embedded
streaming applications in a parallel form facilitating the efficient mapping onto embedded parallel execution
platforms. Unfortunately, specifying an application using a parallel MoC is a very difficult and highly
error-prone task. To overcome the associated difficulties, we have developed the pn compiler, which derives
specific Polyhedral Process Networks (PPN) parallel specifications from sequential static affine nested loop
programs (SANLPs). However, there are many applications, for example, multimedia applications (MPEG
coders/decoders, smart cameras, etc.) that have adaptive and dynamic behavior which cannot be expressed
as SANLPs. Therefore, in order to handle dynamic multimedia applications, in this article we address the
important question whether we can relax some of the restrictions of the SANLPs while keeping the ability
to perform compile-time analysis and to derive PPNs. Achieving this would significantly extend the range of
applications that can be parallelized in an automated way.

The main contribution of this article is a first approach for automated translation of affine nested loop
programs with dynamic loop bounds into input-output equivalent Polyhedral Process Networks. In addition,
we present a method for analyzing the execution overhead introduced in the PPNs derived from programs
with dynamic loop bounds. The presented automated translation approach has been evaluated by deriving a
PPN parallel specification from a real-life application called Low Speed Obstacle Detection (LSOD) used in
the smart cameras domain. By executing the derived PPN, we have obtained results which indicate that the
approach we present in this article facilitates efficient parallel implementations of sequential nested loop
programs with dynamic loop bounds. That is, our approach reveals the possible parallelism available in such
applications, which allows for the utilization of multiple cores in an efficient way.
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1. INTRODUCTION

Moving from sequential computing to parallel computing has become necessary nowa-
days because single-processor embedded systems cannot cope anymore with applica-
tions complexity, throughput, and power consumption constraints that are inherent to
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Fig. 1. Pseudocode of a SANLP.

so many embedded applications. Although, we are witnessing the emergence of parallel
(multicore and multiprocessor) systems in all markets: from general-purpose comput-
ing to embedded systems, for example, multimedia systems, game consoles and all
sorts of mobile devices, the transition from sequential to parallel computing is far from
trivial. To satisfy emerging applications requirements, the multiprocessor embedded
systems must be programmed in a way that the available parallelism is revealed and
exploited efficiently. However, programming of a multiprocessor system is a challeng-
ing, error-prone, and time consuming task as it involves the partitioning of programs,
and consequently, synchronization of different program partitions. In recent years, a
lot of attention has been paid to the design of parallel systems. However, insufficient
attention has been paid to the development of concepts, methodologies, and tools for
efficient programming of such systems. Therefore, the programming still remains a
major difficulty and challenge [Martin 2006]. Today, system designers experience sig-
nificant difficulties in programming parallel systems because the way an application
is specified by an application developer, typically as a sequential program using a se-
quential Model of Computation (MoC), does not match the way multiprocessor systems
operate, that is, multiple cores run (possibly) in parallel.

If an application is specified using a parallel MoC, then the mapping of this appli-
cation onto a multiprocessor system can be done in a systematic and transparent way
by using a disciplined approach [Mihal and Keutzer 2003]. Using a parallel MoC fa-
cilitates the programming of parallel multiprocessor systems because a parallel MoC
makes the parallelism available in an application and the communication between
the application tasks explicit. Unfortunately, specifying an application using a paral-
lel MoC is very difficult as the application developers (i) have to be familiar with a
particular parallel MoC; (ii) have to study the application in order to identify possible
parallelism that is available and to reveal it by using the parallel model.

To relieve the designer from all these difficulties, the pn compiler [Verdoolaege et al.
2007] was introduced. It implements techniques for automated parallelization of Static
Affine Nested-Loop Programs (SANLP) written in C into input-output equivalent Poly-
hedral Process Network (PPN) descriptions. In the pn partitioning strategy, a process
is created for every statement and function call found in the top-level of the program.
In this way, the designers have control over the granularity of the created partitions.

An example of a SANLP is given in Figure 1. A SANLP consists of a set of statements
and function calls, each possibly enclosed in loops and/or guarded by conditions. The
loops do not have to be perfectly nested. All lower and upper bounds of the loops as
well as all expressions in conditions and array accesses have to be affine functions of
enclosing loop iterators and static parameters. The parameters are symbolic constants,
that is, their values cannot change during the execution of the program. Rather, param-
eter values determine different program instances. In addition, data communication
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between function calls must be explicit. For example, see function Func2() at line 8
which accepts 2 elements of array A[] as input arguments. Providing just a pointer to
array A[] in this case is not allowed. The above restrictions allow a compact mathe-
matical representation of a SANLP using the well-known polyhedral model [Feautrier
1996]. The SANLPs can be converted in an automated way into Polyhedral Process
Networks [Verdoolaege et al. 2007].

The PPN model of computation is a special (static) case of the Kahn Process Net-
works (KPN) [Kahn 1974] model of computation. A PPN consists of concurrent au-
tonomous processes that communicate data in a point-to-point fashion over bounded
FIFO channels using a blocking read/write on an empty/full FIFO as synchronization
mechanism. In addition, everything about the execution of a PPN is known at compile-
time. The latter enables techniques for modeling, analysis, and SW/HW synthesis in a
systematic and automated way, and allows the calculation of buffer sizes that guaran-
tee deadlock-free execution. In comparison, computing buffer sizes is not possible for
the more general KPN model. We are interested in the process network model because
it provides a sound formalism, well suited for capturing and modeling of data-flow
dominated applications in the realm of multimedia, imaging, and signal processing,
that naturally contain tasks communicating via streams of data. Moreover, it has been
already shown that process networks allow effective and efficient mappings of stream-
ing applications to certain parallel execution platforms [Stefanov et al. 2004; de Kock
2002; Goossens et al. 2003; Dwivedi et al. 2004; Castrillon et al. 2010; Haid et al. 2009].

Many scientific, matrix computation, and signal processing applications can be spec-
ified as static affine nested loop programs, and therefore, the pn compiler [Verdoolaege
et al. 2007] can be used to derive equivalent parallel PPN specifications. However,
many multimedia applications such as MPEG coders/decoders, smart cameras, etc.
have adaptive and dynamic behavior which cannot be expressed as SANLPs. In or-
der to handle dynamic applications, in this article, we address the important question
whether we can relax some of the restrictions of the SANLPs while keeping the ability
to perform compile-time analysis and to derive PPNs in an automated way. Achiev-
ing this will significantly extend the range of applications that can be parallelized in
an automated way. The main contribution of this article is a first approach for auto-
mated translation of affine nested loop programs with dynamic loop bounds (Dynloop)
into input-output equivalent Polyhedral Process Networks. In addition, we propose
an analysis which estimates the execution overhead introduced in the PPNs derived
from programs with dynamic loop bounds. The presented automated PPN derivation
approach has been evaluated by deriving a PPN parallel specification from a real-life
application called Low Speed Obstacle Detection (LSOD) used in the smart cameras
domain. The obtained results indicate that the approach we present in this article
facilitates efficient parallel implementations of sequential nested loop programs with
dynamic loop bounds. That is, our approach reveals the possible parallelism available in
such applications, which allows for the utilization of multiple cores in an efficient way.

1.1. Motivating Example

As a motivating example, we use an application from the smart cameras domain called
low speed obstacle detection (LSOD). With the LSOD description in this section, we
illustrate a program that has the specific dynamic behavior we consider in this article
and we outline the problems introduced by this behavior.

