
3626 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

EASTER: Learning to Split Transformers
at the Edge Robustly

Xiaotian Guo , Quan Jiang , Yixian Shen , Andy D. Pimentel , Senior Member, IEEE,
and Todor Stefanov , Member, IEEE

Abstract—Prevalent large transformer models present signif-
icant computational challenges for resource-constrained devices
at the Edge. While distributing the workload of deep learning
models across multiple edge devices has been extensively studied,
these works typically overlook the impact of failures of edge
devices. Unpredictable failures, due to, e.g., connectivity issues or
discharged batteries, can compromise the reliability of inference
serving at the Edge. In this article, we introduce a novel
methodology, called EASTER, designed to learn robust distri-
bution strategies for transformer models against device failures
that consider the tradeoff between robustness (i.e., maintaining
model functionality against failures) and resource utilization
(considering memory usage and computations). We evaluate
EASTER with three representative transformers—ViT, GPT-2,
and Vicuna—under device failures. Our results demonstrate
EASTER’s efficiency in memory usage, and possible end-to-end
latency improvement for inference across multiple edge devices
while preserving model accuracy as much as possible under
device failures.

Index Terms—Deep learning (DL), design space exploration
(DSE), distributed inference, embedded system, robustness.

I. INTRODUCTION

AS ARTIFICIAL intelligence (AI) continues to evolve
rapidly, transformer models are increasingly prevalent in

various applications [1]. Advanced pretrained models, such as
BERT and GPT-4 [2], have spurred a range of novel tools,
including Copilot and ChatGPT. Typically, these models are
executed on high-performance clusters with hundreds of GPUs,
available as cloud services. However, the rise of Internet
of Things (IoT) devices has driven a demand for deploying
transformer-based tools at the Edge. Deploying these tools on
edge or IoT devices offers significant advantages in terms of
efficiency, security, and privacy. For example, a network of
IoT devices in smart healthcare systems [3] within a hospital
or a home setting, such as wearable health monitors, bedside

Manuscript received 31 July 2024; accepted 1 August 2024. Date of
current version 6 November 2024. This article was presented at the
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems (CASES) 2024 and appeared as part of the ESWEEK-
TCAD Special Issue. This article was recommended by Associate Editor S.
Dailey. (Corresponding author: Xiaotian Guo.)

Xiaotian Guo is with the Informatics Institute, University of Amsterdam,
1098 XH Amsterdam, The Netherlands, and also with the Leiden Institute
of Advanced Computer Science, Leiden University, 2333 CA Leiden,
The Netherlands (e-mail: x.guo3@uva.nl).

Quan Jiang is with the Computer Science and Technology Department,
Nanjing Agricultural University, Nanjing 210095, China.

Yixian Shen and Andy D. Pimentel are with the Informatics Institute,
University of Amsterdam, 1098 XH Amsterdam, The Netherlands.

Todor Stefanov is with the Leiden Institute of Advanced Computer Science,
Leiden University, 2333 CA Leiden, The Netherlands.

Digital Object Identifier 10.1109/TCAD.2024.3438995

monitors, and portable diagnostic devices, are equipped with
sensors to collect vital signs and patient data in real time.
By deploying deep neural networks, like transformer models,
directly onto these devices, the system can locally analyze
data, make immediate health assessments, or predict medical
events without the need to send or store sensitive patient
data in centralized cloud servers, thus enhancing user privacy
and data security. This also allows for faster, potentially life-
saving decisions by reducing the latency associated with data
being sent to the cloud and the cloud processing of the data.
However, deploying transformer-based tools at the Edge presents
a significant challenge for edge or IoT devices due to the intensive
computational and memory requirements of transformer models.
For instance, the Vicuna-13B chatbot [4] requires 26 GB of
memory for the model parameters and substantial computational
resources for inference.

While constructing lightweight transformer models from
larger counterparts using methods like model compression [5]
or neural architecture search [6] is one approach, it often leads
to a reduced performance/accuracy score and resource-intensive
retraining of the newly derived models. In response, research
has focused on fully distributing transformer inference across
multiple edge devices without resorting to model compression
or cloud servers. Methods like model partitioning [7] and data
partitioning [8] have been explored to bridge the gap between
limited edge device resources and the demands of large trans-
former models. Furthermore, by distributing the computational
workload of a transformer across multiple edge devices, the
system can operate more energy-efficiently, making it both cost-
effective and sustainable for long-term deployment. However,
these methods generally assume continuous availability of all
participating devices, which is often unrealistic due to potential
device unavailability or failures.

Addressing this issue, our study emphasizes the need for
robust partitioning methods for distributed transformer infer-
ence. Distributed inference across multiple devices offers a
promising solution for handling large transformer models (e.g.,
Llama [9]) that exceed the memory capacities of individual
devices, such as IoT devices, smart surveillance cameras,
user laptops, etc. Existing frameworks, like Alpa [10] and
DeepSpeed [11], effectively support distributed large language
model (LLM) training, but do not address at all robust
distributed inference on edge devices and do not cater for
resource heterogeneity in edge systems or IoT settings.

Therefore, this article introduces a novel methodology,
called EASTER, designed to learn robust distribution strate-
gies for transformers that ensure functional inference and

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4540-9013
https://orcid.org/0009-0000-2197-7791
https://orcid.org/0000-0001-8447-872X
https://orcid.org/0000-0002-2043-4469
https://orcid.org/0000-0001-6006-9366

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 3627

maintain close-to-original results under potential device fail-
ures. Learning such optimal strategies to distribute millions
of neurons is challenging because a vast and complex design
space needs to be explored. Typical transformer-based models
consist of several stacked encoder and decoder blocks. The
embedding dimension within each block, which represents
the size of vectors used to encode images, words, or tokens,
usually exceeds 100. For example, if the embedded dimension
of an encoder block is 768 [12], and we consider each
dimension-related connection as a neuron, then the encoder
block has 768 neurons. If we want to distribute these 768
neurons over four devices evenly, the exact number of possible
distributions is

(768
192

) × (576
192

) × (384
192

)
. The vast number of

potential possibilities to distribute just one encoder block
across multiple devices is almost unimaginable, let alone
when considering the distribution of multiple blocks in large
transformer models. There is a critical need to explore this
extensive design space efficiently to identify a neuron distri-
bution strategy that maintains performance against potential
device failures to ensure the robustness and reliability of the
distributed system.

For different distribution strategies (design points) of trans-
formers in the vast space, our algorithm is designed to
efficiently and quickly explore and identify optimal design
points, enabling robust and memory-efficient splitting of
transformer models across multiple devices. We first narrow
down the design space by considering the neuron impor-
tance in the transformer layers, as this assessment allows us
to group neurons within each layer, significantly reducing
their distribution complexity. Further, we achieve this by
adaptively and recursively splitting the design space into
several subspaces and learning the expected rewards associated
with different subspaces. To this end, we have developed a
variant of the upper confidence bounds applied to trees (UCT)
algorithm [13], aiming to enhance splitting and prioritizing
subspaces with the highest potential for robustness. By nav-
igating and sampling both the most and potential promising
subspaces rather than the entire vast space, our approach
enhances search efficiency, while balancing exploration and
exploitation to avoid the pitfalls of local optima. The final
Pareto points/solutions offer an optimal blend of robustness
against device failures and operational efficiency regarding
computation and memory.

We also automate the process of dividing transformer
models for distributed computing by converting them into
a unified neural network intermediate representation (IR).
This step is followed by automated code generation and the
subsequent deployment of the models across multiple edge
devices. Our experimental results demonstrate that the system
configurations identified as Pareto-optimal points through the
aforementioned design space exploration (DSE) method not
only maintain system robustness but also achieve a notable
reduction in memory usage. Furthermore, these configura-
tions reduce the end-to-end inference latency for very large
transformer models, demonstrating the effectiveness of our
approach in optimizing both the performance and efficiency
of distributed deep learning (DL) systems.

