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Modeling, Analysis, and Hard Real-Time
Scheduling of Adaptive Streaming Applications

Jiali Teddy Zhai, Sobhan Niknam , and Todor Stefanov , Member, IEEE

Abstract—In real-time systems, the application’s behavior has
to be predictable at compile-time to guarantee timing constraints.
However, modern streaming applications which exhibit adaptive
behavior due to mode switching at run-time, may degrade system
predictability due to unknown behavior of the application dur-
ing mode transitions. Therefore, proper temporal analysis during
mode transitions is imperative to preserve system predictability.
To this end, in this paper, we initially introduce mode-aware data
flow (MADF) which is our new predictable model of computation
to efficiently capture the behavior of adaptive streaming appli-
cations. Then, as an important part of the operational semantics
of MADF, we propose the maximum-overlap offset which is our
novel protocol for mode transitions. The main advantage of this
transition protocol is that, in contrast to self-timed transition pro-
tocols, it avoids timing interference between modes upon mode
transitions. As a result, any mode transition can be analyzed
independently from the mode transitions that occurred in the
past. Based on this transition protocol, we propose a hard real-
time analysis as well to guarantee timing constraints by avoiding
processor overloading during mode transitions. Therefore, using
this protocol, we can derive a lower bound and an upper bound
on the earliest starting time of the tasks in the new mode during
mode transitions in such a way that hard real-time constraints
are respected.

Index Terms—Adaptive streaming applications, hard real-time
analysis and scheduling, Models of computation, parameterized
dataflow, transition protocol.

I. INTRODUCTION

TO HANDLE the ever-increasing computational demands
and meet hard real-time constraints in streaming appli-

cations, where the huge amount of streaming data should be
processed in a short time interval, embedded systems have
relied on multiprocessor system-on-chip (MPSoC) platforms
to benefit from parallel processing. To efficiently exploit the
computational capacity of MPSoCs, however, streaming appli-
cations must be expressed primarily in a parallel fashion. The
common practice for expressing the parallelism in an appli-
cation is to use parallel models of computation (MoCs) [1].
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Within a parallel MoC, a streaming application is modeled as a
directed graph, where graph nodes represent actors (i.e., tasks)
and graph edges represent data dependencies. Actors are exe-
cuted concurrently and communicate data explicitly via FIFOs.
For example, synchronous data flow (SDF) [2] and cyclo-static
data flow (CSDF) [3] are two popular parallel MoCs because
of their compile-time analyzability. Due to the static nature of
SDF and CSDF MoCs, the actors are restricted to produce and
consume data with fixed rates per firing or, in case of CSDF,
with fixed periodic patterns.

Nowadays, many modern streaming applications, in the
domain of multimedia, image, and signal processing, increas-
ingly show adaptive behavior at run-time. For example, a
computer vision system processes different parts of an image
continuously to obtain information from several regions of
interest depending on the actions taken by the external envi-
ronment. This adaptive behavior, however, cannot be effec-
tively expressed with an SDF or CSDF model due to their
limited expressiveness. As a result, more expressive mod-
els, e.g., scenario-aware data flow (SADF) [4], finite state
machine (FSM)-based SADF [5], variable-rate phased data
flow (VPDF) [6], and mode-controlled data flow (MCDF) [7],
have been proposed and deployed as extensions of the (C)SDF
model. These MoCs are able to capture the behavior of an
adaptive streaming application as a collection of different
static behaviors, called scenarios or modes, which are indi-
vidually predictable in performance and resource usage at
compile-time.

Moreover, to guarantee tight timing constraints in modern
streaming applications with adaptive behavior nature, proper
temporal analysis for application execution during mode tran-
sitions, when the application’s behavior is switching from
one mode to another mode, is imperative at compile-time.
However, such analysis can be difficult due to the fact that
different actors in different modes are concurrently execut-
ing during mode transitions. This difficulty comes directly
from the protocol adopted for the mode transitions. In the
existing adaptive MoCs, like MCDF [7] and FSM-SADF [5],
a protocol, referred as self-timed (ST) transition protocol,
has been adopted which specifies that actors are scheduled
as soon as possible not only in each mode individually but
also during mode transitions. This protocol, however, intro-
duces interference of one mode execution with another one,
as explained in Section IV-C1. As a consequence, the temporal
analysis of a mode transition is tightly dependent on the mode
transitions that occurred in the past. Another consequence
of the incurred interference between modes is the high time
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complexity of analyzing mode transitions, as the mode tran-
sitions cannot be analyzed independently, see the state-space
exploration approach proposed in [5].

Therefore, to overcome the aforementioned interference
issue and consequent problems caused by the ST transi-
tion protocol, in this paper, we propose a new MoC called
mode-aware data flow (MADF) to model adaptive stream-
ing applications, that is armed by a novel transition protocol
called maximum-overlap offset (MOO). This transition proto-
col enables an independent analysis for mode transitions. The
specific novel contributions of this paper are as follows.

1) We propose a new MoC, MADF, that has the advantages
of SADF [4] and VPDF [6]. Inspired by SADF, we char-
acterize the behavior of adaptive streaming applications
with individual modes and transitions between them.
Similar to VPDF, the length of production/consumption
sequences for an actor varies from one mode to another.
The length is only fixed when the mode is known. Then,
based on the clear distinction between modes and tran-
sitions, we define analyzable operational semantics for
MADF.

2) As an important part of the operational semantics of
MADF, we propose the MOO which is our novel pro-
tocol for mode transitions. The main advantage of this
transition protocol is that, in contrast to the ST transi-
tion protocol, adopted in [5] and [7], it avoids timing
interference between modes upon mode transitions. As
a result, this transition protocol enables an independent
analysis for mode transitions. This means, the analysis
of any mode transition is independent from the mode
transitions that occurred in the past. This independent
analysis significantly reduces the complexity of the anal-
ysis as the complexity merely depends on the number of
allowed transitions. This is crucial for applications with
a large number of modes and possible transitions.

3) Based on the novel MOO transition protocol, we propose
a hard real-time analysis approach to guarantee the tim-
ing constraints by avoiding processor overloading, i.e.,
avoiding that the total utilization of allocated tasks on
a processor exceeds its capacity, during mode transi-
tions. Our analysis is much simpler and faster than the
computationally intensive state-of-the-art timing analysis
approaches such as [5].

The remainder of this paper is organized as follows.
Section II gives an overview of the related work. Section III
introduces the background needed for understanding the con-
tributions of this paper. Our novel adaptive MoC and transition
protocol are then introduced in Section IV. Based on the novel
transition protocol, in Section V, we present our hard real-time
analysis approach to guarantee the timing constraints during
mode transitions. In Section VI, two case studies are presented
to illustrate the practical applicability of our proposed MADF
model, transition protocol, and real-time analysis. Finally,
Section VII ends this paper with conclusions.

II. RELATED WORK

To model the adaptive behavior of modern streaming
applications while having certain degree of compile-time

analyzability, different MoCs such as SADF [4],
FSM-SADF [5], VPDF [6], MCDF [7], and parameter-
ized SDF (PSDF) [8] have been already proposed in the
literature.

In SADF [4] and FSM-SADF [5], detector actors are
introduced to parameterize the SDF model. All valid scenar-
ios and their possible order of occurrence, which is shown
either by using a Markov chain [4] or FSM [5], must be
predefined at compile-time. Each scenario consists of a set
of valid parameter combination that determines a scenario of
SADF. This guarantees the consistency of SADF in individual
scenarios, therefore, no run-time consistency check is required.
In a scenario, the SADF model behaves the same way as the
SDF model. Therefore, an SADF graph can be seen as a set
of SDF graphs. In the initial FSM-SADF definition, all the
production and consumption rates of the data-flow edges are
constant within a graph iteration of a scenario.