The LSOD application is intended to detect and to track objects in front of a car in traf-
fic. The output of the system presents spatial positions for targets—cars, pedestrians,
etc. Applying several general image processing algorithms helps to find new targets,
and to track existing targets. The algorithms implement shadow detection, symme-
try detection, lights detection, motion segmentation, and vertical edge detection. The
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Fig. 2. Pseudocode of the edge detection part of the LSOD application and its application on real data.

output of each algorithm is collected by a particle filter component [Arulampalam and
Maskell 2002] for analysis.

The first step in the LSOD application is to obtain two images from a given camera
picture. They are named high- and low-resolution images and are depicted by the
two dark rectangles in Figure 2(b). Applying different image processing algorithms
on these images, hypotheses whether cars exist are computed. Possible targets are
defined as coordinates and dimensions of rectangles belonging either to the high- or
low-resolution image. In Figure 2(b), two possible targets are presented by the white
rectangles, surrounding the cars. Then, for every identified target, the image gradient
in vertical direction of the area of the target is computed. The result is finally analyzed
in order to support or decline a target.

The edge detection part of the LSOD application, shown in Figure 2(a), is an example
of a program which is not a static affine nested loop program. This program is affine
nested loop program but it has dynamic control as function getLSODTarget() at line 2
initializes variables Height and Width used as loop bounds. These variables define the
size of a target, that is, the amount of data to be processed, and change values for every
target at run-time. Since targets are moving in front of a camera (which is also moving),
the identified positions stored in variables (X,Y) and dimensions (Height,Width) will
differ for different targets in the frame and for one and the same target in different
frames. That is why, the values of variables Height and Width (as well as the number
of targets) are unknown at compile-time, and therefore, the pn compiler [Verdoolaege
et al. 2007] cannot handle the program shown in Figure 2(a). In this article, we propose
a solution approach to this problem by introducing a novel procedure for automated
translation of affine nested loops programs with dynamic loop bounds into input-output
equivalent polyhedral process networks.

The remaining part of this article is organized as follows. In the following section,
we cover the related work. In Section 3, we introduce some notations and present two
techniques currently used to analyze sequential programs. This is needed for better
understanding of the solution approach we propose and discuss in Section 4. Then, in
Section 5, we present an analysis to estimate the execution overhead introduced in the
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PPNs derived from programs with dynamic loop bounds. An application of our solution
approach to the LSOD in Figure 2(a), as well as, performance and overhead evaluation
of the generated PPN are presented in Section 6. Finally, Section 7 concludes this
article.

2. RELATED WORK

The work presented in this article is an extension to previous works on systematic and
automated derivation of process networks from affine nested loops programs. That is,
Turjan et al. [2004] proposed an automated derivation of process networks from static
affine nested loop programs. In SANLPs, the memory array subscripts, loop bounds
and conditional control structures are affine constructs of surrounding loop iterators,
program parameters and constants. Stefanov [2004] further developed a procedure
of process network derivation from more relaxed class of affine nested loop programs
called Weakly Dynamic Programs (WDPs). In this class of affine nested loops programs,
the conditions in control structures might be dependent on some information that is
unknown at compile-time and may change at run-time. In contrast, our approach pre-
sented in this article deals with affine nested loop programs with loop bounds (Dynloop)
unknown at compile-time and determined at run-time.

There are a number of efforts which address the problem of parallelization of nested-
loop programs with dynamic structures. Raman et al. [2008] devise the Parallel-
Stage Decoupled Software Pipelining (PS-DSWP) multithreading technique to extract
pipeline parallelism from codes with irregular, pointer-based memory accesses and
arbitrary control flow, which generally include while-loops. A parallel-stage allows to
obtain parallelism from pipeline stages in which all iterations can execute concur-
rently. In contrast, besides the pipeline- and iteration-level parallelism, our approach
supports also task- and data-level parallelism. Moreover, we can generate parallel code
for multiprocessor systems with distributed memory.

Knobe and Sarkar [1998] proposed a procedure for converting nested loop pro-
grams into a single assignment form that they called Array Static Single Assignment
(ASSA). Their procedure accepts as an input a more general class of nested loop pro-
grams than the programs considered in this article (Dynloop). Because of this, and
due to the fact that most of the analysis presented in Knobe and Sarkar [1998] is
done at run-time, their approach produces a large overhead in terms of memory usage
and execution time. The LooPo compiler [Griebl and Lengauer 1996] deals with par-
allelization of more general class of nested loop program than the class we consider
in this article. It includes nested loop programs with unscannable execution spaces
which boundaries are determined at run-time. The proposed parallelization procedure
is based on run-time detection of executed statements as well as detection of program
termination [Geigl et al. 1999]. In contrast to Knobe and Sarkar [1998] and Griebl
and Lengauer [1996], we use Fuzzy Array Dataflow Analysis (FADA) algorithm in or-
der to perform approximated dependence analysis at compile-time. Moreover, we do
as much as possible analysis at compile-time, thereby reducing the run-time overhead
significantly.

A different approach is taken by Benabderrahmane et al. [2010] where they embed
the control and exit predicates to the general data-dependent control-flow programs.
These predicates are used instead of data dependent control structures and while-loops
as first-class citizens of the algebraic representation. Subsequently, a polyhedral rep-
resentation is derived and code generation is performed from static program analysis.
In this approach, hiding all dynamism in algebraic representations also diminishes the
parallelism available in the initial program as less information is visible for analysis.
By contrast, our technique exposes and utilizes all available parallelism.
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Fig. 3. Examples of SANLP and WDP programs. The only difference is that in WDP, the conditional state-
ment in line 8 is data-dependent.

3. BACKGROUND

In this section, we introduce some notations used throughout the article. Also, for
better understanding of the solution approach, we briefly present two state-of-the-
art techniques used to analyze sequential programs. The first one, called Exact Array
Dataflow Analysis (EADA) [Feautrier 1991], is used to analyze static programs, namely
SANLPs. EADA is implemented in the pn compiler for the translation of SANLPs to
polyhedral process networks. We formally describe EADA in Section 3.2. The second
technique, which we present in Section 3.3, allows for the analysis of programs with
more relaxed constraints than SANLPs. That is, we consider the Fuzzy Array Dataflow
Analysis (FADA) introduced in Collard et al. [1995]. FADA is an enhanced version
of EADA and it is used in Stefanov [2004] to analyze Weakly Dynamic Programs
(WDP). WDPs are class of affine nested loop programs which may have if-conditions
dependent on data which is unknown at compile-time and which may change at run-
time. In Stefanov [2004], FADA is used for translation of WDPs to equivalent PPNs.
Similarly to SANLPs, in WDPs loop bounds have to be affine functions of enclosing
loop iterators and static parameters. In this article, we further relax these restrictions
by considering sequential affine nested loop programs with dynamic loop bounds. In
this section, we introduce FADA because an important part of the solution approach
presented in Section 4 is based on this technique.