Our main novel contributions are summarized as
follows.

1) A novel UCT-based DSE algorithm is proposed that
efficiently narrows down the vast design space, facil-
itating the discovery of effective model partitioning
strategies for robust transformer distribution that balance
performance and resource usage.

2) By empirical validation, we demonstrate the efficacy
of our EASTER methodology using typical transformers
like ViT-16 [12], GPT2-Large [14], and Vicuna-7B [4],
showcasing resilient model performance in image and
common reasoning tasks.

3) We provide the first implementation of an end-to-end
tool for splitting transformer models and also validate
the advantages of distributed inference in terms of
end-to-end inference latency and memory utilization
compared to single-device inference.

II. RELATED WORK

The proliferation of transformer models in various appli-
cations has necessitated their adaptation beyond the confines
of powerful cloud computing resources, directing sig-
nificant research interest toward edge deployments. This
section reviews pertinent literature across three main themes
relevant to our work on EASTER: 1) adaptation of large
transformer models for resource-constrained edge devices;
2) resilience against device failures; and 3) efficiency in DSE.

A. Adaptation of Transformer Models for Edge Constraints

The push toward deploying AI capabilities at the
edge, driven by privacy concerns, latency reduction, and
energy efficiency, has seen approaches like model compres-
sion [15], [16], [17] and neural architecture search [18], [19],
[20], [21] gain prominence. Such approaches can compress
original transformer models to smaller models for resource-
constrained devices. However, they typically require iterative
retraining and may result in accuracy loss. Another approach is
to deploy the original models onto distributed edge computing
platforms, such as health care systems [22], smart home
systems [23], etc., in order to leverage all available resources
collaboratively. Traditional layer and data partitioning methods
like [7] and [24] are applied to fully distribute the workload
of a large convolution neural network or a transformer-
based model among multiple edge devices, thereby reducing
the required computation resources of edge devices [25]. It
involves breaking down a model’s computational graph into
smaller, manageable parts that can be processed in parallel
across multiple devices. This is particularly challenging in
edge computing due to the heterogeneous nature of devices
and their limited computational capabilities. Model parallelism
techniques like AlpaServe [10] developed for homogeneous
data center clusters are targets for multibatch inference which
would perform poorly for single batches in heterogeneous
edge environments. PipeEdge [24] partitions a neural network
model into multiple pipeline stages and applies a dynamic pro-
gramming (DP) algorithm to determine the optimal partition
scheduling strategy for heterogeneous computation and com-
munication. However, all of the aforementioned approaches
and methods assume that the involved edge computing devices
and communication links between them are always available

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

3628 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

and work properly. In contrast, our partitioning approach
not only aims at maintaining computational efficiency but
also considers the resilience of the system against possible
temporary or permanent failures of devices, an aspect often
overlooked in conventional partitioning strategies.

B. Resilience Against Edge Failures

Resilience against device failures at the Edge concerns the
property of a model being resilient in terms of inference
accuracy to the failure of physical computing devices due
to power outages, unstable interdevice connections, other
hardware/software failures, etc. In distributed inference set-
tings, the missing neurons mapped on those failed devices
may result in a significant accuracy drop of CNN or trans-
former models [Fig. 1(b)]. Existing approaches and methods
to mitigate this risk introduce various strategies. The code
distributed computing (CDC) method proposed in [26] exem-
plifies an early attempt to enhance the resilience by utilizing
an additional device to backup the computations of distributed
devices. This method effectively mitigates the impact of single
device failures but does not scale well to scenarios involving
multiple simultaneous device failures without introducing
excessive redundancy and associated computational overheads.
ElasticDL, introduced by Zhou et al. [27], represents a
significant advancement by integrating fault tolerance and
elastic scheduling within a Kubernetes-native DL framework.
While ElasticDL enhances system resilience and adaptabil-
ity, its practical deployment on edge devices is hampered
by Kubernetes’ complexity and the limited computational
resources of edge environments.

In contrast to the aforementioned approaches, our method-
ology EASTER introduces a comprehensive solution designed
to enhance the resilience of transformer models in the face
of the unpredictable and dynamic nature of edge computing
environments. Unlike previous methods that often rely on
additional hardware resources, complex orchestration, or prior
knowledge of potential failure types, EASTER employs a novel
partitioning strategy that inherently accommodates multiple
device failures without necessitating extra devices or computa-
tional redundancy. Our approach leverages advanced machine
learning techniques to adaptively distribute model computa-
tions across edge devices, optimizing for both resilience and
resource efficiency. By intelligently partitioning the model in
a manner that anticipates and mitigates the impact of device
failures, EASTER ensures robust inference accuracy under
a wide range of failure conditions without the limitations
imposed by specific assumptions or the need for supplemen-
tary computational overhead.

C. Efficiency in Design Space Exploration

In the context of DSE, the original UCT algorithm [13],
known for its efficacy in balancing the exploration–
exploitation tradeoff in single-objective optimization
problems, is ingeniously adapted to the multiobjective
optimization landscape in our work. This adaptation involves
selecting promising parts of the search space by not
only leveraging the UCT’s inherent strengths but also
enhancing it with traditional machine learning techniques

(a) (b)

Fig. 1. Comparative analysis of layer partitioning and its impact on memory
reduction and for accuracy. (a) Layer partitioning method [7] with failures.
(b) Top-1 accuracy versus memory reduction ratio.

for more efficient splitting and exploration of the design
space. Such an integration significantly augments the UCT
framework, enabling it to navigate complex, multidimensional
optimization problems with greater precision and efficiency.

Existing DSE methods, such as the multiobjective
tree-structured Parzen estimator (MOTPE) [28] and the non-
dominated sorting genetic algorithm II (NSGA-II) [29], are
well known for their efficiency in multiobjective optimization.
MOTPE is renowned for its sample efficiency and capability
to handle high-dimensional spaces through its Bayesian
optimization framework, which is particularly beneficial in
scenarios with limited evaluation budgets. NSGA-II, on the other
hand, excels in finding a diverse set of solutions across the Pareto
front through its evolutionary algorithm, effectively managing
the tradeoffs between conflicting objectives. However, existing
methods fall short in adapting to our specific scenario, which
requires robust splitting of the transformer model block by block
while simultaneously optimizing memory usage and inference
latency. These methods lack customization for navigating the
vast design space of our scenario.

To address this gap, we enhance the UCT algorithm with
machine learning techniques to combine the UCT’s dynamic
exploration–exploitation mechanism with the predictive and
generalization capabilities of machine learning. This not only
provides an efficient method to identify and explore promising
spaces but also enhances the algorithm’s ability to adaptively
refine its search strategy based on learned insights. Our enhanced
UCT approach, when compared to methods like MOTPE and
NSGA-II, offers a complementary strategy ideally suited for
scenarios where understanding and leveraging the structure of
the search space is crucial. This tailored approach significantly
boosts our search efficiency and the quality of outcomes, making
it a particularly effective solution for our specific robustness
needs for splitting transformer models.

III. ROBUST MODEL SPLITTING

In this section, we provide an example to illustrate why
splitting a transformer model robustly is needed and why
DSE matters in this context. Moreover, we describe how
transformers can be splitted in a robust fashion.