For the FSM-SADF MoC [5], Geilen and Stuijk proposed an
approach to compute worst-case performance among all mode
transitions, assuming the ST transition protocol. Although it
is an exact analysis, the approach has inherently exponen-
tial time complexity. Moreover, this approach leads to timing
interference between modes upon mode transitions. In con-
trast, our approach does not introduce interference between
modes due to the novel MOO transition protocol proposed
in Section IV-C2. The timing behavior of individual modes
and during mode transitions can be analyzed independently.
In addition, our approach considers allocation of actors on
processors, which by itself is a harder problem than the one
addressed in [5].

Geilen [9] proposed to use a linear model to capture worst-
case transition delay and period during scenario transitions of
FSM-SADF. Our transition protocol is conceptually similar
to the linear model. However, we obtain the linear model in a
different way, specifically simplified for the adopted hard real-
time scheduling framework. For instance, finding a reference
schedule is not necessary in our case, but being crucial in
the tightness of the analysis proposed in [9]. Moreover, our
approach solves the problem of changing the application graph
structure during mode transitions, which was not studied in [9].

For VPDF [6], the analysis has been limited to computing
buffer sizes under throughput constraints so far. The execution
of a VPDF graph on MPSoC platforms under hard real-time
constraints has not been studied. In particular, the allocation
of actors and how to switch from one mode to another one
are not discussed. Moreover, delay due to mode transitions has
not been investigated. Our approach, on the other hand, takes
these important factors into account. Therefore, our analysis
results are directly reflected in a real implementation.

MCDF [7] is another adaptive MoC which properties can
be partly analyzed at compile-time. The MCDF MoC pri-
marily focuses on software-defined radio applications, where
different subgraphs need to be active in different modes.
This is achieved by using switch and select actors. The
author implicitly assumes ST scheduling during mode transi-
tions. Based on this assumption, a worst-case timing analysis
is developed. Similar to the case of SADF, the use of
the ST scheduling introduces timing interference between
modes. As a consequence, the analysis must take into account



2638 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

the sequence of mode transitions of interest. Although the
author provides an upper bound of timing behavior for a
parameterized sequence of mode transitions, the accuracy is
still unknown. In contrast, our approach results in a tim-
ing analysis of mode transitions that is independent from
already occurred transitions. Moreover, the analysis results
are directly reflected in the final implementation. In this
sense, our analysis is exact in the timing behavior of mode
transitions.

In [8], a meta-modeling technique is proposed to augment
the expressive power of wide range of existing data-flow
models which have the graph iteration concept. In [8], the
proposed technique is especially applied to the SDF model
which is called PSDF. In PSDF, separate init and subinit
graphs are proposed to reconfigure the body graph in a hierar-
chical manner. In this model, functional properties can only be
partially decided at compile-time, and thus run-time verifica-
tion is needed. To this end, for all configurations, computing a
schedule and verifying consistency for both graphs and specifi-
cations need to be fulfilled at run-time which is pretty complex
procedure. In addition, temporal analysis to find the worst-case
system reconfiguration delay to preserve model predictability
is not proposed. In contrast, our MADF model does not require
run-time consistency check as every mode in our model is
predefined at compile-time and represented as a CSDF graph.
In addition, our MADF provides the temporal analysis of the
mode transitions at compile-time using the MOO transition
protocol.

In [10] and [11], an analysis is proposed to reason about
worst-case response time of a task graph in case of a mode
change. However, the task graph has very limited expres-
siveness and is not able to model the behavior of adaptive
streaming applications. Instead, in this paper, we define a
more expressive MoC that is amenable to adaptive application
behavior and real-time analysis.

Real and Crespo [12] and Stoimenov et al. [13] focused
on timing analysis for mode changes of real-time tasks.
The starting times of new mode tasks need to be delayed
to avoid overloading of processors during mode changes.
In [12] and [13], however, it is assumed that tasks are inde-
pendent. The proposed algorithms are thus not applicable to
adaptive MoCs, since the starting times of tasks in adap-
tive MoCs depend on each other due to data dependencies.
Moreover, the algorithms in [12] and [13] involve high com-
putational complexity because fixed-point equations must be
solved at every step in the algorithms. In contrast, in this
paper, we propose an adaptive MoC and analysis for appli-
cations with data-dependent tasks, which is more realistic and
applicable to wider range of real-life streaming applications.
Moreover, our analysis is simpler with low computational and
time complexity.

III. BACKGROUND

In this section, we provide a brief overview of our
system model, the CSDF MoC, and the scheduling framework
presented in [14]. This background is needed to understand the
novel contributions of this paper.

A. System Model

The considered MPSoC platforms in this paper are homo-
geneous, i.e., they may contain multiple, but the same type
of programmable processing elements (PEs) with distributed
memories. Moreover, the platform must be predictable, which
means timing guarantees are provided on the response time
of hardware components and OS schedulers. The precision-
timed [15] platform is such an example. On the software side,
we assume partitioned scheduling algorithms, i.e., no migra-
tion of tasks between PEs is allowed. The considered schedul-
ing algorithms on each PE include fixed-priority preemptive
scheduling algorithms, such as RM [16], or dynamic schedul-
ing algorithms, such as EDF [16].

B. Cyclo-Static Data Flow

An application modeled as a CSDF [3] is defined as a
directed graph G = (A, E) that consists of a set of actors
A which communicate with each other through a set of
edges E . Actors represent computation while edges represent
data dependency due to communication and synchronization.
In CSDF, every actor Ai ∈ A has an execution sequence
Ci = [c1, c2, . . . , cφi ] of length φi. This means, the xth time
that actor Ai is fired, it performs the computation Ci(((x − 1)

mod φi) + 1). Similarly, production and consumption of data
tokens are also sequences of length φi in CSDF. The token
production of actor Ai to edge Ej is represented as a sequence
of constant integers PRDj = [prd1, prd2, . . . , prdφi

], called
production sequence. Analogously, token consumption from
every input edge Ek of actor Ai is a predefined sequence
CNSk = [cns1, cns2, . . . , cnsφi ], called consumption sequence.
The xth time that actor Ai is fired, it produces PRDj(((x − 1)

mod φi)+1) tokens to channel Ej and consumes CNSk(((x−1)

mod φi) + 1) tokens from channel Ek.
An important property of the CSDF model that is proven

in [3], is that a valid static schedule of a CSDF graph can be
generated at design-time if the graph is consistent and live. A
CSDF graph G is said to be consistent if a nontrivial solution
exists for the repetition vector �q = [q1, q2, . . . , qn]T ∈ N

n. An
entry qi ∈ �q denotes how many times an actor Ai ∈ A has to
be executed in every graph iteration of G. If a deadlock-free
schedule can be found, G is then said to be live. For more
details, we refer the reader to [3].

C. Strictly Periodic Scheduling of CSDF

In [14], a real-time strictly periodic scheduling (SPS) frame-
work for CSDF graphs is proposed. In this framework, the
actors in a CSDF graph are converted to a set of real-time
implicit-deadline periodic tasks. Therefore, such a real-time
task corresponding to a CSDF actor is associated with two
parameters, namely period T and earliest starting time S, where
the deadline of the task is equal to its period (i.e., implicit
deadline). The minimum period Ti [14] of any actor Ai ∈ A
under SPS can be computed as

Ti = lcm(�q)

qi

⌈
maxAi∈A {μiqi}

lcm(�q)

⌉
(1)

where qi is the number of repetitions of actor Ai per graph
iteration, and μi is the worst-case execution time (WCET)
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Fig. 1. Example of MADF graph (G1).