3.1. Notations

An iteration vector x of a statement is built of iterators of surrounding loops. The
set of values of an iteration vector for which a statement is executed represents an
iteration domain, denoted by D(). For example, the iteration domain of statement S2
in Figure 3(a) is: D(S2) = {1 ≤ i ≤ N ∧ i ≤ j ≤ M ∧ j ≤ 2}. An evaluation of
a single statement W on iteration x is called an operation and denoted as 〈W, x〉.
By “≺” we denote ordering of operations. An operation 〈W, x〉 is evaluated before an
operation 〈R, y〉, that is, 〈W, x〉 ≺ 〈R, y〉, according to the program sequence if: (1) x
lexicographically precedes y; or (2) if x = y and statement W precedes statement R
in the program text. As described in Feautrier [1991], order “≺” can be expanded to
a system of linear inequalities. With “max”, we denote the lexicographical maximum
operator. In this article, we use Dynloop to designate affine nested loop programs with
dynamic loop bounds.

3.2. Exact Array Dataflow Analysis

In this section, we formally describe the EADA algorithm, which is used to perform
the dependence analysis on static programs. The goal of the dependence analysis is to
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Table I. Examples of System (1) for S1S3 and
S2S3 Statements

QS1S3((i3, j3)) QS2S3((i3, j3))
1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

j2 ≤ 2
k = j3 j2 = j3 (c2)
true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

determine if evaluation of a statement depends on evaluation of other statements and
to find these evaluations. For example, in the SANLP program depicted in Figure 3(a),
the purpose of the dependence analysis is to find whether statement S3 depends on
statements S1 or S2 via array y[] and at which iterations. Or in other words, for every
element of array y[] read at a given iteration of statement S3, the dependence analysis
finds which statement, S1 or S2, and at which iteration it writes data to the given array
element. The result of the analysis forms the dependency relations between iterations
of statements writing/reading to/from the array.

Consider two statements W and R, and operations 〈W, x〉 and 〈R, y〉, where the first
operation writes to an array and the second operation reads from it. The operation
〈W, x〉 is a source for operation 〈R, y〉 if it satisfies the system of linear (in)equalities:

QWR(y) = {x | x ∈ D(W), (c1)
IW (x) = IR(y), (c2)
〈W, x〉 ≺ 〈R, y〉.} (c3).

(1)

The first constraint (c1) states that the source iteration x has to exist, that is, it has
to belong to the iteration domain of a W statement. The constraint (c2) specifies that
if there is a dependency between two operations, both have to access the same array
element. To access an array element, operation 〈W, x〉 uses an affine indexing function
IW () and operation 〈R, y〉 uses an affine indexing function IR(). The (c3) constraint
determines an order of operations, that is, source operation 〈W, x〉 has to be evaluated
before operation 〈R, y〉.

There might be many operations of a single statement satisfying system (1), that is,
writing to the same array element. However, we are interested in the last write opera-
tion before reading by 〈R, y〉 from the same element occurs. Therefore, the source opera-
tion is the lexicographical maximum between all operations satisfying system QW R(y):

KWR(y) = max QWR(y). (2)

The maximum of system (2) can be found using the method presented in Feautrier
[1988].

So far, operations of only a single statement have been considered, while there might
be several statements W1, . . . , Wm writing to the same array element. In this case, we
have to consider all pairs W1/R, . . . , Wm/R. The actual source is the “last” operation
between all operations of all statements:

σ (〈R, y〉) = max {〈Wk, KWkR(y)〉 | k ∈ [1, m]}. (3)

For example, consider the program in Figure 3(a). There are two statements, S1
and S2 writing to array y[] and one statement S3 reading from that array. Therefore,
we consider two pairs S1S3 and S2S3. For each pair we build the system of linear
inequalities (1) as depicted in Table I (see QS1S3((i3, j3)) and QS2S3((i3, j3))). With (i3, j3),
we denote the iteration vector (i, j) of statement S3.
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After finding the “max” according to Eq. (3) for the systems shown in Table I, the
source operation σ (〈S3, (i3, j3)〉) for the data read by statement S3 is:

if j3 ≤ 2 then 〈S2, (i3, j3)〉
else 〈S1, ( j3)〉. (4)

Both branches of the if-statement in the solution shown above represent solutions of
the parametric integer linear programming (PILP) problems formulated in Table I. The
if-condition is derived by finding the lexicographical maximum by Eq. (3). Solution (4)
can be interpreted as follows: the source of the data for statement S3 of the program
in Figure 3(a) can be two statements – the source is statement S1 when the iterator j
of S3 is greater than 2, otherwise, the source is statement S2.

3.3. Fuzzy Array Dataflow Analysis

In this section, we formally describe the Fuzzy Array Dataflow Analysis (FADA). The
FADA algorithm is used to perform dependence analysis on Weakly Dynamic Pro-
grams (WDP) which have data-dependent if-conditions [Stefanov 2004]. We introduce
FADA because it is an important part of the solution we present in Section 4.

Consider two statements W and R of a weakly dynamic program. Operation 〈W, x〉
writes to and operation 〈R, y〉 reads from the same array. Moreover, let statement
W be surrounded by a data-dependent if-condition. As a running example, consider
Figure 3(b): statements S2 and S3 are W and R, respectively, and the if-condition in
line 8 surrounding statement S2 is a data-dependent condition.

In Section 3.2, we showed that in order to have two operations 〈W, x〉 and 〈R, y〉 of a
static program dependent, they have to comply to the system of linear inequalities (1).
In the same way, to find whether operation 〈W, x〉 is a source for operation 〈R, y〉 in a
dynamic program, we need to build a system of linear inequalities:

QWR(y, α) = {x | x ∈ D(W), x = α, (c1)
IW (x) = IR(y), (c2)
〈W, x〉 ≺ 〈R, y〉.} (c3)

(5)

The meaning of constraints (c2) and (c3) are the same as in system (1): operations
should access the same array element and the writing operation should occur before
the reading operation. We will explain the meaning of constraint (c1). As statement
W is surrounded by data-dependent if-condition, exact operations of W cannot be
determined at compile-time. Thus, for any reading operation 〈R, y〉, it is impossible to
determine the exact source operation. The idea of the FADA algorithm is to introduce
a parameter which would hide unknown information, that is, a parameter is used
to indicate at which iteration a writing operation 〈W, x〉 may occur. We do not know
exactly at which iteration points x ∈ D(W) writing to the array occurs, but we assume
that this happens for iterations x = α, where α is a free parameter vector whose values
have to be determined at run-time. Because source operations satisfying system (5) are
not exact, we call them approximated sources.

Similarly to the EADA algorithm, we are interested in the last write operation before
reading by 〈R, y〉 from the same element occurs, that is, the lexicographical maximum
between all operations satisfying system QWR(y, α):

KWR(y, α) = max QWR(y, α). (6)

Finally, we need to consider all statements W1, . . . , Wm writing to the same array
element. For each Wk, k = [1..m], we find approximated source. To find the source, we
combine all approximated sources as described in Collard et al. [1995]:

σ (〈R, y〉, α) = max{〈Wk, KWkR(y)〉| k ∈ [1, m]}. (7)

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 28, Publication date: November 2013.