A. Motivational Example

The process of splitting a transformer model for distributed
inference across edge devices is crucial for running large mod-
els in environments with limited resources. Although some

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 3629

frameworks like PipeEdge [24] could distribute transformer
models across multiple IoT devices with orchestration, the
crux of the problem lies in the robustness of the pipeline
paradigm they utilize: a single failure within the pipeline can
compromise the entire computation process. Thus, our discus-
sion focuses on an alternative paradigm, namely, partitioning
the layers themselves within a DL model across multiple
devices [7]. A transformer model, composed of N encoder
or decoder blocks, is designed for various tasks, such as
classification or text generation. As illustrated in Fig. 1(a), by
dividing blocks in the transformer model into two parts evenly,
specifically on a block-by-block basis, we can distribute its
workload across two devices. Each device then processes its
allocated half blocks, necessitating periodic synchronization of
their intermediate results to maintain consistency throughout
the computation process. However, such a distribution strategy
still introduces a vulnerability: should one of the two devices
fail, it results in the loss of half the blocks’ processing
capability, thereby significantly impacting the model’s overall
performance and reliability. This scenario underlines the need
for a robust distribution strategy that can minimize the risk
and impact of device failures.

Taking the ViT-16 transformer model [12] as an example, it
contains 12 encoder blocks stacked one by one. The significant
impact of a device failure on the model performance is
highlighted in Fig. 1(b). When splitting and distributing the
model’s blocks across two devices, a device failure leads
to a substantial drop in Top-1 accuracy, as critical block
information is lost. This scenario is graphically represented
with Top-1 accuracy (red line) and memory reduction ratio
(blue line) against the number of distributed blocks (x-axis),
demonstrating that as more blocks are distributed instead of
fully replicated, the memory efficiency on the operational
device improves, but at the cost of reduced accuracy due to
the potential loss of computational resources during a device
failure. For instance, when distributing all 12 encoder blocks
of the ViT model across two devices, should one device fail
due to a power outage or disconnection, half of the weights
and intermediate results would be lost. In such a scenario, the
top-1 accuracy could drop to 20.95%, significantly impairing
the model performance of distributed inference.

This tradeoff between memory reduction and model accu-
racy underlines the challenge: finding a method to split
encoder/decoder blocks that maximizes model accuracy reten-
tion while achieving optimal memory efficiency. The goal
is to develop a strategy that ensures even if one or more
devices fail, the distributed model can maintain as much
of its original performance as possible. As mentioned in
Section I, given the vast design space for distributing neurons
in each encoder/decoder block, it is crucial to employ DSE
to identify the most efficient distribution pattern, aiming to
minimize accuracy loss while maximizing resource utilization
for optimal model deployment in distributed environments.

B. Robust Model Splitting

In the context of a transformer model containing N encoder
or decoder blocks, we introduce an innovative uneven splitting
method, called Partial Split, for distributing these blocks

Fig. 2. Partial split. (a) Even split. (b) Partial split.

across multiple devices with robustness in mind. This method
particularly aims at enhancing the model’s resilience to device
failures while reducing the memory usage on each device.

As illustrated in Fig. 2(a) for example, evenly distributing a
transformer block among four edge devices poses a significant
risk, namely, the model functionality is severely compromised,
for example, when three out of these four devices fail or lose
connection, as only a minimal fraction of attention connections
remains operational for inference. To address this vulnerability,
our method diverges from this conventional even splitting
approach.

Instead, our method illustrated in Fig. 2(b) employs a strategic
replication of a certain fraction r of critical connections (the
yellow box) across multiple devices, based on their weight
importance. The remaining, less critical connections (the large
green box), constituting a (1 − r) fraction, are then evenly
distributed. This selective replication ensures that even in the
event of multiple device failures, the most vital connections
within each transformer block are retained, thereby preserving
the model functionality and inference capabilities to a large
extent. During runtime, the device initiating an inference request
for image classification or text generation tasks loads both the
replicated part (the yellow box) and its split part (the small
green box) of the model. The other devices in the network load
only their respective split parts. Notably, the replicated part
remains unloaded on these devices (the dotted yellow boxes).
This runtime loading strategy ensures that extra replicas are
not redundantly loaded on other devices, thereby optimizing
resource utilization and enhancing overall system efficiency.

IV. PROBLEM FORMULATION

The aforementioned uneven splitting method facilitates
robust distribution of the computational workload of a trans-
former model across edge devices. However, the limited
memory capacities of edge devices introduce challenges in
determining the optimal fraction r for each transformer block
that could preserve the model functionality and inference capa-
bilities to a large extent. A large fraction r would require high
memory usage per device, potentially exceeding the memory
capacity of resource-limited edge devices. Conversely, a very
small fraction r might compromise the proper model function-
ality in case multiple devices fail. Thus, an important tradeoff
emerges between the memory usage per device and the model
functionality that is dependent on the fraction r of critical
connections that are replicated for each block.

For a transformer model with N blocks, we define a
parameter set R = {r1, r2, . . . , rN}, where ri ∈ [0..1] represents
the fraction of replicated connections for block i. Each set
of parameter values R corresponds to different memory usage
mj per device Dj ∈ D and different model functionality in

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

3630 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Fig. 3. Transformer partitioning.

case some devices fail at runtime when a transformer model
is distributed over a set of edge devices D. Therefore, our
objective is to find an optimal set of parameter values Ropt
which maximizes the model accuracy or performance score in
case of failing devices with possible minimum memory usage
(m1, m2, . . . , m|D|). Given the typically large value of N for
prevalent transformer models and the continuous range of r ∈
[0..1], a vast and complex design space needs to be explored
in order to find an optimal solution.

V. EASTER METHODOLOGY

In this section, we present our novel methodology designed
to learn robust distribution strategies for transformer models
against device failures that consider the tradeoff between
robustness (i.e., maintaining model functionality against fail-
ures) and resource utilization (including memory usage and
computations). First, we provide more details about our robust
partial split method introduced in Section III. Next, we present
our DSE approach to solve the optimization problem, formu-
lated in Section IV, that is required to achieve an efficient and
robust partial split and distribution of transformer models on
multiple edge devices. Finally, we introduce the end-to-end
tool we have developed to automate our robust partial split
method and distributed deployment of transformer models.

A. Partial Split Method for Transformers

In this section, we explain how the transformer model is
split according to a parameter set R. Consider the example
shown in Fig. 3 where Block N in a transformer model is
distributed across two devices and the obtained fraction rN ∈ R
for this example is 0.25.

The vital part of connections in the attention and feedfor-
ward blocks is represented by the two yellow boxes that are
both replicated across the two devices. The remaining, less-
vital part of connections for each block is split in two (the
green boxes) and distributed evenly across the two devices.

To determine the vital part of connections, we calculate and
use an importance score for each connection. For example, tak-
ing a general linear transformation in the feedforward block,
we first calculate the importance of connections corresponding
to this linear transformation using the Taylor score [30] as
follows:

IWk = |�L| = ∣∣LWk − LWk=0

∣∣ ≈
∣∣∣∣

∂L
∂Wk

Wk
∣∣∣∣ (1)

where IWk represents the importance score of the kth
connection/weights associated with the linear transformation,

and |�L| represents the loss changes when we remove this
connection from the layer. After we calculate the importance
score of every connection in a layer, we sort the connections
based on the importance score in descending order, thereby
creating a separate sorted list for every layer. If the target
fraction of replicated connections for a layer is r then we
start from the beginning of the sorted list and take the first
r% of the connections, thereby classifying them as vital. The
rest are classified as less vital. Furthermore, it is crucial to
understand that when we find that nearly all connections in
a layer have similarly high importance scores (i.e., nearly all
are vital), the DSE process (see Section V-B) is designed to
adjust the fraction value r of this layer close to 1.0, instead
of maintaining the initial value. This adjustment is crucial
to preserve and replicate the layer as much as possible to
avoid significant performance degradation. During the (design-
time) DSE process, the sets of small r values for important
layers or blocks, leading to a considerable drop in model
performance, are automatically categorized into less promising
subspaces. This mechanism ensures that our DSE process
systematically avoids configurations that would negatively
impact the model’s effectiveness significantly. This adaptive
approach ensures that our method retains crucial connectivity
to effectively retain model performance. Below, we provide
details on how our partial split method is further tailored for
the attention and feedforward blocks within the transformer
architecture to efficiently reduce computational workload and
memory usage when the transformer is distributed across
different edge devices.