(a)

(b)

Fig. 2. Two modes of the MADF graph in Fig. 1. (a) CSDF graph G1
1 of

mode SI1. (b) CSDF graph G2
1 of mode SI2.

of actor Ai. In general, the derived period vector �T must sat-
isfy the condition q1T1 = q2T2 = ··· = qnTn = H, where H is
the iteration period, also called hyper period, that represents
the duration needed by the graph to complete one iteration.
The minimum period of the sink actor for a CSDF graph deter-
mines the maximum throughout that this graph can achieve.
In addition, the utilization of any actor Ai ∈ A , denoted by ui,
can be computed as ui = μi/Ti, where ui ∈ (0, 1].

To sustain a strictly periodic execution with the period
derived by (1), the earliest starting time Si [14] of any actor
Ai ∈ A can be obtained as

Si =
{

0 if prec(Ai) = ∅
maxAj∈prec(Ai)

(
Sj→i

)
otherwise

(2)

where prec(Ai) represents the set of predecessor actors of Ai
and Sj→i is given by

Sj→i = min
t∈[0,Sj+H]

{
t : Prd

[Sj,max{Sj,t}+k)

(
Aj, Eu

)

≥ Cns
[t,max{Sj,t}+k]

(Ai, Eu), ∀k ∈ [0, H], k ∈ N

}

(3)

where Prd[ts,te)(Aj, Eu) is the total number of tokens pro-
duced by Aj to edge Eu during the time interval [ts, te),
Cns[ts,te](Ai, Eu) is the total number of tokens consumed by
Ai from edge Eu during the time interval [ts, te], and Sj is the
earliest starting time of a predecessor task Aj.

IV. MODE-AWARE DATA FLOW

In this section, we introduce our new MoC called MADF.
MADF can capture multiple modes associated with an adap-
tive streaming application, where each individual mode is a
CSDF graph [3]. Details and formal definitions of the MADF
model and its operational semantics are given later in this sec-
tion. Here, we explain the MADF intuitively by an example.
Throughout this paper, we use graph G1 shown in Fig. 1 as
the running example to illustrate the definition of MADF and
the hard real-time scheduling analysis related to MADF. This
graph consists of five computation actors A1–A5 that commu-
nicate data over edges E1–E5. Also, there is an extra actor Ac
which controls the switching between modes through control
edges E11, E22, E44, and E55 at run-time. Each edge con-
tains a production and a consumption pattern, and some of
these production and consumption patterns are parameterized.
Having different values of parameters and WCETs of the
actors determine different modes. For example, to specify the
consumption pattern with variable length on edge E1 in graph
G1, the parameterized notation [p2[1]] is used on edge E1
that is interpreted as a sequence of p2 elements with integer
value 1, e.g., [2[1]] = [1, 1]. Similarly, the notation [1[p4]]
on edge E4 is interpreted as a sequence of 1 element with
integer value p4, e.g., [1[2]] = [2]. Assume in this particu-
lar example that parameter vector (p1, p2, p4, p5, p6) can take
only two values (0, 2, 0, 2, 0) and (1, 1, 1, 1, 1). Then, Ac
can switch the application between two corresponding modes
SI1 and SI2 by setting the parameter vector to value (0, 2,
0, 2, 0) and (1, 1, 1, 1, 1), respectively, at run-time. Fig. 2(a)
and (b) shows the corresponding CSDF graphs of mode SI1

and SI2.

A. Formal Definition of MADF

In this section, we provide a brief formal definition of
MADF. The detailed formal definition of MADF can be found
in [17].

Definition 1 (MADF): An MADF is a multigraph defined
by a tuple (A, Ac, E ,�), where:

• A = {A1, . . . , A|A |} is a set of dataflow actors;
• Ac is the control actor to determine modes and their

transitions;
• E is the set of edges for data/parameter transfer;
• � = {�p1, . . . , �p|A |} is the set of parameter vectors, where

each �pi ∈ � is associated with a dataflow actor Ai.
Definition 2 (Dataflow Actor): A dataflow actor Ai is

described by a tuple (Ii, ICi, Oi, Ci, Mi), where:
• Ii = {IP1, . . . , IP|Ii|} is the set of data input ports of

actor Ai;
• ICi is the control input port that reads parameter vector

�pi for actor Ai;
• Oi = {OP1, . . . , OP|Oi|} is the set of data output ports of

actor Ai;
• Ci = {c1, . . . , c|C|} is the set of computations. When actor

Ai fires, it performs a computation ck ∈ Ci;
• Mi : �pi → {φ, C̄i} is a mapping relation, where �pi ∈ �,

φ ∈ N
+, and C̄i ⊆ Ci is a sequence of computations

[C̄i(1), . . . , C̄i(k), . . . , C̄i(φ)] with C̄i(k) ∈ Ci, 1 ≤ k ≤
φ.
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Definition 3 (Control Actor): The control actor Ac is
described by a tuple (IC,Oc,S,Mc), where:

• S = {SI1, . . . , SI|S |} is a set of mode identifiers, each of
which specifies a unique mode;

• IC is the control input port which is connected to the
external environment. Mode identifiers are read through
the control input port from the environment;

• Oc = {OC1, . . . , OC|A |} is a set of control output ports.
Parameter vector �pi is sent through OCi ∈ Oc to actor Ai;

• Mc = {MC1, . . . , MC|A |} is a set of functions defined
for each actor Ai ∈ A . For each MCi ∈ Mc,
MCi : S → N

|�pi| is a function that takes a mode
identifier and outputs a vector of non-negative integer
values.

Definition 4 (Edge): An edge E ∈ E is defined by a tuple
((Ai, OP), (Aj, IP)), where:

• actor Ai produces a parameterized number of tokens to
edge E through output port OP;

• actor Aj consumes a parameterized number of tokens from
E through input port IP.

Definition 5 (Mode of MADF): A mode SIi of MADF is a
consistent and live CSDF graph, denoted as Gi, obtained by
setting values of � in Definition 1 as follows:

∀�pk ∈ � : �pk = MCk
(
SIi) (4)

where function MCk is given in Definition 3.
Definition 6 (Mode of MADF Actor): An actor Ak in mode

SIi, denoted by Ai
k, is a CSDF actor obtained from Ak as

follows:

�pk = MCk
(
SIi). (5)

B. Operational Semantics

During execution of an MADF graph, it can be either in a
steady-state or mode transition.

Definition 7 (Steady-State): An MADF graph is in a steady-
state of a mode SIi, if it satisfies (4) with the same SIi for all
its actors.

Definition 8 (Mode Transition): An MADF graph is in a
mode transition from mode SIo to SIl, where o �= l, if
some actors have SIo for (5) and the remaining active actors
[17, Definition 9] have SIl for (5).

In the steady-state of an MADF graph, all active actors exe-
cute in the same mode. As defined previously in Definition 5
and shown in Fig. 2(a) and (b), the steady-state of the
MADF graph has the same operational semantics as a CSDF
graph. We use 〈Ak

i , x〉 to denote the xth firing of actor Ai

in mode SIk. At 〈Ak
i , x〉, it executes computation C̄i(((x − 1)

mod φ) + 1), where C̄i is given in Definition 2. The num-
ber of tokens consumed and produced are specified accord-
ing to [17, Definitions 4 and 5], respectively. For instance,
the xth firing of Ak

i produces PRD(((x − 1) mod φ) + 1)

tokens through an output port OP. In each mode SIk, the
MADF graph is a consistent and live CSDF graph and thus
has the notion of graph iterations with a nontrivial rep-
etition vector �qk ∈ N

|A |. Next, we further define mode
iterations.