Automated Generation of Polyhedral Process Networks 28:9

Table II. Examples of System (5) for Statements
S1S3 and S2S3

QS1S3((i3, j3)) QS2S3((i3, j3), (αi, α j ))
1 ≤ k ≤ M 1 ≤ i2 ≤ N ∧ i2 ≤ j2 ≤ M∧ (c1)

i2 = αi ∧ j2 = α j

k = j3 j2 = j3 (c2)
true 〈S2, (i2, j2)〉 ≺ 〈S3, (i3, j3)〉 (c3)

For example, consider the WDP depicted in Figure 3(b). There are two statements
S1 and S2 writing to array y[] and one statement S3 which reads from it. For every
pair S1S3 and S2S3, we build the systems of linear inequalities (5) which is depicted
in Table II. For pair S1S3, all operations of statement S1 are known, and thus, a
parameter is not introduced, see system QS1S3((i3, j3)) in Table II. However, for pair
S2S3, see system QS2S3((i3, j3), (αi, α j)), we introduce vector of parameters (αi, α j) as
shown in System (5), because statement S2 is surrounded by the dynamic if-condition at
line 8 in Figure 3(b), and thus, exact operations of S2 cannot be determined at compile-
time. These parameters are used to designate at which iteration of S2 a writing to the
array y[] may occur. Values of the parameters are determined at run-time.

Approximated sources in S1S3 and S2S3 pairs are found by solving the PILP prob-
lems formulated in Table II. The “max” source defined in Eq. (7) is determined by re-
current algorithm of combining direct dependencies described in Section 5.2 of Collard
et al. [1995]. Thus, the source operation for statement S3: σ (〈S3, (i3, j3)〉, (αi, α j)) is:

if i3 ≥ αi ∧ j3 == α j then 〈S2, (αi, α j)〉
else 〈S1, ( j3)〉. (8)

From Solution (8), we see that, for any read operation 〈S3, (i3, j3)〉, there are two data
sources: statements S1 or S2. When for a given iteration (i3, j3) of statement S3, at least
one of the previous evaluations of the condition at line 8 in Figure 3(b) was true, then
parameter αi ≤ i3 and, parameter α j = j3, thus, the source is statement S2. Otherwise,
the source is statement S1. In contrast to Solution (4), Solution (8) is approximated,
because it depends on parameter vector (αi, α j) which value is determined at run-time.

4. SOLUTION APPROACH

In this section, we present the compile-time procedure we have devised for translating
affine nested loop programs with dynamic loop bounds (Dynloop) into input-output
equivalent polyhedral process networks. We have found out that a Dynloop program
can be formally represented as a Weakly Dynamic Program (WDP). Therefore, in the
proposed solution approach we can employ the FADA dependence analysis technique,
described in Section 3.3.

The procedure for translating Dynloop programs to polyhedral process networks
consists of 5 steps. First, the initial Dynloop program is represented as a WDP. Second,
we find all data dependencies in the corresponding WDP program by applying the
FADA analysis on it. Recall that the result of the analysis is approximated, that is, it
depends on some parameters whose values are determined at run-time. Third, based
on the results of the analysis, we create a dynamic Single Assignment Code (dSAC)
representation of the WDP program. The dSAC was proposed in Stefanov [2004] as an
extension of the SAC [Feautrier 1991]. A dSAC program is input-output equivalent to
the corresponding WDP and it has the property that every data variable or an array
element is written at most once. This implies that some variables may not be written
at all. We derive a dSAC program using the FADA algorithm, therefore, parameters
introduced by FADA are present in the dSAC as well. The values of these parameters in
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Fig. 4. An example of a Dynloop program.

dSAC are assigned using control arrays. The generation of the control arrays has been
studied in Stefanov [2004], whereas, in this section, we present an extension to this
procedure. In the fourth step, the topology of the corresponding PPN is derived, as well
as the code executed in each process. In the last fifth step, we compute the buffer sizes
of FIFO channels that guarantee a deadlock-free execution of a PPN. In the remaining
part of this section, we describe the four steps in more detail. Computing buffer sizes
(step 5) is out of the scope of this article. We illustrate the proposed solution approach
using the example shown in Figure 4.

Step 1 (Dynloop-to-WDP). Consider the Dynloop program in Figure 4. In this pro-
gram, the upper bound of the for-loop at line 3 is determined by an arbitrary function
f (· · · ). The upper bound of the inner loop i may change at every iteration of the outer
loop j but cannot be changed on iterations of i. More importantly, the values of the
upper bound are unknown at compile-time as they are determined at run-time by f ().

In order to be able to apply our solution approach, we assume that the range of the
values that function f () may have is finite. This is particularly true for all programs
that execute in finite memory, that is, the programs we are interested in.

Then, without altering the functionality, we modify the initial Dynloop program to
the program shown in Figure 5(a). Such modification is general and applicable to any
Dynloop program. First, we substitute the upper bound of the loop at line 3 in Figure 4
with a constant equal to the maximum value of f (), denoted by max f, see line 4 in
Figure 5(a). For example, for the program in Figure 5(a), in order for the 5th element
of array y[] to be read at line 10, the value of max f should be greater than 5. We will
use max f ≥ 5 in the rest of this article.

In general, the value of max f can be determined in four different ways:

(1) provided by the application/program developers (e.g., by using pragmas in the code);
(2) calculated by analyzing the arrays’ capacity and indexing functions;
(3) deduced by studying the ranges of function f ();
(4) by taking the maximum of the data type used to declare the loop iterator.

For example, consider method (2). Assume that the capacity of the array y[] is
100 elements. Then, by taking into account the array indexing function at line 4 in
Figure 4 and that the program is correct, we can calculate that the maximum value of
iterator i and, consequently the max f equals to 100.

Second, we introduce an array X[] used to capture the values of the dynamic upper
bound at run-time. That is, the elements of X[] are written by function f () at line 3 in
Figure 5(a), just before the for-loop. The same array elements are used in evaluating
the if-condition at line 5 in Figure 5(a), which preserves the original program behavior.
This newly created program belongs to the class of the weakly dynamic programs. Since
the loop bounds of the program in Figure 5(a) are fixed and known at compile-time, we
can apply the FADA algorithm on this program to perform dependence analysis.
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Fig. 5. A WDP program equivalent to the Dynloop program in Figure 4 and its corresponding dSAC.

Table III. An Example of System (5)
for S1S2 Pair

QS1S2((α j , αi))
1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max f (c1)
j1 = α j ∧ i1 = αi

i1 = 5 (c2)
true (c3)

The formal description of the FADA algorithm has been given in Section 3.3. In
the following section, we demonstrate only the application of FADA on our running
example.

Step 2 (FADA analysis). The WDP program in Figure 5(a) has two statements S1
and S2 which communicate through array y[]. According to FADA, for pair S1S2, we
build the system of linear inequalities shown in Table III which corresponds to Eq. (5).
Constraint c1 in Table III describes all possible source iterations of statement S1, i.e.,
its iteration domain. Parameters (α j, αi) store the iteration point ( j1, i1) of statement
S1 where writing to array y[] may occur.

After solving the PILP problem defined in Table III, the approximated source opera-
tion defined in Eq. (7) for statement S2: σ (〈S2, ()〉, (α j, αi)) is:

if N ≥ α j ∧ 5 == αi then 〈S1, (α j, αi)〉
else ⊥ .

(9)

From Solution (9), we see that for read operation 〈S2, ()〉 there is one data source. If,
for at least one iteration ( j1, 5) of statement S1, the condition at line 5 in Figure 5(a) is
evaluated to true, then the source is statement S1. Otherwise, the source for y[5] is
undefined and statement S2 will use the initial value of y[5]. For the sake of brevity,
the initialization of array y[] is omitted in the example.