1) Attention Block: As depicted in Fig. 3, the hidden states
Hi−1 coming from the previous transformer block are trans-
formed into queries (Q), keys (K), and values (V) using the
weight matrices Wq, Wk, and Wv. Our method splits these
matrices along their column dimensions (denoted by Wc

q , Wc
k ,

and Wc
v) and distributes them across devices. Consequently,

each device generates the corresponding segments of Q, K, and
V (denoted by the yellow and green boxes), necessitating an
all-gather communication operation to concatenate the corre-
sponding segments into complete Q, K, and V tensors. Taking
the linear transformation with Wq weights (Fig. 3) in the
attention block as an example, the query matrix Q is generated
by Wq. If the embedded dimension of the input tensor Hi is D,
we compute the D importance scores for query Q using (1).
Once the replication factor ri is determined, we rank and
split the Wq weights along its column dimensions based on
the rank indices derived from the D scores. We choose to
replicate the top r% of weight Wq and allocate the remaining
(1 − r)% to multiple devices. For the small portion of Wq

on each device, we replace the original matrix multiplication
(matmul) operation with a small matmul operation containing
its corresponding different part of weight Wq. To maintain
output accuracy, a communication operation for gathering the
partial Q output is added after the small matmul. After the
attention block multiplies the attention scores with values
(V), the linear transformation with weight matrix Wo maps
the multiplication result to match the dimension size of the
intermediate output. In our method, we also split Wo into
segments along the column dimension. Each segment of Wc

o
produces a partial part of the intermediate output. Similarly, an

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 3631

extra all-gather communication operation is added to collect
the segments and ensure the correctness.

Apart from these layers, the embedding layer follows a
similar strategy for its matmul operation. However, we abstain
from applying our partial split method to layernorm layers due
to their relatively minimal weight and computational demand.
Importantly, the full replication of layernorm weights on each
device is prioritized to ensure model stability, given their
significant role [31].

2) Feedforward Block: This block within a transformer
block involves two linear transformations with weight matrices
W1 and W2 to process the intermediate output and generate the
hidden states Hi going to the subsequent transformer block.
The first weight matrix is split along the column dimension
(denoted as Wc

1 in Fig. 3). The second weight matrix is
split along the row dimension (denoted as Wr

2). The partial
output tensors (the yellow and green boxes) produced by Wc

1
can directly go through the nonlinear activation and serve
as the input for the second linear transformation which is
also split and denoted as Wr

2. This design eliminates the
need for an all-gather operation to concatenate the partial
outputs produced by the first linear transformation, thereby
reducing both the computational workload per device and the
interdevice communication overhead. Finally, a collective all-
reduce operation is applied to sum the partial output from all
devices to form the correct hidden states output Hi.

B. Design Space Exploration

To solve the optimization problem formulated in Section IV,
we have devised a DSE approach that effectively navigates in
the vast and complex design space mentioned in Section IV.
Our DSE approach leverages supervised learning techniques
to progressively concentrate the search for an optimal solu-
tion within increasingly smaller and more promising spaces,
thereby enhancing search efficiency. As depicted in Fig. 4,
the approach starts by randomly generating several design
points R = {R1, R2, . . . , Rp} (yellow points), and evaluate
the objectives F(R) using the fitness function F for each
design point Ri ∈ R to form an initial learnable space
D = (R,F(R)). Here, Ri = {ri

1, ri
2, . . . , ri

N} is a set of
fractions corresponding to a specific partial split strategy for
all N blocks in a transformer model. The fitness function
F concerns the evaluation of various conflicting objectives,
such as memory usage, energy consumption, performance,
etc. It can be implemented using analytical models, real
measurements, etc. In this article, our fitness function is based
on real measurements to ensure an accurate and practical
evaluation of the objective values. Taking the ViT-16 model as
an example, we directly measure the peak memory usage on
real devices during run-time, and we take the Top-1 accuracy
of the ImageNet-1K validation dataset as the performance
metric. Then, our DSE approach recursively splits the design
space D and obtains a set of split boundaries. Subsequently, we
apply these learned boundaries to generate new design points
within specific promising design spaces to improve the search
efficiency. We apply the calculation equation in line 24 of
Algorithm 1 to identify which area within R is most likely to
contain optimal design points and then concentrate our search

Fig. 4. Our DSE approach.

on this smaller, promising area, denoted as D∗P and shown
in the middle of Fig. 4. However, an early decision about
the promising area might inadvertently overlook other areas
that could contain optimal points as well. To mitigate this,
while the majority of our design points are generated within
the currently perceived promising area D∗P, we also allocate a
smaller portion of design points to generate from other spaces,
represented by D∗S. This approach iteratively learns the entire
space R and allows us to more accurately identify the most
promising regions for optimal points.

Algorithm 1 describes, in more detail, the aforementioned
DSE approach illustrated in Fig. 4. The algorithm consists of
two main steps and takes as an input the maximum search
trials T , the number of new random design points np for
updating the search space D, a lower bound (lb) to determine
the maximum number of design points in an unsplittable area,
and the exploration factor α which determines the degree of
exploration. A higher value for α encourages more exploration
in the search space. The output of Algorithm 1 is space
DP = {(R1, FR1), . . . , (R|P|, FR|P|)} of Pareto-optimal solutions
where every solution Ri = {ri

1, ri
2, . . . , ri

N} is a set of fractions
corresponding to a Pareto-optimal partial split strategy for
all N blocks in a transformer model. In line 1, we first
randomly initialize a number of design points and evaluate
their objectives using the fitness function, yielding an initial
learnable search space D.

In step 1 (lines 3–8), the algorithm narrows down the space
via support vector machine (SVM) classifiers and generates
a series of SVM boundaries. In lines 3–6, we select the
nondominated points from D to create a new primary space
marked as DP, and the rest of the points are put into a
new secondary space marked as DS. In lines 7 and 8, the
NarrowDown function is applied to recursively split DP and
DS into smaller spaces D∗P and D∗S. Concurrently, all involved
splitting SVM boundaries are aggregated into the boundary
sets CLP and CLS.