(a) (b)

Fig. 3. Execution of two iterations of both modes SI1 and SI2 under ST
scheduling. (a) Mode SI1 in Fig. 2(a). (b) Mode SI2 in Fig. 2(b).

TABLE I
ACTOR PARAMETER FOR G1 IN FIG. 1

Definition 9 (Mode Iteration): One iteration Itk of an
MADF graph in mode SIk consists of one firing of control
actor Ac and qk

i ∈ �qk firings of each MADF actor Ak
i .

Consider the two modes shown in Fig. 2(a) and (b).
Repetition vectors �q1 and �q2 are

�q1 = [4, 2, 2, 0, 2], �q2 = [2, 1, 1, 1, 2]. (6)

For any mode of an MADF graph, i.e., a live CSDF graph,
under any valid schedule, it has (eventually) periodic execution
in time. This holds for CSDF graphs under ST schedule [18],
K-periodic schedule [19], and SPS [14]. The length of the
periodic execution, called iteration period, determines the
minimum time interval to complete one graph iteration (see
Definition 9). The iteration period, denoted by Hk, is equal
for any actor in the same mode SIk. During a periodic exe-
cution, the starting time of each actor Ak

i , denoted by Sk
i ,

indicates the time distance between the start of source actor
Ak

src and the start of actor Ak
i in the same iteration period. Based

on the notion of starting times, we define iteration latency Lk

of an MADF graph in mode SIk as follows:

Lk = Sk
snk − Sk

src (7)

where Sk
snk and Sk

src are the earliest starting times of the sink
and source actors, respectively. Fig. 3 illustrates the execution
of both modes SI1 and SI2 given in Fig. 2 under the ST sched-
ule. A rectangle denotes the WCET of an actor firing. The
WCETs of all actors in both modes are given in the third row
of Table I. Now, it can be seen in Fig. 3 that iteration period
H1 = H2 = 8. Based on the starting time of each actor, we
obtain iteration latencies L1 = S1

5 − S1
1 = 10 − 0 = 10 and

L2 = S2
5 − S2

1 = 10 − 0 = 10 as shown in Fig. 3.

C. Mode Transition

While the operational semantics of an MADF graph in
steady-state are the same as that of a CSDF graph, the tran-
sition of MADF graph from one mode to another is the
crucial part that makes it fundamentally different from CSDF.
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Fig. 4. Execution of G1 in Fig. 1 with two mode transitions under the ST
transition protocol. MCR1 at time tMCR1 denotes a transition request from
mode SI2 to SI1, and MCR2 at time tMCR2 denotes a transition request from
mode SI1 to SI2.

The protocol for mode transitions has strong impact on the
compile-time analyzability and implementation efficiency. In
this section, we propose a novel and efficient protocol of mode
transitions for MADF graphs.

During execution of an MADF graph, mode transitions may
be triggered at run-time by receiving a mode change request
(MCR) from the external environment. We first assume that an
MCR can be only accepted in the steady-state of an MADF
graph, not in an ongoing mode transition. This means that
any MCR occurred during an ongoing mode transition will
be ignored. Consider a mode transition from SIo to SIl. The
transition is accomplished by the control actor reading mode
identifier SIl from its control input port (see the black dot
in Fig. 1) and writing parameter values of �pi to the control
output port connected to each dataflow actor Al

i according
to function MCi given in Definition 3. Then, Al

i reads new
parameter values �pi from its control input port and sets the
sequence of computations according to mapping relation Mi
in Definition 2. The production and consumption sequences
are specified according to [17, Definitions 4 and 5], respec-
tively. We further define/require that mode transitions are only
allowed at quiescent points [20].

Definition 10 (Quiescent Point of MADF): For mode SIl, a
quiescent point of MADF actor Ai is firing 〈Al

i, x〉 in mode
iteration Itl that satisfies

¬∃〈Al
i, y〉 ∈ Itl : y < x. (8)

Definition 10 simply refers to the first firing of actor Ai
in each iteration Itl of mode SIl. Recall that each iteration
of mode SIl consists of ql

i firings of actor Ai. Therefore, our
requirement that a mode transition is only allowed at a qui-
escent point implies that a transition from mode SIl to SIo of
actor Ai happens when all firings of actor Ai are completed in
the iteration of SIl when MCR occurs. Fig. 4 shows an execu-
tion of G1 in Fig. 1 with two mode transitions. For instance,
the MCR at time tMCR1 = 1 denotes a transition request from
mode SI2 to SI1. The mode transition of actor A1 happens
when all firings of actor A1 are completed, that is at time 2 in
Fig. 4 in this particular example.

Definition 10 defines mode transitions of MADF graphs
as partially ordered actor firings. However, it does not spec-
ify at which time instance a mode transition actually starts.
Therefore, below, we focus on the transition protocol that
defines the points in time for occurrences of mode transitions.

To quantify the transition protocol, we introduce a metric,
called transition delay, to measure the responsiveness of a
protocol to an MCR.

Definition 11 (Transition Delay): For an MCR at time tMCR
calling for a mode transition from mode SIo to SIl, the
transition delay �o→l of an MADF graph is defined as

�o→l = σ o→l
snk − tMCR (9)

where σ o→l
snk is the earliest starting time of the sink actor in

the new mode SIl.
In Fig. 4, we can compute the transition delay for MCR1

occurred at time tMCR1 = 1 as �2→1 = 18 − 1 = 17.
1) Self-Timed Transition Protocol: In the existing adaptive

MoCs like FSM-SADF [5], a protocol, referred here as ST
transition protocol, is adopted. The ST protocol specifies that
actors are scheduled in the ST manner not only in the steady-
state but also during a mode transition. For FSM-SADF upon
an MCR, a firing of an FSM-SADF actor in the new mode
can start immediately after the firing of the actor completes the
old mode iteration. The only possible delay is introduced due
to availability of input data. One reason behind the ST proto-
col is that the ST schedule for a (C)SDF graph (steady-state
of FSM-SADF)1 leads to its highest achievable throughput.
However, the ST protocol generally introduces interference
of one mode execution with another one. The time needed
to complete mode transitions also fluctuates as the transition
delay of an ongoing transition depends on the transitions that
occurred in the past. We consider this as an undesired effect
because mode transitions using the ST protocol become poten-
tially slow and unpredictable. Another consequence of the
incurred interference between modes using the ST transition
protocol is the high time complexity of analyzing transition
delays, because transition delays cannot be analyzed indepen-
dently for each mode transition. The analysis proposed in [5]
uses an approach based on state-space exploration, which has
the exponential time complexity.

Consider G1 in Fig. 1 and an execution of G1 with the
two mode transitions illustrated in Fig. 4. The execution is
assumed under the ST schedule for both steady-state and mode
transitions of G1. After MCR1 at time tMCR1, the transition
from mode SI2 to SI1 introduces interference to execution of
the new mode SI1 from execution of the old mode SI2. The
interference increases the iteration latency of the new mode
SI1 to L1 = S1

5 −S1
1 = 18−2 = 16 from initially 10 as shown

in Fig. 3(a) when G1 is only executed in the steady-state of
mode SI1. Even worse, the interference is further propagated
to the second mode transition after MCR2 at time tMCR2. In
this case, the iteration latency L2 = S2

5 − S2
1 = 42 − 23 = 19

is increased from initially 10 as shown in Fig. 3(b) when
G1 is only executed in the steady-state of mode SI2. This
example thus clearly shows the problem of the ST proto-
col. That is, it introduces interference between the old and
new modes due to mode transitions, thereby increasing the
iteration latency of the new mode in the steady-state after the
transition. Furthermore, the increase of iteration latency also

1The steady-state of SADF is defined similarly to that of MADF. The only
difference is that a scenario of FSM-SADF is an SDF graph, whereas a mode
of MADF is a CSDF graph.
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Fig. 5. Illustration of the MOO calculation.

potentially increases transition delays as it will be shown in
the next section.