Figure 6 illustrates Solution 9 graphically. In this figure, the iteration domain ( j, i)
of statement S1 listed at line 6 in Figure 5(a) is shown. It is assumed that N = 10
and max f = 10. Black dots represent the iterations when statement S1 is executed at
run-time, that is, the if-condition at line 5 evaluated to true. The vector of parameters
(α j, αi) points at the last operation of the source statement 〈S1, ( j1, i1)〉 which will be
needed by the read operation 〈S2, ()〉. For the example in Figure 6, the last writing to
y[5] occurred when j = 8 and i = 5. Therefore, (α j, αi) = (8, 5).
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Fig. 6. Representation of Solution 9 for a given execution of the program in Figure 5(a).

Initial dSAC. The solution provided by FADA is used to modify the WDP program
in order to capture the identified dependencies in an explicit way. The result for our
running example is shown in Figure 5(b), which is in a dynamic single-assignment-code
(dSAC) form. The dSAC is an extension of the SAC [Feautrier 1991]. In contrast to SAC
where every variable is written exactly once, in dSAC every variable is written at most
once. This implies that some of the variables may not be written at all.

Based on Solution (9), we modify the WDP in Figure 5(a) and generate the dSAC in
Figure 5(b) by inserting the code lines 10-14 shown in Figure 5(b). This code is needed
to implement array element accesses such that the dependencies identified by FADA
are respected. For example, the if-condition at line 10 implements Solution (9). Recall
that when the if-condition evaluates to true, then the source of the data is statement
S1. This is captured at line 11. Otherwise, statement S2 will use the initial value of
y[5]. Assume that in our example, y[5] has been initialized to zero. Therefore, at line
13, the input argument for statement S2 has been set to zero as well.

Recall that to deal with a dynamic if-condition, for every pair of statements the FADA
algorithm introduces vector of parameters that corresponds to the iteration vector. In
our example, there are two parameters (see line 10 in Figure 5(b)) which are reflected
in the following way. Parameter c1 corresponds to α j . It is related to iterator j and may
have values c1 ∈ [1..N]. Parameter c2 corresponds to αi. It is related to iterator i and
may have values c2 ∈ [1..max f]. The meaning of the parameter values in this program
is to indicate the last iteration of j when function F1() has been executed at the fifth
iteration of i. The values of parameters c1 and c2 are unknown at compile-time. They
are determined at run-time, during the execution of the program. Therefore, we need a
mechanism to generate and propagate the values at run-time in a way that keeps the
correct program behavior.

Step 3 (Control Arrays). In order to keep the functionality of the dSAC equivalent to
the functionality of the initial WDP, we introduce local and global control arrays that
are used to initialize and propagate values of parameters at run-time.

Local Control Arrays. A local control array is added for the set of parameters intro-
duced by FADA and is used to store values of the set of parameters for every iteration.
We illustrate the idea of local control arrays on the example in Figure 6.

Figure 6 depicts the iteration domain ( j, i) of statement S1 shown at line 6 in
Figure 5(a). Black dots are iterations when statement S1 is executed at run-time, that
is, the if-condition at line 5 evaluated to true. Parameters introduced by FADA in the
previous step happen to take up the values of iteration vectors when the last writing
needed by a read operation occurred. It is not possible to determine such iterations
at compile-time. Therefore, we use a local control array to store the values of all
iterations when a source statement is executed (black dots).

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 28, Publication date: November 2013.



Automated Generation of Polyhedral Process Networks 28:13

Fig. 7. Examples of the initial dSAC with a local control array, the modified dSAC with a global control
array, and the final dSAC.

For our example in Figure 5(b), a new local control array of vectors lcl c1c2[] is
introduced to the program as shown in Figure 7(a). The components of each vector
correspond to parameters c1 and c2 derived by the FADA analysis of pair S1S2. We use
the original index function used with the data variable y, that is, y[i], to perform the
access to the local control arrays, that is, lcl c1c2[i]. In order to distinguish iterations
where parameters values have been stored, the elements of the control arrays must be
initialized with values that are greater than the maximum value of the corresponding
parameters. Recall that, for our example, parameter c1 ∈ [1..N] and c2 ∈ [1..max f].
Therefore, the corresponding local control array is initialized as follows:

∀i : 1 ≤ i ≤ max f : lcl c1c2[i] = (N + 1, max f + 1). (10)

For the sake of brevity, this initialization is not shown in Figure 7(a). Writing to the
local control array is performed just after function F1(), see line 7 in Figure 7(a). This
guarantees that when the function is executed, the current iteration vector is stored in
the control array.

The values of the local control array are propagated and assigned to the parameters
c1 and c2 at line 11. These parameters are used to evaluate the conditions at line 12
which determine the source of the data for function F2(). With the introduction of the
local control array to the program shown in Figure 7(a), this program is input-output
equivalent to the program in Figure 5(a).

Global Control Arrays. Unfortunately, introducing local control arrays to the dSAC
code violates the property that “every variable is written at most once”. For example,
local control array lcl c1c2[i] that initializes parameters c1 and c2 at line 11 in
Figure 7(a) is not in a single assignment form, that is, elements of lcl c1c2[i] may
be written more than once (see line 7). Therefore, the program in Figure 7(a) is not
in a dSAC form. In order to be able to create a process network, as discussed later in
Step 4, and most importantly, to create the FIFO channels used for transferring data,
the corresponding data variables/arrays must be in a single assignment form. A novel
contribution of our work is a procedure that extends the control arrays generation
described in the previous section. Our extension solves the problem that the local
control array in Figure 7(a) is not in the single assignment form. Here, we explain how
such control array is transformed into a single assignment form.
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Table IV. ILP System (5) for the
Control Arrays at Lines 9 and 12

QS1S2()
1 ≤ j1 ≤ N ∧ 1 ≤ i1 ≤ max f (c1)
i1 = 5 (c2)
true (c3)

In order to represent the program in Figure 7(a) as dSAC, we need to identify the
relation between writing to and reading from the control array. Thus, we need to per-
form dataflow analysis for the local control array, where the writings to the control
array occur inside a block surrounded by a dynamic if-condition. We achieve this in
the following way. While keeping the same functionality, we modify the program by
introducing and additional global control array (ctrl c1c2[]) outside the block sur-
rounded by the dynamic if-condition, see lines 9 and 12 in Figure 7(b). This program is
input-output equivalent to the program in Figure 7(a). The new control array is written
(line 9) at every iteration of the for-loops and takes the same values as the local control
array lcl c1c2[]. Consequently, we can perform the static exact array dataflow anal-
ysis (presented in Section 3.2) on control array ctrl c1c2[]. We can always do this,
because the introduced new array is not surrounded by the dynamic if-condition.

For EADA analysis, we need to build a system of linear inequalities as it has been
shown in Section 3.2. The system for pair S1S2 at lines 9 and 12 from Figure 7(b) is
built in Table IV. Recall, that max f is a scalar and, in this example, we assume that
max f ≥ 5. After finding the maximum of the system according to Eq. (3), the final
solution and the source operation is 〈S1, (N, 5)〉.

Based on this solution, we replace the original one-dimensional array ctrl c1c2[],
see lines 9 and 12 in Figure 7(b), with two-dimensional array ctrl c1c2 1[] shown at
lines 9 and 12 in Figure 7(c). The program in Figure 7(c) is in a dSAC form because the
new global control array ctrl c1c2 1[] used to initialize parameters c1 and c2 is in a
single assignment form. This dSAC is the final input-output equivalent representation
of our running example which is the Dynloop program in Figure 4. We use this final
dSAC to generate a process network which is explained in the next section.