In step 2 (lines 9–12), we generate new design points
and evaluate these new design points using the fitness
function FITNESS. To balance the exploration–exploitation
tradeoff, 80% of these new points (RP) are derived from D∗P
in line 9, while the remaining 20% (i.e., for α = 0.2) of the
new design points (RS) are derived from D∗S in line 10. This
ratio, while adjustable, typically requires experimental trials
for better search efficiency. Then, we apply the fitness function
to evaluate the objective values for these new points and add
them to the search space D in line 12. This iterative process is
repeated until the maximum number of trials T is reached (see
line 2). Ultimately, the Pareto-optimal points comprising space
DP found by this DSE process represent the optimal solutions
that balance the memory usage and the model functionality.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

3632 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

Algorithm 1: DSE
Input : Maximum trials T; Population size np; lb,

exploration factor α;
Output: Space DP with Pareto points;

1 Initialize randomly D with points (R, FR):
D← {(R1, FITNESS(R1)), · · · , (Rnp , FITNESS(Rnp))}

2 while |D| ≤ T do
// Step 1: Narrow Down Search Space

3 foreach (Ri, FRi) ∈ D do
4 if FRi is nondominated then
5 DP ← DP ∪ (Ri, FRi)

6 DS ← D \ DP; CLP ← ∅; CLS ← ∅
7 D∗P, CLP = NarrowDown(DP,CLP)
8 D∗S, CLS = NarrowDown(DS,CLS)

// Step 2: Add New Random Points,
// Evaluate and Update D

9 RP = NewPoints((1− α) ∗ np,CLP)
10 RS = NewPoints(α ∗ np,CLS)
11 foreach Ri ∈ (RP ∪ RS) do
12 D← D ∪ (Ri, FITNESS(Ri))

13 return DP

14

15 Function NarrowDown(D,CL):
16 foreach (Ri, FRi) ∈ D do
17 RD ← RD ∪ Ri

18 (RD1 ,RD2) = KMeansTwoClustersOn(RD)

19 DL = (RD1 , 1) ∪ (RD2 ,−1)

20 CL, D1, D2 = SVMTrainedOn(DL)

21 if (|D| < lb) ∨ (CL(D1) = CL(D2) then
22 return D, CL

23 else

24 UCB(RDi) = F(RDi)+ α
√

log |RD|
|RDi | :i = 1, 2

25 RD∗ = argmax
RDi

UCB(RDi); D∗ = (RD∗ ,F(RD∗))

26 CL← CL ∪ CL
27 return NarrowDown(D∗, CL)

28 Function NewPoints(N,CL):
29 R← ∅
30 while |R| < N do
31 R = RandomPoint;
32 R← R ∪ R
33 foreach CLi ∈ CL do
34 if CLi(R) = −1 then
35 R← R \ R
36 break

37 return R

In lines 15–27, the NarrowDown function recursively splits
the search space D and obtains a series of learned split
boundaries CL. In line 18, we initially employ the K-means
clustering method to categorize/divide the design points
within RD into two distinct clusters RD1 ,RD2 . Following

Fig. 5. Multinode IR conversion tool.

this clustering, we calculate the average objective values for
each cluster. The cluster with the higher average objective
values is considered to be situated in a more favorable space.
Consequently, in line 19, we assign a label of 1 to the design
points in this more promising cluster, while design points in
the less favorable cluster are labeled as −1, and we put all
labeled points in a new set DL. In line 20, we train the SVM
classifier CL with the new set of labeled points DL and split
DL into two spaces D1 and D2. In lines 21 and 22, if the
number of design points in D is below the lower bound lb or
if the SVM classifier CL predicts only a single category, both
indicating that space D is nondivisible, the recursive function
NarrowDown terminates and returns the set of classifiers CL.
Otherwise, in lines 24–26, we mark the space with the larger
UCB value [13], calculated in line 24, as the more promising
design space D∗, and add the SVM classifier CL into the
recursive splitting set CL.

In lines 28–37, the NewPoints function randomly generates
N new design points using the input set of SVM classifiers CL.
In lines 31 and 32, a random design point R is generated and
added to the set of new points R. Then, point R is classified
using the set of trained SVM classifiers CL in lines 33–36.
That is, if all SVMs in CL classify point R to belong to the
class with label 1 then point R remains in the set; otherwise, it
is removed (line 35). Finally, in line 37, the new set of random
points R is returned.

C. Multinode Intermediate Representation

We have developed an end-to-end tool that facilitates auto-
mated model partitioning and its distributed deployment, in
line with one of the Pareto-optimal partial split strategies Ri ∈
DP found by our DSE Algorithm 1 presented in Section V-B.
In general, traditional frameworks for DL model deployment
on edge devices, such as TVM [32], IREE [33], and others,
do not sufficiently support distributed inference. Therefore,
our end-to-end tool is implemented to transform CNNs or
transformer models from Huggingface [34] into optimized
multinode computation graphs, thereby making them suitable
for efficient deployment across multiple devices. Our tool
is versatile enough to support both CNNs and transformer
models but in this article we focus on its application to
transformer models.

As illustrated in Fig. 5, our tool begins by utilizing the
existing “torch.compile” [35] method to convert an initial
PyTorch transformer model into the low-level ATen IR for a
single node. Subsequently, an automated conversion process
is employed to replace the single-node ATen IR into a multin-
ode variant. For instance, in handling linear transformations,
the tool splits the associated coefficients and redefines new

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 3633

Linear transformations that are adapted to the altered shapes
of coefficients or inputs as illustrated by the red boxes
in Fig. 5. Modifications to these operations are facilitated
using “torch.fx” [36], accommodating the new coefficient
dimensions. Our own customized multinode communica-
tion operations, such as GatherByIndex, AllReduceByIndex,
AllConcatByIndex, etc., are integrated after the modified
operation (see red box “Linear” in Fig. 5) to ensure the
calculation correctness. To enhance the tool’s versatility, we
implement these communication operations in C++ such
that they can be integrated into other inference engines. We
have also developed a compatible interface that enables the
conversion of this multinode IR into formats supported by
various other inference engines (e.g., NCNN [37], IREE,
etc.). Its compatibility and ease of integration with these
existing edge frameworks enhances both usability and scal-
ability. Additionally, a robust fault handler is incorporated
to ensure reliable execution during distributed inference, pro-
viding resilience against potential device failures or network
disruptions. An inner timeout mechanism governed by peri-
odic heartbeats [38] can prevent the distributed system from
deadlocks that might arise due to device failures or other
operational anomalies.

VI. EVALUATION OF OUR EASTER METHODOLOGY

In this section, we evaluate our EASTER methodology to
demonstrate its efficacy on typical transformer models and
showcase resilient models’ performance. We describe our
experimental setup followed by presenting and discussing
some experimental results obtained during automated DSE
experiments, we have performed using Algorithm 1 and the
end-to-end tool introduced in Section V-C.

A. Experimental Setup

To evaluate EASTER, we perform experiments with three typ-
ical transformer models, namely, ViT-16 [12], GPT2-Large [14],
and Vicuna-7B [4] representing three different kinds of
transformer architectures, taken from the Huggingface open-
source community [34]. Given their widespread use in image
and text tasks, and their diversity in transformer blocks,
operation counts, and memory requirements, we consider these
transformers to be representative targets to demonstrate the
merits of our methodology. We compare the searching efficiency
of our Algorithm 1 on these models with two state-of-the-art
multiobjective optimization algorithms, namely, the NSGA-II
Genetic Algorithm [29] and MOTPE [28]. The task of our
DSE experiments is to simultaneously minimize the maximum
memory usage per device and the model performance score
(loss) under severe device failures. To ensure a fair comparison
with NSGA-II and MOTPE, we set the maximum number
of search iterations to 2500 for each DSE experiment. The
searching time for the three methods are quite similar, with the
majority of time being consumed by the objective evaluations.
For the first objective (maximum memory usage per device), we
normalize its value range to [0, 1] by dividing the memory usage
mj(Ri) by the total memory usage on a single device Dj. Lower
values indicate reduced replication and more balanced model
distribution. To evaluate the second objective (performance

score S) of the models, we employ distinct techniques tailored
to each model’s specific domain. For the ViT-16 model, we
measure the Top-1 error score on the ImageNet-1k dataset for
image tasks. A lower error represents higher image classification
capabilities, and the lower the error the better. For the two LLMs
(GPT2-Large and Vicuna-7B), we utilize zero-shot perplexity
(PPL) analysis on the WikiText2 and PTB datasets to assess the
models’ language understanding and generalization capabilities.
A lower PPL score, especially in a zero-shot context, means a
better ability to handle unseen data.