2) Maximum-Overlap Offset Transition Protocol: To
address the problem of the ST transition protocol explained
above, we propose a new transition protocol, called MOO.

Definition 12 (MOO): For an MADF graph and a transition
from mode SIo to SIl, MOO, denoted by x, is defined as

x =
{

maxAi∈Ao∩A l

(
So

i − Sl
i

)
if maxAi∈Ao∩A l

(
So

i − Sl
i

)
> 0

0 otherwise
(10)

where Ao∩A l is set of actors active in both modes SIo and SIl.
Basically, we first assume that the new mode SIl starts

immediately after the source actor Ao
src of the old mode SIo

completes its last iteration Ito. All actors Al
i of the new mode

execute according to the earliest starting times Sl
i and iteration

period Hl in the steady-state. Under this assumption, if the
execution of the new mode overlaps with the execution of the
old mode in terms of iteration periods Ho and Hl, we then need
to offset the starting time of the new mode by the maximum
overlap among all actors. In this way, the execution of the
new mode will have the same iteration latency as that of the
new mode in the steady-state, i.e., no interference between
the execution of both old and new modes.

Consider MCR1 at time tMCR1 shown in Fig. 4. Obtaining
MOO x is illustrated in Fig. 5. We first assume that the new
mode SI1 starts at the time when the source actor A2

1 completes
the last iteration at time 8 (see bold, dashed line in Fig. 5).
Actors A1

i in the new mode start as if they executed in the
steady-state of mode SI1. Then, we can see that, for actor A3,
the execution of A1

3 in the new mode SI1 according to S1
3 in

Fig. 3(a) overlaps 4 time units (solid bar in Fig. 5) with the
execution of A2

3 in the old mode SI2 in terms of iteration peri-
ods H2 and H1. This is also the maximum overlap between
the execution of actors in modes SI2 and SI1. According to
Definition 12, x can be obtained through the following equa-
tions: S2

1 − S1
1 = 0 − 0 = 0, S2

2 − S1
2 = 1 − 1 = 0, S2

3 − S1
3 =

9 − 5 = 4, S2
5 − S1

5 = 10 − 10 = 0. Therefore, it results in
an offset x = max(0, 0, 4, 0) = 4 to the start of mode SI1 and
is shown in Fig. 6. The starting time of the new mode SI1,
namely the source actor A1

1, must be first delayed to the time
when A1

2 completes the iteration period H2 in the last iteration,
namely time 8 shown as the first bold dashed line in Fig. 6. In
addition, the MOO x = 4 must be further added to the start-
ing time of A1

1 (the second bold dashed line in Fig. 6). Fig. 6
also shows another transition from mode SI1 to SI2 with an

Fig. 6. Execution of G1 with two mode transitions under MOO protocol.

MCR occurred at time tMCR2 = 23. The starting time of the
source actor A2

1 in the new mode SI2 must be first delayed
to the time 28 (the third bold dashed line in Fig. 6), namely
the time when A1

1 completes the last iteration in the old mode
SI1. To calculate the MOO x for this transition, the following
equations hold: S1

1 − S2
1 = 0 − 0 = 0, S1

2 − S2
2 = 1 − 1 =

0, S1
3 − S2

3 = 5 − 9 = −4, S1
5 − S2

5 = 10 − 10 = 0. Thus,
the equations above result in x = max(0, 0,−4, 0) = 0. For
this transition, the new mode SI2 starts at time 28 as shown
in Fig. 6.

The MOO protocol offers several advantages over the ST
protocol. Essentially, the MOO protocol retains the iteration
latency of the MADF graph in the new mode the same as the
initial value, thereby avoiding the interference between the
old and new modes. For instance, after MCR1 and MCR2 in
Fig. 6, mode SI1 and SI2 still have the initial iteration latency
L1 = 10 and L2 = 10 as shown in Fig. 3. Therefore, efficiently
computing the starting time of MADF actors in the new mode
becomes feasible and it plays an important role in deriving
a hard-real time schedule for the MADF actors. As a result,
analysis of the worst-case transition delay is much simpler (see
Theorem 1) than that of the ST protocol, because the transition
delay does not depend on the order of the transitions that
occurred previously.

Concerning the transition delay, it may be the case that the
MOO protocol results in initially longer transition delay than
the ST protocol does due to the offset given in Definition 12.
For MCR1 occurred at time tMCR1, the transition delay of the
MOO protocol is �2→1 = 22 − 1 = 21 as shown in Fig. 6,
whereas the transition delay of the ST protocol is equal to
�2→1 = 18−1 = 17 as shown in Fig. 4. On the other hand, let
us consider the same transition request MCR2 occurred at time
tMCR2 = 23 shown in Figs. 4 and 6. For MCR2, the ST proto-
col results in transition delay �1→2 = 42 − 23 = 19 as shown
in Fig. 4. In contrast, the transition delay for the MOO proto-
col is �1→2 = 38 − 23 = 16 as shown in Fig. 6. The MOO
protocol could provide shorter transition delay than the ST
protocol, thereby faster responsiveness to a mode transition.

V. HARD REAL-TIME ANALYSIS AND

SCHEDULING OF MADF

Based on the proposed MOO protocol for mode transitions,
in this section, we propose a hard real-time analysis and
scheduling framework for MADF. More specifically, we pro-
pose an analysis technique for mode transitions in MADF to
reason about transition delays, such that timing constraints can
be guaranteed. The hard real-time scheduling framework for
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Fig. 7. Upper bounds of earliest starting times for transition from mode SI2

to SI1.

MADF graphs is an extension of the SPS [14] framework
initially developed for CSDF graphs.

As explained in Section III-C, the key concept of the SPS
framework is to derive a periodic taskset representation for a
CSDF graph. Since the steady-state of a mode can be con-
sidered as a CSDF graph according to Definitions 5 and 7,
it is thus straightforward to represent the steady-state of an
MADF graph as a periodic taskset and schedule the result-
ing taskset using any well-known hard real-time scheduling
algorithm. Using the SPS framework, we can derive the two
main parameters for each MADF actor in mode SIk, namely
the period (Tk

i in (1)) and the earliest starting time (Sk
i in (2)).

Under SPS, the iteration period in mode SIk is obtained as
Hk = qk

i Tk
i , ∃Ak

i ∈ A . Below, we focus on determining the
earliest starting time of each actor in the new mode upon
a transition. From the earliest starting time, we can reason
about the transition delay to quantify the responsiveness of a
transition.

Upon an MCR, an MADF graph can safely switch to
the new mode if all of its actors have completed their last
iteration in the old mode upon synchronous protocol. In this
case, the firings of MADF actors in the new mode do not
overlap with the firings of actors in the old mode. This is
called synchronous protocol [12] in real-time systems with
mode change. One of its advantages is the simplicity, i.e.,
the synchronous protocol does not require any schedulabil-
ity test at both compile-time and run-time. However, other
protocols lead to earlier starting times than the synchronous
protocol. Therefore, the synchronous protocol sets an upper
bound on the earliest starting time for each MADF actor in
the new mode.