Step 4 (PPN Generation). In this step of our solution approach, we describe how the
processes and FIFO channels are created from the corresponding final dSAC program.

Recall that a PPN consists of autonomous processes that communicate data in a
point-to-point fashion over bounded FIFO channels. A process of a PPN consists of a
target function, input ports, output ports, and control. The target function specifies how
data tokens from input streams are transformed to data tokens to output streams. The
input and output ports are used to connect a process to FIFO channels. Data read from
the input ports is used to initialize the function arguments. Data produced as a result
of the function execution is written to the output ports. The control specifies how many
times the function is executed, which input ports to read and which output ports to
write every time the function is executed. The control of a process can be compactly
represented mathematically (using the polytope model [Feautrier 1996]) in terms of
linearly bounded sets of iteration vectors.

The procedure for PPN generation from the final dSAC consists of three substeps.
First, based on the final dSAC representation of a Dynloop program derived in the
previous step, the topology of the PPN is created. The topology is created by instan-
tiating processes and communication channels. Second, the internal code structure of
each process is derived from the final dSAC specification. It is important to note, that
in this substep, the created communication channels are not FIFOs but multidimen-
sional arrays. Third, the multidimensional arrays that are used for data communication
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Fig. 8. The topology of the PPN derived from the dSAC in Figure 7(c).

Fig. 9. The internal code structure of each process in the PPN derived from the dSAC in Figure 7(c).

between function statements in the final dSAC are replaced by FIFO channels. In other
words, we replace the multidimensional array accesses in the code of each process with
a read/write primitives to implement synchronization through blocking read/write on
FIFO channels. Here, we explain the three substeps in more detail using the final
dSAC in Figure 7(c).

Topology Creation of a PPN (Substep 1). The PPN corresponding to the dSAC in
Figure 7(c) is shown in Figure 8. This PPN consists of three processes and three com-
munication channels. We explain how these processes and communication channels are
created. In our approach, a process is created for every function statement in the dSAC
program. Therefore, the PPN in Figure 8 has three processes: process P1 corresponds
to function f () at line 3 in Figure 7(c), process P2 corresponds to function F1() at line 6,
and process P3 corresponds to F2() at line 18 in the same figure. The three communica-
tion channels correspond to arrays which are in a single assignment form in the dSAC in
Figure 7(c). These arrays are: one-dimensional array X[j] at line 3 and 5 in Figure 7(c),
two-dimensional data array y 1[j,i] at lines 6 and 14, and one two-dimensional control
array ctrl c1c2 1[j,i] at lines 9 and 12 in the same figure. Recall that array X[j] is in
a single assignment form because of the way we introduced this array in Step 1 of our
solution approach. Array y 1[j,i] is the single assignment form of array y[i] derived
by applying the FADA analysis on the WDP program in Figure 5(a) as described in
Step 2 of our solution approach. The control array ctrl c1c2 1[j,i] is introduced and
transformed in a single assignment form in Step 3 of our solution approach. In the fol-
lowing substep, we describe how the internal code structure of each process is created.

Internal Code Structure Generation (Substep 2). Consider Figure 9 where the inter-
nal code structures of processes P1, P2, and P3 of the PPN in Figure 8 are shown.
Here, we explain how these code structures are derived from the corresponding dSAC
specification depicted in Figure 7(c).

Every process of a PPN executes a sequential nested loop program. The internal code
structure of each process is formed by code pieces of the dSAC program. The iteration
domain of a process is the iteration domain of a statement in the dSAC program.
For example, the iteration domain of process P2 is formed by the iteration domain
of function F1 defined by lines 2, 4, and 5 in Figure 7(c). Additionally, the lines of
dSAC where data and control are read and written are added to the process code. For
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Fig. 10. The final PPN derived from the program in Figure 4.

example, lines 6–11 are added to the internal code structure of process P2 shown in
Figure 9. Similarly, the internal code structure of processes P1 and P3 are formed by
lines 2–3 and 12–18, respectively, from the dSAC shown in Figure 7(c).

Linearization (Substep 3). At this point, the processes of the PPN communicate data
via multidimensional arrays. In this substep, we explain how the multidimensional
arrays are replaced with FIFO channels. This process is called linearization.

In the PPN depicted in Figure 9, processes are connected with communication chan-
nels which are the multidimensional arrays used in the dSAC shown in Figure 7(c).
However, as explained in Section 1, the processes in a PPN communicate via FIFOs
and synchronize using a blocking read/write on an empty/full FIFO channel, that is,
an execution of a process is suspended if it tries to read from an empty FIFO channel,
or tries to write to a full channel, respectively. Therefore, in order to generate a PPN,
the multidimensional array accesses have to be replaced with corresponding write and
read operations on FIFO channels.

To implement the linearization, we adapted the approaches proposed in Turjan et al.
[2002] and Nadezhkin and Stefanov [2010]. In these works, the communication charac-
teristics are identified when exchanging data between pair of statements. Based on this
information, the multidimensional array accesses are replaced with one-dimensional
FIFO accesses. The result of the linearization applied on the multidimensional ar-
rays in Figure 9 is shown in Figure 10. In each process, the multidimensional arrays
accesses are substituted by read/write primitives from/to FIFO channels. Internally,
these read/write primitives realize the blocking synchronization between processes.
For example, writing to the global control array at line 7 of process P2 in Figure 9 is
substituted by writing to the FIFO at line 11 in process P2 in Figure 10.

The communication read/write primitives access the FIFO channels through ports.
That is, every process has a set of input ports and a set of output ports connected to
FIFO channels. For example, process P2 reads from a single channel via port i1 at
line 2 and writes data to 2 channels via ports o1 and o2 at lines 11 and 12, respectively.
Additionally, we apply the iteration domain reconstruction of ports described in Turjan
[2007] to avoid transferring more data tokens than needed. For details about domain
reconstruction, we refer to Turjan [2007].

5. OVERHEAD ANALYSIS

In this section, we discuss the overhead in the generated process networks, which re-
sults from the proposed approach for systematic parallelization of sequential programs
with dynamic loop bounds. There are two types of overhead in the generated process
networks, that is, memory and execution time overhead. The memory overhead is due
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to the introduced control arrays, as well as, the created dataflow and control FIFO
channels. It highly depends on the characteristics of the application being parallelized,
see Section 6 and Table VI. Therefore, it is very difficult to be analyzed systemati-
cally. However, we can systematically analyze the execution time overhead which is
introduced by the approach we propose in this article. This overhead is caused by the
execution of some “dummy” iterations not present in the initial sequential program.
Here, we discuss this overhead in details. Recall that in our approach, we substitute a
dynamic upper loop bound with the maximum value (max f ) that the bound may have
during the execution of the program. Then, at run-time, the actual number of itera-
tions at which a function executes is determined by the behavior of the application and
the current value of the dynamic loop bound. This means that if the actual number of
executions (x) is smaller than the maximum number, then the corresponding process
performs (max f − x) “dummy” iterations. The overhead we consider is the time spent
in performing these iterations.