To validate the performance of Pareto-optimal points from
the DSE process using Algorithm 1, we apply the split
fractions Ri, found by the algorithm, to the two LLMs by
distributing each LLM across four devices, i.e., four GPU
units in our experiments. We disable three GPU units to
simulate severe device failure scenarios in order to assess the
models’ robustness. We apply a separate and more diverse
collection of reasoning and generative datasets [39] to test the
models’ performance (robustness) against severe failures in
practical reasoning tasks, namely, ARC-easy, ARC-challenge,
WinoGrande, HellaSwag, BoolQ, PIQA, and OpenbookQA.
These diverse datasets provide a comprehensive platform for
testing the models’ reasoning and generative capabilities.

To evaluate the resilience of our methods under varying failure
conditions, we deployed three models across four edge devices
and examined model performance in scenarios where 1 (1D-
Fail), 2 (2D-Fail), or 3 devices (3D-Fail) experience failures. We
take the state-of-art layer partitioning method (LP) [7] from the
domain of distributed CNN inference as inspiration to implement
a similar method for linear operations within encoder/decoder
blocks of transformer models. Subsequently, we benchmark
this LP-inspired partitioning method, which does not utilize
the notion of neuron importance, against our approach in terms
of robustness. For the three transformer models, we assess the
robustness of our method using different sets of R values for the
partial split strategy, allowing for a comprehensive comparison
of how well each method retains model performance against
device failures.

To actually test distributed inference for transformers across
multiple edge devices, our experimental edge test-bed consists
of eight NVIDIA Jetson Xavier NX devices connected over
a 1000-Mb/s network router. Each device has an embed-
ded MPSoC featuring a 6-core Carmel ARMv8.2 CPU, an
NVIDIA Volta GPU with 384 CUDA cores, 48 Tensor cores,
and 8 GB of LPDDR4x memory. We demonstrate the func-
tionality of our multinode implementation, generated by our
end-to-end tool introduced in Section V-C, and the advantages
of distributing large transformer models over multiple edge
devices/boards by conducting a series of benchmarks on
the aforementioned edge test-bed using the three representa-
tive transformer models ViT-16, GPT2-Large, and Vicuna-7B
under four different distributed system configurations: single
device, two devices, four devices, and eight devices. In all
experiments, transformer blocks were evenly distributed across
the devices. We mainly evaluate two metrics: 1) overall end-to-
end inference latency and 2) memory reduction with different
distribution configurations.

The end-to-end latency (T) of a model is measured from the
time a user input is received until the time the complete output

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

3634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

TABLE I
EXECUTION TIME OF MAIN STEPS IN EASTER

is generated. For the ViT-16 model, user inputs are images
with dimensions (3×224×224), whereas for the two LLMs
(GPT2-Large and Vicuna-7B), user inputs are sequences of
128 tokens. The reported latency is computed by averaging
time T for 100 user inputs. To measure T and break it down to
computation time (Tcal) and communication/synchronization
overhead (Tcomm) in our distributed inference execution, we
employ a specific adjustment of the timeout parameter values
in our multinode communication operations introduced in
Section V-C. More specifically, setting the timeout values
to zero permits each device to function independently, i.e.,
without interdevice data communication and synchroniza-
tion delays, thereby enabling the measurement of the pure
computation time Tcal. Altering the timeout values to one sec-
ond activates interdevice communication and synchronization
actions besides the pure computations, thereby facilitating the
measurement of the total end-to-end inference latency T . We
then determine the communication/synchronizaton overhead
Tcomm by calculating the difference T−Tcal, thereby effectively
quantifying the additional time needed for interdevice data
communication and synchronization.

To determine the aforementioned memory reduction, we
continuously monitor the peak memory usage of each device in
our edge test-bed during runtime for every distributed system
configuration.

B. Execution Time Evaluation of the EASTER Method

We evaluate the execution time of the main steps of our
EASTER method on two different hardware platforms, namely, a
platform based on an Intel Core i9-13900K CPU and a platform
based on an NVIDIA H100 SXM5 GPU. For each transformer
model, we measure the time required to calculate the importance
scores of connections within the model as well as the time to
evaluate a single design point during the DSE process.

The importance score calculation is performed only once.
Illustrating this calculation for the ViT-16 model, we randomly
take 50 samples from the ImageNet-1K training dataset where
each sample is a batch of 128 random images. Using each
sample and the ViT-16 model, we apply (1) to calculate
an importance value for every connection within the model,
i.e., we calculate 50 values per connection in total. Then, we
compute the average of these 50 values for each connection
and use this average value as the importance score of the
connection in our DSE process. For the GPT2-Large and
Vicuna-7B transformer models, the importance scores are
calculated similarly through 50 random samples from the
language datasets. The time required to execute the importance
score calculation for the three transformer models is shown
in Columns 2 and 3 of Table I. For example, on the GPU-
based platform, the complete set of importance scores of all

connections in the ViT-16 model is computed in just 4.15 s.
Computing the same set of scores on the CPU-based platform
takes 200.9 s. In Columns 4 and 5 of Table I, we provide the
evaluation time for a single design point in our DSE process.
For example, on the CPU-based platform, evaluating the Top-1
accuracy of the ViT-16 model takes approximately one hour
to complete. Conversely, the powerful GPU platform validates
the Top-1 accuracy for a specific design point in under 3 min.

C. DSE Results and Comparison

We have performed three distinct DSE experiments for the
ViT-16, GPT2-Large, and Vicuna-7B models by employing
our EASTER methodology and Algorithm 1 along with the
NSGA-II and MOTPE algorithms for comparison purposes.
The Pareto-optimal points found by each of these three algo-
rithms are separately plotted in Fig. 6. The yellow triangles
represent the points found by MOTPE, the blue crosses
represent NSGA-II points, and the red dots correspond to
points found by our Algorithm 1 within EASTER. The x-axis
in Fig. 6(a)–(c) represents the normalized maximum memory
usage per device explained in Section VI-A. The y-axis
represents the Top-1 error for ViT-16 and the PPL for GPT2-
Large and Vicuna-7B. The rationale behind using the Top-1
error and PPL is explained in Section VI-A.

To quantitatively assess the effectiveness of EASTER,
NSGA-II, and MOTPE, as well as to compare them, we
calculate the well known and widely used hypervolume metric
(hv), based on the Pareto-optimal points plotted in Fig. 6,
that serves as an indicator of the search space coverage
in DSE. As shown in Fig. 6, our EASTER methodology
and algorithm demonstrate superior performance because of
the higher hypervolume value hv, indicating more effective
search space coverage of EASTER compared to NSGA-II
and MOTPE. For example, the Pareto-optimal points found
by EASTER for Vicuna-7B and shown in Fig. 6(c) dominate
those found by NSGA-II and MOTPE, resulting in higher
hypervolume value of 3.24 and highlighting the EASTER
effectiveness in identifying optimal solutions.

As explained in Section VI-A, we apply the split fractions
Ri, found by Algorithm 1, to the models by distributing each
model across four devices. Moreover, we disable three of
the four devices in order to simulate severe device failure
scenarios to assess the models’ robustness. The results for the
LLMs (GPT2-Large and Vicuna-7B) are shown in Table II.