Lemma 1: For an MADF graph G under SPS and an MCR
from mode SIo to SIl at time tMCR, the earliest starting time
of actor Al

i, σ̂ o→l
i , is upper bounded by

σ̂ o→l
i = Fo

src + So
snk + Sl

i (11)

where Fo
src indicates the time when the source actor Ao

src
completes its last iteration Ito of the old mode SIo and is
given by

Fo
src = toS +

⌈
tMCR − toS

Ho

⌉
Ho. (12)

toS is the starting time of mode SIo and Ho is the iteration
period of mode SIo.

Proof: The proof can be found in [17] and [21].
Let us consider the actor parameters given in Table I for G1

in Fig. 1. The third row shows the WCET for each actor in
modes SI1 and SI2. Based on WCETs, the period (fourth row

Fig. 8. Earliest starting times for transition from mode SI2 to SI1 with the
MOO protocol.

in Table I) and the earliest starting time (fifth row in Table I)
for each actor in the steady-state of both modes are obtained
according to (1) and (2), respectively. Given �q2 in (6), we can
also compute iteration period H2 = q2

1T2
1 = 2 × 4 = 8. Now

consider the mode transition from mode SI2 to SI1 shown in
Fig. 7. Assume that the MCR occurs at time tMCR = 13 and
mode SI2 starts at time t2S = 8. The completion time of the
last iteration It2 is equal to the completion time of the sink
actor A2

5 computed as F2
snk = t2S +�(tMCR − t2S)/H2�H2 +S2

5 =
8 + �(13 − 8)/8�8 + 20 = 36. In Fig. 7, F2

snk corresponds to
the earliest starting time of the source actor A1

1 (bold dashed
line). Finally, we can compute the earliest starting time for
each actor in the new mode SI1 by adding S1

i . Considering
for instance the sink actor A1

5 in the new mode with S1
5 = 14,

the upper bound of its earliest starting time can be obtained
as σ̂ 2→1

5 = F2
src + S2

5 + S1
5 = F2

snk + S1
5 = 36 + 14 = 50. We

can thus compute the transition delay (see Definition 11) as
�̂2→1 = σ̂ 2→1

5 − tMCR = 50 − 13 = 37.
Although the upper bound of the earliest starting times is

easy to obtain for MADF actors in the new mode, it does not
provide a responsive mode transition. Therefore, here we aim
at deriving a lower bound of the earliest starting times with
the proposed MOO protocol.

Lemma 2: For an MADF graph under SPS and an MCR
from mode SIo to SIl at time tMCR, the earliest starting time
of actor Al

i using the MOO protocol is lower bounded by σ̌ o→l
i

given as

σ̌ o→l
i = Fo

src + x + Sl
i (13)

where Fo
src is given in (12) and x is given in (10).

Proof: The proof can be found in [17] and [21].
Let us consider again the transition from mode SI2 to

SI1. With the MOO protocol, the mode transition is illus-
trated in Fig. 8. Upon the MCR at time tMCR = 13 and
t2S = 8, source actor A2

1 completes its last iteration It2 in the
old mode SI2 at the time (see (12)) given as F2

src = F2
1 =

t2S + �(tMCR − t2S)/H2�H2 = 8 + �(13 − 8)/8�8 = 16. This is
the earliest possible time at which mode transition is allowed.
For MOO, x can be computed according to (10). Therefore,
the following equations hold: S2

1 −S1
1 = 0−0 = 0, S2

2 −S1
2 =

4 − 2 = 2, S2
3 − S1

3 = 12 − 6 = 6, S2
5 − S1

5 = 20 − 14 = 6. It
thus yields x = max(0, 2, 6, 6) = 6, i.e., an offset x = 6
is added to F2

src. It can be seen in Fig. 8 that the source
actor A1

1 starts at time F2
src + x = 16 + 6 = 22. Finally, the

earliest starting times of actors in mode SI1 can be deter-
mined by adding S1

i . Considering for instance A1
5 in the new
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Fig. 9. Allocation of all MADF actors in Fig. 1 to three PEs.

mode, the lower bound of its earliest starting time can be
obtained as σ̌ 2→1

5 = F2
src + x + S1

5 = 16 + 6 + 14 = 36.
Now, the transition delay (see Definition 11) can be obtained
as �̌2→1 = σ̌ 2→1

5 − tMCR = 36 − 13 = 23.

A. Scheduling Analysis Under Fixed Allocation of Actors

During a mode transition of an MADF graph according to
the MOO protocol, actors execute simultaneously in the old
and new modes. The derived starting time in Lemma 2 for each
actor is only the lower bound because the allocation of actors
on PEs is not taken into account yet. That means, the derived
starting times according to Lemma 2 can be only achieved dur-
ing mode transitions when each actor is allocated to a separate
PE. In a practical system where multiple actors are allocated
to the same PE, the PE may be potentially overloaded during
mode transitions. To avoid overloading of PEs, the earliest
starting times of actors may be further delayed.

Lemma 3: For an MADF graph under SPS, an MCR from
mode SIo to SIl, and an m-partition of all actors � =
{�1, . . . , �m}, where m is the number of PEs, the earliest start-
ing time of an actor Al

i without overloading the underlying PE
is given by

σ o→l
i = Fo

src + δo→l + Sl
i (14)

where Fo
src is computed by (12) and δo→l is obtained as

δo→l = min
t∈[

x,So
snk

]
{
t : Uj(k) ≤ UB, ∀k ∈ [

t, So
snk

] ∧ ∀�j ∈ �
}
.

(15)

UB denotes the utilization bound of the scheduling algorithm
used to schedule actors on each PE. �j contains the set of
actors allocated to PEj. Uj(k) is the total utilization of PEj

at time k demanded by both mode SIo and SIl actors, and is
given by

Uj(k) =
∑

Ao
d∈�j

(
uo

d − h
(
k − So

d

) · uo
d

)
︸ ︷︷ ︸

Uo
j (k)

+
∑

Al
d∈�j

(
h
(

k − Sl
d − t

)
· ul

d

)
︸ ︷︷ ︸

Ul
j(k)

. (16)

Ao
d ∈ �j is an actor active in the old mode SIo and allocated

to PEj. Al
d ∈ �j is an actor active in the new mode SIl and

allocated to PEj. h(t) is the Heaviside step function.
Proof: The proof can be found in [17] and [21].
Fig. 9 shows all actors of G1 in Fig. 1 allocated to three

PEs and let us assume that the actors allocated to each PE
are scheduled using the EDF scheduling algorithm [16]. The
utilization bound of EDF is given in [16] as UB = 1. Given

Fig. 10. Earliest starting times for transition SI2 to SI1 on three PEs shown
in Fig. 9.

this allocation and the transition from mode SI2 to SI1 shown
in Fig. 8, the lower bound of the earliest starting time σ̌ 2→1

1 =
22 for actor A1

1 cannot be achieved. At time 22, only actor A2
1

has completed the last iteration It2 on PE1. Starting the new
mode SI1 at time 22 corresponds to δ2→1 = x = 6. The total
utilization of PE1 demanded by the actors in the old mode SI2

at time 22, i.e., U2
1(6), can be computed as follows:

U2
1(6) =

∑
A2

d∈�1

u2
d − h

(
6 − S2

d

)
· u2

d, d ∈ {1, 3, 4, 5}

= u2
1 − h(6) · u2

1 + u2
3 − h(−6) · u2

3 + u2
4

− h(−2) · u2
4 + u2

5 − h(−14) · u2
5

= 0 + u2
3 + u2

4 + u2
5 = 1

8
+ 3

8
+ 1

4
= 3

4
.