It is important to note that it is difficult to determine the exact amount of the
overhead because it depends on values which are determined and change at run-time.
Here, we define the overhead and determine how it varies for particular range of its
terms. Assume that max f is the maximum value of a dynamic loop bound and x
represents the actual number of iterations in which a process executes its associated
function. When a function executes, it takes Wx time units. Performing a “dummy”
iteration takes W time units, respectively. This is the time spent in one iteration but
not executing the corresponding function. Then, for any given values of max f , x, Wx,
and W , the total execution time (Tex) is:

Tex = x(Wx + W) + (max f − x)W, (11)

where x(Wx + W) is the time spent on real computation (Treal) and (max f − x)W is the
extra time spent performing “dummy” iterations. Consequently, we can compute the
introduced execution overhead as follows:

Tex

Treal
= x(Wx + W) + (max f − x)W

x(Wx + W)
= 1 + (max f − x)W

x(Wx + W)
,

where the percentage of the execution overhead (Ovhd) is:

Ovhd = (max f − x)W
x(Wx + W)

· 100 = (max f − x)
x

· W
(Wx + W)

· 100 [%]. (12)

Equation (12) shows that the overhead depends on two ratios. The first one, (max f −x)
x ,

depends on (i) the application characteristics, which determine max f , and (ii) the
execution behavior, which determines the values of x at run-time. The second ratio is
related to the computation performed by a process (executed on a particular processor)
as it represents the ratio between the time to perform a “dummy” iteration and the
time spent on actual computing. Figure 11 illustrates the amount of overhead for the
following ranges of the two ratios in Eq. (12):

(1) 0 ≤ max f − x
x

≤ 2 ⇒ for any value of max f ,
max f

3
≤ x ≤ max f ;

(2) 0.01 ≤ W
Wx + W

≤ 0.5 ⇒ for any value of W , W ≤ Wx ≤ 99· W .

These ranges capture the characteristics for a wide spectrum of applications and
their behavior. Moreover, our experience shows that if a particular application has
sufficient inherited parallelism, then the approach we propose to parallelize sequential
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Fig. 11. The amount of introduced overhead. Fig. 12. Overhead’s color map.

programs with dynamic loop bounds can lead to performance speed-up if the two ratios
stay within those specified ranges.

In case x = max f , there is no overhead (see the right part of Figure 11) because
there are no “dummy” iterations to be executed (max f − x = 0). Then, by decreasing
the value of x, the overhead increases. The rate of the increase is determined also by the
value of W/(Wx + W). The values of this ratio used in the figure capture functions with
low and high workload. The lowest workload we consider is Wx = W , that is, the time
to execute the corresponding function is equal to the time of a “dummy” iteration (see
the back plane of the figure). We use such a low workload to illustrate some extreme
values of the overhead. For example, when Wx = W and x = max f/2 the maximum
overhead is 50%. The combined effect of both ratios leads to 100% overhead when
Wx = W and x = max f/3, see the left part of Figure 11. In contrast, functions with
high workload, that is, 50· W ≤ Wx ≤ 99· W , lead to very low overhead. For example,
even if x = max f/3, the introduced overhead is around 5–10% as it can be observed at
the bottom-left part in the figure. This indicates that the approach we propose is not
sensitive to functions with high workloads.

For easier evaluation of the overhead values, we plot the percentage overhead as a
color map in Figure 12. From this figure, it is seen that overhead above 35% is present
only in 1/4 of the cases. In addition, 1/16 of the cases, see the area with overhead
≥80%, correspond to functions with very low workload and a large number of ’dummy’
iterations. For the other 3/4 of the cases, we would like to emphasize on the following
two areas. First, if the ratio (max f − x)/x is smaller than 0.25, then the granularity
of the executed functions does not affect the overhead, which is below 10%, see the
dark vertical strip on the left part of the figure. This indicates also that for lightweight
functions, the overhead will be small if the executed iterations are close to the max f
value. Similarly, in case of functions with high workload (50· W ≤ Wx ≤ 99· W), the
number of “dummy” iterations that are executed does not affect the overhead, which
again is below 10%—see the dark horizontal strip at the bottom of Figure 12. The
second area covers almost half of the plot, see the arc-shape stripe in the middle of
Figure 12. This area shows that even with a large variety of the values of both ratios,
the overhead is kept below 35%, which is relatively low. This area also shows that
such overhead can be achieved even if one of the ratios goes to its extreme value. For
example, 35% overhead is achieved if W/(Wx + W) reaches its maximum value of 0.5
and (max f − x)/x = 0.7.
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Fig. 13. Final dSAC.

6. EXPERIMENT AND RESULTS

In this section, we demonstrate our solution approach presented in Section 4 applied
on the motivating example, that is, the LSOD application depicted in Figure 2(a).
We present some of the results we have obtained by implementing and executing
the derived parallel PPN specification of the LSOD application on a shared memory
multiprocessor system. The main objective of this experiment is to show the practical
applicability of our approach on a real-life application and to show the benefits of our
parallelization approach. For the implementation, we derive the PPN specification of
the LSOD application following the approach presented in Section 4. Then, we use
the ESPAM [Nikolov et al. 2008] tool and the HDPC [Farago 2009] back-end library to
generate C++ code for the processes and the FIFO channels.

The result of Steps 1 to 3 of our solution approach applied on the LSOD program in
Figure 2(a) is illustrated in Figure 13. It is the final dSAC specification. We use the final
dSAC to derive the PPN topology, shown in Figure 14, as well as to derive the internal
code structure of all processes. Examples of the internal code structures of processes
readTarget and edgeDetection are depicted in Figure 15. Here, we emphasize on some
of the important moments of the PPN derivation, we describe the PPN topology, show
how code for processes is generated, and comment on the overhead introduced in the
generated PPN.

According to Step 1 of our solution approach we substitute the dynamic upper bound
functions with constants equal to the maximum values these functions can have.
The initial LSOD program in Figure 2(a) has three loop nests with dynamic upper
bound functions: Height+1, Width+1, Height and Width at lines 3–4, 8–9 and 14–15,
respectively. These functions take their maximum when variables Height and Width
are maximum, that is, equal to some constants maxHeight and maxWidth, respectively.
In the LSOD program, the maximum values of Height and Width are the maximum
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Fig. 14. The PPN derived from the LSOD program.

dimensions that a target may have. Therefore, we substitute the dynamic upper bound
functions with constants equal to the maximum of these functions as depicted in
Figure 13 at lines 5–6, 14–15 and 48–49.

The result of applying the FADA analysis which constitutes Step 2 of our solution
approach is illustrated at lines 17–19, 21–23, 25–27, 29–31, 33-35, 37–39 and 51-53 in
Figure 13. In total, 6 two-dimensional vectors of parameters (c11, c12), . . . , (c61, c62)
were introduced by the FADA algorithm analyzing the data-dependencies between
functions readTarget() and edgeDetection() shown in Figure 2(a). Also, one two-
dimensional vector of parameters (c71, c72) was introduced after analyzing the data-
dependencies between functions absVal() and vertSum().

At Step 3 of our solution approach, we introduce local and global control arrays in
order to initialize and propagate the values of the parameters at run-time. For the
pair of functions readTarget() and edgeDetection(), 6 vectors of parameters were
introduced by FADA. All these parameter vectors correspond to the single iteration
vector ( j2, i2) of the source function readTarget(). Therefore, at lines 9 and 11 only one
local and one global control arrays are generated for this pair of functions. Similarly,
at lines 43 and 45 one local and one global control arrays are added for the pair of
functions absVal() and vertSum().