The first column specifies three different Ri settings for
each of the two LLMs together with the baseline setting,
named R = 1. The baseline setting R = 1 for each LLM
is the original model fully replicated over the four devices
with no loss of model weights/connections due to failures.
Note that the evaluation metrics associated with settings A–
C are also shown in Fig. 6(b) and (c)—see the red dots
marked with A–C. The second column in Table II shows
the maximum memory usage per device under the aforemen-
tioned settings. The remaining columns show the evaluation
accuracy (in %) of the operational part of the model,
i.e., the part still running on the nonfailing device, across
several zero-shot open-ended tasks on widely recognized

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 3635

(a) (b) (c)

Fig. 6. Comparison of DSE results delivered by EASTER, NSGA-II, and MOTPE for (a) ViT-16, (b) GPT2-Large, and (c) Vicuna-7B.

TABLE II
ZERO-SHOT PERFORMANCE (MAX. PER-DEVICE MEMORY USAGE AND ACCURACY-%) WITH THREE OUT OF FOUR EDGE DEVICES FAILING

common sense reasoning datasets [39]: ARC-e(asy), ARC-
c(hallenge), WinoGrande, HellaSwag, BoolQ, PIQA, and
OpenBookQA.

Analyzing the results in the second column of Table II, we
observe that the memory reduction for setting C with R ≈ 0.75
compared to the baseline clearly shows that the accuracy loss
is relatively small. The memory reduction for settings A and B
in this worst-case scenario (3D-Fail) confirms the efficacy of
our EASTER methodology. For example, the Vicuna-7B model
experiences a significant memory reduction of up to 65.80%
(from 27.00 to 9.24 GB), but still retains competitive accuracy
compared to the original GPT2-Large model across several
evaluated tasks like WinoGrande and BoolQ. Although the
memory reduction comes with a certain accuracy tradeoff,
especially for tasks like ARC-c, ARC-e, etc., this remains
within an acceptable range given the significant benefits
of reduced memory demands and improved computational
efficiency across multiple constrained devices. The GPT2-
Large model in setting B with a memory reduction of 66.20%
shows a relatively minor performance decline in terms of
accuracy for datasets like ARC-c, WinoGrande, and BoolQ.
Here, ARC-e task shows the highest accuracy sensitivity to
memory reduction, i.e., a decrease of 23.28% in accuracy.
However, it is important to note that our DSE methodology and
algorithm prioritize the optimization for general PPL scores,
rather than tailoring the search to enhance specific task scores.
To further improve the accuracy of different datasets, our
DSE method can be applied to search for optimal design
points targeting the accuracy separately for each dataset.
This approach allows for maintaining robust performance
while ensuring minimal accuracy drop for individual datasets.
However, it is important to recognize that this will result in
different optimal design points (different sets of R values) for
each dataset.

Overall, both models demonstrate a notable degree of
performance resilience under extreme failure scenarios, indi-
cating their potential for effective deployment in environments
with memory constraints, such as edge devices.

D. Robustness Verification Against Varying Failures

To deepen our understanding of EASTER’s robustness, we
compare our robustness-aware method against the LP-inspired
method which does not utilize the notion of the importance of
neurons. To maintain a fair comparison, we select the settings
marked as A–C in Fig. 6 to split the transformer models across
four devices according to the R values associated with the
three marked settings by utilizing the two methods.

As depicted in Fig. 7, the x-axis categorizes the failure
scenarios (1D-Fail, 2-D-Fail, or 3D-Fail), whereas the y-axis
quantifies model performance, measured by the Top-1 accu-
racy on the ImageNet-1k validation dataset or perplexity (PPL)
value. Please note the logarithmic scale for the PPL scores.
The graphical representation uses blue bars to indicate the
performance of the traditional layer-wise partitioning (LP-
inspired) method in the face of device failures, while orange
bars illustrate the performance of our EASTER method.

Consider Fig. 7(a) and the 2D-Fail scenario. When the
ViT-16 model is split with R = 0.33, the Top-1 error of
the LP-inspired method is as high as 94.742%, in contrast
to our method, which significantly lowers the Top-1 error to
54.626%. By increasing the R value from 0.33 to 0.53, we
observe a further reduction of the Top-1 error to 31.238%.
Increasing the R value further to 0.77 results in the Top-1 error
dropping to 20.614%, which is very close to the baseline Top-
1 error of 18.572%. Note that our method can achieve this
baseline error if we set R to 1.0 (as shown in Fig. 7) because
this setting “forces” our method to perform full replication of
neurons, i.e., no accuracy loss is encountered due to device

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

3636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 11, NOVEMBER 2024

(a) (b) (c)

Fig. 7. Robustness comparison of EASTER with layer-wise partitioning [7] across four devices. (a) ViT-16. (b) GPT2-Large. (c) Vicuna-7B.

(a) (b) (c)

Fig. 8. Inference latency, communication time, and memory usage for different models across device configurations. (a) ViT-16. (b) GPT2-Large.
(c) Vicuna-7B.

failures. Similarly, with the Vicuna7B model, the logarithmic
value of perplexity (PPL) observed using the LP-inspired
method under a 2D-Fail condition is 8.29. In contrast, our
method achieves a log(PPL) of 5.50 with an R value of 0.34.
Further increasing the R value to 0.76 results in an even lower
log(PPL) which is very close to the baseline (R = 1.0).

These results clearly demonstrate that our EASTER method
significantly outperforms the LP-inspired method in main-
taining model performance against device failures. Moreover,
increasing the R value, which dictates the degree of neuron
replication, can further improve model robustness.

E. Distributed Inference

In this section, we evaluate our end-to-end tool that facil-
itates automated model partitioning and its deployment on
distributed edge devices. Our tool is specifically implemented
to convert standard PyTorch transformer models into optimized
multinode implementations following our EASTER method-
ology, making the models suitable for efficient distributed
deployment on edge devices. We present empirical results,
obtained by using our edge test-bed described in Section VI-A,
in order to demonstrate the advantages of EASTER in terms
of overall end-to-end inference latency and maximum memory
usage per device in a distributed system running transformer
models. Here, in all experiments, transformer blocks are
evenly distributed across the devices. In Fig. 8, the light blue
bars represent the computation time Tcal of the distributed
inference process, the gray blue bars indicate the communica-
tion/synchronization overhead Tcomm, whereas the orange bars
in Fig. 8 denote the maximum memory usage per device. The

data is presented for different numbers of collaborating edge
devices across the three models.

As shown in Fig. 8, in most cases, the overall end-to-
end inference latency improves when increasing the number
of edge devices. As the number of devices increases, in
all cases, computation time Tcal (light blue bars) reduces
correspondingly. Only in the case of ViT-16 [Fig. 8(a)], this
advantage is counterbalanced by a rise in the communica-
tion overhead (gray bars), which, in an eight-device setup,
surpasses the computational savings, leading to an overall
increase in the inference latency. Conversely, for GPT2-Large,
the communication overhead, while increasing with more
devices, still remains a smaller fraction compared to the
computation time. This results in a near-linear acceleration,
with an overall inference latency decrease from 58.00 s using
one device to 7.62 s using eight devices. The increase in
communication overhead therefore seems more pronounced in
smaller transformer models like ViT-16, that represents a fun-
damental tradeoff between computation and communication.

The results shown in Fig. 8 clearly indicate that with an
increasing number of devices (from 1 to 8 devices), there
also is a noticeable decrease in memory usage per device. For
instance, the maximum on-device memory usage for ViT-16
decreases from 193.8 MB in a single-device configuration to
48.1 MB in an eight-device configuration. Similarly, GPT2-
Large exhibits a significant memory reduction from 3.6 GB on
a single device to 556.3 MB across eight devices. A significant
reduction in memory usage per device from 27.6 GB on
a single-device configuration to 4.6 GB on an eight-device
configuration is observed for Vicuna-7B as shown in Fig. 8(c).
Such reduction enables the models to run the complete float32

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 3637

version at the edge without the need for extra swap space
or model quantization, highlighting EASTER’s effectiveness in
memory savings.