Enabling A1
1 in the new mode SI1 at time 22 would yield

U1(6) = U2
1(6) + u1

1 = (3/4) + (1/2) > UB = 1, thereby
leading to being unschedulable on PE1. In this case, the earliest
starting times of all actors in mode SI1 must be delayed by
δ2→1 = 8 to time 24 as shown in Fig. 10. At time 24, the
total utilization demanded by mode SI2 actors is

U2
1(8) =

∑
A2

d∈�1

u2
d − h

(
8 − S2

d

)
· u2

d, d ∈ {1, 3, 4, 5}

= u2
1 − h(8) · u2

1 + u2
3 − h(−4) · u2

3 + u2
4 − h(0) · u2

4

+ u2
5 − h(−12) · u2

5

= 0 + u2
3 + 0 + u2

5 = 1

8
+ 1

4
= 3

8
.

Now, enabling A1
1 in the new mode at time 24 results in the

total utilization of PE1 as U1(8) = U2
1(8) + u1

1 = (3/8) +
(1/2) < 1. Next, assuming that the new mode SI1 starts at
time 24, we need to check that the remaining actors in the
new mode SI1, namely A1

3 and A1
5, can start with S1

3 and S1
5,

respectively, without overloading PE1. For instance, enabling
A1

3 at time 24 results in starting time σ 2→1
3 = 24 + S1

3 =
24 + 6 = 30. At time 30, the total utilization of PE1 can be
obtained according to (16) as follows:

U2
1(8 + 6) =

∑
A2

d∈�1

u2
d − h

(
14 − S2

d

)
· u2

d, d ∈ {1, 3, 4, 5}

= u2
1 − h(14) · u2

1 + u2
3 − h(2) · u2

3 + u2
4

− h(6) · u2
4 + u2

5 − h(−6) · u2
5

= 0 + 0 + 0 + u2
5 = 1

4
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Fig. 11. MADF graph of Vocoder.

U1
1(8 + 6) =

∑
A1

d∈�1

(
h
(

14 − S1
d − 8

)
· u1

d

)
, d ∈ {1, 3, 5}

= h(6)u1
1 + h(0)u1

3 + h(−8)u1
5 = 1

2
+ 1

4
= 3

4
U1(8 + 6) = U2

1(8 + 6) + U1
1(8 + 6) = 1 = UB.

Hence, actors A2
5, A1

1, and A1
3 are schedulable on PE1 using

EDF. Similarly, starting A1
5 at time σ 2→1

5 = 24 + S1
5 = 38 still

keeps the resulting set of actors schedulable on PE1.
Using Lemma 3, we can quantify the maximum and mini-

mum transition delays for any transition from mode SIo to SIl.
Theorem 1: For an MADF graph under SPS, a fixed allo-

cation of all MADF actors � = {�1, . . . , �m} to m PEs, and
an MCR from mode SIo to SIl, the minimum transition delay
is given by

�o→l
min = δo→l + Sl

snk (17)

and the maximum transition delay is given by

�o→l
max = δo→l + Sl

snk + Ho (18)

where δo→l is computed by Lemma 3, Sl
snk is the starting time

of the sink actor in the new mode SIl, and Ho is the iteration
period of the old mode SIo.

Proof: The proof can be found in [17] and [21].
It can be seen from Theorem 1 that the maximum and

minimum transition delays solely depend on the allocation of
MADF actors and the old and new modes in question, irrespec-
tive of the previously occurred transitions. The old and new
modes determine Ho and Sl

snk, respectively, while the alloca-
tion of MADF actors determines the value of δo→l. Here, the
offset x due to our MOO protocol is captured in δo→l and can
be considered as performance overhead if x �= 0. The other
parts, namely Ho and Sl

snk, in the maximum and minimum
transition delays cannot be avoided as they will be present in
any transition protocol.

VI. CASE STUDIES

To evaluate our proposed MADF MoC and MOO proto-
col, in this section, we present two case studies. In the first
case study, we model a real-life adaptive streaming appli-
cation, called Vocoder, with our MADF MoC proposed in
Section IV and apply the hard real-time analysis proposed in
Section V. With this case study, we show that the MADF MoC
is capable of capturing different application modes and the

TABLE II
WCETS OF ALL ACTORS IN VOCODER (IN CLK. CYCLES)

transitions between them. Then, in the second case study, we
model another real-life adaptive streaming application, called
MP3 decoder, with MADF and we focus on analyzing the
transition delays and demonstrating the effectiveness of our
MADF model armed with the proposed MOO transition proto-
col compared to the well-known FSM-SADF model [5] which
also can capture modes/scenarios. In this case study, we adopt
ST scheduling for both our MADF and FSM-SADF models
in the steady-state. The major difference between these mod-
els in this case study is their transition protocol which is the
MOO protocol in our MADF model and the ST protocol in
FSM-SADF. Another example of the application of our MOO
protocol can be found in [22].

A. Case Study 1

In this section, we consider a real-life adaptive application
from the StreamIT benchmark suit [23], called Vocoder, which
implements a phase voice encoder and performs pitch trans-
position of recorded sounds from male to female. We modeled
Vocoder using an MADF graph with four modes, which cap-
ture different workloads. The MADF graph of Vocoder is
shown in Fig. 11. Depending on the desired quality of audio
encoding and various performance requirements, the resource
manager as a middle-ware or OS-like component for the
MPSoC may switch between four different modes of Vocoder
at run-time. The four modes S = {SI8, SI16, SI32, SI64} spec-
ify different lengths of the discrete Fourier transform (DFT),
denoted by dl ∈ {8, 16, 32, 64}. Mode SI8 (dl = 8) requires
the least amount of computation at the cost of the worst voice
encoding quality among all DFT lengths. Mode SI64 (dl = 64)

produces the best quality of voice encoding among all modes,
but is computationally intensive. The other two modes SI16 and
SI32 explore the tradeoff between the quality of the encoding
and computational workload. The resource manager, therefore,
can take advantage of this tradeoff and adjust the quality of
the encoding according to the available resources, such as
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Fig. 12. Allocation of dataflow actors of Vocoder to four PEs. The control
edges are omitted to avoid cluttering.

TABLE III
PERFORMANCE RESULTS OF FOUR MODES OF

VOCODER IN THE STEADY-STATE

energy budget and number of PEs, at run-time. A transition
from one mode to any other one is possible, thereby resulting
in totally 12 possible transitions. At run-time, reconfiguration
of the parameter dl is triggered by the environment, e.g., the
resource manager in this case. Subsequently, control actor Ac
propagates dl to the data-flow actors shown in Fig. 11 through
the dashed-lined edges.

We measured the WCETs of all dataflow actors in Fig. 11
in the four modes on an ARM Cortex-A9 [24] proces-
sor. All dataflow actors were compiled using the compiler
arm-xilinx-eabi-gcc 4.7.2 with the vectorization
option. The WCETs of all actors in all four modes are given in
Table II. It is worth to note that in mode SI8, actors Spec2Env
and male2female exhibit exceptionally high WCETs. It is
because parameter dl represents the size of the inner-most loop
in the computation of actors Spec2Env and male2female.
Small dl (in this case dl = 8) leads to the fact that the
inner-most loop cannot be vectorized by the compiler. In the
other modes from SI16 to SI64, larger sizes of the inner-most
loop (dl equal to 16, 32, and 64, respectively) lead to full
vectorization of the computation of actors Spec2Env and
male2female. Therefore, in these three modes, the WCETs
of actors Spec2Env and male2female are even smaller than
the ones in mode SI8. The dataflow actors of Vocoder are
allocated to four PEs as shown in Fig. 12. This allocation
guarantees that the shortest periods (maximum throughput) in
the steady-states of all modes can be achieved.