By applying Step 4 of our approach to the final dSAC of the LSOD application
depicted in Figure 13, we derive the topology of the PPN depicted in Figure 14. The
topology consists of 5 processes, 19 data channels shown as solid lines that are used to
exchange data between processes and 7 control channels shown as dashed lines used
to propagate values of global control arrays. The edges of the PPN in Figure 14 are
annotated with the buffer sizes calculated for the LSOD program considering maximum
dimensions of the targets to be 350x300 pixels. This means that we set maxWidth = 350
and maxHeight = 300.

Finally, as an example of the internal structure of the PPN processes, in Figure 15,
we present the pseudocode for readTarget and edgeDetection processes derived after
the linearization step. These processes exhibit the most intensive data communication
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Fig. 15. Internal code structures of processes readTarget and edgeDetection of the PPN derived from the
LSOD application.

in the PPN. The internal code structures of these processes are generated as it has been
explained in Step 4 of our solution approach. Note, that the input/output ports used
to access FIFO channels (see the read/write primitives in Figure 15) are automatically
mapped to physical addresses generated by the Espam tool (in a separate header file).

Performance Evaluation of the LSOD PPN. We evaluate our approach by executing
the parallel LSOD application specification on an Intel R© Xeon R© quad-core machine
running a Linux operating system. We used the ESPAM [Nikolov et al. 2008] tool and the
HDPC [Farago 2009] library to map the processes of the generated PPN onto cores and
to generate C++ code for these cores. We used the GCC compiler to generate the final
binary code. The HDPC library employs the boost-thread framework that enables the
use of multithreaded implementations. That is, the derived PPN has been translated
to a multithreaded program realizing the LSOD application, in which every process of
the PPN is a separate thread.

In this experiment, we implemented and executed the parallel PPN specification of
the LSOD application considering 5 different mapping configurations. The obtained
results are shown in Figure 16. The horizontal axis depicts the number of cores used in
each configuration, that is, we mapped the 5 processes of the PPN onto 1, 2, 3, 4, and
5 cores, respectively. Note that because the Intel R© Xeon R© processors support hyper-
threading, the operating systems “sees” 8 different cores. Therefore, we could map 5
processes on 5 different cores exploiting maximum concurrency. Obviously, when using
less than 5 cores, some processes have to share the same core. In this case, we let
the operating system to schedule the execution of these processes (i.e., threads) on
a particular core. We experimented with grouping different processes together, that
is, mapping several processes on a single core. Figure 16 presents the best results
that we have obtained. In addition, every configuration has been executed multiple
times and the bars show the obtained average speed-up. The first configuration (see
the leftmost bar in Figure 16) represents our reference configuration, in which, we
mapped all 5 processes of the PPN onto a single core. We consider the speed-up of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1s, Article 28, Publication date: November 2013.



28:22 D. Nadezhkin et al.

Fig. 16. Evaluation of LSOD PPN on several CPUs.

Table V. Statistics LSOD PPN

Process P 1 P 2 P 3 P 4 P 5 P PN

W/(Wx + W ) 0.53 0.38 0.26 0.47 0.3 0.39
(max f − x)/x 0 1.09 1.09 1.09 1.09 0.87

this configuration to be 1. Also, we have normalized the performance of the other
configurations with respect to the performance of this reference configuration. Looking
at the performance of the other 4 configurations, we see that by increasing the number
of cores, the speed-up increases below the theoretical maximum shown as gray bars in
Figure 16. We found that because of the data dependencies in the LSOD application
and the imbalanced workload of the functions executed by different processes, the
theoretical maximum cannot be achieved. In addition, in all configurations except the
one using 5 cores (see the rightmost bar in Figure 16), there is an overhead introduced
by the operating system for scheduling different threads on one core. As a result, the
rightmost configuration exhibits a slightly larger speed-up increase compared to the
other configurations. Finally, there is the execution time overhead caused by the extra
“dummy” iterations, which we discussed in Section 5. Here, we present some numbers
with regards to this execution time overhead, as well as, the memory overhead in the
LSOD process network.

Execution Time Overhead. From the execution statistics obtained by profiling of the
LSOD application and its PPN, we computed the two ratios in Eq. (12). Table V shows
the ratios for each process and the whole PPN. Note that for computing (max f − x)/x,
we need to consider that the targets are 2-dimensional. Therefore, we used the term:

maxWidth· maxHeight − x· y
x· y

= 350· 300 − x· y
x· y

.

The terms x and y represent the average target size, which we computed from the
targets used when executing the program. Based on the computed values in the last
column of Table V and applying Eq. (12), the overhead due to the execution of “dummy”
iterations of the LSOD PPN is 33.93%.

Memory Overhead. In order to evaluate the memory overhead, we measured the
memory requirements for the sequential LSOD program and compared this with the
memory requirements for executing the corresponding PPN. The sequential program
requires in total 13650 Bytes of memory, which includes both the code and the data. In
order to make a fair comparison, it is important to note that this number (13650 Bytes)
does not include the data array used to buffer the largest possible target, that is,
variable img[TH][TW] which requires 350 × 300 = 105000 Bytes. Although, we use
such a variable in the sequential program, the program can be written more efficiently
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Table VI. Memory overhead of the LSOD PPN

Process P 1 P 2 P 3 P 4 P 5

Code (bytes) 1626 2302 2510 1742 1978
Data (bytes) 1420 1360 1360 1360 1360
Total (bytes) 3046 3662 3870 3102 3338

PPN Sequential

Memory (bytes) 17018 13650
FIFOs (bytes) 18384 –

Overhead 2.6x –

in a way that we do not need to buffer the whole (largest possible) target. The left part
of Table VI shows the memory requirements for every process in the generated process
network. In addition, we need to consider also the memory used to implement the FIFO
channels. In total, the PPN requires 17018 Bytes for implementing the processes and
18384 Bytes for the FIFO channels, see the right part of Figure VI. Then, if we compare
these numbers with the number of the sequential program, we see that the memory
overhead is 2.6x, which is reasonable provided that this is the memory requirement
for the implementation of 5 processes and 26 FIFO channels.

Overall, the average efficiency of the 4 parallel implementations of the LSOD
process network is around 70%. The efficiency (Eff) is defined as:

Eff = SP
C

,

where SP is the speed-up and C represent the number of cores used to achieve this
speed-up. The obtained results clearly indicate that the approach we presented in this
article facilitates efficient parallel implementations of sequential nested loop programs
with dynamic loop bounds. That is, our approach reveals the possible parallelism
available in such applications, which allows for the utilization of multiple cores in an
efficient way.

7. CONCLUSIONS

In this article, we presented a first approach for automated translation of affine nested
loops programs with dynamic loop bounds (Dynloop) into input-output equivalent
polyhedral process networks (PPN). This approach can be implemented efficiently in
a compiler that will help to reduce significantly the time for parallelizing sequential
programs. The approach presented in this article includes only basic techniques that
have to be applied in order to derive a PPN automatically from a Dynloop program.
The obtained results of the case study with the LSOD application indicate that the
approach we presented in this article facilitates efficient parallel implementations
of Dynloop programs. That is, our approach reveals the parallelism available in such
applications, which allows for the utilization of multiple cores in an efficient way.
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