Finally, if the reduction in computation time due to
distributed inference is outweighed by the increase in com-
munication time, the overall end-to-end latency increases. We
can adjust timeout thresholds in the system to manage the
tradeoff between computation and communication times. By
implementing such a timeout mechanism, we ensure that if
synchronization among distributed devices does not conclude
within the set time period, the system proceeds without further
delay, thus maintaining timely execution. This approach not
only mitigates potential increases in communication time but
also safeguards against the detrimental effects of prolonged
synchronization wait times.

The above findings validate the efficiency of EASTER in
optimizing memory usage per device in distributed transformer
inference, particularly in edge computing environments where
resource constraints are a critical factor.

VII. CONCLUSION

This article introduces EASTER, a novel method designed
to robustly partition transformer models across edge devices,
effectively addressing the challenge of potential device failures
at the Edge. The EASTER method navigates the vast design
space of splitting strategies by learning the expectation of
different design subspaces. It also outperforms traditional
state-of-the-art DSE methods in searching efficiency for
our distribution problem. Through extensive experimentation,
EASTER has been proven to identify Pareto solutions within
a limited number of experimental trials efficiently.

Utilizing our developed end-to-end tool, we have the capa-
bility to evaluate the distributed implementation on actual
hardware boards, which allows us to confirm the advantages in
memory usage and inference latency that distributed inference
brings. Moreover, our findings substantiate that partial splitting
significantly enhances model robustness in the face of device
failures. This approach not only minimizes memory consump-
tion on each device but also has the potential to reduce
overall end-to-end latency, presenting a valuable opportunity
for deploying large-scale transformer models within edge
computing environments.

REFERENCES

[1] Y. Cao et al., “A comprehensive survey of AI-generated content
(AIGC): A history of generative AI from GAN to ChatGPT,” 2023,
arXiv:2303.04226.

[2] OpenAI, “GPT-4 technical report,” 2023, arXiv:2303.08774.
[3] M. N. Birje and S. S. Hanji, “Internet of things based distributed health-

care systems: A review,” J. Data, Inf. Manage., vol. 2, pp. 149–165,
2020.

[4] L. Zheng et al., “Judging LLM-as-a-judge with MT-bench and Chatbot
arena,” in Proc. 37th Conf. Neural Inf. Process. Syst., 2023, pp. 1–39.

[5] J. Lin et al., “AWQ: Activation-aware weight Quantization for LLM
compression and acceleration,” 2023, arXiv:2306.00978.

[6] X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, “A survey on model
compression for large language models,” 2023, arXiv:2308.07633.

[7] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “DeeperThings: Fully distributed CNN inference on
resource-constrained edge devices,” Int. J. Parallel Program., vol. 49,
no. 4, pp. 600–624, 2021.

[8] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proc. 4th ACM/IEEE Symp. Edge Comput., 2019,
pp. 195–208.

[9] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:2307.09288, 2023.

[10] Z. Li et al., “AlpaServe: Statistical multiplexing with model
parallelism for deep learning serving,” in Proc. OSDI, 2023,
pp. 663–679.

[11] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proc. ACM SIGKDD’26, 2020,
pp. 3505–3506.

[12] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in Proc. ICLR, 2020, pp. 1–22.

[13] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
Proc. ECML, 2006, pp. 282–293.

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, p. 9, 2019.

[15] M. W. U. Rahman et al., “Quantized transformer language model
implementations on edge devices,” 2023, arXiv:2310.03971.

[16] Y. Bondarenko, M. Nagel, and T. Blankevoort, “Understanding and
overcoming the challenges of efficient transformer quantization,” 2021,
arXiv:2109.12948.

[17] Z. Li and Q. Gu, “I-ViT: Integer-only quantization for efficient vision
transformer inference,” in Proc. ICCV, 2023, pp. 17065–17075.

[18] C. Gong et al., “Nasvit: Neural architecture search for efficient vision
transformers with gradient conflict aware supernet training,” in Proc.
ICLR, 2021, pp. 1–18.

[19] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani,
“Neural architecture search for transformers: A survey,” IEEE Access,
vol. 10, pp. 108374–108412, 2022.

[20] Y. Guo et al., “Nat: Neural architecture transformer for accurate and
compact architectures,” in Proc. NeurIPS, 2019, pp. 1–12.

[21] S. Li et al., “Hyperscale hardware Optimized neural architecture search,”
in Proc. ASPLOS, 2023, pp. 343–358.

[22] S. Rani, M. Chauhan, A. Kataria, and A. Khang, “IoT equipped intel-
ligent distributed framework for smart healthcare systems,” in Towards
the Integration of IoT, Cloud and Big Data: Services, Applications and
Standards. Singapore: Springer, 2023, pp. 97–114.

[23] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of Internet of Things
for smart home: Challenges and solutions,” J. Cleaner Prod., vol. 140,
pp. 1454–1464, Jan. 2017.

[24] Y. Hu et al., “Pipeedge: Pipeline parallelism for large-scale model infer-
ence on heterogeneous edge devices,” in Proc. DSD, 2022, pp. 298–307.

[25] X. Guo, A. D. Pimentel, and T. Stefanov, “Automated exploration and
implementation of distributed CNN inference at the edge,” IEEE Internet
Things J., vol. 10, no. 7, pp. 5843–5858, Apr. 2023.

[26] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Robustly executing DNNs
in IoT systems using coded distributed computing,” in Proc. DAC, 2019,
pp. 1–2.

[27] J. Zhou et al., “ElasticDL: A Kubernetes-native deep learning framework
with fault-tolerance and elastic scheduling,” in Proc. WSDM’16, 2023,
pp. 1148–1151.

[28] Y. Ozaki, Y. Tanigaki, S. Watanabe, M. Nomura, and M. Onishi,
“Multiobjective tree-structured Parzen estimator,” J. Artif. Intell. Res.,
vol. 73, pp. 1209–1250, Apr. 2022.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[30] X. Ma, G. Fang, and X. Wang, “LLM-pruner: On the struc-
tural pruning of large language models,” in Proc. NIPS, 2023,
pp. 1–19.

[31] R. Xiong et al., “On layer normalization in the transformer architecture,”
in Proc. Int. Conf. Mach. Learn., 2020, pp. 10524–10533.

[32] T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. OSDI 18, 2018, pp. 578–594.

[33] V. Ben et al. “IREE: An MLIR-based compiler and runtime for ML
models from multiple frameworks.” 2019. [Online]. Available: https://
iree.dev/

[34] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural
language processing,” 2019, arXiv:1910.03771.

[35] J. Ansel et al., “PyTorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation,” in Proc.
ASPLOS, 2024, pp. 929–947.

[36] J. Reed, Z. DeVito, H. He, A. Ussery, and J. Ansel, “Torch. FX: Practical
program capture and transformation for deep learning in python,” in
Proc. Mach. Learn. Syst., 2022, pp. 638–651.

[37] L. Tencent. “NCNN.” 2017. [Online]. Available: https://github.com/
Tencent/ncnn

[38] Z. Hou, Y. Huang, S. Zheng, X. Dong, and B. Wang, “Design and
implementation of heartbeat in multi-machine environment,” in Proc.
AINA’17, 2003, pp. 583–586.

[39] L. Gao et al. (Zenodo, Genéve, Switzerland). A Framework for Few-Shot
Language Model Evaluation. Dec. 2023. [Online]. Available: https://
zenodo.org/records/10256836

Authorized licensed use limited to: Universiteit Leiden. Downloaded on November 12,2024 at 16:19:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