Table III shows the performance results for the four modes
in their steady-state under SPS. For instance, the second col-
umn at the first row in Table III indicates that it is guaranteed
for sink actor WriteWave to produce 256 samples per 917 451
clock cycles in mode SI8. This is the “worst-case” performance
among all four modes because the Spec2Env actor exhibits
exceptionally high workload (see WCETs in Table II) in mode
SI8. Consequently, actor Spec2Env becomes the “bottleneck”
actor, so that mode SI8 cannot be scheduled with higher
throughput (shorter period). Nevertheless, all mode SI8 actors
as a whole require a total processor utilization (U) of only
1.24 (see the third column in Table III) which is the least
among all modes. From Table III, we can see that MADF

TABLE IV
PERFORMANCE RESULTS FOR ALL MODE

TRANSITIONS OF VOCODER

TABLE V
PERIOD AND ITERATION LATENCY OF MODES

IN MP3 DECODER IN CLK. CYCLES

together with the SPS framework brings another advantage
of efficiently utilizing PE resources. For example, in case
that Vocoder is switched to a mode with lower processor uti-
lization, idle capacity of PEs can be efficiently utilized by
admitting other applications at run-time without introducing
interference to the currently running Vocoder.

Now, we focus on the performance results of the MOO
protocol, namely transition delays, for all possible transitions
between the four modes of Vocoder. Table IV shows both the
minimum and maximum transition delays in accordance with
Theorem 1 for all transitions. We can see in the second column
of Table IV that, in the best case, the transition delays for 6 out
of 12 transitions remain the same as the iteration latencies of
the new modes. This can be seen as x = 0 shown in the fourth
column. In these six transitions, the proposed MOO protocol
does not introduce any extra delay. In the six remaining transi-
tions, as expected, the MOO protocol introduces offset x > 0
to the transitions from an old mode with a longer iteration
latency to a new mode with a shorter iteration latency. For
instance, the largest x (in bold shown in Table IV) happens in
case of a transition from mode SI8 with the longest iteration
latency (see the fourth column in Table III) to mode SI16 with
the shortest iteration latency. To quantify x, we compute the
percentage of x compared to both minimum and maximum
transition delays as �min = [x/(�o→l

min )] × 100%, �max =
[x/(�o→l

max )] × 100%. �min varies from the worst-case 56% to
the best case 16% with an average of 41%, whereas �max
varies from the worst-case 44% to the best case 14% with
an average of 33%. Therefore, the increase of the transition
delays due to the MOO protocol is reasonable for this real-life
application.

Next, we consider the effect of the actor allocation shown
in Fig. 12 on the earliest starting times of actors in the new
mode upon a transition (see Lemma 3). In this particular
example, we find out that no extra delay is incurred to any
actor in all transitions due to the fixed actor allocation. This
can be seen from the fourth and fifth columns in Table IV,
where δo→l = x.
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TABLE VI
PERFORMANCE RESULTS OF MP3 DECODER FOR FOUR DIFFERENT MODE TRANSITION SEQUENCES USING MADF AND FSM-SADF MODELS

B. Case Study 2

To further evaluate the MOO protocol, presented in
Section IV-C2, in this section, we performed an experiment
with the MP3 decoder application, which is a real-life adap-
tive streaming application, taken from [5]. This MP3 decoder
is a frame-based algorithm that retrieves audio frames from
the incoming compressed bitstream. In the MP3 decoder, each
audio frame can be decoded using a different method. In total,
MP3 decoder has five individual decoding methods for audio
frames that are denoted as {s-s, l-l, l-s, s-l, m}.

Each of these methods can be represented accurately by
an SDF graph. Therefore, the application behavior can be
accurately captured using FSM-SADF [5] rather than con-
servatively capture these methods in a static dataflow model.
Consequently, a much tighter performance can be guaranteed
by FSM-SADF graph than SDF. Note that since each mode
in our MADF model is represented as a CSDF graph, our
MADF is more expressive than FSM-SADF and therefore,
the MP3 decoder can be also properly modeled with MADF.
The period and iteration latency of each mode are given
in Table V.

Let us now compare the throughput of MP3 decoder mod-
eled as MADF and FSM-SADF graphs. To compute the
throughput of MP3 decoder modeled by the FSM-SADF,
we use the publicly available SDF3 tool set [25]. Since the
type of frames may change nondeterministically in arbi-
trary orders, SDF3 detects the worst-case mode transition
using the state-space exploration approach developed in [5]
for FSM-SADF to lower bound the throughput. To compute
the worst-case throughput of the application, we use the
sdf3analysis-fsmsadf tool from SDF3. Similarly, we
use the same approach to compute the throughput of our
MADF model that uses the MOO protocol. For both mod-
els, the same throughput of 1.75·10(−7) frame per clock
cycle is achieved. Therefore, both models perform equally
well in terms of the worst-case throughput they can guar-
antee and the delay introduced by our MOO protocol
during mode transitions has no impact on the worst-case
throughput.

Now, we focus on the performance results of our MADF
and FSM-SADF models in terms of the iteration latency of
the modes and the transition delay. The results of this com-
parison for four different mode transition sequences is give in
Table VI. In this table, for each mode transition sequence, the
iteration latency of each mode and the transition delay of each
mode transition are given for our MADF model that uses the
MOO protocol and the FSM-SADF model that uses the ST

protocol. From this table, we can clearly see that our MADF
retains the iteration latency of each mode irrespective of the
mode transition sequences. Using the FSM-SADF model, how-
ever, the iteration latency of modes in the steady-state is
accordingly changed with respect to the order of mode tran-
sitions. For instance, mode l-l has different iteration latency,
Ll-l, of 9 310 400, 9 434 700, 9 197 200, and 8 661 500 for the
different mode transition sequences, when using FSM-SADF.
In contrast, the same mode l-l has a constant iteration latency
of 7 466 400 under our MADF model (bolded in Table VI).
Therefore, the iteration latency of modes in the steady-state
can not be guaranteed under the FSM-SADF model as it is
highly dependent on the order of mode transitions which is
not known beforehand at design-time.

From Table VI, we can also see that by changing the
iteration latency of the modes, the transition delays are also
changed. Although the transition delays are sometimes shorter
in the FSM-SADF model, the FSM-SADF model is potentially
unpredictable. Our MADF model, however, is completely pre-
dictable because the (minimum) transition delays for all mode
transitions can be computed beforehand at design-time accord-
ing to Theorem 1. For instance, the transition from mode
s-l to mode m has different transition delay, �s-l→m, of
9 310 400, 9 217 800, and 9 197 200 for different mode tran-
sition sequences under the FSM-SADF model whereas this
mode transition has a constant transition delay of 9 261 700
under our MADF model (bolded in Table VI).

VII. CONCLUSION

In this paper, we have proposed the novel MADF model
which can capture effectively the adaptive nature of mod-
ern streaming applications. Moreover, as an important part
of the operational semantics of MADF, we have proposed
a novel protocol for mode transitions. The main advantage
of this transition protocol is that, in contrast to the ST tran-
sition protocol, it avoids timing interference between modes
upon mode transitions. As a result, any mode transition can
be analyzed independently from others that occurred in the
past. Furthermore, based on the transition protocol, we have
proposed a hard real-time analysis and scheduling framework
to reason and guarantee timing constraints by avoiding proces-
sor overloading during mode transitions. Finally, we evaluate
the effectiveness of our MADF model compared with the well-
know FSM-SADF model by conducting two case studies using
two real-life adaptive streaming applications.
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